WorldWideScience

Sample records for cell cycle start

  1. PEM Fuel Cell Freeze Durability and Cold Start Project

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, T.; O' Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  2. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping

    Institute of Scientific and Technical Information of China (English)

    Jia-Long Wang; Wei-Guo Zong; Gui-Ming Le; Hai-Juan Zhao; Yun-Qiu Tang; Yang Zhang

    2009-01-01

    We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle.Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2±7.5 to appear during the period from May to October 2012.

  3. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  4. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power.

    Science.gov (United States)

    Wiecek, M; Szymura, J; Maciejczyk, M; Cempla, J; Szygula, Z

    2016-03-01

    The aim of our study was to compare the indicators of starting speed, anaerobic endurance and power in women as well as men, and to investigate whether the values of these indicators differ in women during the follicular and luteal phases of the menstrual cycle. The studied group included 16 men and 16 women. The subjects performed the 20-second maximal cycling sprint test. The men performed the test twice at 14-day intervals. The women undertook the test 4 times: twice during the middle of follicular phase and twice in the middle of luteal phase in separate menstrual cycles. Hormonal changes during the menstrual cycle do not influence anaerobic performance, starting speed or anaerobic endurance in women. Anaerobic performance in men is higher than in women with similar aerobic performance expressed as VO2max/LBM (lean body mass). A lower power decrease with time was noted for women than men, with a similar time of maintaining power in both groups. This is evidence of women's better anaerobic endurance compared to men. At the same time, the men had significantly better starting speed rates than women. PMID:27030635

  5. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power.

    Science.gov (United States)

    Wiecek, M; Szymura, J; Maciejczyk, M; Cempla, J; Szygula, Z

    2016-03-01

    The aim of our study was to compare the indicators of starting speed, anaerobic endurance and power in women as well as men, and to investigate whether the values of these indicators differ in women during the follicular and luteal phases of the menstrual cycle. The studied group included 16 men and 16 women. The subjects performed the 20-second maximal cycling sprint test. The men performed the test twice at 14-day intervals. The women undertook the test 4 times: twice during the middle of follicular phase and twice in the middle of luteal phase in separate menstrual cycles. Hormonal changes during the menstrual cycle do not influence anaerobic performance, starting speed or anaerobic endurance in women. Anaerobic performance in men is higher than in women with similar aerobic performance expressed as VO2max/LBM (lean body mass). A lower power decrease with time was noted for women than men, with a similar time of maintaining power in both groups. This is evidence of women's better anaerobic endurance compared to men. At the same time, the men had significantly better starting speed rates than women.

  6. Cold-start characteristics of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mishler, Jeff [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Wang, Yun [UNIV. CAL. RIVERSIDE; Mishler, Jeff [UNIV. CAL. RIVERSIDE; Mukherjee, Partha P [ORNL

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  7. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  8. Effect of starting cadence on sprint-performance indices in friction-loaded cycle ergometry.

    Science.gov (United States)

    Wright, Rachel L; Wood, Dan M; James, David V B

    2007-03-01

    The aims of the study were to investigate whether starting cadence had an effect on 10-s sprint-performance indices in friction-loaded cycle ergometry and to investigate the influence of method of power determination. In a counterbalanced order, 12 men and 12 women performed three 10-s sprints using a stationary (0 rev/min), moderate (60 rev/min), and high (120 rev/min) starting cadence. Calculated performance indices were peak power, cadence at peak power, time to peak power, and work to peak power. When the uncorrected method of power determination was applied, there was a main effect for starting cadence in female participants for peak power (stationary 635 +/- 183.7 W, moderate 615.4 +/- 168.9 W, and high 798.4 +/- 120.1 W) and cadence at peak power (89.8 +/- 2.3 rev/min, 87.9 +/- 21.5 rev/min, and 113.1 +/- 12.5 rev/min). For both the uncorrected and directly measured methods of power determination in men and women, there was a main effect for starting cadence for time to peak power and work to peak power. In women, for an uncorrected method of power determination, it can be concluded that starting cadence does affect peak power and cadence at peak power. This effect is, however, negated by a direct-measurement method of power determination. In men and women, for both uncorrected and directly measured methods of power determination, time to peak power and work to peak power were affected by starting cadence. Therefore, a higher-cadence start is unsuitable, particularly when sprint-performance indices are determined from an uncorrected method.

  9. Solid oxide fuel cell power plant having a bootstrap start-up system

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  10. EFFECTS OF THE ADMINISTRATION OF FEEDBACK ON PERFORMANCE OF THE BMX CYCLING GATE START

    OpenAIRE

    Mikel Zabala; Cristóbal Sánchez-Muñoz; Manuel Mateo

    2009-01-01

    The aim of the present study was to determine the effect of the administration of external feedback (FB) on the time used to execute the gate start skill in BMX cycling discipline. The sample used was n = 6 riders from the Spanish national team (19.3 ± 2.1 years). An intragroup experimental design with repeated measures was used to compare the evolution of the skill developed by the participants before and after treatment, as well as the degree of retention of the possible learning. The resul...

  11. Feedback and Modularity in Cell Cycle Control

    Science.gov (United States)

    Skotheim, Jan

    2009-03-01

    Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.

  12. Individualization of the FSH starting dose in IVF/ICSI cycles using the antral follicle count

    Directory of Open Access Journals (Sweden)

    La Marca Antonio

    2013-02-01

    Full Text Available Abstract Background The FSH starting dose is usually chosen according to women’s age, anamnesis, clinical criteria and markers of ovarian reserve. Currently used markers include antral follicle count (AFC, which is considered to have a very high performance in predicting ovarian response to FSH. The objective of the present study to elaborate a nomogram based on AFC for the calculation of the appropriate FSH starting dose in IVF cycles. Methods This is a retrospective study performed at the Mother-Infant Department of Modena University Hospital. IVF patients (n=505 were subjected to blood sampling and transvaginal ultrasound for measurement of serum day3 FSH, estradiol and AFC. The variables predictive of the number of retrieved oocytes were assessed by backwards stepwise multiple regression. The variables reaching the statistical significance were then used in the calculation for the final predictive model. Results A model based on age, AFC and FSH was able to accurately predict the ovarian sensitivity and accounted for 30% of the variability of ovarian response to FSH. An FSH dosage nomogram was constructed and overall it predicts a starting dose lower than 225 IU in 50.2% and 18.1% of patients younger and older than 35 years, respectively. Conclusions The daily FSH dose may be calculated on the basis of age and two markers of ovarian reserve, namely AFC and FSH, with the last two variables being the most significant predictors. The nomogram seems easily applicable during the daily clinical practice.

  13. EFFECTS OF THE ADMINISTRATION OF FEEDBACK ON PERFORMANCE OF THE BMX CYCLING GATE START

    Directory of Open Access Journals (Sweden)

    Mikel Zabala

    2009-09-01

    Full Text Available The aim of the present study was to determine the effect of the administration of external feedback (FB on the time used to execute the gate start skill in BMX cycling discipline. The sample used was n = 6 riders from the Spanish national team (19.3 ± 2.1 years. An intragroup experimental design with repeated measures was used to compare the evolution of the skill developed by the participants before and after treatment, as well as the degree of retention of the possible learning. The results showed that there were no significant differences between the 2 first pre-test sessions (PRE, nor between any of the other treatment, post-test or re-test sessions (TREAT, POS and RET, respectively. Nevertheless, significant differences were observed between either of the PRE sessions and any of the TREAT, POS or RET sessions (p < 0.028, showing a significant reduction of the time needed to perform this skill after TREAT (1.264 ± 0.045 ms in PRE, 1.047 ± 0.019 ms in POS, and 1.041 ± 0.021 ms in RET. In conclusion, the use of audiovisual FB and cognitive training of the skill can result in a significant improvement in the execution of the gate start in BMX reducing the time to develop the task

  14. Effects of the administration of feedback on performance of the bmx cycling gate start.

    Science.gov (United States)

    Zabala, Mikel; Sánchez-Muñoz, Cristóbal; Mateo, Manuel

    2009-01-01

    The aim of the present study was to determine the effect of the administration of external feedback (FB) on the time used to execute the gate start skill in BMX cycling discipline. The sample used was n = 6 riders from the Spanish national team (19.3 ± 2.1 years). An intragroup experimental design with repeated measures was used to compare the evolution of the skill developed by the participants before and after treatment, as well as the degree of retention of the possible learning. The results showed that there were no significant differences between the 2 first pre-test sessions (PRE), nor between any of the other treatment, post-test or re-test sessions (TREAT, POS and RET, respectively). Nevertheless, significant differences were observed between either of the PRE sessions and any of the TREAT, POS or RET sessions (p ≤ 0.028), showing a significant reduction of the time needed to perform this skill after TREAT (1.264 ± 0.045 ms in PRE, 1.047 ± 0.019 ms in POS, and 1.041 ± 0.021 ms in RET). In conclusion, the use of audiovisual FB and cognitive training of the skill can result in a significant improvement in the execution of the gate start in BMX reducing the time to develop the task. Key pointsThis work provides a practical application of many studies developed around teaching-learning technique in sport. In those studies this kind of applications were suggested as necessary.All the recent theories are applied in the real sport context, and using elite athletes.A successful program is proposed to be used by coaches and athletes just following a few simple guidelines, and this can be a really useful tool to follow. PMID:24150003

  15. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  16. Analysis of the Schizosaccharomyces pombe Cell Cycle.

    Science.gov (United States)

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle. PMID:27587785

  17. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  18. Should Weaning be the Start of the Reproductive Cycle in Hyper-prolific Sows? A Physiological View

    NARCIS (Netherlands)

    Kemp, B.; Soede, N.M.

    2012-01-01

    Normally, sows are in anoestrus during lactation and start their new cycle at the day of weaning. Modern hybrid primiparous sows that suckle large numbers of piglets may lose substantial amounts of body reserves during lactation. This compromises follicle development during lactation. As modern sows

  19. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  20. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  1. Random transitions and cell cycle control.

    Science.gov (United States)

    Brooks, R F

    1981-01-01

    Differences between the cycle times of sister cells are exponentially distributed, which means that these differences can be explained entirely by the existence of a single critical step in the cell cycle which occurs at random. Cycle times as a whole are not exponentially distributed, indicating an additional source of variation in the cell cycle. It follows that this additional variation must affect sister cells identically; ie, sister cell cycle times are correlated. This correlation and the overall distribution of cycle times can be predicted quantitatively by a model that was developed initially in order to explain certain problematic features of the response of quiescent cells to mitogenic stimulation - in particular, the significance of the lag that almost invariably occurs between stimulation and the onset of DNA synthesis. This model proposes that each cell cycle depends not on one but two random transitions, one of which (at reasonably high growth rates) occurs in the mother cell, its effects being inherited equally by the two daughter cells. The fundamental timing element in the cell cycle is proposed to be a lengthy process, called L, which accounts for most of the lag on mitogenic stimulation and also for the minimum cycle time in growing cultures. One of the random transitions is concerned with the initiation of L, whereas the other becomes possible on completion of L. The latter transition has two consequences: the first is the initiation of a sequence of events which includes S, G2 and M; the second is the restoration of the state from which L may be initiated once more. As a result, L may begin (at random) at any stage of the conventional cycle, ie, S, G2, M, or G1. There are marked similarities between the hypothetical process L and the biogenesis of mitotic centres - the structures responsible for organising the spindle poles. PMID:7312875

  2. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  3. High-Cycle-Life Lithium Cell

    Science.gov (United States)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  4. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  5. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    OpenAIRE

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-01-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic st...

  6. Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest

    OpenAIRE

    Fan, Hongran; Khavari, Paul A

    1999-01-01

    Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation...

  7. Fuel cell and advanced turbine power cycle

    Energy Technology Data Exchange (ETDEWEB)

    White, D.J. [Solar Turbines, Inc., San Diego, CA (United States)

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  8. The cell cycle and acute kidney injury

    OpenAIRE

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute ki...

  9. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  10. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  11. Flavonoids: from cell cycle regulation to biotechnology.

    Science.gov (United States)

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC). PMID:15834800

  12. Cell cycle regulation in Trypanosoma brucei

    OpenAIRE

    Tansy C Hammarton

    2007-01-01

    Cell division is regulated by intricate and interconnected signal transduction pathways that precisely coordinate, in time and space, the complex series of events involved in replicating and segregating the component parts of the cell. In Trypanosoma brucei, considerable progress has been made over recent years in identifying molecular regulators of the cell cycle and elucidating their functions, although many regulators undoubtedly remain to be identified, and there is still a long way to go...

  13. Does a Non-Circular Chainring Improve Performance in the Bicycle Motocross Cycling Start Sprint?

    Science.gov (United States)

    Mateo-March, Manuel; Fernández-Peña, Eneko; Blasco-Lafarga, Cristina; Morente-Sánchez, Jaime; Zabala, Mikel

    2014-01-01

    Maximising power output during the initial acceleration phase of a bicycle motocross (BMX) race increases the chance to lead the group for the rest of the race. The purpose of this study was to investigate the effect of non-circular chainrings (Q-ring) on performance during the initial acceleration phase of a BMX race. Sixteen male cyclists (Spanish National BMX team) performed two counterbalanced and randomized initial sprints (3.95s), using Q- ring vs. circular chainring, on a BMX track. The sample was divided into two different groups according to their performance (Elite; n = 8 vs. Cadet; n = 8). Elite group covered a greater distance using Q-ring (+0.26 m, p = 0.02; D = 0.23), whilst the improvement for the Cadet (+0.04 m) was not significant (p = 0.87; D = -0.02). Also, there was no significant difference in power output for the Elite group, while the Cadet group revealed larger peak power with the circular chainring. Neither lactate level, nor heart rate showed significant differences due to the different chainring used. The non-circular chainring improved the initial acceleration capacity only in the Elite riders. Key Points This work provides novel results demonstrating very significant improvements in the sprint performance of BMX cycling discipline using a non-circular chainring system. This study seeks a practical application from scientific analysis All data are obtained in a real context of high competition using a sample comprised by the National Spanish Team. Some variables influencing performance as subjects’ physical fitness are discussed. Technical equipment approved by International Cycling Union is studied to check its potentially beneficial influence on performance. PMID:24570612

  14. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  15. EEG-Based Detection of Starting and Stopping During Gait Cycle.

    Science.gov (United States)

    Hortal, Enrique; Úbeda, Andrés; Iáñez, Eduardo; Azorín, José M; Fernández, Eduardo

    2016-11-01

    Walking is for humans an essential task in our daily life. However, there is a huge (and growing) number of people who have this ability diminished or are not able to walk due to motor disabilities. In this paper, a system to detect the start and the stop of the gait through electroencephalographic signals has been developed. The system has been designed in order to be applied in the future to control a lower limb exoskeleton to help stroke or spinal cord injured patients during the gait. The brain-machine interface (BMI) training has been optimized through a preliminary analysis using the brain information recorded during the experiments performed by three healthy subjects. Afterward, the system has been verified by other four healthy subjects and three patients in a real-time test. In both preliminary optimization analysis and real-time tests, the results obtained are very similar. The true positive rates are [Formula: see text] and [Formula: see text] respectively. Regarding the false positive per minute, the values are also very similar, decreasing from 2.66 in preliminary tests to 1.90 in real-time. Finally, the average latencies in the detection of the movement intentions are 794 and 798[Formula: see text]ms, preliminary and real-time tests respectively. PMID:27354191

  16. Mechanical behaviour of membrane electrode assembly (MEA during cold start of PEM fuel cell from subzero environment temperature

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. Cold start capability and survivability of proton exchange membrane fuel cells (PEM in a subzero environment temperature remain a challenge for automotive applications. A key component of increasing the durability of PEM fuel cells is studying the behaviour of the membrane electrode assembly (MEA at the heart of the fuel cell. The present work investigates how the mechanical behaviour of MEA are influenced during cold start of the PEM fuel cell from subzero environment temperatures. Full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data.

  17. Complaints as starting point for vicious cycles in customer-employee-interactions

    Directory of Open Access Journals (Sweden)

    Eva eTraut-Mattausch

    2015-10-01

    Full Text Available A ring-model of vicious cycles in customer-employee-interaction is proposed: Service employees perceive complaints as a threat to their self-esteem resulting in defense responses such as an increased need for cognitive closure, a devaluation of the customer and their information and degrading service behavior. Confronted with such degrading service behavior, customers react defensively as well, by devaluing the employee for example with regard to his/her competence and by reducing repurchase and positive word-of-mouth. Three studies investigated each link in this ring-model. In study 1, participants were confronted with an aggressive or neutral customer complaint. Results show that motivated closed-mindedness (one aspect of the need for cognitive closure increases after an aggressive complaint leading to a devaluation of the customer and their information, and in turn to a degrading service reaction. In study 2, participants were confronted with a degrading or favorable service reaction. Results show that they devaluate the employees’ competence after receiving a degrading service reaction and thus reduce their intention to repurchase. In study 3, we finally examined our predictions investigating real customer-employee-interactions: We analyzed data from an evaluation study in which mystery callers tested the service hotline of an airline. Results show that the employees’ competence is devaluated after degrading behavior and thus reduces positive word-of-mouth.

  18. Control points within the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  19. Brushless Starting Magneto for Motor Cycle%摩托车用无刷起动磁电机

    Institute of Scientific and Technical Information of China (English)

    任立环; 刘迎澍; 李家国

    2001-01-01

    In view of the problems of difficult maintenance and short usage life ,etc.existed in previous magneto and electric generating started by carbon-brush and commutator device,a brushless starting magneto for motor cycle is introduced in this paper, it integrates the functions of starting, generating and igniting,uses the electronic inverter instead of mechanic inverter to overcome a series of problems caused by the electric brush and the commutator. The structures of magneto and inverter and the features of ignition system are described in this paper in detail.%针对早期的起动磁电机起动及发电均通过碳刷整流子装置,存在维护困难、使用寿命短等问题。介绍了一种摩托车用无刷起动磁电机,它集起动、发电与点火功能于一体,并采用电子换向器替代机械换向装置,从而克服了由电刷和整流子所带来的一系列问题。详细介绍了其电机结构、电子换向器结构及点火系统的特点。

  20. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  1. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  2. Getting to S: CDK functions and targets on the path to cell-cycle commitment

    Science.gov (United States)

    Fisher, Robert P.

    2016-01-01

    How and when eukaryotic cells make the irrevocable commitment to divide remain central questions in the cell-cycle field. Parallel studies in yeast and mammalian cells seemed to suggest analogous control mechanisms operating during the G1 phase—at Start or the restriction (R) point, respectively—to integrate nutritional and developmental signals and decide between distinct cell fates: cell-cycle arrest or exit versus irreversible commitment to a round of division. Recent work has revealed molecular mechanisms underlying this decision-making process in both yeast and mammalian cells but also cast doubt on the nature and timing of cell-cycle commitment in multicellular organisms. These studies suggest an expanded temporal window of mitogen sensing under certain growth conditions, illuminate unexpected obstacles and exit ramps on the path to full cell-cycle commitment, and raise new questions regarding the functions of cyclin-dependent kinases (CDKs) that drive G1 progression and S-phase entry.

  3. A first-principles simulation model for the start-up and cycling transients of household refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Christian J.L.; Melo, Claudio [POLO Research Laboratories for Emerging Technologies in Cooling and Thermophysics, Federal University of Santa Catarina, 88040-970 Florianopolis, SC (Brazil)

    2008-12-15

    A first-principles model for simulating the transient behavior of household refrigerators is presented in this study. The model was employed to simulate a typical frost-free 440-l top-mount refrigerator, in which the compressor is on-off controlled by the freezer temperature, while a thermo-mechanical damper is used to set the fresh-food compartment temperature. Innovative modeling approaches were introduced for each of the refrigerator components: heat exchangers (condenser and evaporator), non-adiabatic capillary tube, reciprocating compressor, and refrigerated compartments. Numerical predictions were compared to experimental data showing a reasonable level of agreement for the whole range of operating conditions, including the start-up and cycling regimes. The system energy consumption was found to be within {+-}10% agreement with the experimental data, while the air temperatures of the compartments were predicted with a maximum deviation of {+-}1 C. (author)

  4. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  5. Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle

    Science.gov (United States)

    Setalo, Gyorgy, Jr.

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…

  6. Targeting cell cycle regulators in hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Eiman eAleem

    2015-04-01

    Full Text Available Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia, and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219, pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638 as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.

  7. System-level design of bacterial cell cycle control

    OpenAIRE

    McAdams, Harley H.; Shapiro, Lucy

    2009-01-01

    Understanding of the cell cycle control logic in Caulobacter has progressed to the point where we now have an integrated view of the operation of an entire bacterial cell cycle system functioning as a state machine. Oscillating levels of a few temporally-controlled master regulator proteins in a cyclical circuit drive cell cycle progression. To a striking degree, the cell cycle regulation is a whole cell phenomenon. Phospho-signaling proteins and proteases dynamically deployed to specific loc...

  8. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  9. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM,Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by cisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM,Chk2 and p53 of HeLa cells with and without cisplatin were detected by RT-PCR and Western blot,respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin...

  10. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-01-01

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  11. Centrioles in the cell cycle. I. Epithelial cells

    OpenAIRE

    1982-01-01

    A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated p...

  12. Acanthamoeba induces cell-cycle arrest in host cells

    OpenAIRE

    Sissons, J.; Alsam, S.; Jayasekera, S.; Kim, K S; Stins, M; Khan, Naveed Ahmed

    2004-01-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed seve...

  13. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    Science.gov (United States)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  14. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells.

    Science.gov (United States)

    Chan, Wing Hei; Gonsalvez, David G; Young, Heather M; Southard-Smith, E Michelle; Cane, Kylie N; Anderson, Colin R

    2016-02-01

    Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.

  15. The start-up analysis of a PEM fuel cell system in vehicles

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud; Hosseinzadeh, Elham;

    2014-01-01

    results for start-up scenario are presented. It is shown that system stability is influenced by slow thermal management controls. High loads at start-up affect voltage and system efficiency adversely. Cathode inlet water levels are found to be adequate for humidification of recirculated fuel stream......Addressing large load fluctuation in automotive applications, dynamic analysis of a polymer electrolyte membrane fuel cell system is conducted here. Operations of a comprehensive system-level control-oriented fuel cell model with all necessary auxiliary components are demonstrated and simulation...

  16. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    Science.gov (United States)

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  17. Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling

    Science.gov (United States)

    Cullen, David A.; More, Karren L.; Atanasoska, Ljiljana L.; Atanasoski, Radoslav T.

    2014-12-01

    Electron microscopy and X-ray photoelectron spectroscopy (XPS) were utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 μg cm-2 and submitted to 5000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that the Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy were used to observe the impact of the OER catalysts on Pt dissolution and migration into the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.

  18. Impact of IrRu Oxygen Evolution Reaction Catalysts on Pt Nanostructured Thin Films under Start-Up/Shutdown Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL; More, Karren Leslie [ORNL; Atanasoska, Liliana [3M, Industrial Mineral Products Division; Atanasoski, Radoslav [3M, Industrial Mineral Products Division

    2014-01-01

    Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.

  19. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  20. Investigation of the Start-up Strategy for a Solid Oxide Fuel Cell Based Auxiliary Power Unit under Transient Conditions

    Directory of Open Access Journals (Sweden)

    Michael R. von Spakovsky

    2005-06-01

    Full Text Available

    A typical approach to the synthesis/design optimization of energy systems is to only use steady state operation and high efficiency (or low total life cycle cost at full load as the basis for the synthesis/design. Transient operation as reflected by changes in power demand, shut-down, and start-up are left as secondary tasks to be solved by system and control engineers once the synthesis/design is fixed. However, start-up and shut-down may be events that happen quite often and, thus, may be quite important in the creative process of developing the system. This is especially true for small power units used in transportation applications or for domestic energy supplies, where the load demand changes frequently and peaks in load of short duration are common. The duration of start-up is, of course, a major factor which must be considered since rapid system response is an important factor in determining the feasibility of solid oxide fuel cell (SOFC based auxiliary power units (APUs. Start-up and shut-down may also significantly affect the life span of the system due to thermal stresses on all system components. Therefore, a proper balance must be struck between a fast response and the costs of owning and operating the system so that start-up or any other transient process can be accomplished in as short a time as possible yet with a minimum in fuel consumption.

    In this research work we have been studying the effects of control laws and strategies and transients on system performance. The results presented in this paper are based on a set of transient models developed and implemented for the components of a 5 kWe net power SOFC based APU and for the high-fidelity system which results from their integration. The simulation results given below are for two different start-up approaches: one with steam recirculation and component pre-heating and the second without either. These start-up simulations were performed for fixed values of a number of

  1. Preparation and properties of small diameter tubular solid oxide fuel cells for rapid start-up

    Energy Technology Data Exchange (ETDEWEB)

    Kilbride, I.P. [Centre for Inorganic Chemistry and Materials Science, Dept. of Chemistry, Keele Univ. (United Kingdom)

    1996-07-01

    The feasibility of producing solid oxide fuel cells (SOFCs) which could be rapidly heated to operating temperature was investigated. Small diameter (2.4 mm) 3 and 8 mol% yttria-stabilised zirconia (YSZ) tubes were used both as the electrolyte and the cell support tube. Cells were prepared by winding with pure silver, Ni80/Cr20 and Niomonic 90 wires over lanthanum-strontium-manganite (LSM) cathodes. Specific power outputs of up to 250 mA/cm{sup 2} at 900 C, 0.7 V were achieved in silver wound cells with 5 mm long cathodes. Longer cathodes produced progressively lower specific outputs. This was attributed to increasing cathode and winding resistance with length. The base metal windings achieved up to 80% of the performance of a similar length cell wound with pure silver wire. Silver wound cells were successfully cycled between 200 and 900 C at an average 25 C/min (peak 100 C/min) over 50 cycles with no degradation due to the thermal cycling. Degradation in cells wound with base metals was attributable to increase in contact resistance found between the cathode and the wire with time. (orig.)

  2. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Wei Xiong; Yang Jiao; Weiwei Huang; Mingxing Ma; Min Yu; Qinghua Cui; Deyong Tan

    2012-01-01

    Human cervical cancer HeLa cells have functional mitochondria.Recent studies have suggested that mitochondrial metabolism plays an essential role in tumor cell proliferation.Nevertheless,how cells coordinate mitochondrial dynamics and cell cycle progression remains to be clarified.To investigate the relationship between mitochondrial function and cell cycle regulation,the mitochondrial gene expression profile and cellular ATP levels were determined by cell cycle progress analysis in the present study.HeLa cells were synchronized in the G0/G1 phase by serum starvation,and re-entered cell cycle by restoring serum culture,time course experiment was performed to analyze the expression of mitochondrial transcription regulators and mitochondrial genes,mitochondrial membrane potential (MMP),cellular ATP levels,and cell cycle progression.The results showed that when arrested G0/G1 cells were stimulated in serum-containing medium,the amount of DNA and the expression levels of both mRNA and proteins in mitochondria started to increase at 2 h time point,whereas the MMP and ATP level elevated at 4 h.Furthermore,the cyclin D1 expression began to increase at 4 h after serum triggered cell cycle.ATP synthesis inhibitor-oligomycintreatment suppressed the cyclin D1 and cyclin B1 expression levels and blocked cell cycle progression.Taken together,our results suggested that increased mitochondrial gene expression levels,oxidative phosphorylation activation,and cellular ATP content increase are important events for triggering cell cycle.Finally,we demonstrated that mitochondrial gene expression levels and cellular ATP content are tightly regulated and might play a central role in regulating cell proliferation.

  3. Modeling the fission yeast cell cycle: Quantized cycle times in wee1 cdc25 mutant cells

    Science.gov (United States)

    Sveiczer, Akos; Csikasz-Nagy, Attila; Gyorffy, Bela; Tyson, John J.; Novak, Bela

    2000-07-01

    A detailed mathematical model for the fission yeast mitotic cycle is developed based on positive and negative feedback loops by which Cdc13/Cdc2 kinase activates and inactivates itself. Positive feedbacks are created by Cdc13/Cdc2-dependent phosphorylation of specific substrates: inactivating its negative regulators (Rum1, Ste9 and Wee1/Mik1) and activating its positive regulator (Cdc25). A slow negative feedback loop is turned on during mitosis by activation of Slp1/anaphase-promoting complex (APC), which indirectly re-activates the negative regulators, leading to a drop in Cdc13/Cdc2 activity and exit from mitosis. The model explains how fission yeast cells can exit mitosis in the absence of Ste9 (Cdc13 degradation) and Rum1 (an inhibitor of Cdc13/Cdc2). We also show that, if the positive feedback loops accelerating the G2/M transition (through Wee1 and Cdc25) are weak, then cells can reset back to G2 from early stages of mitosis by premature activation of the negative feedback loop. This resetting can happen more than once, resulting in a quantized distribution of cycle times, as observed experimentally in wee1- cdc25 mutant cells. Our quantitative description of these quantized cycles demonstrates the utility of mathematical modeling, because these cycles cannot be understood by intuitive arguments alone.

  4. Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures

    Science.gov (United States)

    Ahluwalia, R. K.; Wang, X.

    Polymer electrolyte fuel cell (PEFC) systems for light-duty vehicles must be able to start unassisted and rapidly from temperatures below -20 °C. Managing buildup of ice within the porous cathode catalyst and electrode structure is the key to self-starting a PEFC stack from subfreezing temperatures. The stack temperature must be raised above the melting point of ice before the ice completely covers the cathode catalyst and shuts down the electrochemical reaction. For rapid and robust self-start it is desirable to operate the stack near the short-circuit conditions. This mode of operation maximizes hydrogen utilization, favors production of waste heat that is absorbed by the stack, and delays complete loss of effective electrochemical surface area by causing a large fraction of the ice to form in the gas diffusion layer rather than in the cathode catalyst layer. Preheating the feed gases, using the power generated to electrically heat the stack, and operating pressures have only small effect on the ability to self-start or the startup time. In subfreezing weather, the stack shut-down protocol should include flowing ambient air through the hot cathode passages to vaporize liquid water remaining in the cathode catalyst. Self-start is faster and more robust if the bipolar plates are made from metal rather than graphite.

  5. Reviews/Essays: School Start Times and the Sleep-Wake Cycle of Adolescents--A Review and Critical Evaluation of Available Evidence

    Science.gov (United States)

    Kirby, Matthew; Maggi, Stefania; D'Angiulli, Amedeo

    2011-01-01

    The authors have integrated the major findings on the sleep-wake cycle and its performance correlates in adolescents. Basic research shows that lack of synchronicity between early school start times and the circadian rhythm of adolescents (and the sleep debt accumulated as a result) involves several cognitive correlates that may harm the academic…

  6. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.)

  7. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  8. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  9. Transcriptome changes and cAMP oscillations in an archaeal cell cycle

    Directory of Open Access Journals (Sweden)

    Soppa Jörg

    2007-06-01

    Full Text Available Abstract Background The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. Results A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 μM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. Conclusion The analysis of cell cycle-specific transcriptome changes of H. salinarum

  10. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    Science.gov (United States)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  11. Cell cycle controls stress response and longevity in C. elegans

    Science.gov (United States)

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  12. Limit Cycle Oscillations in Pacemaker Cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Skarland, Nils

    1999-01-01

    In recent decades, several mathematical models describing the pacemaker activity of the rabbit sinoatrial node have been developed. We demonstrate that it is not possible to establish the existence, uniqueness, and stability of a limit cycle oscillation in those models. Instead we observe an infinite number of limit cycles. We then display numerical results from a new model, with a limit cycle that can be reached from many different initial conditions.

  13. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  14. When breast cancer cells start to fend the educational process of NK cells off

    OpenAIRE

    Mamessier, Emilie; Bourgin, Charlotte; Olive, Daniel

    2013-01-01

    The notion of natural killer (NK)-cell education has recently emerged, and accumulating evidence indicates that the terminal differentiation of NK cells can be achieved in the periphery. This means that the proper function of these lymphocytes is dependent on their environment, opening a new door through which cancer cells can escape immunosurveillance.

  15. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  16. Comparison of Photoluminescence Imaging on Starting Multi-Crystalline Silicon Wafers to Finished Cell Performance: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.; Yan, F.; Dorn, D.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Ounadjela, K.

    2012-06-01

    Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect band images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200 degrees - 400 degrees C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.

  17. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    Science.gov (United States)

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-10-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.

  18. A Method to Design Synthetic Cell-Cycle Networks

    Institute of Scientific and Technical Information of China (English)

    MIAO Ke-Ke

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of ce11-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network.

  19. Systems Level Modeling of the Cell Cycle Using Budding Yeast

    Directory of Open Access Journals (Sweden)

    D.R. Kim

    2007-01-01

    Full Text Available Proteins involved in the regulation of the cell cycle are highly conserved across all eukaryotes, and so a relatively simple eukaryote such as yeast can provide insight into a variety of cell cycle perturbations including those that occur in human cancer. To date, the budding yeast Saccharomyces cerevisiae has provided the largest amount of experimental and modeling data on the progression of the cell cycle, making it a logical choice for in-depth studies of this process. Moreover, the advent of methods for collection of high-throughput genome, transcriptome, and proteome data has provided a means to collect and precisely quantify simultaneous cell cycle gene transcript and protein levels, permitting modeling of the cell cycle on the systems level. With the appropriate mathematical framework and suffi cient and accurate data on cell cycle components, it should be possible to create a model of the cell cycle that not only effectively describes its operation, but can also predict responses to perturbations such as variation in protein levels and responses to external stimuli including targeted inhibition by drugs. In this review, we summarize existing data on the yeast cell cycle, proteomics technologies for quantifying cell cycle proteins, and the mathematical frameworks that can integrate this data into representative and effective models. Systems level modeling of the cell cycle will require the integration of high-quality data with the appropriate mathematical framework, which can currently be attained through the combination of dynamic modeling based on proteomics data and using yeast as a model organism.

  20. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.

  1. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  2. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hyd...

  3. Assessment study of RELAP5/MOD2, CYCLE 36. 04 based on spray start-up test for DOEL-4

    Energy Technology Data Exchange (ETDEWEB)

    Moeyaert, P.; Stubbe, E.

    1989-07-01

    This report presents an assessment study for the code RELAP-5 MOD-2 based on a pressurizer spray start-up test of the Doel-4 power plant. Doel-4 is a three loop WESTINGHOUSE PWR plant ordered by the EBES utility with a nominal power rating of 1000 MWe and equipped with preheater type E steam generators. A large series of commissioning tests are normally performed on new plants, of which the so called pressurizer spray and heater test (SU-PR-01) was performed on February 2nd 1985. TRACTEBEL, being the Architect-Engineer for this plant was closely involved with all start-up tests and was responsible for the final approval of the tests.

  4. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  5. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    OpenAIRE

    R.E. Shackelford; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cy...

  6. Cyst aspiration or GnRH antagonist administration for ovarian cysts detected at the start of fresh in vitro fertilization cycles.

    Science.gov (United States)

    Pereira, Nigel; Amrane, Selma; Hobeika, Elie; Lekovich, Jovana P; Chung, Pak H; Rosenwaks, Zev

    2016-07-01

    The primary objective of this study is to investigate the effect of transvaginal ultrasonogram (TVUS)-guided cyst aspiration or gonadotropin releasing hormone antagonist (GnRH-ant) administration for the management of solitary ovarian cysts detected at the start of in vitro fertilization (IVF) cycles on the outcomes of the same cycles. This is a single-center, retrospective, cohort study of patients who had TVUS-guided cyst aspiration or GnRH-ant treatment for ovarian cysts detected at the start of IVF during a 5-year period. Four hundred and three patients met inclusion criteria: 41 (10.2%) underwent cyst aspiration and 362 (89.2%) were treated with GnRH-ant. There was no difference in the demographics or baseline IVF cycle characteristics of the two groups. Patients treated with GnRH-ant had a longer duration of ovarian stimulation (10.8 ± 3.45 days versus 9.05 ± 4.06 days, p = 0.003) and required higher gonadotropin doses (3887.7 ± 1097.8 IU versus 3293.7 ± 990.5 IU; p = 0.01) compared with the cyst aspiration group. There was no difference in the clinical pregnancy (43.9% versus 41.4%), spontaneous miscarriage (9.76% versus 8.01%) and live birth (34.1% versus 33.4%) rates between the groups. Our findings suggest that cyst aspiration is comparable to GnRH-ant administration for the management of solitary ovarian cysts detected at the start of IVF cycles.

  7. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    Science.gov (United States)

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  8. Impact of the cell division cycle on gene circuits

    Science.gov (United States)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  9. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  10. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  11. Side population sorting separates subfractions of cycling and non-cycling intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Richard J. von Furstenberg

    2014-03-01

    Full Text Available We report here that side population (SP sorting allows for the simultaneous isolation of two intestinal stem cell (ISC subsets from wild-type (WT mice which are phenotypically different and represent cycling and non-cycling pools of cells. Following 5-ethynyl-2′-deoxyuridine (EdU injection, in the upper side population (USP the percentage of EdU+ was 36% showing this fraction to be highly proliferative. In the lower side population (LSP, only 0.4% of cells were EdU+, indicating this fraction to be predominantly non-cycling. Using Lgr5-EGFP mice, we show that Lgr5-EGFPhi cells, representing actively cycling ISCs, are essentially exclusive to the USP. In contrast, using histone 2B-YFP mice, SP analysis revealed YFP label retaining cells (LRCs in both the USP and the LSP. Correspondingly, evaluation of the SP fractions for mRNA markers by qRT-PCR showed that the USP was enriched in transcripts associated with both quiescent and active ISCs. In contrast, the LSP expressed mRNA markers of quiescent ISCs while being de-enriched for those of the active ISC. Both the USP and LSP are capable of generating enteroids in culture which include the four intestinal lineages. We conclude that sorting of USP and LSP fractions represents a novel isolation of cycling and non-cycling ISCs from WT mice.

  12. Cell Sorting of Neural Stem and Progenitor Cells from the Adult Mouse Subventricular Zone and Live-imaging of their Cell Cycle Dynamics.

    Science.gov (United States)

    Daynac, Mathieu; Morizur, Lise; Kortulewski, Thierry; Gauthier, Laurent R; Ruat, Martial; Mouthon, Marc-André; Boussin, François D

    2015-01-01

    Neural stem cells (NSCs) in the subventricular zone of the lateral ventricles (SVZ) sustain olfactory neurogenesis throughout life in the mammalian brain. They successively generate transit amplifying cells (TACs) and neuroblasts that differentiate into neurons once they integrate the olfactory bulbs. Emerging fluorescent activated cell sorting (FACS) techniques have allowed the isolation of NSCs as well as their progeny and have started to shed light on gene regulatory networks in adult neurogenic niches. We report here a cell sorting technique that allows to follow and distinguish the cell cycle dynamics of the above-mentioned cell populations from the adult SVZ with a LeX/EGFR/CD24 triple staining. Isolated cells are then plated as adherent cells to explore in details their cell cycle progression by time-lapse video microscopy. To this end, we use transgenic Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) mice in which cells are red-fluorescent during G1 phase due to a G1 specific red-Cdt1 reporter. This method has recently revealed that proliferating NSCs progressively lengthen their G1 phase during aging, leading to neurogenesis impairment. This method is easily transposable to other systems and could be of great interest for the study of the cell cycle dynamics of brain cells in the context of brain pathologies. PMID:26436641

  13. Intercalated duct cell is starting point in development of pancreatic ductal carcinoma?

    Directory of Open Access Journals (Sweden)

    Yamaguchi Toshikazu

    2005-01-01

    Full Text Available Abstract Background Although it is well known that the pancreatic ductal carcinoma may develop having a relationship to the mucous gland hyperplasia (MGH with atypia (PanIN-1B by PanIN system, the starting point of this atypical MGH is unclear. To know it, we examined the pancreas tissue using many methods described below. Methods 1. Twenty-seven surgically resected pancreas tissue specimens, including pancreatic ductal carcinomas (PDC, chronic pancreatitis and normal pancreas, were investigated using immunohistochemical stainings for MUC1, MUC6, 45M1, Ki67 and p53. 2. DNA extraction and analysis of K-ras mutation at codon 12 using microdissection method: The paraffin blocks with 16 regions including the intercalated duct cell (IC adjacant to the atypical MGH were prepared for DNA extraction. Mutation of K-ras codon 12 was analized and compared in enriched polymerase chain reaction-enzyme-linked minisequence assay (PCR-ELMA. Results 1. In the normal pancreas, although no positive cell was seen in 45M1, p53, Ki67, the cytoplasm of IC were always positive for MUC1 and sometimes positive for MUC6. In the pancreas with fibrosis or inflammation, MGH was positive for MUC6 and 45M1. And atypical MGH was positive for MUC1, MUC6 and 45M1. Some IC adjacent to the atypical MGH was positive for Ki67 as well as atypical MGH. The carcinoma cells in all cases of PDC were diffusely positive for MUC1, 45M1, p53 and Ki67, and focally positive for MUC6. 2. In K-ras mutation, we examined the regions including IC adjacent to the atypical MGH, because the immunohistochemical apomucin stainings of these regions resembled those of PDC as decribed above. And K-ras mutation was confirmed in 12 of 16 regions (75%. All mutations were a single mutation, in 6 regions GTT was detected, in 4 regions GAT was detected and in 2 region AGT was detected. Conclusion Some intercalated duct cell may be the starting point of the pancreatic ductal carcinoma, because the exhibitions of

  14. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    Science.gov (United States)

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  15. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    Science.gov (United States)

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  16. Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance in Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Industrial Mineral Products; Atanasoska, Liliana [3M Industrial Mineral Products; Cullen, David A [ORNL

    2013-01-01

    Minute amounts of ruthenium and iridium on platinum nanostructured thin films have been evaluated in an effort to reduce carbon corrosion and Pt dissolution during transient conditions in proton exchange membrane fuel cells. Electrochemical tests showed the catalysts had a remarkable oxygen evolution reaction (OER) activity, even greater than that of bulk, metallic thin films. Stability tests within a fuel cell environment showed that rapid Ru dissolution could be managed with the addition of Ir. Membrane electrode assemblies containing a Ru to Ir atomic ratio of 1:9 were evaluated under startup/shutdown and cell reversal conditions for OER catalyst loadings ranging from 1 to 10 g/cm2. These tests affirmed that electrode potentials can be controlled through the addition of OER catalysts without impacting the oxygen reduction reaction on the cathode or the hydrogen oxidation reaction on the anode. The morphology and chemical structure of the thin OER layers were characterized by scanning transmission electron microscopy and X-ray photoelectron spectroscopy in an effort to establish a correlation between interfacial properties and electrochemical behavior.

  17. Regulation of cell cycle by the anaphase spindle midzone

    Directory of Open Access Journals (Sweden)

    Sluder Greenfield

    2004-12-01

    Full Text Available Abstract Background A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. Results We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. Conclusions We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle.

  18. Mathematical model of the cell division cycle of fission yeast

    Science.gov (United States)

    Novak, Bela; Pataki, Zsuzsa; Ciliberto, Andrea; Tyson, John J.

    2001-03-01

    Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1→S→G2→M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1- cdc25Δ, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled.

  19. Large scale spontaneous synchronization of cell cycles in amoebae

    Science.gov (United States)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  20. Spatial complexity and control of a bacterial cell cycle

    OpenAIRE

    Collier, Justine; Shapiro, Lucy

    2007-01-01

    A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partiti...

  1. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    Science.gov (United States)

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis. PMID:22223508

  2. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were....... In distinct NHL entities however, shortened survival seems to correlate with high expression of p27. For definitive assessment of the role played by p27 in lymphomagenesis, and the prognostic value of p27 in these tumors, further studies of distinct NHL entities are needed. This review addresses the function...

  3. An organization of the thorium fuel cycle start on the basis of fast reactors with spherical fuel elements of the small size

    International Nuclear Information System (INIS)

    The possibility of the organization of thorium fuel cycle start by means of conversion of high background plutonium into isotopically pure Uranium 233 into the highly stressed breeders with the fuel in the form of spherical fuel elements has been studied. A high efficiency of usage of compact plutonium fuel in the form of spherical fuel elements for its transmutation into low background Uranium 233 has been shown as a result of the revealed temporary regularities in the main characteristic behaviour of the reactors of such a type. (authors). 7 refs., 2 figs., 1 tab

  4. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  5. Cell Cycle Inhibition without Disruption of Neurogenesis Is a Strategy for Treatment of Aberrant Cell Cycle Diseases: An Update

    OpenAIRE

    Da-Zhi Liu; Ander, Bradley P.

    2012-01-01

    Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of “aberrant cell cycle diseases” to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberr...

  6. Creatine kinase in cell cycle regulation and cancer.

    Science.gov (United States)

    Yan, Yong-Bin

    2016-08-01

    The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK. PMID:27020776

  7. Mitochondrial Regulation of Cell Cycle and Proliferation

    OpenAIRE

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José; Carreras, María Cecilia

    2012-01-01

    Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly...

  8. Nanosecond pulsed electric fields and the cell cycle

    Science.gov (United States)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  9. A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division.

    Directory of Open Access Journals (Sweden)

    Scott A Hoose

    Full Text Available Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.

  10. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus;

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.......org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are...

  11. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  12. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  13. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  14. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants configu...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW.......Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...

  15. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  16. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    Science.gov (United States)

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  17. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  18. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  19. Viral infections and cell cycle G2/M regulation

    Institute of Scientific and Technical Information of China (English)

    Richard Y.ZHAO; Robert T.ELDER

    2005-01-01

    Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15(Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well-characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.

  20. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  1. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  2. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  3. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren;

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...... are often mirrored by changes in other layers, implying that independent layers of control coevolve. By taking a bird's eye view of the cell cycle, we demonstrate how the modular organization of cellular systems possesses a built-in flexibility, which allows evolution to find many different solutions...

  4. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts

    OpenAIRE

    Nishikiori, Ryo; Nomura, Yuji; Sawajiri, Masahiko; Masuki, Kohei; Hirata, Isao; Okazaki, Masayuki

    2008-01-01

    Objectives: The effects of chlorine dioxide (ClO2), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2) on cell death and the cell cycle of human gingival fibroblast (HGF) cells were examined. Methods: The inhibition of HGF cell growth was evaluated using a Cell Counting Kit-8. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases) using flow cytometry. The patterns of cell death (necrosis and apoptosis) were analyzed using f...

  5. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-08-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post‐mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  6. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  7. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Science.gov (United States)

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  8. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    Science.gov (United States)

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  9. Effects of cell cycle noise on excitable gene circuits

    CERN Document Server

    Veliz-Cuba, Alan; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2016-01-01

    We assess the impact of cell cycle noise on gene circuit dynamics. For bistable genetic switches and excitable circuits, we find that transitions between metastable states most likely occur just after cell division and that this concentration effect intensifies in the presence of transcriptional delay. We explain this concentration effect with a 3-states stochastic model. For genetic oscillators, we quantify the temporal correlations between daughter cells induced by cell division. Temporal correlations must be captured properly in order to accurately quantify noise sources within gene networks.

  10. Cell cycle control of DNA joint molecule resolution.

    Science.gov (United States)

    Wild, Philipp; Matos, Joao

    2016-06-01

    The establishment of stable interactions between chromosomes underpins vital cellular processes such as recombinational DNA repair and bipolar chromosome segregation. On the other hand, timely disengagement of persistent connections is necessary to assure efficient partitioning of the replicated genome prior to cell division. Whereas great progress has been made in defining how cohesin-mediated chromosomal interactions are disengaged as cells prepare to undergo chromosome segregation, little is known about the metabolism of DNA joint molecules (JMs), generated during the repair of chromosomal lesions. Recent work on Mus81 and Yen1/GEN1, two conserved structure-selective endonucleases, revealed unforeseen links between JM-processing and cell cycle progression. Cell cycle kinases and phosphatases control Mus81 and Yen1/GEN1 to restrain deleterious JM-processing during S-phase, while safeguarding chromosome segregation during mitosis. PMID:26970388

  11. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.

    Science.gov (United States)

    Seidel, Hannah S; Kimble, Judith

    2015-11-09

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.

  12. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  13. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    Institute of Scientific and Technical Information of China (English)

    YI Ming; JIA Ya; LIU Quan; ZHU Chun-Lian; YANG Li-Jian

    2007-01-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  14. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    Science.gov (United States)

    Yi, Ming; Jia, Ya; Liu, Quan; Zhu, Chun-Lian; Yang, Li-Jian

    2007-07-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25Δ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  15. Effect of staurosporine on cycle of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Ke-Zuo Hou; Yun-Peng Liu; Yuan Yuan

    2004-01-01

    AIM: To study the effect of staurosporine (ST) on the cell cycle of human gastriccancer cell lines MGC803 and SGC7901.METHODS: Cell proliferation was evaluated by trypan blue dye exclusion method. Apoptotic morphology was observed under a transmission electron microscope. Changes of cell cycle and apoptotic peaks of cells were determined by flow cytometry. Expression of p21WAFI gene was examined using immunohistochemistry and RT-PCR.RESULTS: The growth of MGC803 and SGC7901 cells was inhibited by ST. The inhibitory concentrations against 50% cells (IC50) at 24 h and 48 h were 54 ng/ml and 23 ng/ml for MlGC803, and 61 ng/ml and 37 ng/ml for SGC7901. Typical apoptotic bodies and apoptotic peaks were observed 24 hafter cells were treated wth ST at a concentration of 200ng/ml. The percentage of cells at G0/G1 phase was decreased and that of cells at G2/M was increased significantly in the group treated wth ST at the concentrations of 40ng/ml,60 ng/ml, 100 ng/ml for 24 h, compared with the control group (P<0.01). The expression levels of p21WAFI gene in both MGC803 and SGC7901 cells were markedly up-regulated after treatment with ST.CONCLUSION: ST can cause arrest of gastric cancer cells at G2/M phase, which may be one of the mechanisms that inhibit cell proliferation and cause apoptosis in these cells.Effect of ST on cells at G2/M phase may be attributed to the up-regulattion of p21WAFI gene.

  16. Cell cycle control in Plasmodium falciparum: a genomics perspective

    OpenAIRE

    Waters, A.P.; Janse, C.J.; Doerig, Christian; Chakrabarti, Debopam

    2004-01-01

    The molecular mechanisms regulating cell proliferation and development in malaria parasites are still largely unknown. Phenomenological observations, pertaining to the organisation of the cell cycle during schizogony or to the signal transduction pathways whose activation is responsible for the developmental stage transitions, can now be complemented with information gathered from genomic databases. The PlasmoDB database has been used extensively to identify putative homologues of a number of...

  17. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S;

    2007-01-01

    both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the induction...... of apoptosis. Myc/Mad/Max proteins are shown both as a powerful S-phase driving complex and as apoptosis-sensitizers. We also discuss multifunctional proteins like p53 and Rb (RBL1/p107, RBL2/p130) both in the context of G(1)-S transition and as apoptotic triggers. Finally, we reflect on novel therapeutic...

  18. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.;

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...

  19. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    Science.gov (United States)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  20. Control of power sourced from a microbial fuel cell reduces its start-up time and increases bioelectrochemical activity.

    Science.gov (United States)

    Boghani, Hitesh C; Kim, Jung Rae; Dinsdale, Richard M; Guwy, Alan J; Premier, Giuliano C

    2013-07-01

    Microbial fuel cell (MFC) performance depends on the selective development of an electrogenic biofilm at an electrode. Controlled biofilm enrichment may reduce start-up time and improve subsequent power performance. The anode potential is known to affect start-up and subsequent performance in electrogenic bio-catalytic consortia. Control strategies varying electrical load through gradient based maximum power point tracking (MPPT) and transient poised anode potential followed by MPPT are compared to static ohmic loading. Three replicate H-type MFCs were used to investigate start-up strategies: (1) application of an MPPT algorithm preceded by poised-potential at the anode (+0.645 V vs Ag/AgCl); (2) MFC connected to MPPT-only; (3) static external load of 1 kΩ and 500 Ω. Active control showed a significant reduction in start-up time from 42 to 22 days, along with 3.5-fold increase in biocatalytic activity after start-up. Such active control may improve applicability by accelerating start-up and enhancing MFC power and bio-catalytic performance. PMID:23708786

  1. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Xi [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); State Key Lab of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193 (China); Shi, Taiping [Chinese National Human Genome Center, Beijing. 3-707 North YongChang Road BDA, Beijing 100176 (China); Song, Quansheng [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Zhao, Hongshan, E-mail: hongshan@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Dalong [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China)

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  2. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    Science.gov (United States)

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  3. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2016-04-01

    Full Text Available Oral squamous cell carcinoma (OSCC, an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL, a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  4. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    OpenAIRE

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel,; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softe...

  5. Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber.

    Science.gov (United States)

    Fu, F Q; Mao, W H; Shi, K; Zhou, Y H; Yu, J Q

    2010-01-01

    We investigated the temporal and spatial changes in cell division, endoreduplication and expression of cell cycle-related genes in developing cucumber fruits at 0-20 days after anthesis (DAA). Cell division was intense at 0-4 DAA and then decreased until to 8 DAA. Meanwhile, endoreduplication started at 4 DAA and increased gradually to 20 DAA, accompanied by an increase in fruit weight. Cell division was mainly observed in the exocarp, while endoreduplication occurred mostly in the endocarp and pulp. Among the six cell cycle-related genes examined, two mitotic cyclin genes (CycA and CycB) and CDKB had the highest transcript levels within 2 DAA, while transcripts of two CycD3 genes and CDKA peaked at 4 DAA and 20 DAA, respectively. Naphthaleneacetic acid (NAA), N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) and 24-epibrassinolide (EBR) all induced parthenocarpic growth as well as active cell division, and enhanced transcripts of cell cycle-related genes. In comparison, gibberellic acid (GA(3)) had little effect on the induction of parthenocarpy and transcripts of cell cycle-related genes. These results provide evidence for the important roles of cell division and endoreduplication during cucumber fruit development, and suggest the essential roles of cell cycle-related genes and plant growth substances in fruit development. PMID:20653892

  6. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Yihan Lin

    Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.

  7. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  8. High efficiency carbonate fuel cell/turbine hybrid power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  9. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    Science.gov (United States)

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection. PMID:27183329

  10. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  11. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    Science.gov (United States)

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  12. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi;

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  13. Bioelectrical Regulation of Cell Cycle and the Planarian Model System

    Science.gov (United States)

    Barghouth, Paul G.; Thiruvalluvan, Manish; Oviedo, Néstor J.

    2015-01-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. PMID:25749155

  14. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  15. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  16. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  17. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  18. Cell Cycle Analysis of CML Stem Cells Using Hoechst 33342 and Propidium Iodide.

    Science.gov (United States)

    DeSouza, Ngoc; Zhou, Megan; Shan, Yi

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease with an expansion of white blood cells. The current treatments for CML are shown not to be long-term effective because of CML stem cells' insensitivity to tyrosine kinase inhibitors. Therefore, studying more about CML stem cells is essential to understand the pathways of CML stem cell development and proliferation and finally lead to effective treatments to eliminate CML stem cells and eradicate CML. This chapter describes two methods to analyze cell cycle of CML stem cells. The rare population of CML stem cells can be identified by staining with cell surface markers, and then DNA-binding dyes Hoechst 33342 and propidium iodide (PI) are added to stain the DNA content which is changed when cells go through different phases of the cell cycle. Samples are run through the flow cytometer to be analyzed based on different absorbance and emission wavelengths of different florescent colors. PMID:27581138

  19. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-01-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post-mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  20. K+ channels and cell cycle progression in tumor cells

    OpenAIRE

    HALIMA eOUADID-AHIDOUCH; Ahmed eAHIDOUCH

    2013-01-01

    K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, a...

  1. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies.

    Science.gov (United States)

    Hlavová, Monika; Vítová, Milada; Bišová, Kateřina

    2016-01-01

    A synchronous population of cells is one of the prerequisites for studying cell cycle processes such as DNA replication, nuclear and cellular division. Green algae dividing by multiple fission represent a unique single cell system enabling the preparation of highly synchronous cultures by application of a light-dark regime similar to what they experience in nature. This chapter provides detailed protocols for synchronization of different algal species by alternating light-dark cycles; all critical points are discussed extensively. Moreover, detailed information on basic analysis of cell cycle progression in such cultures is presented, including analyses of nuclear, cellular, and chloroplast divisions. Modifications of basic protocols that enable changes in cell cycle progression are also suggested so that nuclear or chloroplast divisions can be followed separately.

  2. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    Science.gov (United States)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  3. The circadian clock and cell cycle: Interconnected biological circuits

    OpenAIRE

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the ci...

  4. Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression

    OpenAIRE

    Silva, Mariana C.C.; Bodor, Dani L.; Stellfox, Madison E.; Martins, Nuno M.C.; Hochegger, Helfrid; Foltz, Daniel R.; Jansen, Lars E.T.

    2012-01-01

    Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We fur...

  5. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    Science.gov (United States)

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  6. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  7. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  8. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Directory of Open Access Journals (Sweden)

    Tormi Reinson

    Full Text Available Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  9. Numerical simulation of temperature field during gas preheating and start-up of drained aluminum reduction cell

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ping; WANG Zhi-qi; ZHOU Nai-jun

    2006-01-01

    The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduction cell were numerically calculated. The results show that the method of gas preheating and bake-out can basically meet the technical requirements of the start-up process for the drained cell. If the same distributing scheme of gas nozzle as that in the general cells is used, there are problems of great temperature gradients and low temperature zone at the top of cathode near the side of nozzles. In order to promote the effect of gas preheating and baking the drained cell, the jetting angle of end nozzle is adjusted and the temperature distribution in the drained cell is obviously improved. By means of simulating the temperature field in the case that jetting angle varies from 0° to 30°, it is concluded that better temperature distribution can be obtained if the jetting angle of end nozzle is approximately 15°.

  10. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. PMID:26486823

  11. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  12. Effects of Trichostatin A on HDAC8 Expression, Proliferation and Cell Cycle of Molt-4 Cells

    Institute of Scientific and Technical Information of China (English)

    HE Jing; LIU Hongli; CHEN Yan

    2006-01-01

    The effects of Trichostatin A (TSA) on histone deacetylase 8 (HDAC8) expression, proliferation and cell cycle arrest in T-lymphoblastic leukemia cell line Molt-4 cells in vitro were investigated. The effect of TSA on the growth of Molt-4 cells was studied by MTT assay. Flow cytometry was used to examine the cell cycle. The expression of HDAC8 was detected by using immunocytochemistry and Western blot. The results showed that proliferation of Molt-4 cells was inhibited in TSA-treated group in a time- and dose-dependent manner. The IC50 of TSA exposures for 24 h and 36 h were 254.3236 and 199.257 μg/L respectively. The cell cycle analysis revealed that Molt-4 was mostly in G0/G1 phase, and after treatment with TSA from 50 to 400 μg/L for 24 h, the percents of G0/G1 cells were decreased and cells were arrested in G2/M phase. Treatment of TSA for 24 h could significantly inhibit the expression of HDAC8 protein in Molt-4 cells (P<0.01). It was concluded that TSA could decrease the expression of HDAC8 in Molt-4 cells, which contributed to the inhibition of proliferation and induction of cell cycle arrest in Molt-4 cells.

  13. A genetic interaction map of cell cycle regulators.

    Science.gov (United States)

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-04-15

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis inDrosophilaS2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle-relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for theDrosophilaCCR4 mRNA processing complex componentl(2)NC136during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  14. Cold-start effects on performance and efficiency for vehicle fuel cell systems

    OpenAIRE

    Gurski, Stephen Daniel

    2002-01-01

    In recent years government, academia and industry have been pursuing fuel cell technology as an alternative to current power generating technologies. The automotive industry has targeted fuel cell technology as a potential alternative to internal combustion engines. The goal of this research is to understand and quantify the impact and effects of low temperature operation has on the performance and efficiency of vehicle fuel cell systems through modeling. More specifically, this work addre...

  15. Cost-effectiveness of treating vascular leg ulcers with UrgoStart(®) and UrgoCell(®) Contact.

    Science.gov (United States)

    Augustin, Matthias; Herberger, Katharina; Kroeger, Knut; Muenter, Karl C; Goepel, Lisa; Rychlik, Reinhard

    2016-02-01

    Although chronic wounds have a high socio-economic impact, data on comparative effectiveness of treatments are rare. UrgoStart(®) is a hydroactive dressing containing a nano-oligosaccharide factor (NOSF). This study aimed at evaluating the cost-effectiveness of this NOSF-containing wound dressing in vascular leg ulcers compared with a similar neutral foam dressing (UrgoCell(®) Contact) without NOSF. Cost-effectiveness analysis from the perspective of the German statutory health care system was performed using a decision tree model for a period of 8 weeks. Cost and outcome data were derived from the clinical study 'Challenge' suggesting a response rate (≥40% wound size reduction) of UrgoStart(®) of 65·6% versus 39·4% for the comparator. In the treatment model, effect-adjusted costs of €849·86 were generated after 8 weeks for treatment with UrgoStart(®) versus €1335·51 for the comparator resulting in an effect-adjusted cost advantage of €485·64 for UrgoStart(®) . In linear sensitivity analyses, the outcomes were stable for varying assumptions on prices and response rates. In an 8-week period of treatment for vascular leg ulcers, UrgoStart(®) shows superior cost-effectiveness when compared with the similar neutral foam dressing without any active component (NOSF). As demonstrated within a randomised, double-blind clinical trial, UrgoStart(®) is also more effective in wound area reduction than the neutral foam dressing. Wound healing was not addressed in this clinical trial. Follow-up data of 12 months to allow for reulceration assessment were not generated.

  16. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  17. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  18. Sure Start

    Science.gov (United States)

    Moss, Peter

    2004-01-01

    This paper outlines what is involved in Sure Start, one of New Labour's key social policy interventions. It is argued that there are policy continuities with older redemptive policies which focus on young children. It is also argued that Sure Start could provide a bridgehead for a more socially democratic orientation into early childhood policy.

  19. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    OpenAIRE

    San-Yuan Chen; Geng-Hung Liu; Wen-Ying Chao; Chung-Sheng Shi; Ching-Yen Lin; Yun-Ping Lim; Chieh-Hsiang Lu; Peng-Yeh Lai; Hau-Ren Chen; Ying-Ray Lee

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited ...

  20. Effect of Lithium on Cell Cycle Progression of Pig Airway Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    陈文书; 吴人亮; 王曦; 李媛; 郝天玲

    2004-01-01

    To investigate the effect of lithium on cell cycle progression of airway epithelial cells,primary pig tracheobronchial epithelial cells were incubated with lithium chloride (LiCl) at different concentrations (0, 5 mmol/L, and 10 mmol/L) and time (12 h, 16 h and 24 h). After the treatment, cells were counted, cell cycle profile was measured by BrdU labeling and flow cytometry, and expression of cyclin D1 and cyclin B1 were detected by Western blotting. The results showed that after 24h of 10mmol/L but not 5mmol/L LiCl treatment, proliferation of cells was slowed down as manifested by delayed confluence and cell number accumulation (P<0.05). Lithium did not change the percentage of cells in S phase (P>0.05), but 24 h incubation with 10 mmol/L LiCl induced a G2/M cell cycle arrest. Furthermore, 10mmol/L LiCl elevated cyclin D1 expression after 12h treatment, while expression of cyclin B1 increased more significantly after 24h incubation. These data demonstrate that lithium inhibits proliferation of pig airway epithelial cells by inhibiting cell cycle progression, and suggest that lithium-sensitive molecule(s) such as glycogen synthase kinase 3 may have a role in the regulation of growth of airway epithelial cells.

  1. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Emilia Satoshi Miyamaru; Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Castanho, Sonia Regina Homem de Mello; Paschoal, Jose Octavio Armani [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: esmiyseo@net.ipen.br

    2004-03-01

    High temperature solid oxide fuel cells (SOFCs) offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of N Ox and S Ox emissions. The high operating temperature (950-1000 deg C) used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute) in Sao Paulo, have been presented. (author)

  2. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Directory of Open Access Journals (Sweden)

    Emília Satoshi Miyamaru Seo

    2004-03-01

    Full Text Available High temperature solid oxide fuel cells (SOFCs offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of NOx and SOx emissions. The high operating temperature (950-1000 °C used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute in São Paulo, have been presented.

  3. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  4. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells

    NARCIS (Netherlands)

    Mummery, C.L.; Brink, C.E. van den; Saag, P.T. van der; Laat, S.W. de

    1984-01-01

    Abstract Time-lapse films were made of PC13 embryonal carcinoma cells, synchronized by mitotic shake off, in the absence and presence of retinoic acid. Using a method based on the transition probability model, cell cycle parameters were determined during the first five generations following synchron

  5. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  6. (p)ppGpp and the bacterial cell cycle

    Indian Academy of Sciences (India)

    Aanisa Nazir; Rajendran Harinarayanan

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  7. (p)ppGpp and the bacterial cell cycle.

    Science.gov (United States)

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  8. Systematic Characterization of Cell Cycle Phase-dependent Protein Dynamics and Pathway Activities by High-content Microscopy-assisted Cell Cycle Phenotyping

    Institute of Scientific and Technical Information of China (English)

    Christopher Bruhn; Torsten Kroll; Zhao-Qi Wang

    2014-01-01

    Cell cycle progression is coordinated with metabolism, signaling and other complex cel-lular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically pow-erful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular locali-zation at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3–4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis.

  9. Stem Cell Hydrogel, Jump-Starting Zika Drug Discovery, and Engineering RNA Recognition.

    Science.gov (United States)

    Kostic, Milka

    2016-08-18

    Every month the editors of Cell Chemical Biology bring you highlights of the most recent chemical biology literature that impressed them with creativity and potential for follow up work. Our August 2016 selection includes a description of hydrogels with self-tunable stiffness that are used to profile lipid metabolites during stems cell differentiation, a look at whether we can find a drug repurposing solution to Zika virus infection, and an engineered RNA recognition motif (RRM). PMID:27541191

  10. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Directory of Open Access Journals (Sweden)

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  11. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  12. Cell cycle delays in synchronized cell populations following irradiation with heavy ions

    International Nuclear Information System (INIS)

    Mammalian cells subjected to irradiation with heavy ions were investigated for cell cycle delays. The ions used for this purpose included Ne ions in the LET range of 400 keV/μm just as well as uranium ions of 16225 keV/μm. The qualitative changes in cell cycle progression seen after irradiation with Ne ions (400 keV/μm) were similar to those observed in connection with X-rays. Following irradiation with extremely heavy ions (lead, uranium) the majority of cells were even at 45 hours still found to be in the S phase or G2M phase of the first cycle. The delay cross section 'σ-delay' was introduced as a quantity that would permit quantitative comparisons to be carried out between the changes in cell progression and other effects of radiation. In order to evaluate the influence of the number of hits on the radiation effect observed, the size of the cell nucleus was precisely determined with reference to the cycle phase and local cell density. A model to simulate those delay effects was designed in such a way that account is taken of this probability of hit and that the results can be extrapolated from the delay effects after X-irradiation. On the basis of the various probabilities of hit for cells at different cycle stages a model was developed to ascertain the intensified effect following fractionated irradiation with heavy ions. (orig./MG)

  13. BRCA1 May Modulate Neuronal Cell Cycle Re-Entry in Alzheimer Disease

    OpenAIRE

    Evans, Teresa A.; Raina, Arun K; Delacourte, André; Aprelikova, Olga; Lee, Hyoung-gon; Zhu, Xiongwei; Perry, George; Smith, Mark A.

    2007-01-01

    In Alzheimer disease, neuronal degeneration and the presence of neurofibrillary tangles correlate with the severity of cognitive decline. Neurofibrillary tangles contain the antigenic profile of many cell cycle markers, reflecting a re-entry into the cell cycle by affected neurons. However, while such a cell cycle re-entry phenotype is an early and consistent feature of Alzheimer disease, the mechanisms responsible for neuronal cell cycle are unclear. In this regard, given that a dysregulated...

  14. Impairment of cell cycle progression by aflatoxin B1 in human cell lines.

    Science.gov (United States)

    Ricordy, R; Gensabella, G; Cacci, E; Augusti-Tocco, G

    2002-05-01

    Aflatoxin B1 is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticum, which may be present as a food contaminant. It is known to cause acute toxic effects and act as a carcinogenic agent. The carcinogenic action has been related to its ability to form unstable adducts with DNA, which represent possible mutagenic sites. On the other hand, the primary cellular target responsible for its toxic action has not yet been clearly identified. Previous data suggested a possible correlation between cell proliferation and responsiveness to aflatoxin toxicity. These observations led us to investigate the effect of the toxin on cell cycle progression of three human cell lines (HepG2, SK-N-MC and SK-N-SH derived from liver and nervous tissue tumours); they were shown to display different responses to toxin exposure and have different growth kinetics. We performed analysis of the cell cycle, DNA synthesis and expression of p21 and p53 in the presence and absence of the toxin in all cell lines exposed. The results of cell cycle cytofluorometric analysis show significant alterations of cell cycle progression as a result of toxin treatment. In all cell lines exposure to a 24 h toxin treatment causes a dose-dependent accumulation in S phase, however, the ability to recover from impairment to traverse S phase varies in the cell lines under study. SK-N-MC cells appear more prone to resume DNA synthesis when the toxin is removed, while the other two cell lines maintain a significant inhibition of DNA synthesis, as indicated by cytofluorimetry and [(3)H]dTR incorporation. The level of p53 and p21 expression in the three cell lines was examined by western blot analysis and significant differences were detected. The ready resumption of DNA synthesis displayed by SK-N-MC cells could possibly be related to the absence of p53 control of cell cycle progression.

  15. Understanding Immune Cells in Tertiary Lymphoid Organ Development: It Is All Starting to Come Together

    Science.gov (United States)

    Jones, Gareth W.; Hill, David G.; Jones, Simon A.

    2016-01-01

    Tertiary lymphoid organs (TLOs) are frequently observed in tissues affected by non-resolving inflammation as a result of infection, autoimmunity, cancer, and allograft rejection. These highly ordered structures resemble the cellular composition of lymphoid follicles typically associated with the spleen and lymph node compartments. Although TLOs within tissues show varying degrees of organization, they frequently display evidence of segregated T and B cell zones, follicular dendritic cell networks, a supporting stromal reticulum, and high endothelial venules. In this respect, they mimic the activities of germinal centers and contribute to the local control of adaptive immune responses. Studies in various disease settings have described how these structures contribute to either beneficial or deleterious outcomes. While the development and architectural organization of TLOs within inflamed tissues requires homeostatic chemokines, lymphoid and inflammatory cytokines, and adhesion molecules, our understanding of the cells responsible for triggering these events is still evolving. Over the past 10–15 years, novel immune cell subsets have been discovered that have more recently been implicated in the control of TLO development and function. In this review, we will discuss the contribution of these cell types and consider the potential to develop new therapeutic strategies that target TLOs.

  16. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  17. A protocol to assess cell cycle and apoptosis in human and mouse pluripotent cells

    Directory of Open Access Journals (Sweden)

    Edel Michael J

    2011-04-01

    Full Text Available Abstract Embryonic stem cells (ESC and induced pluripotent stem cells (iPSCs present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

  18. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    Institute of Scientific and Technical Information of China (English)

    Jing-Pin Lin; Jai-Sing Yang; Jau-Hong Lee; Wen-Tsong Hsieh; Jing-Gung Chung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action.METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting.RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis.CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.

  19. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    Science.gov (United States)

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  20. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  1. Maid (GCIP) is involved in cell cycle control of hepatocytes

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Wüstefeld, Torsten; Miehe, Michaela;

    2007-01-01

    The function of Maid (GCIP), a cyclinD-binding helix-loop-helix protein, was analyzed by targeted disruption in mice. We show that Maid function is not required for normal embryonic development. However, older Maid-deficient mice-in contrast to wild-type controls--develop hepatocellular carcinomas....... Therefore, we studied the role of Maid during cell cycle progression after partial hepatectomy (PH). Lack of Maid expression after PH was associated with a delay in G1/S-phase progression as evidenced by delayed cyclinA expression and DNA replication in Maid-deficient mice. However, at later time points...

  2. Hsp90 phosphorylation, Wee1 and the cell cycle.

    Science.gov (United States)

    Mollapour, Mehdi; Tsutsumi, Shinji; Neckers, Len

    2010-06-15

    Heat Shock Protein 90 (Hsp90) is an essential molecular chaperone in eukaryotic cells, and it maintains the functional conformation of a subset of proteins that are typically key components of multiple regulatory and signaling networks mediating cancer cell proliferation, survival, and metastasis. It is possible to selectively inhibit Hsp90 using natural products such as geldanamycin (GA) or radicicol (RD), which have served as prototypes for development of synthetic Hsp90 inhibitors. These compounds bind within the ADP/ATP-binding site of the Hsp90 N-terminal domain to inhibit its ATPase activity. As numerous N-terminal domain inhibitors are currently undergoing extensive clinical evaluation, it is important to understand the factors that may modulate in vivo susceptibility to these drugs. We recently reported that Wee1Swe1-mediated, cell cycle-dependent, tyrosine phosphorylation of Hsp90 affects GA binding and impacts cancer cell sensitivity to Hsp90 inhibition. This phosphorylation also affects Hsp90 ATPase activity and its ability to chaperone a selected group of clients, comprised primarily of protein kinases. Wee1 regulates the G2/M transition. Here we present additional data demonstrating that tyrosine phosphorylation of Hsp90 by Wee1Swe1 is important for Wee1Swe1 association with Hsp90 and for Wee1Swe1 stability. Yeast expressing non-phosphorylatable yHsp90-Y24F, like swe1∆ yeast, undergo premature nuclear division that is insensitive to G2/M checkpoint arrest. These findings demonstrate the importance of Hsp90 phosphorylation for proper cell cycle regulation. PMID:20519952

  3. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    Science.gov (United States)

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  4. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    Science.gov (United States)

    Garg, Sriram G; Martin, William F

    2016-07-02

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  5. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  6. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery

  7. Regulation of the G1 phase of the mammalian cell cycle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell num ber. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed through the cycle or not, depends upon whether the conditions re quired at the checkpoints during the cycle are filfilled. In higher eucaryotic cells, such as mammalian cells, signals that arrest the cycle usually act at a G1 checkpoint. Cells that pass this restriction point are committed to complete the cycle. Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family, cyclin dependent kinases, cyclins, and cyclin kinase inhibitors.

  8. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    2010-05-01

    Full Text Available The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3 in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.

  9. Analysis of X-ray induced cell-cycle perturbations in mouse osteosarcoma cells: a two-signal cell-cycle model

    International Nuclear Information System (INIS)

    The effects of X-irradiation on mouse osteosarcoma cells have been studied by time-lapse cinematography and the resulting pedigrees have been analysed statistically. It is shown that the irradiation treatment causes three types of cell kinetic lesions: cell death (disintegration), cell sterilization (failure to divide) and proliferation delay. The first two lesions are the most important with regard to survival of the irradiated cell in a clonal assay. Of these two lesions, sterilization appears to be highly correlated for sister cells, while this is not true for cell disintegration. This indicates that cell survival in a clonal assay may be a function of the ratio of the incidences of these two types of lesions. The X-ray-induced proliferation delay was studied in terms of intermitotic time distributions, mother-daughter correlation and sibling correlation in relation to the current cell-cycle phase at the time of treatment. This analysis shows that the effects of irradiation on these cell-cycle characteristics is highly cell-cycle-dependent. A qualitative model to account for the observations is presented. (author)

  10. Genistein sensitizes ovarian carcinoma cells to chemotherapy by switching the cell cycle progression in vitro

    Institute of Scientific and Technical Information of China (English)

    Huang Yanhong; Yuan Peng; Zhang Qinghong; Xin Xiaoyan

    2009-01-01

    Objective: To address how genistein sensitizes the chemotherapy-resistant ovarian carcinoma cells and promotes apoptosis in the respect of cell cycle and the regulation of survivin expression in the process. Methods: Ovarian SKOV-3 carcinoma cell line was treated with genistein or cisplatin either alone or in combination. Cell viability was showed by MTT method. Cell cycle and apoptosis were detected by flow cytometry. Survivin mRNA and protein were revealed by RT-PCR and immunocytochemistry, respectively. Results: Genistein could reduce the cell viability in a dose-dependent manner, while cisplatin did so at a much higher level. In contrast, if the two agents were treated in combination, half growth inhibition (IC50) value for cisplatin was reduced remarkably and the effect was synergistic as analyzed by isobologram. In particular, the reduced cell viability was exhibited by a switch in cell cycle progression, as the cells were arrested in G2/M phase and the G0/G1 phase-fraction was significantly decreased. The reduced cell viability appeared to involve apoptosis, based on our results from flow cytometry and Hoechst 33258 staining. In the meanwhile, genistein performed the inhibitory effect on cisplatin-induced survivin expression. Conclusion: Genistein can sensitize ovarian carcinoma cells to cisplatin therapy with the inhibition of survivin expression as the potential mechanism.

  11. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    Science.gov (United States)

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  12. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  13. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  14. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects. PMID:26703663

  15. A cell cycle timer for asymmetric spindle positioning.

    Directory of Open Access Journals (Sweden)

    Erin K McCarthy Campbell

    2009-04-01

    Full Text Available The displacement of the mitotic spindle to one side of a cell is important for many cells to divide unequally. While recent progress has begun to unveil some of the molecular mechanisms of mitotic spindle displacement, far less is known about how spindle displacement is precisely timed. A conserved mitotic progression mechanism is known to time events in dividing cells, although this has never been linked to spindle displacement. This mechanism involves the anaphase-promoting complex (APC, its activator Cdc20/Fizzy, its degradation target cyclin, and cyclin-dependent kinase (CDK. Here we show that these components comprise a previously unrecognized timer for spindle displacement. In the Caenorhabditis elegans zygote, mitotic spindle displacement begins at a precise time, soon after chromosomes congress to the metaphase plate. We found that reducing the function of the proteasome, the APC, or Cdc20/Fizzy delayed spindle displacement. Conversely, inactivating CDK in prometaphase caused the spindle to displace early. The consequence of experimentally unlinking spindle displacement from this timing mechanism was the premature displacement of incompletely assembled components of the mitotic spindle. We conclude that in this system, asymmetric positioning of the mitotic spindle is normally delayed for a short time until the APC inactivates CDK, and that this delay ensures that the spindle does not begin to move until it is fully assembled. To our knowledge, this is the first demonstration that mitotic progression times spindle displacement in the asymmetric division of an animal cell. We speculate that this link between the cell cycle and asymmetric cell division might be evolutionarily conserved, because the mitotic spindle is displaced at a similar stage of mitosis during asymmetric cell divisions in diverse systems.

  16. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  17. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Wilson; Zhang Xiaojing; Guo Linghong; Patel, Samir; Xing, James Z [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Shaw, Andrew; Hu Xiuying; Sun Xuejun [Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Xiong Yeping; Chen Jie [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB (Canada); Gulavita, Sunil [Thunder Bay Regional Health Science Center, Thunder Bay, ON (Canada); Moore, Ronald, E-mail: wilsonro@cancerboard.ab.c, E-mail: jxing@ualberta.c [Department of Surgery, Cross Cancer Institute, Edmonton, AB (Canada)

    2009-09-16

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  18. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    Science.gov (United States)

    Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

    2009-09-01

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  19. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  20. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Alexandersen, Søren

    1997-01-01

    We examined replication of the autonomous parovirus Aleutian mink disease parovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cyc...

  1. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments

    KAUST Repository

    Liu, Guangli

    2011-08-01

    Rapid startup of microbial fuel cells (MFCs) and other bioreactors is desirable when treating wastewaters. The startup time with unamended wastewater (118h) was similar to that obtained by adding acetate or fumarate (110-115h), and less than that with glucose (181h) or Fe(III) (353h). Initial current production took longer when phosphate buffer was added, with startup times increasing with concentration from 149h (25mM) to 251h (50mM) and 526h (100mM). Microbial communities that developed in the reactors contained Betaproteobacteria, Acetoanaerobium noterae, and Chlorobium sp. Anode biomass densities ranged from 200 to 600μg/cm2 for all amendments except Fe(Sh{cyrillic}) (1650μg/cm2). Wastewater produced 91mW/m2, with the other MFCs producing 50mW/m2 (fumarate) to 103mW/m2 (Fe(III)) when amendments were removed. These experiments show that wastewater alone is sufficient to acclimate the reactor without the need for additional chemical amendments. © 2011 Elsevier Ltd.

  2. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  3. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  4. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.

  5. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  6. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  7. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  8. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    César Quiñones-Valles

    Full Text Available The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  9. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    Science.gov (United States)

    Quiñones-Valles, César; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2014-01-01

    The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  10. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression.

    Science.gov (United States)

    Saitou, Takashi; Imamura, Takeshi

    2016-01-01

    Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation.

  11. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    Science.gov (United States)

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  12. Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death

    OpenAIRE

    SONG, HYUNKEUN; Hur, Indo; Park, Hyun-jin; Nam, Joohyung; PARK, GA BIN; Kong, Kyoung Hye; Hwang, Young Mi; KIM, YEONG SEOK; Cho, Dae Ho; Lee, Wang Jae; Hur, Dae Young

    2009-01-01

    Background Melanoma is the most fatal form of skin cancer due to its rapid metastasis. Recently, several studies reported that selenium can induce apoptosis in melanoma cells. However, the precise mechanism remains to be elucidated. In this study, we investigated the effect of selenium on cell proliferation in murine melanoma and on tumor growth and metastasis in C57BL/6 mice. Methods Cell proliferation was measured by MTT assay in selenium-treated melanoma cells. Cell cycle distribution was ...

  13. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice

    Directory of Open Access Journals (Sweden)

    Nakayama Keiko

    2006-04-01

    Full Text Available Abstract Background The gonads are responsible for the production of germ cells through both mitosis and meiosis. Skp2 is the receptor subunit of an SCF-type ubiquitin ligase and is a major regulator of the progression of cells into S phase of the cell cycle, which it promotes by mediating the ubiquitin-dependent degradation of p27, an inhibitor of cell proliferation. However, the role of the Skp2-p27 pathway in germ cell development remains elusive. Results We now show that disruption of Skp2 in mice results in a marked impairment in the fertility of males, with the phenotypes resembling Sertoli cell-only syndrome in men. Testes of Skp2-/- mice manifested pronounced germ cell hypoplasia accompanied by massive apoptosis in spermatogenic cells. Flow cytometry revealed an increased prevalence of polyploidy in spermatozoa, suggesting that the aneuploidy of these cells is responsible for the induction of apoptosis. Disruption of the p27 gene of Skp2-/- mice restored germ cell development, indicating that the testicular hypoplasia of Skp2-/- animals is attributable to the antiproliferative effect of p27 accumulation. Conclusion Our results thus suggest that compromised cell cycle progression caused by the accumulation of p27 results in aneuploidy and the induction of apoptosis in gonadal cells of Skp2-/- mice. The consequent reduction in the number of mature gametes accounts for the decreased fertility of these animals. These findings reinforce the importance of the Skp2-p27 pathway in cell cycle regulation and in germ cell development.

  14. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    DEFF Research Database (Denmark)

    Sayanjali, Behnam; Christensen, Gitte J M; Al-Zeer, Munir A;

    2016-01-01

    Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation......-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested...... the hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant...

  15. The influence of start-stop velocity cycling on the friction and wear behaviour of a hyper-eutectic Al-Si automotive alloy

    OpenAIRE

    J. C. Walker; Kamps, T.J.; R.J.K. Wood

    2013-01-01

    This paper is the first international publication on the effect of start-stop transient sliding velocities on the friction and wear behaviour of a light-weight aluminium - silicon hyper-eutectic alloy used as an automotive cylinder liner material. The work has used focused ion beam - secondary ion mass spectrometry to shown how green start-stop technology can reduce the thickness of lubricating surface tribo-layers formed on the surface of aluminium cylinder liner materials due to repeated ve...

  16. Press Start

    Science.gov (United States)

    Harteveld, Casper

    This level sets the stage for the design philosophy called “Triadic Game Design” (TGD). This design philosophy can be summarized with the following sentence: it takes two to tango, but it takes three to design a meaningful game or a game with a purpose. Before the philosophy is further explained, this level will first delve into what is meant by a meaningful game or a game with a purpose. Many terms and definitions have seen the light and in this book I will specifically orient at digital games that aim to have an effect beyond the context of the game itself. Subsequently, a historical overview is given of the usage of games with a serious purpose which starts from the moment we human beings started to walk on our feet till our contemporary society. It turns out that we have been using games for all kinds of non-entertainment purposes for already quite a long time. With this introductory material in the back of our minds, I will explain the concept of TGD by means of a puzzle. After that, the protagonist of this book, the game Levee Patroller, is introduced. Based on the development of this game, the idea of TGD, which stresses to balance three different worlds, the worlds of Reality, Meaning, and Play, came into being. Interested? Then I suggest to quickly “press start!”

  17. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  18. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    Science.gov (United States)

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  19. Effects of Genistein on Proliferation and Cell Cycle of Salivary Adenoid Cystic Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    MA Jie; WANG Jie; ZHONG Ming; WANG Zhao-yuan

    2007-01-01

    Objective: To investigate the growth inhibiting effect of tyrosine protein kinase inhibitor, genistein, on human salivary adenoid cystic carcinoma SACC-83 cell line in vitro, and its effects on the expression of CyclinB1 protein and cell cycle. Methods: Effects of genistein on the growth of SACC-83 cells in vitro were measured with MTT assay. Cell cycle was detected with flow cytometry. The expressions of CyclinB1 and Cdk1 proteins were measured with Western blot method, and the results of protein expression were quantitatively analyzed by FluorChem V2.0 software. The results were statistically analyzed by SPSS11.5 software. Results: Genistein inhibited the cell proliferation in a dose-dependant and time-dependant manner. The genistein-treated SACC-83 cells were arrested in the G2/M phase and had lower contents of CyclinB1 and Cdk1 proteins compared with the control group. Conclusion: The growth inhibiting effect of genistein on SACC-83 cells may be associated with the regulations of genistein on the CyclinB1 and Cdk1 protein expressions and the cell cycle.

  20. Business cycles and the financial performance of fuel cell companies

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, I.; Sadorsky, P. [York Univ., Toronto, ON (Canada). Schulich School of Business

    2005-07-01

    Fuel cells are expected to play a major role in a hydrogen powered world. They will provide power to homes, modes of transportation and appliances. Hydrogen is the most abundant element in nature, but it must be extracted in order to be usable. It can be produced from oil, natural gas and coal or from renewable sources such as biomass, thermal or nuclear reactions. Fuel cells running on hydrogen extracted from non renewable resources have an efficiency of 30 per cent, which is twice as efficient as an internal combustion engine. The greatest barrier to mass commercialization is the cost of making hydrogen-powered auto engines. Also, an infrastructure must be developed to refill hydrogen cars. One solution is to build a hydrogen highway using the existing natural gas grid to produce hydrogen and sell it at existing filling stations. The cost of building 12,000 refueling pumps in urban areas which will provide access to 70 per cent of America's population is estimated at $10 to $15 billion. This paper described the vector autoregression (VAR) model which empirically examines the relationship between financial performance of fuel cell companies and business cycles. It was used to measure how sensitive the financial performance of fuel cell companies are to changes in macroeconomic activity. A four variable VAR model was developed to examine the relationship between stock prices, oil prices and interest rates. It was shown that the stock prices of fuel cell companies are affected by shocks to technology stock prices and oil prices, with the former having a longer lasting impact. These results add to the growing literature that oil price movements are not as important as once thought. 15 refs., 3 tabs., 3 figs.

  1. Mast cells as modulators of hair follicle cycling.

    Science.gov (United States)

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  2. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    OpenAIRE

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns w...

  3. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning fr...... and instead of a battery charging station. The analysis reveals that the OPV lamp has a significant advantage provided that some of the challenges facing this novel technology are efficiently met such that it can enter the market of portable lighting devices....... on the complete product integrated polymer solar cell. We have compared this portable lighting system with other lighting solutions, namely: a kerosene lamp in a remote rural area in Africa (Ethiopia), as a replacement of a silicon PV based lamp, in place of a torch with non-rechargeable lead-acid battery...

  4. Role of Ran GTPase in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing; LU Zhigang; ZHANG Chuanmao

    2004-01-01

    Ran, a member of the Ras GTPase superfamily,is a multifunctional protein and abundant in the nucleus.Many evidences suggest that Ran and its interacting proteins are involved in multiple aspects of the cell cycle regulation.So far it has been conformed that Ran and its interacting proteins control the nucleocytoplasmic transport, the nuclear envelope (NE) assembly, the DNA replication and the spindle assembly, although many details of the mechanisms are waiting for elucidation. It has also been implicated that Ran and its interacting proteins are involved in regulating the integrity of the nuclear structure, the mRNA transcription and splicing, and the RNA transport from the nucleus to the cytoplasm. In this review we mainly discuss the mechanisms by which Ran and its interacting proteins regulate NE assembly, DNA replication and spindle assembly.

  5. Effect of cell cycle inhibitor p19ARF on senescence of human diploid cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.

  6. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  7. Life cycle assessment of fuel cell vehicles: Dealing with uncertainties

    Science.gov (United States)

    Contadini, Jose Fernando

    Life cycle assessment (LCA), or "well to wheels" in transportation terms, involves some subjectivity and uncertainty, especially with new technologies and future scenarios. To analyze lifecycle impacts of future fuel cell vehicles and fuels, I developed the Fuel Upstream Energy and Emission Model (FUEEM). The FUEEM project pioneered two specific new ways to incorporate and propagate uncertainty within an LCA analysis. First, the model uses probabilistic curves generated by experts as inputs and then employs Monte Carlo simulation techniques to propagate these uncertainties throughout the full chain of fuel production and use. Second, the FUEEM process explicitly involves the interested parties in the entire analysis process, not only in the critical final review phase. To demonstrate the FUEEM process, an analysis has been made for the use of three different fuel cell vehicle technologies (direct hydrogen, indirect methanol, and indirect hydrocarbon) in 2010 within the South Coast Air Basin (SCAB) of California (Los Angeles). The analysis covered topics such as the requirement of non-renewable energy sources, emissions of CO2 and other greenhouse gases, and emissions of several criteria pollutants generated within SCAB and within other regions. The results obtained from this example show that the hydrogen option has the potential to have the most efficient energy life cycle for the SCAB, followed by the methanol and finally by the Fisher-Tropsch naphtha option. A similar pattern is observed for the greenhouse gas emissions. The results showing criteria pollutants emitted within SCAB highlight the importance of having a flexible model that is responsive to local considerations. This dissertation demonstrates that explicit recognition and quantitative analysis of the inherent uncertainty in the LCA process generates richer information, explains many of the discrepancies between results of previous studies, and enhances the robustness and credibility of LCA analyses.

  8. Cell cycle variation in x-ray survival for cells from spheroids measured by volume cell sorting

    International Nuclear Information System (INIS)

    Considerable work has been done studying the variation in cell survival as a function of cell cycle position for monolayers or single cells exposed to radiation. Little is known about the effects of multicellular growth on the relative radiation sensitivity of cells in different cell cycle stages. The authors have developed a new technique for measuring the response of cells, using volume cell sorting, which is rapid, non-toxic, and does not require cell synchronization. By combining this technique with selective spheroid dissociation,they have measured the age response of cells located at various depths in EMT6 and Colon 26 spheroids. Although cells in the inner region had mostly G1-phase DNA contents, 15-20% had S- and G2-phase DNA contents. Analysis of these cells using BrdU labeling and flow cytometric analysis with a monoclonal antibody to BrdU indicated that the inner region cells were not synthesizing DNA. Thus, the authors were able to measure the radiation response of cells arrested in G1, S and G2 cell cycle phases. Comparison of inner and outer spheroid regions, and monolayer cultures, indicates that it is improper to extrapolate age response data in standard culture conditions to the situation in spheroids

  9. Irreversible APC(Cdh1) Inactivation Underlies the Point of No Return for Cell-Cycle Entry.

    Science.gov (United States)

    Cappell, Steven D; Chung, Mingyu; Jaimovich, Ariel; Spencer, Sabrina L; Meyer, Tobias

    2016-06-30

    Proliferating cells must cross a point of no return before they replicate their DNA and divide. This commitment decision plays a fundamental role in cancer and degenerative diseases and has been proposed to be mediated by phosphorylation of retinoblastoma (Rb) protein. Here, we show that inactivation of the anaphase-promoting complex/cyclosome (APC(Cdh1)) has the necessary characteristics to be the point of no return for cell-cycle entry. Our study shows that APC(Cdh1) inactivation is a rapid, bistable switch initiated shortly before the start of DNA replication by cyclin E/Cdk2 and made irreversible by Emi1. Exposure to stress between Rb phosphorylation and APC(Cdh1) inactivation, but not after APC(Cdh1) inactivation, reverted cells to a mitogen-sensitive quiescent state, from which they can later re-enter the cell cycle. Thus, APC(Cdh1) inactivation is the commitment point when cells lose the ability to return to quiescence and decide to progress through the cell cycle.

  10. Effect of genistein on cell cycle of bone marrow hematopoietic cells in normal and irradiated mice

    International Nuclear Information System (INIS)

    Objective: To study the effects of genistein on cell cycle, proliferation and expression of bcl-2 gene in bone marrow hematopoietic cells (BMHCs) of normal and irradiated mice in order to explore mechanisms for protection of genistein from radiation-induced hematopoietic system injury. Methods: Adult male BALB/c mice were orally administered with genistein (160 mg/kg b.w.) 24 h before irradiation. Cell cycles in BMHCs of the normal and irradiated mice were measured by flow cytometry. The protein and mRNA expressions of bcl-2 gene in BMHCs were analyzed by Western blot and RT-PCR, respectively. Results: a) Transitory and significant changes occurred in the cell cycle of BMHCs in the normal mice after administration of genistein: first, the proliferation suppression of BMHCs was observed and most cells were arrested in G0/G1 phase on day 1; second, progression of cells from G0/G1 phase into S phase was observed, accumulation of cells in S phase on day 2, and back to the normal level on day 4. b) Genistein, administration 24 h before irradiation, decreased the percentage of BMHCs in G0/G1 phase and increased cell proliferation. Moreover, genistein up-regulated the protein and mRNA expressions of bcl-2 in BMHCs in the irradiated mice. Conclusions: It was shown that changing with cell cycle, strengthening of radioresistant, suppressing of radiation-induced apoptosis, and enhancing of proliferation and differentiation of BMHCs maybe the underlying mechanisms for genistein protection of hematopoietic system against radiation damage. (authors)

  11. Effect of p27KIP1 on cell cycle and apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zheng; Wei-Zhong Wang; Kai-Zong Li; Wen-Xian Guan; Wei Yan

    2005-01-01

    AIM: To elucidate the effect of p27KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells.METHODS: The whole length of p27KIP1 cDNA was transfected into human gastric cancer cell line SCG7901by lipofectamine. Expression of p27KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting,respectively. Effect of p27KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27KIP1. Flow cytometry,TUNEL, and electron microscopy were used to assess the effect of p27KIP1 on cell cycle and apoptosis.RESULTS: Expression of p27KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13crn, P<0.01). p27KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%,P<0.01) in G1 population. Prolonged p27KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy.CONCLUSION: p27KIP1 can prolong cell cycle in G1phase and lead to apoptosis. p27KIP1 may be a good candidate for cancer gene therapy.

  12. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  13. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Qi-Fu Li; Gao-Liang Ouyang; Xuan-Xian Peng; Shui-Gen Hong

    2003-01-01

    AIM: To investigate the effects of tachyplesin on the cell cycle regulation in human hepatcarcinoma cells.METHODS: Effects of tachyplesin on the cell cycle in human hepatocarcinoma SMMC-7721 cells were assayed with flow cytometry. The protein levels of p53, p16, cyclin D1 and CDK4 were assayed by immunocytochemistry. The mRNA levels of p21WAF1/CIP1 and c-myc genes were examined with in situ hybridization assay.RESULTS: After tachyplesin treatment, the cell cycle arrested at G0/G1 phase, the protein levels of mutant p53, cyclin D1 and CDK4 and the mRNA level of c-myc gene were decreased, whereas the levels of p16 protein and p21wWF1/CIP1 mRNA increased.CONCLUSION: Tachyplesin might arrest the cell at G0/G1 phase by upregulating the levels of p16 protein and p21WAF1/CIP1 mRNA and downregulating the levels of mutant p53, cyclin D1 and CDK4 proteins and c-myc mRNA, and induce the differentiation of human hepatocacinoma cells.

  14. Effect of Juglone in qinglongyi on cell cycle status and apoptosis in A-549 cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiang; KONG Ling-sheng; JI Yu-bin

    2008-01-01

    Objective To explore the inhibition of juglone in Qinglongyi on A-549 cells in vitro. Methods MTT assay was used. Laser confocal scanning microscope was used to observe apoptotic morphology.Changes of cell cycle are studied by flow cytometry analysis. Results MTT assay showed that juglone had a marked growth inhibition in A-549 cells and the IC50 is respectively 3.4×10-5 mol·L-1, 1.8×10-5 mol·L-1 and 2.6×10-6 mol·L-1 after treatment for 24, 48 and 72 h by juglone. Through Laser confocal scanning microscope, we can see that juglone can induce the apoptosis. Cell cycle changes are analyzed by flow cytometry with cells at G1 phase significantly less than those of control and ceils at G2 phase significantly more than those of control. Conclusions It suggests that juglone could apoptosis of A-549 cells with the cell cycle arrest on G2 phase in distinct dose-dependent manner.

  15. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  16. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  17. Starting electronics

    CERN Document Server

    Brindley, Keith

    2005-01-01

    Starting Electronics is unrivalled as a highly practical introduction for hobbyists, students and technicians. Keith Brindley introduces readers to the functions of the main component types, their uses, and the basic principles of building and designing electronic circuits. Breadboard layouts make this very much a ready-to-run book for the experimenter; and the use of multimeter, but not oscilloscopes, puts this practical exploration of electronics within reach of every home enthusiast's pocket. The third edition has kept the simplicity and clarity of the original. New material

  18. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry

    OpenAIRE

    Ku, Chia-Jui; Hosoya, Tomonori; Maillard, Ivan; Engel, James Douglas

    2012-01-01

    Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin−Sca1+c-KithiCD150+CD48−) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well d...

  19. Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.

    Science.gov (United States)

    Fenech, Melissa A; Sullivan, Caitlin M; Ferreira, Lucimar T; Mehmood, Rashid; MacDonald, William A; Stathopulos, Peter B; Pin, Christopher L

    2016-12-01

    Proper regulation of cytosolic Ca(2+) is critical for pancreatic acinar cell function. Disruptions in normal Ca(2+) concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca(2+) homeostasis by promoting rapid Ca(2+) movement. Determining how expression of Ca(2+) modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca(2+) ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2's 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca(2+) . RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca(2+) levels. Combined, these results suggest SPCA2C affects Ca(2+) homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca(2+) ATPases. J. Cell. Physiol. 231: 2768-2778, 2016. © 2016 Wiley Periodicals, Inc. PMID:27017909

  20. Difference of cell cycle arrests induced by lidamycin in human breast cancer cells.

    Science.gov (United States)

    Liu, Xia; He, Hongwei; Feng, Yun; Zhang, Min; Ren, Kaihuan; Shao, Rongguang

    2006-02-01

    Lidamycin (LDM) is a member of the enediyne antibiotic family. It is undergoing phase I clinical trials in China as a potential chemotherapeutic agent. In the present study, we investigated the mechanism by which LDM induced cell cycle arrest in human breast cancer cells. The results showed that LDM induced G1 arrest in p53 wild-type MCF-7 cells at low concentrations, and caused both G1 and G2/M arrests at higher concentrations. In contrast, LDM induced only G2/M arrest in p53-mutant MCF-7/DOX cells. Western blotting analysis indicated that LDM-induced G1 and G2/M arrests in MCF-7 cells were associated with an increase of p53 and p21, and a decrease of phosphorylated retinoblastoma tumor suppressor protein, cyclin-dependent kinase (Cdk), Cdc2 and cyclin B1 protein levels. However, LDM-induced G2/M arrest in MCF-7/DOX cells was correlated with the reduction of cyclin B1 expression. Further study indicated that the downregulation of cyclin B1 by LDM in MCF-7 cells was associated with decreasing cyclin B1 mRNA levels and promoting protein degradation, whereas it was only due to inducing cyclin B1 protein degradation in MCF-7/DOX cells. In addition, activation of checkpoint kinases Chk1 or Chk2 maybe contributed to LDM-induced cell cycle arrest. Taken together, we provide the first evidence that LDM induces different cell cycle arrests in human breast cancer cells, which are dependent on drug concentration and p53 status. These findings are helpful in understanding the molecular anti-cancer mechanisms of LDM and support its clinical trials. PMID:16428935

  1. Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: intervening with cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2015-01-01

    Relative imbalance in the pathways regulating cell cycle, cell proliferation, or cell death marks a prerequisite for neoplasm. C-phycocyanin, a biliprotein from Spirulina platensis and a selective COX-2 inhibitor along with piroxicam, a traditional nonsteroidal antiinflammatory drug was used to investigate the role of cell cycle regulatory proteins and proinflammatory transcription factor NFκB in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced rat colon carcinogenesis. Cell cycle regulators [cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), CDK4, and p53], NFκB (p65) pathway, and proliferating cell nuclear antigen (PCNA) were evaluated by gene and protein expression, whereas apoptosis was studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic bleb assay. Molecular docking of ligand protein interaction was done to validate the in vivo results. Cyclin D1, cyclin E, CDK2, and CDK4 were overexpressed in DMH, whereas piroxicam and c-phycocyanin promoted the cell cycle arrest by downregulating them. Both drugs mediated apoptosis through p53 activation. Piroxicam and c-phycocyanin also stimulated antiproliferation by restraining PCNA expression and reduced cell survival via inhibiting NFκB (p65) pathway. Molecular docking revealed that phycocyanobilin (a chromophore of c-phycocyanin) interact with DNA binding site of NFκB. Inhibition of cyclin/CDK complex by piroxicam and c-phycocyanin affects the expression of p53 in colon cancer followed by downregulation of NFκB and PCNA levels, thus substantiating the antineoplastic role of these agents. PMID:25825916

  2. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  3. Dynamics of the cell-cycle network under genome-rewiring perturbations

    Science.gov (United States)

    Katzir, Yair; Elhanati, Yuval; Averbukh, Inna; Braun, Erez

    2013-12-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein-DNA and protein-protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes, without

  4. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Clement G. Yedjou

    2015-12-01

    Full Text Available In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO32] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60 cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO32 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05 increase of necrotic cell death in Pb(NO32-treated cells, indicative of membrane rupture by Pb(NO32 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05 in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO32 exposure significantly (p < 0.05 increased the proportion of caspase-3 positive cells (apoptotic cells compared to the control. The flow cytometry assessment also indicated Pb(NO32 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO32 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO32 exposure and its associated adverse

  5. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

    NARCIS (Netherlands)

    Peeper, D.S.; Upton, T.M.; Ladha, M.H.; Neuman, E.; Zalvide, J.; Bernards, R.A.; DeCaprio, J.A.; Ewen, M.E.

    1997-01-01

    The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (GO) and to pass through the GI/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, howev

  6. Scaffolding during the cell cycle by A-kinase anchoring proteins

    NARCIS (Netherlands)

    Han, B; Poppinga, W J; Schmidt, M

    2015-01-01

    Cell division relies on coordinated regulation of the cell cycle. A process including a well-defined series of strictly regulated molecular mechanisms involving cyclin-dependent kinases, retinoblastoma protein, and polo-like kinases. Dysfunctions in cell cycle regulation are associated with disease

  7. Altered cell cycle regulation helps stem-like carcinoma cells resist apoptosis

    OpenAIRE

    Dalton Stephen; Chappell James

    2010-01-01

    Abstract Reemergence of carcinomas following chemotherapy and/or radiotherapy is not well understood, but a recent study in BMC Cancer suggests that resistance to apoptosis resulting from altered cell cycle regulation is crucial. See research article: http://biomedcentral.com/1471-2407/10/166

  8. Biomechanical Study on The Starting Technical Movement of Track Cycling%短距离场地自行车原地起动技术的生物力学研究

    Institute of Scientific and Technical Information of China (English)

    张莉清; 宋子玉; 黄波

    2015-01-01

    为给短距离场地自行车起动技术的规范化及标准化提供科学依据,以北京市自行车队11名运动员作为实验对象,通过实验设计,结合定点摄像与肌电采集技术研究其原地起动技术的运动学和肌电活动特征,在分析起动技术生物力学因素的基础上,提出改进曲柄起动角的建议。研究认为,影响起动效果的生物力学因素包括3大类:内力因素、器械因素和环境因素,找到内力因素和器械因素的最佳结合点有助于提高起动成绩;实验研究表明,曲柄起动角对场地自行车运动员原地起动60 m的成绩具有显著性影响;30°是比较合理的曲柄起动角,在这一起动角上出发有利于提高运动员的起动成绩。%In order to standardize and correct the starting technical movement of track cycling , this paper proposed a hypothesis of better crank starting angle on the basis of analyzing the bi‐omechanical factors of starting technology ,than use experimental method to verify the hypothe‐sis .In this experiment ,11 players of Beijing track cycling team were taken as experimental ob‐jects ,fixed camera technique and surface electromyography collection technology were used to explore the starting performance with different crank starting angle .The results showed that the biomechanical factors influencing the starting effect can be divided into three categories :in‐ternal factors ,equipment factors and environmental factors .Finding out the best combining site of these three factors helps to improve the starting performance .The crank starting angle has a significant effect on 60 meters starting performance and 30 ° is a reasonable crank starting an‐g le .

  9. Tetrahydrouridine inhibits cell proliferation through cell cycle regulation regardless of cytidine deaminase expression levels.

    Directory of Open Access Journals (Sweden)

    Naotake Funamizu

    Full Text Available Tetrahydrouridine (THU is a well characterized and potent inhibitor of cytidine deaminase (CDA. Highly expressed CDA catalyzes and inactivates cytidine analogues, ultimately contributing to increased gemcitabine resistance. Therefore, a combination therapy of THU and gemcitabine is considered to be a potential and promising treatment for tumors with highly expressed CDA. In this study, we found that THU has an alternative mechanism for inhibiting cell growth which is independent of CDA expression. Three different carcinoma cell lines (MIAPaCa-2, H441, and H1299 exhibited decreased cell proliferation after sole administration of THU, while being unaffected by knocking down CDA. To investigate the mechanism of THU-induced cell growth inhibition, cell cycle analysis using flow cytometry was performed. This analysis revealed that THU caused an increased rate of G1-phase occurrence while S-phase occurrence was diminished. Similarly, Ki-67 staining further supported that THU reduces cell proliferation. We also found that THU regulates cell cycle progression at the G1/S checkpoint by suppressing E2F1. As a result, a combination regimen of THU and gemcitabine might be a more effective therapy than previously believed for pancreatic carcinoma since THU works as a CDA inhibitor, as well as an inhibitor of cell growth in some types of pancreatic carcinoma cells.

  10. Chinese medicinal herb, Acanthopanax gracilistylus, extract induces cell cycle arrest of human tumor cells in vitro.

    Science.gov (United States)

    Shan, B E; Zeki, K; Sugiura, T; Yoshida, Y; Yamashita, U

    2000-04-01

    We investigated the effect of a Chinese medicinal herb, Acanthopanax gracilistylus (AG), extract (E) on the growth of human tumor cell lines in vitro. AGE markedly inhibited the proliferation of several tumor cell lines such as MT-2, Raji, HL-60, TMK-1 and HSC-2. The activity was associated with a protein of 60 kDa, which was purified by gel-filtration chromatography. Cell viability analyses indicated that the treatment with AGE inhibits cell proliferation, but does not induce cell death. The mechanism of AGE-induced inhibition of tumor cell growth involves arrest of the cell cycle at the G(0) / G(1) stage without a direct cytotoxic effect. The cell cycle arrest induced by AGE was accompanied by a decrease of phosphorylated retinoblastoma (Rb) protein. Furthermore, cyclin-dependent kinases 2 and 4 (Cdk2 and Cdk4), which are involved in the phosphorylation of Rb, were also decreased. These results suggest that AGE inhibits tumor cell growth by affecting phosphorylated Rb proteins and Cdks. PMID:10804285

  11. An integrative model and analysis of cell cycle in fission yeast

    Institute of Scientific and Technical Information of China (English)

    TENG Hu; HUANG Xun; XIU Zhilong; FENG Enmin

    2005-01-01

    According to the recent investigation on cell cycle of fission yeast, a mathematical dynamic model is formulated. Four cyclins, e.g. Puc1, Cig1, Cig2 and Cdc13, are investigated here. The interacting networks between the cyclins and the process of cell cycle are mathematically described. The functions of these cyclins are particularly analyzed. Comparison among different mutants indicates that the cyclins play an important role in cell cycle.

  12. CRL4Cdt2: Master coordinator of cell cycle progression and genome stability

    OpenAIRE

    Abbas, Tarek; Dutta, Anindya

    2011-01-01

    Polyubiquitin-mediated degradation of proteins plays an essential role in various physiological processes including cell cycle progression, transcription and DNA replication and repair. Increasing evidence supports a vital role for the E3 ubiquitin ligase cullin-4, in conjunction with the substrate recognition factor Cdt2 (CRL4Cdt2), for the degradation of multiple cell cycle-regulated proteins to prevent genomic instability. In addition, it is critical for normal cell cycle progression by en...

  13. The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

    OpenAIRE

    Bao\\xa0N. Puente; Wataru Kimura; Shalini\\xa0A. Muralidhar; Jesung Moon; James\\xa0F. Amatruda; Kate\\xa0L. Phelps; David Grinsfelder; Beverly\\xa0A. Rothermel; Rui Chen; Joseph\\xa0A. Garcia; Celio\\xa0X. Santos; SuWannee Thet; Eiichiro Mori; Michael\\xa0T. Kinter; Paul\\xa0M. Rindler

    2014-01-01

    The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary post-natal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen rich postnatal environment is the upstream signal that results in cell cycle arrest of cardiomyocytes. Here we show that reactive oxygen species (ROS), oxidative DNA damage, and D...

  14. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  15. Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids.

    Science.gov (United States)

    Mo, H; Elson, C E

    1999-04-01

    Diverse classes of phytochemicals initiate biological responses that effectively lower cancer risk. One class of phytochemicals, broadly defined as pure and mixed isoprenoids, encompasses an estimated 22,000 individual components. A representative mixed isoprenoid, gamma-tocotrienol, suppresses the growth of murine B16(F10) melanoma cells, and with greater potency, the growth of human breast adenocarcinoma (MCF-7) and human leukemic (HL-60) cells. beta-Ionone, a pure isoprenoid, suppresses the growth of B16 cells and with greater potency, the growth of MCF-7, HL-60 and human colon adenocarcinoma (Caco-2) cells. Results obtained with diverse cell lines differing in ras and p53 status showed that the isoprenoid-mediated suppression of growth is independent of mutated ras and p53 functions. beta-Ionone suppressed the growth of human colon fibroblasts (CCD-18Co) but only when present at three-fold the concentration required to suppress the growth of Caco-2 cells. The isoprenoids initiated apoptosis and, concomitantly arrested cells in the G1 phase of the cell cycle. Both suppress 3-hydroxy-3-methylglutaryl CoA reductase activity. beta-Ionone and lovastatin interfered with the posttranslational processing of lamin B, an activity essential to assembly of daughter nuclei. This interference, we postulate, renders neosynthesized DNA available to the endonuclease activities leading to apoptotic cell death. Lovastatin-imposed mevalonate starvation suppressed the glycosylation and translocation of growth factor receptors to the cell surface. As a consequence, cells were arrested in the G1 phase of the cell cycle. This rationale may apply to the isoprenoid-mediated G1-phase arrest of tumor cells. The additive and potentially synergistic actions of these isoprenoids in the suppression of tumor cell proliferation and initiation of apoptosis coupled with the mass action of the diverse isoprenoid constituents of plant products may explain, in part, the impact of fruit, vegetable

  16. Trichostatin A Regulates hGCN5 Expression and Cell Cycle on Daudi Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Hongli; CHEN Yan; CUI Guohui; WU Gang; WANG Tao; HU Jianli

    2006-01-01

    The expression of human general control of amino acid synthesis protein 5 (hGCN5) in human Burkitt's lymphoma Daudi cells in vitro, effects of Trichostatin A (TSA) on cell proliferation and apoptosis and the molecular mechanism of TSA inhibiting proliferation of Daudi cells were investigated. The effects of TSA on the growth of Daudi cells were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. The effect of TSA on the cell cycle of Daudi cells was assayed by a propidium iodide method. Immunochemistry and Western blot were used to detect the expression of hGCN5. The proliferation of Daudi cells was decreased in TSA-treated group with a 24 h IC50 value of 415.3979 μg/L. TSA induced apoptosis of Daudi cells in a time- and dose-dependent manner. Treatment with TSA (200 and 400 μg/L) for 24 h, the apoptosis rates of Daudi cells were (14.74±2.04) % and (17.63±1.25) %, respectively. The cell cycle was arrested in G0/G1 phase (50, 100 μtg/L) and in G2/M phase (200 μg/L) by treatment with TSA for 24 h.The expression of hGCN5 protein in Daudi cells was increased in 24 h TSA-treated group by immunochemistry and Western blot (P<0.05). It was suggested that TSA as HDACIs could increase the expression of hGCN5 in Daudi cells, and might play an important role in regulating the proliferation and apoptosis of B-NHL cell line Daudi cells.

  17. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  18. Issues to Consider before Licensing Technology to a Start-Up: Mitigating Risk with Early Planning for the Entire Business Cycle

    Science.gov (United States)

    LaBarge, Jeffrey H.

    2005-01-01

    If done correctly, licensing technology to a start-up company provides a great opportunity for a university to commercialize its technology and generate good will. If done incorrectly, however, the venture may jeopardize the technology's value and adversely affect the university's reputation within the business and academic communities. Before…

  19. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    Science.gov (United States)

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  20. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    Directory of Open Access Journals (Sweden)

    Elodie Peyric

    Full Text Available The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  1. Replication of the R6K plasmid during the Escherichia coli cell cycle.

    OpenAIRE

    Keasling, J.D.; Palsson, B O; Cooper, S.

    1992-01-01

    The cell-cycle replication pattern of the R6K plasmid has been investigated by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The high-copy plasmid R6K replicates exponentially in a cell-cycle-independent manner. A mini-R6K plasmid deleted for the ori alpha origin of replication also replicates, exponentially in a cell-cycle-independent manner.

  2. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    Science.gov (United States)

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.

  3. Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT.

    Science.gov (United States)

    Blythe, Shelby A; Wieschaus, Eric F

    2015-01-01

    During the maternal-to-zygotic transition (MZT), major changes in cell cycle regulation coincide with large-scale zygotic genome activation. In this chapter, we discuss the current understanding of how the cell cycle is remodeled over the course of the Drosophila MZT, and how the temporal precision of this event is linked to contemporaneous alterations in genome-wide chromatin structure and transcriptional activity. The cell cycle is initially lengthened during the MZT by activation of the DNA replication checkpoint but, subsequently, zygotically supplied factors are essential for establishing lasting modifications to the cell cycle. PMID:26358872

  4. A generalized model for multi-marker analysis of cell cycle progression in synchrony experiments

    OpenAIRE

    Mayhew, Michael B.; Joshua W. Robinson; Jung, Boyoun; Haase, Steven B.; Alexander J Hartemink

    2011-01-01

    Motivation: To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been develop...

  5. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    Science.gov (United States)

    Schrader, Jared M; Shapiro, Lucy

    2015-04-08

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

  6. Visualizing spatiotemporal dynamics of multicellular cell-cycle progressions with fucci technology.

    Science.gov (United States)

    Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2014-05-01

    The visualization of cell-cycle behavior of individual cells within complex tissues presents an irresistible challenge to biologists studying multicellular structures. However, the transition from G1 to S in the cell cycle is difficult to monitor despite the fact that the process involves the critical decision to initiate a new round of DNA replication. Here, we use ubiquitination oscillators that control cell-cycle transitions to develop genetically encoded fluorescent probes for cell-cycle progression. Fucci (fluorescent ubiquitination-based cell-cycle indicator) probes exploit the regulation of cell-cycle-dependent ubiquitination to effectively label individual nuclei in G1 phase red, and those in S/G2/M phases green. Cultured cells and transgenic mice constitutively expressing the probes have been generated, such that every cell nucleus shows either red or green fluorescence. This protocol details two experiments that use biological samples expressing Fucci probes. One experiment involves time-lapse imaging of cells stably expressing a Fucci derivative (Fucci2), which allows for the exploration of the spatiotemporal patterns of cell-cycle dynamics during structural and behavioral changes of cultured cells. The other experiment involves large-field, high-resolution imaging of fixed sections of Fucci transgenic mouse embryos, which provides maps that illustrate cell proliferation versus differentiation in various developing organs.

  7. Physiology of Saccharomyces cerevisiae during cell cycle oscillations.

    Science.gov (United States)

    Duboc, P; Marison, I; von Stockar, U

    1996-10-18

    Synchronized populations of Saccharomyces cerevisiae CBS 426 are characterized by autonomous oscillations of process variables. CO2 evolution rate, O2 uptake rate and heat production rate varied by a factor of 2 for a continuous culture grown at a dilution rate of 0.10 h-1. Elemental analysis showed that the carbon mass fraction of biomass did not change. Since the reactor is not at steady state, the elemental and energy balances were calculated on cumulated quantities, i.e. the integral of the reaction rates. It was possible to show that carbon, degree of reduction and energy balances matched. Application of simple mass balance principles for non-steady state systems indicated that oscillations were basically characterized by changes in biomass production rate. In addition, the amount of intermediates, e.g. ethanol or acetate, produced or consumed was negligible. Growth rate was low during the S-phase (0.075 h-1) and high during the G2, M and G1 phases (0.125 h-1) for a constant dilution rate of 0.10 h-1. However, nitrogen, ash, sulfur and potassium content showed systematic increases during the S-phase (bud initiation). Cell component analyses showed that changes in cellular fractions during oscillations (storage carbohydrate content decreased during the S-phase) were due to changes in production rates, particularly for protein and carbohydrates. Nevertheless, using the data evaluation techniques for dynamic systems presented here, it was shown that storage carbohydrates are not consumed during the S-phase. Only the synthesis rate of the different cell components changed depending on position in cell cycle. The growth process may be divided into two phenomena: the formation of new cells during mitosis with a low yield, and size increase of new born cells with high yield. Both kinetic and stoichiometric coefficients varied with the position in the oscillation: the results showed that biomass structure changed and that specific growth rate, as well as biomass yield

  8. Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Guan-Bin Song; Jian Qin; Qing Luo; Xiao-Dong Shen; Run-Bin Yan; Shao-Xi Cai

    2005-01-01

    AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721)to human umbilical vein endothelial cells (ECV-304),expression of adhesive molecule integrinβ1 in SMMC-7721cells and its contribution to this adhesive course.METHODS: Adhesive force of SMMC-7721 cells to endothelialcells was measured using micropipette aspiration technique.Synchronous G1 and S phase SMMC-7721 cells wereachieved by thymine-2-deoxyriboside and colchicinessequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronousrates of SMMC-7721 cells and expression of integrinβ1 inSMMC-7721 cells were detected by flow cytometer.RESULTS: The percentage of cell cycle phases of generalSMMC-7721 cells was 11.01% in G2/M phases, 53.51% inG0/G1 phase, and 35.48% in S phase. The synchronous ratesof G1 and S phase SMMC-7721 cells amounted to 74.09%and 98.29%, respectively. The adhesive force of SMMC-7721cells to endothelial cells changed with the variations ofadhesive time and presented behavior characteristics ofadhesion and de-adhesion. S phase SMMC-7721 cells had higheradhesive forces than G1 phase cells [(307.65±92.10)× 10-10Nvs (195.42±60.72)×10-10N, P<0.01]. The expressivefluorescent intensity of integrinβ1 in G1 phase SMMC-7721cells was depressed more significantly than the values ofS phase and general SMMC-7721cells. The contribution ofadhesive integrinβ1 was about 53% in this adhesive course.CONCLUSION: SMMC-7721 cells can be synchronizedpreferably in G1 and S phases with thymine-2-deoxyribosideand colchicines. The adhesive molecule integrinβ1 expressesa high level in SMMC-7721 cells and shows differences invarious cell cycles, suggesting integrin β1 plays an importantrole in adhesion to endothelial cells. The change of adhesiveforces in different cell cycle SMMC-7721 cells indicatesthat S phase cells play predominant roles possibly whilethey interact with endothelial cells.

  9. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    Science.gov (United States)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  10. Genistein and Daidzein Effects on Proliferation, Cell Membranes,Cell Cycles and Cell Apoptosis of Different Cell Lines

    Institute of Scientific and Technical Information of China (English)

    李重华; 王洪钟; 肖锐; 张勇; 于江涛; 谢莉萍; 张荣庆

    2001-01-01

    Genistein and daidzein are two principle isoflavonoids in soybeans. They have received increasing attention in the past few years because of their possible roles in cancer prevention. Here are provided experimental evidences that genistein could inhibit the growth of human bladder carcinoma cells (ECV-304), human colon cancer cells (HT29), human uterus cervix cancer cells (Hela), and murine transformed muscle cells (3T3). Different from genistein, daidzein could only inhibit the growth of ECV-304, HT29, and 3T3 cells. To elucidate the mechanisms of the anti-tumor effect of genistein and daidzein, fluorescent polarization, circular dichroism, and flow cytometric analysis were employed to study the influence of genistein and daidzein on membrane fluidity and membrane protein conformation of these cell lines. The results showed that genistein increased the order of membrane protein conformation and reduced the membrane fluidity of ECV-304, HT29, and Hela cells. Daidzein also increased the order of membrane protein conformation of ECV-304 and HT29, but had no effect on the membrane fluidity of all these four cell lines. Also demonstrated was that both compounds affected the apoptosis and cell cycle progression of some cell lines. However, the effects of genistein and daidzein were not the same. These evidences suggested that the effects of genistein and daidzein on malignant cells were multisites and multiapproaches, and there were differences between their functional mechanisms. The amelioration effect on cell conditions may represent one of the mechanisms of the effect of genistein and daidzein on the growth, differentiation, and transference of malignant cells.

  11. Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution.

    Science.gov (United States)

    Gonzales, Kevin Andrew Uy; Liang, Hongqing

    2015-12-01

    While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.

  12. Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells

    OpenAIRE

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2015-01-01

    BACKGROUND/OBJECTIVES Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were...

  13. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  14. The effects of phenoxodiol on the cell cycle of prostate cancer cell lines

    OpenAIRE

    Mahoney, Simon; Arfuso, Frank; Millward, Michael; Dharmarajan, Arun

    2014-01-01

    Background Prostate cancer is associated with a poor survival rate. The ability of cancer cells to evade apoptosis and exhibit limitless replication potential allows for progression of cancer from a benign to a metastatic phenotype. The aim of this study was to investigate in vitro the effect of the isoflavone phenoxodiol on the expression of cell cycle genes. Methods Three prostate cancer cell lines-LNCaP, DU145, and PC3 were cultured in vitro, and then treated with phenoxodiol (10 μM and 30...

  15. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    OpenAIRE

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)...

  16. Cell cycle regulation and radiation-induced cell death; Regulation du cycle cellulaire et de la mort cellulaire radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V. [Centre Universitaire d' Orsay, Institut Curie, Section de Recherche, Lab. Raymond-Latarjet, Unite 350 Inserm, 91 (France)

    2000-10-01

    Tight control of cell proliferation is mandatory to prevent cancer formation as well as to normal organ development and homeostasis. This occurs through checkpoints that operate in both time and space and are involved in the control of numerous pathways including DNA replication and transcription, cell cycle progression, signal transduction and differentiation. Moreover, evidence has accumulated to show that apoptosis is tightly connected with the regulation of cell cycle progression. In this paper we describe the main pathways that determine checkpoints in the cell cycle and apoptosis. It is also recalled that in solid tumors radiation-induced cell death occurs most frequently through non-apoptotic mechanisms involving oncosis, and mitotic or delayed cell death. (author)

  17. Effects of allitridi on cell cycle arrest of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Rui Ma; Li-Ping Shun; Yue-Hua Gong; Yuan Yuan

    2005-01-01

    AIM: To determine the effect of allitridi on cell cycle of human gastric cancer (HGC) cell lines MGC803 and SGC7901 and its possible mechanism.METHODS: Trypan blue dye exclusion was used to evaluate the proliferation, inhibition of cells and damages of these cells were detected with electron microscope.Flow cytometry and cell mitotic index were used to analyze the change of cell cycle, immunohistochemistry, and RT-PCR was used to examine expression of the p21WAF1 gene.RESULTS: MGC803 cell growth was inhibited by allitridi with 24 h IC50 being 6.4 μg/mL. SGC7901 cell growth was also inhibited by allitridi with 24 h IC50 being 7.3 μg/mL.After being treated with allitridi at the concentration of 12 μg/mL for 24 h, cells were found to have direct cytotoxic effects, including broken cellular membrane, swollen and vesiculated mitochondria and rough endoplasmic reticula,and mass lipid droplet. When cells were treated with allitridi at the concentration of 3, 6, and 9 μg/mL for 24 h, the percentage of G0/G1 phase cells was decreased and that of G2/M phase cells was significantly increased (P = 0.002)compared with those in the group. When cells were treated with allitridi at the concentration of 6 μg/mL, cell mitotic index was much higher (P = 0.003) than that of control group, indicating that allitridi could cause gastric cancer cell arrest in M phase. Besides, the expression levels of p21WAF1 gene of MGC803 cells and p21WAF1 gene of SGC7901 cells were remarkably upregulated after treatment.CONCLUSION: Allitridi can cause gastric cancer cell arrest in M phase, and this may be one of the mechanisms for inhibiting cell proliferation. Effect of allitridi on cells in M phas e may be associated with the upregulation of p21WAF1 genes. This study provides experimental data for clinical use of allitridi in the treatment of gastric carcinoma.

  18. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  19. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

    Directory of Open Access Journals (Sweden)

    Jamie A Greig

    2015-01-01

    Full Text Available The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its

  20. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  1. Effects of hyaluronic acid- chitosan-gelatin complex on the apoptosis and cell cycle of L929 cells

    Institute of Scientific and Technical Information of China (English)

    MAO Jinshu; WANG Xianghui; CUI Yuanlu; YAO Kangde

    2003-01-01

    With the development in the field of tissue engineering, the interaction between biomaterials and cells has been deeply studied. Viewing the cells seeded on the surface of materials as an organic whole, cell cycle and apoptosis are analyzed to deepen the study of cell compatibility on biomaterials, while cellproliferation and differentiation are studied at the same time. In this paper, hyaluronic acid is incorporated into the chitosan-gelatin system. Propidium iodide (PI) was used in cell cycle analysis and the double-staining of cells with annexin-V and PI was applied in cell apoptosis analysis. The results show that incorporated hyaluronic acid shortens the adaptation period of cells on the material surface, and then cells enter the normal cell cycle quickly. In addition, added hyaluronic acid inhibits cell apoptosis triggered by the membranes. Therefore,hyaluronic acid improves the cell compatibility of chitosan-gelatin system and benefits the design of biomimetic materials.

  2. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  3. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  4. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.

    Science.gov (United States)

    Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

    2012-08-01

    Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases. PMID:21847594

  5. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  6. {gamma}-irradiation deregulates cell cycle control and apoptosis in nevoid basal cell carcinomas syndrome-derived cells

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsunori; Miyashita, Toshiyuki; Yamada, Masao [National Children' s Medical Research Center, Tokyo (Japan); Takanashi, Jun-ichi; Sugita, Katsuo; Kohno, Yoichi; Nishie, Haruko; Yasumoto, Shin-ichiro; Furue, Masutaka

    1999-12-01

    The nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by nevi, palmar and plantar pits, falx calcification, vertebrate anomalies and basal cell carcinomas. It is well known in NBCCS that {gamma}-irradiation to the skin induces basal cell carcinomas or causes an enlargement of the tumor size, although the details of the mechanism remain unknown. We have established lymphoblastoid cell lines from three NBCCS patients, and we present here the first evidence of abnormal cell cycle and apoptosis regulations. A novel mutation (single nucleotide deletion) in the coding region of the human patched gene, PTCH, was identified in two sibling patients, but no apparent abnormalities were detected in the gene of the remaining patient. Nevertheless, the three established cell lines showed similar features in the following analyses. Flow cytometric analyses revealed that the NBCCS-derived cells were accumulated in the G{sub 2}M phase after {gamma}-irradiation, whereas normal cells showed cell cycle arrest both in the G{sub 0}G{sub 1} and G{sub 2}M phases. The fraction of apoptotic cells after {gamma}-irradiation was smaller in the NBCCS cells. The level of p27 expression markedly decreased after {gamma}-irradiation in the NBCCS cells, although the effects of the irradiation on the expression profiles for p53, p21 and Rb did not differ in normal and NBCCS cells. These findings may provide a clue to the molecular mechanisms of tumorigenesis in NBCCS. (author)

  7. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition

    Institute of Scientific and Technical Information of China (English)

    Yan-min ZHAO; Qian ZHOU; Yun XU; Xiao-yu LAI; He HUANG

    2008-01-01

    Aim:To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat. Methods:Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progres-sion and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR. Results:Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the pro-tein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression. Conclusion:Rapamycin displayed a potent antileukemic effect in the human T-cell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

  8. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    International Nuclear Information System (INIS)

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy

  9. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junqiang; Doi, Hiroshi [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Saar, Matthias; Santos, Jennifer [Department of Urology, School of Medicine, Stanford University, Stanford, California (United States); Li, Xuejun; Peehl, Donna M. [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Knox, Susan J., E-mail: sknox@stanford.edu [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States)

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  10. Knockdown of the cell cycle inhibitor p21 enhances cartilage formation by induced pluripotent stem cells.

    Science.gov (United States)

    Diekman, Brian O; Thakore, Pratiksha I; O'Connor, Shannon K; Willard, Vincent P; Brunger, Jonathan M; Christoforou, Nicolas; Leong, Kam W; Gersbach, Charles A; Guilak, Farshid

    2015-04-01

    The limited regenerative capacity of articular cartilage contributes to progressive joint dysfunction associated with cartilage injury or osteoarthritis. Cartilage tissue engineering seeks to provide a biological substitute for repairing damaged or diseased cartilage, but requires a cell source with the capacity for extensive expansion without loss of chondrogenic potential. In this study, we hypothesized that decreased expression of the cell cycle inhibitor p21 would enhance the proliferative and chondrogenic potential of differentiated induced pluripotent stem cells (iPSCs). Murine iPSCs were directed to differentiate toward the chondrogenic lineage with an established protocol and then engineered to express a short hairpin RNA (shRNA) to reduce the expression of p21. Cells expressing the p21 shRNA demonstrated higher proliferative potential during monolayer expansion and increased synthesis of glycosaminoglycans (GAGs) in pellet cultures. Furthermore, these cells could be expanded ∼150-fold over three additional passages without a reduction in the subsequent production of GAGs, while control cells showed reduced potential for GAG synthesis with three additional passages. In pellets from extensively passaged cells, knockdown of p21 attenuated the sharp decrease in cell number that occurred in control cells, and immunohistochemical analysis showed that p21 knockdown limited the production of type I and type X collagen while maintaining synthesis of cartilage-specific type II collagen. These findings suggest that manipulating the cell cycle can augment the monolayer expansion and preserve the chondrogenic capacity of differentiated iPSCs, providing a strategy for enhancing iPSC-based cartilage tissue engineering.

  11. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  12. TRAP1 regulates cell cycle and apoptosis in thyroid carcinoma cells.

    Science.gov (United States)

    Palladino, Giuseppe; Notarangelo, Tiziana; Pannone, Giuseppe; Piscazzi, Annamaria; Lamacchia, Olga; Sisinni, Lorenza; Spagnoletti, Girolamo; Toti, Paolo; Santoro, Angela; Storto, Giovanni; Bufo, Pantaleo; Cignarelli, Mauro; Esposito, Franca; Landriscina, Matteo

    2016-09-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone upregulated in several human malignancies and involved in protection from apoptosis and drug resistance, cell cycle progression, cell metabolism and quality control of specific client proteins. TRAP1 role in thyroid carcinoma (TC), still unaddressed at present, was investigated by analyzing its expression in a cohort of 86 human TCs and evaluating its involvement in cancer cell survival and proliferation in vitro Indeed, TRAP1 levels progressively increased from normal peritumoral thyroid gland, to papillary TCs (PTCs), follicular variants of PTCs (FV-PTCs) and poorly differentiated TCs (PDTCs). By contrast, anaplastic thyroid tumors exhibited a dual pattern, the majority being characterized by high TRAP1 levels, while a small subgroup completely negative. Consistently with a potential involvement of TRAP1 in thyroid carcinogenesis, TRAP1 silencing resulted in increased sensitivity to paclitaxel-induced apoptosis, inhibition of cell cycle progression and attenuation of ERK signaling. Noteworthy, the inhibition of TRAP1 ATPase activity by pharmacological agents resulted in attenuation of cell proliferation, inhibition of ERK signaling and reversion of drug resistance. These data suggest that TRAP1 inhibition may be regarded as potential strategy to target specific features of human TCs, i.e., cell proliferation and resistance to apoptosis. PMID:27422900

  13. The role of the cell cycle machinery in resumption of postembryonic development

    NARCIS (Netherlands)

    Barroco, R.M.; Poucke, van K.; Bergervoet, J.H.W.; Veylder, de L.; Groot, S.P.C.; Inze, D.; Engler, G.

    2005-01-01

    Cell cycle activity is required for plant growth and development, but its involvement in the early events that initiate seedling development remains to be clarified. We performed experiments aimed at understanding when cell cycle progression is activated during seed germination, and what its contrib

  14. Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    DEFF Research Database (Denmark)

    Cunningham, J M; Vierkant, R A; Sellers, T A;

    2009-01-01

    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide. METHODS: We examined single nucleotide polymorphisms (SNPs) (n=288) from 39 cell cycle regulation genes, including cyclins, cyclin-depend...

  15. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  16. AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences.We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (pppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant.The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.

  17. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. PMID:25615607

  18. SON controls cell-cycle progression by coordinated regulation of RNA splicing.

    Science.gov (United States)

    Ahn, Eun-Young; DeKelver, Russell C; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-04-22

    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.

  19. The regulatory effects of radiation and histone deacetylase inhibitor on liver cancer cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Choi, Hyung Seok; Jang, Dong Gun; Lee, Hong Je; Yang, Seoung Oh [Dept. Nuclear Medicine, Dongnam Institute of Radiological and Medicine Sciences Cancer Center, Busan (Korea, Republic of)

    2013-11-15

    Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. Results demonstrate that the treatment of radiation TSA induces cell cycle arrest, thereby stimulating cell death in hepatoma cells. In addition, since different cells or tissues have different reactivity to radiation and TSA, these results might be an indicator for the combination therapy with radiation and drugs in diverse cancers.

  20. Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance

    Science.gov (United States)

    Alessandrini, A.; Croce, M. A.; Tiozzo, R.; Facci, P.

    2006-02-01

    We have monitored viscoelasticity variation of a cell population during the cell cycle by a Quartz Crystal Microbalance (QCM). Balb 3T3 fibroblasts were synchronized in the G0/G1 phase and seeded in a QCM chamber placed in a cell incubator. After cell sedimentation, the frequency signal was characterized by an amplitude modulation attributed to the viscoelasticity variation of the cells proliferating in phase. A control experiment with nonsynchronized cells showed a similar signal trend, but without significant modulation. Interestingly, the system resulted also to perform as a device sensitive to the effect of drugs affecting the cell cycle, such as colchicine.

  1. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available BACKGROUND: Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering. METHODOLOGY/PRINCIPAL FINDINGS: This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe. CONCLUSIONS/SIGNIFICANCE: We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of

  2. The effects of fluoride on testicular cell cycle and cell apoptosis of male rats

    Institute of Scientific and Technical Information of China (English)

    张筱文

    2014-01-01

    Objective To observe the effects of fluoride on testicular cell cycle and cell apoptosis of male rats.Methods Thirty-two healthy male Wistar rats,weighting 150-180 g,were randomly divided into 4 groups by body weight using random number table,normal sodium(control),the low-dose,medium-dose and high-dose groups(100,200,300 mg·kg-1·d-1Na F,respectively)by intragastric administration for 90 days,and bodyweight

  3. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    Science.gov (United States)

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  4. Effects of Genistein on Cell Cycle and Apoptosis of Two Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of genistein on several tumor cell lines were investigated to study the effects of genistein on cell growth, cell cycle, and apoptosis of two murine melanoma cell lines, B16 and K1735M2. These two closely related murine melanoma cell lines, however, have different responses to the genistein treatment. Genistein inhibits the growth of both the B16 and K1735M2 cell lines and arrests the growth at the G2/M phase. After treatment with 60 μmol/L genistein for 72 h, apoptosis and caspase activities were detected in B16 cells, while such effects were not found in K1735M2. Further tests showed that after genistein treatment the protein content and mRNA levels of p53 increased in B16, but remained the same in K1735M2. The protein content and mRNA levels of p21WAF1/CIP1 increased in both cell lines after treatment.The results show that genistein might induce apoptosis in B16 cells by damaging the DNA, inhibiting topoisomerase Ⅱ, increasing p53 expression, releasing cytochrome c from the mitochondria, and activating the caspases which will lead to apoptosis.

  5. Re-thinking cell cycle regulators : the cross-talk with metabolism.

    Directory of Open Access Journals (Sweden)

    Lluis eFajas

    2013-01-01

    Full Text Available Analyses of genetically engineered mice deficient for cell cycle regulators, including E2F1, cdk4, or, pRB showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism and it has been shown how deregulation of those pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also proved that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples illustrate the growing notion that cell cycle regulatory proteins can also modulate metabolic processes. Cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative, and increased glycolytic metabolism. In summary, cell cycle regulators are essential in the control of anabolic, biosynthetic processes, and block at the same time oxidative and catabolic pathways, which are the metabolic hallmarks of cancer.

  6. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  7. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    Directory of Open Access Journals (Sweden)

    Amanda Cinquin

    2016-04-01

    Full Text Available Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  8. Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Prasad, Paras N

    2010-11-17

    Fundamental understanding of cellular processes at molecular level is of considerable importance in cell biology as well as in biomedical disciplines for early diagnosis of infection and cancer diseases, and for developing new molecular medicine-based therapies. Modern biophotonics offers exclusive capabilities to obtain information on molecular composition, organization, and dynamics in a cell by utilizing a combination of optical spectroscopy and optical imaging. We introduce here a combination of Raman microspectrometry, together with coherent anti-Stokes Raman scattering (CARS) and two-photon excited fluorescence (TPEF) nonlinear optical microscopy, to study macromolecular organization of the nucleus throughout the cell cycle. Site-specific concentrations of proteins, DNA, RNA, and lipids were determined in nucleoli, nucleoplasmic transcription sites, nuclear speckles, constitutive heterochromatin domains, mitotic chromosomes, and extrachromosomal regions of mitotic cells by quantitative confocal Raman microspectrometry. A surprising finding, obtained in our study, is that the local concentration of proteins does not increase during DNA compaction. We also demonstrate that postmitotic DNA decondensation is a gradual process, continuing for several hours. The quantitative Raman spectroscopic analysis was corroborated with CARS/TPEF multimodal imaging to visualize the distribution of protein, DNA, RNA, and lipid macromolecules throughout the cell cycle.

  9. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  10. Effects of 60Co γ rays on the cell cycle progress of MCF-7 cells

    International Nuclear Information System (INIS)

    To investigate the effects of ionizing radiation on cell cycle progress of tumor cell lines, the human breast cancer MCF-7 cell line cultured in vitro was exposed to 60Co γ rays and the alterations in cell cycle progress after irradiation were measured by flow cytometry. The results indicated that the MCF-7 cells showed a transient S arrest continuing for about 6 h and an obvious G2 arrest continuing for about 63 h after irradiation with 5.0 Gy γ rays. S and G2 arrest culminated at 9 h and 18 h respectively after irradiation and the peak values of S and G2 arrest reached respectively 1.6 times and 6.2 times as many as normal value. The dose-effect curve examined 9 h after irradiation was quite different from that examined 18 h after irradiation. Both of the S arrest at 9 h after irradiation and the G2 arrest at 18 h after irradiation presented significant relationship with irradiation dose

  11. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available The cell cycle (or cell-division cycle is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH terms "tumor suppressor′s genes," "skin," and "cell cycle regulatory checkpoints." We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses.

  12. CDK inhibitors, p21{sup Cip1} and p27{sup Kip1}, participate in cell cycle exit of mammalian cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tane, Shoji; Ikenishi, Aiko; Okayama, Hitomi; Iwamoto, Noriko [School of Life Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503 (Japan); Nakayama, Keiichi I. [Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582 (Japan); Takeuchi, Takashi, E-mail: takeuchi@med.tottori-u.ac.jp [School of Life Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503 (Japan)

    2014-01-17

    Highlights: •Expression of p21 and p27 in the hearts showed a peak during postnatal stages. •p21 and p27 bound to cyclin E, cyclin A and CDK2 in the hearts at postnatal stages. •Cardiomyocytes in both KO mice showed failure in the cell cycle exit at G1-phase. •These data show the first apparent phenotypes in the hearts of Cip/Kip KO mice. -- Abstract: Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21{sup Cip1} and p27{sup Kip1} but not p57{sup Kip2} showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21{sup Cip1} and p27{sup Kip1} bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21{sup Cip1} and p27{sup Kip1} knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21{sup Cip1} and p27{sup Kip} play important roles in the cell cycle exit of postnatal cardiomyocytes.

  13. Cyclin A2:At the crossroads of cell cycle and cell invasion

    Institute of Scientific and Technical Information of China (English)

    Abdelhalim; Loukil; Caroline; T; Cheung; Nawal; Bendris; Bénédicte; Lemmers; Marion; Peter; Jean; Marie; Blanchard

    2015-01-01

    Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However,whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed,recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of Rho A activity. Since this GTPase is involved in both cell rounding early in mitosis and later,in the formation of the cleavage furrow,this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together,these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.

  14. Environmental analysis of the proton exchange membrane fuel cell on the subject of life cycle assessment

    International Nuclear Information System (INIS)

    The energy is the fuel of growth and an essential requirement for the socioeconomic development. However, the current production model is based on fossil fuels, considered as threat to man and nature. As for, the relating to the human activities and their effects on the environment, they are handled by the implementation of a more rigid model of environmental control and the mobilization of the society in favor of technologies with less energy impact. In view of this scenario, the Proton Exchange Membrane Fuel Cell - PEMFC has been recognized as a key for the vital need of a clean and efficient energy. Considering the conventional power generation system, their advantages during usage configure its application as an ideal option for several utilities, especially in the mobile sector. Even though, the focus on several environmental evaluations in energy systems is referred back to the initial stage of it use, the employment relating to production of the system and to final destination should be considered, since these also present impacts. In the case of PEMFC, their previous and subsequent phases of use are issues related to the platinum catalysts, which indicates an environmental importance that cannot be overlooked. In this sense, the Life Cycle Assessment has been used to understand and to question the risks and opportunities that are associated to certain product, starting from a systemic concept of their relationships with the environment. It is precisely in this context that the present research intends to present its major contribution, starting from an exploratory study towards the its objectives to provide an environmental analysis of such technology linked to post stage of powder-use of the membrane electrode assembly - MEA, concerning the platinum catalysts, on the subject of Life Cycle Assessment - LCA. To attain such aim, the relationships between energy, environment and development are presented and discussed, as well as, the Fuel Cell technology and

  15. Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Franco Folli

    Full Text Available Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM. We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells--which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO. Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.

  16. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

    OpenAIRE

    Peeper, D.S.; Upton, T.M.; Ladha, M H; Neuman, E; Zalvide, J; Bernards, R.A.; DeCaprio, J A; Ewen, M E

    1997-01-01

    The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (GO) and to pass through the GI/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-suppressor protein (Rb), a regulator of GI exit, functionally links Ras to passage through the Gl phase. Inactivation of Ras in cycling cells cause...

  17. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

    Directory of Open Access Journals (Sweden)

    Michio Tomura

    Full Text Available A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120 accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.

  18. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View.

    Science.gov (United States)

    Yuan, Kai; Seller, Charles A; Shermoen, Antony W; O'Farrell, Patrick H

    2016-08-01

    At the mid-blastula transition (MBT), externally developing embryos refocus from increasing cell number to elaboration of the body plan. Studies in Drosophila reveal a sequence of changes in regulators of Cyclin:Cdk1 that increasingly restricts the activity of this cell cycle kinase to slow cell cycles during early embryogenesis. By reviewing these events, we provide an outline of the mechanisms slowing the cell cycle at and around the time of MBT. The perspectives developed should provide a guiding paradigm for the study of other MBT changes as the embryo transits from maternal control to a regulatory program centered on the expression of zygotic genes. PMID:27339317

  19. Role of DNA methylation in cell cycle arrest induced by Cr (VI in two cell lines.

    Directory of Open Access Journals (Sweden)

    Jianlin Lou

    Full Text Available Hexavalent chromium [Cr(IV], a well-known industrial waste product and an environmental pollutant, is recognized as a human carcinogen. But its mechanisms of carcinogenicity remain unclear, and recent studies suggest that DNA methylation may play an important role in the carcinogenesis of Cr(IV. The aim of our study was to investigate the effects of Cr(IV on cell cycle progress, global DNA methylation, and DNA methylation of p16 gene. A human B lymphoblastoid cell line and a human lung cell line A549 were exposed to 5-15 µM potassium dichromate or 1.25-5 µg/cm² lead chromate for 2-24 hours. Cell cycle was arrested at G₁ phase by both compounds in 24 hours exposure group, but global hypomethylation occurred earlier than cell cycle arrest, and the hypomethylation status maintained for more than 20 hours. The mRNA expression of p16 was significantly up-regulated by Cr(IV, especially by potassium dichromate, and the mRNA expression of cyclin-dependent kinases (CDK4 and CDK6 was significantly down-regulated. But protein expression analysis showed very little change of p16 gene. Both qualitative and quantitative results showed that DNA methylation status of p16 remained unchanged. Collectively, our data suggested that global hypomethylation was possibly responsible for Cr(IV-induced G₁ phase arrest, but DNA methylation might not be related to up-regulation of p16 gene by Cr(IV.

  20. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles.

    Science.gov (United States)

    Huang, Can; Sun, Ying; Shen, Ming; Zhang, Xiangyu; Gao, Pei; Duan, Yourong

    2016-01-20

    cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.

  1. 2-Methoxyestradiol induces cell cycle arrest and apoptosis of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Ning-ning ZHOU; Xiao-feng ZHU; Jun-ming ZHOU; Man-zhi LI; Xiao-shi ZHANG; Peng HUANG; Wen-qi JIANG

    2004-01-01

    AIM: To investigate 2-methoxyestradiol induced apoptosis and its mechanism of action in CNE2 cell lines.METHODS: CNE2 cells were cultured in RPMI-1640 medium and treated with 2-methoxyestradiol in different concentrations. MTT assay was used to detect growth inhibition. Flow cytometry and DNA ladders were used to detect apoptosis. Western blotting was used to observe the expression of p53, p21WAF1, Bax, and Bcl-2 protein.RESULTS: 2-methoxyestradiol inhibited proliferation of nasopharyngeal carcinoma CNE2 cells with IC50 value of2.82 μrnol/L. The results of flow cytometry showed an accumulation of CNE2 cells in G2/M phase in response to2-methoxyestradiol. Treatment of CNE2 cells with 2-methoxyestradiol resulted in DNA fragmentation. The expression levels of protein p53 and Bcl-2 decreased following 2-methoxyestradiol treatment in CNE2 cells, whereas Bax and p21WAF1 protein expression were unaffected after treatment with 2-methoxyestradiol. CONCLUSION:These results suggest that 2-methoxyestradiol induced cell cycle arrest at G2/M phase and apoptosis of CNE2 cells which was associated to Bcl-2 down-regulation.

  2. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression.

    Science.gov (United States)

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian; Kohlwein, Sepp D

    2015-03-10

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle. PMID:25713391

  3. A Triple Staining Method for Accurate Cell Cycle Analysis Using Multiparameter Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lin Qiu

    2013-12-01

    Full Text Available Cell cycle analysis is important for cancer research. We present herein a novel method for accurate cell cycle analysis. This method analyzes the cell cycle by multiparameter flow cytometry based on simultaneously labeling the cell nuclear DNA, RNA, and phosphorylated mitotic nuclei protein, using Hoechst 33342, pyronin Y, and MPM-2-Cy5, respectively, and our results demonstrated that this method could effectively divide the cell cycle into G0, G1, S, G2, and M phases. We further tested this method using the clinical anticancer agents crizotinib and taxol, and the results clearly illustrated that crizotinib and taxol arrested Jurkat cells in G0 and M phase, respectively. These results indicate that this method could be a very useful tool for cytokinetic and pharmacological research.

  4. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Emeli M., E-mail: Emeli.Nilsson@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Brokken, Leon J.S., E-mail: Leon.Brokken@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Haerkoenen, Pirkko L., E-mail: Pirkko.Harkonen@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden)

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  5. Cell Cycle-dependent Regulation of the Forkhead Transcription Factor FOXK2 by CDK·Cyclin Complexes*

    OpenAIRE

    Marais, Anett; Ji, Zongling; Child, Emma S.; Krause, Eberhard; Mann, David J.; Sharrocks, Andrew D.

    2010-01-01

    Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occ...

  6. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    OpenAIRE

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  7. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29

    NARCIS (Netherlands)

    P. Vizan; G. Alcarraz-Vizan; S. Diaz-Moralli; O.N. Solovjeva; W.M. Frederiks; M. Cascante

    2009-01-01

    Cell cycle regulation is dependent on multiple cellular and molecular events. Cell proliferation requires metabolic sources for the duplication of DNA and cell size. However, nucleotide reservoirs are not sufficient to support cell duplication and, therefore, bio-synthetic pathways should be upregul

  8. Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, Paul; Zheng, Honghe; Liu, Gao; Song, Xiangun; Guerfi, Abdelbast; Charest, Patrick; Zaghib, Karim; Battaglia, Vincent

    2009-06-15

    Graphites MCMB-2810 and OMAC-15 (made by Osaka Gas Inc.), and SNG12 (Hydro Quebec, Inc.) were evaluated (in coin cells with lithium counter electrodes) as anode materials for lithium-ion cells intended for use in hybrid electric vehicles. Though the reversible capacity obtained for SNG was slightly higher than that of OMAC or MCMB, its 1st cycle efficiency was lower. Voltage vs capacity plots of cycling data show that the discharge and charge limits shift to higher capacity values due to continuation of anode side reactions. Varying the cycle charge and discharge limits was found to have no significant effect on fractional capacity shift per cycle.

  9. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  10. Space environment effect on cell cycle of proliferating FRTL-5 cells

    Science.gov (United States)

    Curcio, Francesco; Saverio Ambesi-Impiombato, Francesco; Meli, Antonella; Perrella, Giuseppina; Spelat, Renza; Zambito, Anna Maria

    The space environment is a unique laboratory to study the response of living organisms to microgravity and cosmic radiation at the molecular and cellular levels. Significant results obtained by us during the Eneide Mission (Soyuz 9S and 10S 2005) showed a different sensitivity to space environment of cells in proliferative state as compared to those in physiological stand-by. The main object of our investigation was to validate these important findings and to study the molecular mechanisms underlying the phenomenon. To this purpose, a cell model of normal cells derived from rat thyroids which can be kept unattended for up to 20 days in a proliferative medium and at room temperature (FRTL-5) were used in a 10 days experiment on a FOTON satellite and in a 15 days experiment in the STS-120 shuttle mission. Experimental design for both flights was planned on the basis of the "ENEIDE" mission results. Microarray analysis has been performed on the samples from Foton M3 and STS-120. Background subtraction, quality assessment and normalization as well as the definition of specific evaluation algorithms have been performed. Based on the hyper G Test function we computed the Hyper geometric p-values for over representation of genes at all Gene Ontology (GO) terms in the induced GO graphs; this test was performed for each GO category and applied also to KEGG pathways. Results show the good quality of the experiment and our data show that the pathways mostly affected by the flight are: a) the cell cycle, b) the ubiquitin mediated proteolysis, c) the repair mechanisms, d) the adherens junction and e) the pyrimidine metabolism. The patways studied indicate that the cells suffer a slowing of cell cycle as well as upregulation of the DNA and RNA repair processes and even further corroborate the validity of using the FRTL5 cells as biosensors for monitoring the effectiveness of countermeasures to damage caused by the Space.

  11. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway

    International Nuclear Information System (INIS)

    Gallbladder cancer is the most frequent malignancy of the bile duct with high aggressive and extremely poor prognosis. The main objective of the paper was to investigate the inhibitory effects of oridonin, a diterpenoid isolated from Rabdosia rubescens, on gallbladder cancer both in vitro and in vivo and to explore the mechanisms underlying oridonin-induced apoptosis and cell cycle arrest. The anti-tumor activity of oridonin on SGC996 and NOZ cells was assessed by the MTT and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/PI double-staining and Hoechst 33342 staining assays. Loss of mitochondrial membrane potential was observed by Rhodamine 123 staining. The in vivo efficacy of oridonin was evaluated using a NOZ xenograft model in athymic nude mice. The expression of cell cycle- and apoptosis-related proteins in vitro and in vivo was analyzed by western blot analysis. Activation of caspases (caspase-3, -8 and -9) was measured by caspases activity assay. Oridonin induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in SGC996 and NOZ cells in a dose-dependent manner. Intraperitoneal injection of oridonin (5, 10, or 15 mg/kg) for 3 weeks significantly inhibited the growth of NOZ xenografts in athymic nude mice. We demonstrated that oridonin regulated cell cycle-related proteins in response to S-phase arrest by western blot analysis. In contrast, we observed inhibition of NF-κB nuclear translocation and an increase Bax/Bcl-2 ratio accompanied by activated caspase-3, caspase-9 and PARP-1 cleavage after treatment with oridonin, which indicate that the mitochondrial pathway is involved in oridonin-mediated apoptosis. Oridonin possesses potent anti-gallbladder cancer activities that correlate with regulation of the mitochondrial pathway, which is critical for apoptosis and S-phase arrest. Therefore, oridonin has potential as a novel anti-tumor therapy for the

  12. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line

    OpenAIRE

    Cinquin, A.; Chiang, M.; Paz, A.; Hallman, S; Yuan, O; Vysniauskaite, I; Fowlkes, CC; Cinquin, O.

    2016-01-01

    Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproducti...

  13. CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL

    OpenAIRE

    G. Cutrona; Tasso, P; Dono, M; Roncella, S; M. ULIVI; Carpaneto, E M; Fontana, V; Comis, M; F. Morabito; Spinelli, M.; Frascella, E.; Boffa, L C; G. Basso; Pistoia, V.; Ferrarini, M.

    2002-01-01

    CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 ca...

  14. Scaffolding during the cell cycle by A-kinase anchoring proteins

    OpenAIRE

    Han, B.; Poppinga, W J; Schmidt, M.

    2015-01-01

    Cell division relies on coordinated regulation of the cell cycle. A process including a well-defined series of strictly regulated molecular mechanisms involving cyclin-dependent kinases, retinoblastoma protein, and polo-like kinases. Dysfunctions in cell cycle regulation are associated with disease such as cancer, diabetes, and neurodegeneration. Compartmentalization of cellular signaling is a common strategy used to ensure the accuracy and efficiency of cellular responses. Compartmentalizati...

  15. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein.

    Science.gov (United States)

    Moskot, Marta; Gabig-Cimińska, Magdalena; Jakóbkiewicz-Banecka, Joanna; Węsierska, Magdalena; Bocheńska, Katarzyna; Węgrzyn, Grzegorz

    2016-07-01

    Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by mutations resulting in deficiency of one of enzymes involved in degradation of glycosaminoglycans (GAGs). These compounds accumulate in cells causing their dysfunctions. Genistein is a molecule previously found to both modify GAG metabolism and modulate cell cycle. Therefore, we investigated whether the cell cycle is affected in MPS cells and if genistein can influence this process. Fibroblasts derived from patients suffering from MPS types I, II, IIIA and IIIB, as well as normal human fibroblasts (the HDFa cell line) were investigated. MTT assay was used for determination of cell proliferation, and the cell cycle was analyzed by using the MUSE® Cell Analyzer. While effects of genistein on cell proliferation were similar in both normal and MPS fibroblasts, fractions of cells in the G0/G1 phase were higher, and number of cells entering the S and G2/M phases was considerably lower in MPS II fibroblasts relative to control cells. Somewhat similar tendency, though significantly less pronounced, could be noted in MPS I, but only at longer times of incubation. However, this was not observed in MPS IIIA and MPS IIIB fibroblasts. Genistein (5, 7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) was found to be able to partially correct the disturbances in the MPS II cell cycle, and to some extent in MPS I, at higher concentrations of this compound. The tendency to increase the fractions of cells entering the S and G2/M phases was also observed in MPS IIIA and IIIB fibroblasts treated with genistein. In conclusion, this is the first report indicating that the cell cycle can be impaired in MPS cells. The finding that genistein can improve the MPS II (and to some extent also MPS I) cell cycle provides an input to our knowledge on the molecular mechanisms of action of this compound. PMID:27016302

  16. Technology for cell cycle research with unstressed steady-state cultures

    OpenAIRE

    Lebleu, Valerie S.; Thornton, Maureen; Gonda, Steven R.; Helmstetter, Charles E.

    2006-01-01

    A culture system for performing cell cycle analyses on cells in undisturbed steady-state populations was designed and tested. In this system, newborn cells are shed continuously from an immobilized, perfused culture rotating about the horizontal axis. As a result of this arrangement, the number of newborn cells released into the effluent medium each generation is identical to the number of cells residing in the immobilized population, indicating that one of the two new daughter cells is shed ...

  17. Effect of elevated temperatures on cell cycle kinetics of rat gliosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ross-Riveros, P.

    1978-07-01

    9L rat gliosarcoma cells were examined in vitro for survival response to hyperthermic temperatures ranging from 39.0/sup 0/ to 45.0/sup 0/C for graded exposure times. At 43.0/sup 0/C, the split exposure response was also studied. Changes in cell cycle kinetics resulting from hyperthermia were compared for isosurvival levels achieved by appropriate exposure time to either 42.5/sup 0/C or 43.0/sup 0/C. After heat treatment, cells were held at 37.0/sup 0/C for varying recovery periods. Cells were then either prepared for flow microfluorometry (FMF), or exposed to tritiated thymidine (/sup 3/HTdR) for autoradiography. The survival studies indicated that the rate of change in cell killing for each increasing degree centigrade was greater for temperatures below 43.0/sup 0/C than for temperatures above 43.0/sup 0/C. The shoulder width of the survival curves was maximal at 42.5/sup 0/C. The shoulder width represents an important parameter since it describes a threshold time after which significant cell killing occurs. Thus both 43.0/sup 0/C, the temperature at which mortality kinetics changed, and 42.5/sup 0/C, the temperature at which the shoulder width was maximum, represent critical temperatures for the 9L cells. When 9L cells were given an initial conditioning exposure to 43.0/sup 0/C, then returned to 37/sup 0/C for 3 hrs, followed by graded exposure intervals at 43.0/sup 0/, the resulting survival curve indicated that cells required longer times for equal cell killing than for the single exposure condition, suggesting that the cells possess a capability to adapt to the higher temperature.

  18. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.

    Science.gov (United States)

    Ball, David A; Adames, Neil R; Reischmann, Nadine; Barik, Debashis; Franck, Christopher T; Tyson, John J; Peccoud, Jean

    2013-10-01

    Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.

  19. Synchronization of Cell Cycle Oscillator by Multi-pulse Chemical Perturbations

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Dinner, Aaron; Scherer, Norbert

    2011-03-01

    Oscillators underlie biological rhythms in various organisms and provide a timekeeping mechanism. Cell cycle oscillator, for example, controls the progression of cell cycle stage and drives cyclic reproduction in both prokaryotes and eukaryotes. The understanding of the underlying nonlinear regulatory network allows experimental design of external perturbations to interact and control cell cycle oscillation. We have previously demonstrated in experiment and in simulation that the cell cycle coherence of a model bacterium can be progressively tuned by the level of a histidine kinase. Here, we present our recent effort to synchronize the division of a population of bacterium cells by external pulsatile chemical perturbations. We were able to synchronize the cell population by phase-locking approach: the external oscillator (i.e. periodic perturbation) entrains the internal cell cycle oscillator which is in analogous to the phase-locking of circadian clock to external light/dark oscillator. We explored the ranges of frequencies for two external oscillators of different amplitudes where phase-locking occurred. To our surprise, non-periodic chemical perturbations could also cause synchronization of a cell population, suggesting a Markovian cell cycle oscillation dynamics.

  20. Computational and genetic reduction of a cell cycle to its simplest, primordial components.

    Directory of Open Access Journals (Sweden)

    Seán M Murray

    2013-12-01

    Full Text Available What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles.

  1. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis.

    Science.gov (United States)

    Pozo, Karine; Hillmann, Antje; Augustyn, Alexander; Plattner, Florian; Hai, Tao; Singh, Tanvir; Ramezani, Saleh; Sun, Xiankai; Pfragner, Roswitha; Minna, John D; Cote, Gilbert J; Chen, Herbert; Bibb, James A; Nwariaku, Fiemu E

    2015-05-20

    Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer of thyroid C-cells, for which few treatment options are available. We have recently reported a role for cyclin-dependent kinase 5 (CDK5) in MTC pathogenesis. We have generated a mouse model, in which MTC proliferation is induced upon conditional overexpression of the CDK5 activator, p25, in C-cells, and arrested by interrupting p25 overexpression. Here, we identify genes and proteins that are differentially expressed in proliferating versus arrested benign mouse MTC. We find that downstream target genes of the tumor suppressor, retinoblastoma protein, including genes encoding cell cycle regulators such as CDKs, cyclins and CDK inhibitors, are significantly upregulated in malignant mouse tumors in a CDK5-dependent manner. Reducing CDK5 activity in human MTC cells down-regulated these cell cycle regulators suggesting that CDK5 activity is critical for cell cycle progression and MTC proliferation. Finally, the same set of cell cycle proteins was consistently overexpressed in human sporadic MTC but not in hereditary MTC. Together these findings suggest that aberrant CDK5 activity precedes cell cycle initiation and thus may function as a tumor-promoting factor facilitating cell cycle protein expression in MTC. Targeting aberrant CDK5 or its downstream effectors may be a strategy to halt MTC tumorigenesis. PMID:25900242

  2. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  3. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  4. Systematic identification of cell cycle regulated transcription factors from microarray time series data

    Directory of Open Access Journals (Sweden)

    Li Lei M

    2008-03-01

    Full Text Available Abstract Background The cell cycle has long been an important model to study the genome-wide transcriptional regulation. Although several methods have been introduced to identify cell cycle regulated genes from microarray data, they can not be directly used to investigate cell cycle regulated transcription factors (CCRTFs, because for many transcription factors (TFs it is their activities instead of expressions that are periodically regulated across the cell cycle. To overcome this problem, it is useful to infer TF activities across the cell cycle by integrating microarray expression data with ChIP-chip data, and then examine the periodicity of the inferred activities. For most species, however, large-scale ChIP-chip data are still not available. Results We propose a two-step method to identify the CCRTFs by integrating microarray cell cycle data with ChIP-chip data or motif discovery data. In S. cerevisiae, we identify 42 CCRTFs, among which 23 have been verified experimentally. The cell cycle related behaviors (e.g. at which cell cycle phase a TF achieves the highest activity predicted by our method are consistent with the well established knowledge about them. We also find that the periodical activity fluctuation of some TFs can be perturbed by the cell synchronization treatment. Moreover, by integrating expression data with in-silico motif discovery data, we identify 8 cell cycle associated regulatory motifs, among which 7 are binding sites for well-known cell cycle related TFs. Conclusion Our method is effective to identify CCRTFs by integrating microarray cell cycle data with TF-gene binding information. In S. cerevisiae, the TF-gene binding information is provided by the systematic ChIP-chip experiments. In other species where systematic ChIP-chip data is not available, in-silico motif discovery and analysis provide us with an alternative method. Therefore, our method is ready to be implemented to the microarray cell cycle data sets from

  5. Efficient retrovirus-mediated transfer of cell-cycle control genes to transformed cells

    Directory of Open Access Journals (Sweden)

    B.E. Strauss

    1999-07-01

    Full Text Available The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.

  6. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    Science.gov (United States)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed. PMID:26254918

  7. Cell-cycle control by protein kinase B

    NARCIS (Netherlands)

    Kops, G.J.P.L.

    2002-01-01

    Numerous cells in the body divide, and do so in a well-controlled manner. In some situations where this control is deregulated, cells may divide continuously. Such uncontrolled proliferation of cells is thought to be responsible for the onset of cancer. In order for a cell to divide in a normal set

  8. Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells

    Directory of Open Access Journals (Sweden)

    Wang XM

    2012-02-01

    Full Text Available Lei Wang1,2,*, Haijun Zhang1,2,*, Baoan Chen1,2, Guohua Xia1,2, Shuai Wang1,2, Jian Cheng1,2, Zeye Shao1,2, Chong Gao1,2, Wen Bao1,2, Liang Tian1,2, Yanyan Ren1,2, Peipei Xu1,2, Xiaohui Cai1,2, Ran Liu1,2, Xuemei Wang3 1Department of Hematology and Oncology, Zhongda Hospital, Medical School, 2Faculty of Oncology, Medical School, 3State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, China*These authors contributed equally to this workAbstract: Traditional Chinese medicine is gradually becoming a new source of anticancer drugs. One such example is wogonin, which is cytotoxic to various cancer cell lines in vitro. However, due to its low water solubility, wogonin is restricted to clinical administration. Recently, the application of drug-coated magnetic nanoparticles (MNPs to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. In this study, wogonin was conjugated with the drug delivery system of MNPs by mechanical absorption polymerization to fabricate wogonin-loaded MNPs. It was demonstrated that MNPs could strengthen wogonin-induced cell inhibition, apoptosis, and cell cycle arrest in Raji cells by methylthiazol tetrazolium assay, flow cytometer assay, and nuclear 4',6-diamidino-2-phenylindole staining. Furthermore, the molecular mechanisms of these phenomena were explored by western blot, in which the protein levels of caspase 8 and caspase 3 were increased significantly while those of survivin and cyclin E were decreased significantly in wogonin-MNPs group. These findings suggest that the combination of wogonin and MNPs provides a promising strategy for lymphoma therapy.Keywords: wogonin, magnetic nanoparticles, Raji cell, apoptosis, cell cycle, caspase 8, caspase 3, survivin, cyclin E

  9. Polydatin-induced cell apoptosis and cell cycle arrest are potentiated by Janus kinase 2 inhibition in leukemia cells.

    Science.gov (United States)

    Cao, Wei-Jie; Wu, Ke; Wang, Chong; Wan, Ding-Ming

    2016-04-01

    Polydatin (PD), a natural precursor of resveratrol, has a variety of biological activities, including anti‑tumor effects. However, the underlying molecular mechanisms of the anti-cancer activity of PD has not been fully elucidated. The present study demonstrated that PD significantly inhibited the proliferation of the MOLT-4 leukemia cell line in a dose‑ and time-dependent manner by using Cell Counting Kit‑8 assay. PD also dose-dependently increased the apoptotic rate and caused cell cycle arrest in S phase in MOLT‑4 cells, as revealed by flow cytometry. In addition, PD dose-dependently decreased the mitochondrial membrane potential and led to the generation of reactive oxygen species in MOLT-4 cells. Western blot analysis revealed that the expression of anti‑apoptotic protein B-cell lymphoma 2 (Bcl-2) was decreased, whereas that of pro‑apoptotic protein Bcl‑2‑associated X was increased by PD. Furthermore, the expression of two cell cycle regulatory proteins, cyclin D1 and cyclin B1, was suppressed by PD. Of note, the pro‑apoptotic and cell cycle‑inhibitory effects of PD were potentiated by Janus kinase 2 (JAK2) inhibition. In conclusion, the results of the present study strongly suggested that PD is a promising therapeutic compound for the treatment of leukemia, particularly in combination with JAK inhibitors. PMID:26934953

  10. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  11. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bisteau, Xavier [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); Caldez, Matias J.; Kaldis, Philipp, E-mail: kaldis@imcb.a-star.edu.sg [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); National University of Singapore (NUS), Department of Biochemistry, Singapore 117597 (Singapore)

    2014-01-13

    The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.

  12. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  13. Ras protein participated in histone acetylation-mediated cell cycle control in Physarum polycephalum

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoxue; LU Jun; ZHAO Yanmei; WANG Xiuli; HUANG Baiqu

    2005-01-01

    In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neutralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.

  14. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.

    Science.gov (United States)

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A; Kumar, Sheetal; Kalab, Petr

    2016-04-15

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  15. Expression of cell cycle related genes in HL60 cells undergoing apoptosis by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [College of Medicine, Keimyung Univ., Taegu (Korea, Republic of); Park, In Kyu [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    1998-12-01

    To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy. HL-60 cell line (promyelocytic leukemia cell line was grown in culture media and irradiated with 8 Gy by linear accelerator (6 MV X-ray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2, CDK2, CDK4, p16{sup INK4a}, p21{sup WAF1}, p27K{sup IP1}, E2F, PCNA and Rb). X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of phosphorylated retinoblastoma proteins (ppRb). Cyclin D1, PCNA, CDC1, CDK4 and p16{sup INK4a} protein underwent no significant change at any times after irradiation. There was not detected p21{sup WAF1} and p27{sup KIP1} protein. Cyclin A, B, C, mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin D1 mRNA increased immediately and then decreased with the lapse of time. CDK2 mRNA decreased at 3 h and increased at 6 h after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of p16{sup INK4a} and not detected in expressin of p21{sup WAF1} and p27{sup KIP1} mRNA. We suggest that entry into S phaso may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced apoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced

  16. Drug targets for cell cycle dysregulators in leukemogenesis: in silico docking studies.

    Directory of Open Access Journals (Sweden)

    Archana Jayaraman

    Full Text Available Alterations in cell cycle regulating proteins are a key characteristic in neoplastic proliferation of lymphoblast cells in patients with Acute Lymphoblastic Leukemia (ALL. The aim of our study was to investigate whether the routinely administered ALL chemotherapeutic agents would be able to bind and inhibit the key deregulated cell cycle proteins such as--Cyclins E1, D1, D3, A1 and Cyclin Dependent Kinases (CDK 2 and 6. We used Schrödinger Glide docking protocol to dock the chemotherapeutic drugs such as Doxorubicin and Daunorubicin and others which are not very common including Clofarabine, Nelarabine and Flavopiridol, to the crystal structures of these proteins. We observed that the drugs were able to bind and interact with cyclins E1 and A1 and CDKs 2 and 6 while their docking to cyclins D1 and D3 were not successful. This binding proved favorable to interact with the G1/S cell cycle phase proteins that were examined in this study and may lead to the interruption of the growth of leukemic cells. Our observations therefore suggest that these drugs could be explored for use as inhibitors for these cell cycle proteins. Further, we have also highlighted residues which could be important in the designing of pharmacophores against these cell cycle proteins. This is the first report in understanding the mechanism of action of the drugs targeting these cell cycle proteins in leukemia through the visualization of drug-target binding and molecular docking using computational methods.

  17. Cell cycle dependent association of EBP50 with protein phosphatase 2A in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Anita Boratkó

    Full Text Available Ezrin-radixin-moesin (ERM-binding phosphoprotein 50 (EBP50 is a phosphorylatable PDZ domain-containing adaptor protein that is abundantly expressed in epithelium but was not yet studied in the endothelium. We report unusual nuclear localization of EBP50 in bovine pulmonary artery endothelial cells (BPAEC. Immunofluorescent staining and cellular fractionation demonstrated that EBP50 is present in the nuclear and perinuclear region in interphase cells. In the prophase of mitosis EBP50 redistributes to the cytoplasmic region in a phosphorylation dependent manner and during mitosis EBP50 co-localizes with protein phosphatase 2A (PP2A. Furthermore, in vitro wound healing of BPAEC expressing phospho-mimic mutant of EBP50 was accelerated indicating that EBP50 is involved in the regulation of the cell division. Cell cycle dependent specific interactions were detected between EBP50 and the subunits of PP2A (A, C, and Bα with immunoprecipitation and pull-down experiments. The interaction of EBP50 with the Bα containing form of PP2A suggests that this holoenzyme of PP2A can be responsible for the dephosphorylation of EBP50 in cytokinesis. Moreover, the results underline the significance of EBP50 in cell division via reversible phosphorylation of the protein with cyclin dependent kinase and PP2A in normal cells.

  18. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  19. Nuclear reprogramming: kinetics of cell cycle and metabolic progression as determinants of success.

    Directory of Open Access Journals (Sweden)

    Sebastian Thomas Balbach

    Full Text Available Establishment of totipotency after somatic cell nuclear transfer (NT requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H(2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI. Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development.

  20. Cytoplasmic pH and the regulation of the dictyostelium cell cycle

    NARCIS (Netherlands)

    Aerts, R.J.; Durston, A.J.; Moolenaar, W.H.

    1985-01-01

    Cytoplasmic pH (pHl) was monitored during the cell cycle of synchronous populations of Dictyostelium discoideum by means of a pH “null point” method. There is a cycle of pHl that closely corresponds to the DNA replication cycle, with a minimum of pH 7.20 in interphase and a peak of pH 7.45 during S

  1. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells

    Directory of Open Access Journals (Sweden)

    Gersende Caron

    2015-11-01

    Full Text Available Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-β1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxymethylation, and cell fate determination.

  2. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    International Nuclear Information System (INIS)

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  3. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  4. Caveolin-2 regulation of the cell cycle in response to insulin in Hirc-B fibroblast cells

    International Nuclear Information System (INIS)

    The regulatory function of caveolin-2 in cell cycle regulation by insulin was investigated in human insulin receptor-overexpressed rat 1 fibroblast (Hirc-B) cells. Insulin increased induction of the caveolin-2 gene in a time-dependent manner. Direct interaction between ERK and caveolin-2 was confirmed by immunoprecipitation and phosphorylated ERK increased the specific interaction in response to insulin. That insulin induced their nuclear co-localization over time was demonstrated by immunofluorescence microscopy. Insulin increased the S phase in the cell cycle by 6-fold. When recombinant caveolin-1 was transiently expressed, a decrease in the S phase was detected by flow-cytometry. The results indicate that the up-regulation of caveolin-2 in response to insulin activates the downstream signal cascades in the cell cycle, chiefly the increased phosphorylation of ERK, the nuclear translocation of phosphorylated ERK, and the subsequent activation of G0/G1 to S phase transition of the cell cycle. The results also suggest that DNA synthesis and the activation of the cell cycle by insulin are achieved concomitantly with an increase in the interaction between caveolin-2 and phosphorylated ERK, and the nuclear translocation of that complex. Taken together, we conclude that caveolin-2 positively regulates the insulin-induced cell cycle through activation of and direct interaction with ERK in Hirc-B cells

  5. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.

    Science.gov (United States)

    Boutte, Cara C; Henry, Jonathan T; Crosson, Sean

    2012-01-01

    Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators.

  6. BENZO[a]PYRENE DIOL EPOXIDE PERTURBATION OF CELL CYCLE KINETICS OF SYNCHRONIZED MOUSE LIVER EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.; Navsky, B.N.; Bartholomew, J.C

    1980-07-01

    A cell cycle synchronization system is described for the analysis of the perturbation of cell cycle kinetics and the cycle-phase specificity of chemicals and other agents. We used the system to study the effects of ({+-})r-7, t-8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide) upon the cell cycle of mouse liver epithelial cells(NMuLi). BaP diol epoxide(0.6 uM) was added to replated cultures of NMuLi cells that had been synchronized in various stages of the cell cycle by centrifugal elutriation. DNA histograms were obtained by flow cytometry as a function of time after replating. The data were analyzed by a computer modeling routine and reduced to a few graphs illustrating the 'net effects' of the BaP diol epoxide relative to controls. BaP diol epoxide slowed S-phase traversal in all samples relative to their respective control. Traversal through G{sub 2}M was also slowed by at least 50%. BaP diol epoxide had no apparent effect upon G{sub 1} traversal by cycling cells, but delayed the recruitment of quiescent G{sub 0} cells by about 2 hrs. The methods described constitute a powerful new approach for probing the cell cycle effects of a wide variety of agents. The present system appears to be extremely sensitive and capable of characterizing the action of agents on each phase of the cell cycle. The methods are automatable and would allow for the assay and possible differential characterization of mutagens and carcinogens.

  7. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  8. Onychin inhibits proliferation of vascular smooth muscle cells by regulating cell cycle

    Institute of Scientific and Technical Information of China (English)

    Ming YANG; Hong-lin HUANG; Bing-yang ZHU; Qin-hui TUO; Duan-fang LIAO

    2005-01-01

    Aim: To investigate the effects of onychin on the proliferation of cultured rat artery vascular smooth muscle cells (VSMCs) in the presence of 10% new-borncalf serum (NCS). Methods: Rat VSMCs were incubated with onychin 1-50 μmol/L or genistein 10 μmol/L in the presence of 10% NCS for 24 h. The proliferation of VSMCs was measured by cell counting and MTS/PMS colorimetric assays. Cell cycle progression was evaluated by flow cytometry. Retinoblastoma (Rb) phosphorylation, and expression of cyclin D1 and cyclin E were measured by Western blot assays. The tyrosine phosphorylation of ERK1/2 was examined by immunoprecipitation techniques using anti-phospho-tyrosine antibodies. Results: The proliferation of VSMCs was accelerated significantly in the presence of 10% NCS. Onychin reduced the metabolic rate of MTS and the cell number of VSMCs in the presence of 10% NCS in a dose-dependent manner. Flow cytometry analy sis revealed that the G1-phase fraction ratio in the onychin group was higher than that in the 10% NCS group (85.2% vs 70.0%, P<0.01), while the S-phase fraction ratio in the onychin group was lower than that in 10% NCS group (4.3% vs 16.4%, P<0.01). Western blot analysis showed that onychin inhibited Rb phos phorylation and reduced the expression of cyclin D1 and cyclin E. The effects of onychin on proliferation, the cell cycle and the expression of cyclins in VSMCs were similar to those of genistein, an inhibitor of tyrosine kinase. Furthermore immunoprecipitation studies showed that both onychin and genistein markedly inhibited the tyrosine phosphorylation of ERK1/2 induced by 10% NCS.Conclusion: Onychin inhibits the proliferation of VSMCs through G1 phase cell cycle arrest by decreasing the tyrosine phosphorylation of ERK1/2, and the expression of cyclin D1 and cyclin E, and sequentially inhibiting Rb phosphorylation.

  9. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells.

    Science.gov (United States)

    Takubo, Keiyo; Nagamatsu, Go; Kobayashi, Chiharu I; Nakamura-Ishizu, Ayako; Kobayashi, Hiroshi; Ikeda, Eiji; Goda, Nobuhito; Rahimi, Yasmeen; Johnson, Randall S; Soga, Tomoyoshi; Hirao, Atsushi; Suematsu, Makoto; Suda, Toshio

    2013-01-01

    Defining the metabolic programs that underlie stem cell maintenance will be essential for developing strategies to manipulate stem cell capacity. Mammalian hematopoietic stem cells (HSCs) maintain cell cycle quiescence in a hypoxic microenvironment. It has been proposed that HSCs exhibit a distinct metabolic phenotype under these conditions. Here we directly investigated this idea using metabolomic analysis and found that HSCs generate adenosine-5'-triphosphate by anaerobic glycolysis through a pyruvate dehydrogenase kinase (Pdk)-dependent mechanism. Elevated Pdk expression leads to active suppression of the influx of glycolytic metabolites into mitochondria. Pdk overexpression in glycolysis-defective HSCs restored glycolysis, cell cycle quiescence, and stem cell capacity, while loss of both Pdk2 and Pdk4 attenuated HSC quiescence, glycolysis, and transplantation capacity. Moreover, treatment of HSCs with a Pdk mimetic promoted their survival and transplantation capacity. Thus, glycolytic metabolic status governed by Pdk acts as a cell cycle checkpoint that modulates HSC quiescence and function. PMID:23290136

  10. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  11. Transcriptional regulation is a major controller of cell cycle transition dynamics

    DEFF Research Database (Denmark)

    Romanel, Alessandro; Jensen, Lars Juhl; Cardelli, Luca;

    2012-01-01

    DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries...

  12. APC/C activity during the cell cycle. Shifting gears in protein degradation

    NARCIS (Netherlands)

    Boekhout, M.

    2015-01-01

    For correct cell division to take place, many different mechanisms ensure genomic integrity and formation healthy daughter cells. One mechanism that has evolved to provide a safe passage from one cell cycle phase into the next, is protein degradation. With our work we provide new insights into activ

  13. Radiation response and cell cycle regulation of p53 rescued malignant keratinocytes

    International Nuclear Information System (INIS)

    Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21WAF1/Cip1 resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3σ, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3σ (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds

  14. Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Ji Yeon Baek; Wonhee Hur; Jin Sang Wang; Si Hyun Bae; Seung Kew Yoon

    2007-01-01

    AIM: To investigate the growth inhibitory mechanism of NS-398, a selective cyclooxygenase-2 (COX-2) inhibitor,in two hepatocellular carcinoma (HCC) cell lines (HepG2and Huh7).METHODS: HepG2 and Huh7 cells were treated with NS-398. Its effects on cell viability, cell proliferation,cell cycles, and gene expression were respectively evaluated by water-soluble tetrazolium salt (WST-1)assay, 4'-6-diamidino-2-phenylindole (DAPI) staining,flow cytometer analysis, and Western blotting,with dimethyl sulfoxide (DMSO) as positive control.RESULTS: NS-398 showed dose- and time-dependent growth-inhibitory effects on the two cell lines.Proliferating cell nuclear antigen (PCNA) expressions in HepG2 and Huh7 cells, particularly in Huh7 cells were inhibited in a time- and dose-independent manner.NS-398 caused cell cycle arrest in the G1 phase with cell accumulation in the sub-G1 phase in HepG2 and Huh7cell lines. No evidence of apoptosis was observed in two cell lines.CONCLUSION: NS-398 reduces cell proliferation by inducing cell cycle arrest in HepG2 and Huh7 cell lines,and COX-2 inhibitors may have potent chemoprevention effects on human hepatocellular carcinoma.

  15. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan.

    Science.gov (United States)

    Masuda, Fumie; Ishii, Mahiro; Mori, Ayaka; Uehara, Lisa; Yanagida, Mitsuhiro; Takeda, Kojiro; Saitoh, Shigeaki

    2016-01-01

    While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy. PMID:26804466

  16. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    Science.gov (United States)

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  17. Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell cycle arrest.

    Science.gov (United States)

    Lin, Minghe; Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Cai, Qiaoyan; Peng, Jun; Zhu, Dezeng

    2012-08-01

    Hedyotis diffusa Willd (HDW) has long been used as an important component in several Chinese medicine formulae to clinically treat various types of cancer, including colorectal cancer (CRC). Previously, we reported that HDW inhibits CRC growth via the induction of cancer cell apoptosis and the inhibition of tumor angiogenesis. In the present study, to further elucidate the mechanism of HDW-mediated antitumor activity, we investigated the effect of HDW ethanol extract (EEHDW) on the proliferation of HT-29 human colon carcinoma cells. We found that EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. We also observed that EEHDW treatment blocked the cell cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21. Our findings suggest that Hedyotis diffusa Willd may be an effective treatment for CRC via the suppression of cancer cell proliferation. PMID:23139718

  18. Cytotoxicity of α-terpineol in HeLa cell line and its effects to apoptosis and cell cycle

    Directory of Open Access Journals (Sweden)

    Rasuane Noor Indwiani Astuti Mustofa

    2014-08-01

    Full Text Available α-Terpineol is a natural compound of terpenoid alcohols class. However, it can be synthesizedfrom α-pinene of turpentin content. α-Terpineol has been reported as potential anticancer agentdue to its activity on inhibition of cells growth and induction of tumor cell death. However, itsanticancer activity in HeLa cervical cancer cells line has never been studied, yet. The aim of thisstudy was to evaluate the cytotoxicity of α-terpineol and its effects to apoptosis and cell cycle.This was a quasi-experimental study with post-test only with non-equivalent control groupdesign. Cytotoxicity of á-terpineol was evaluated using MTT cell viability assay. The effect of α-terpineol on cell apoptotis was tested using acridine orange-ethidium bromide staining method,whereas its effect on cell cycle was evaluated by flowcytometry method. The results showedthat α-terpineol had cytotoxicity against HeLa cell with an IC50 value about 12.46 μg/mL.Furthermore, α-terpineol induced the HeLa with an IC50 value about 13.12 μg/mL. Cell accumulationat G1 phase during cell cycle after incubation with α-terpineol (52.78was observed. In conclusion,α-terpineol is potential as an anticancer due to its ability to induce cell apoptosis and to inhibitthe cell cycle at G1 phase.

  19. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells.

    Science.gov (United States)

    Mayol, Laura; Serri, Carla; Menale, Ciro; Crispi, Stefania; Piccolo, Maria Teresa; Mita, Luigi; Giarra, Simona; Forte, Maurizio; Saija, Antonina; Biondi, Marco; Mita, Damiano Gustavo

    2015-06-01

    The pharmacological potential of curcumin (CURC) is severely restricted because of its low water solubility/absorption, short half-life and poor bioavailability. To overcome these issues, CURC-loaded nanoparticles (NPs) were produced by a double emulsion technique. In particular, NPs were made up of an amphiphilic blend of poloxamers and PLGA to confer stealth properties to the NPs to take advantage of the enhanced permeability and retention (EPR) effect. Different surface properties of NPs made up of bare PLGA and PLGA/poloxamer blend were confirmed by the different interactions of these NPs with serum proteins and also by their ability to be internalized by mesothelioma cell line. The uptake of PLGA/poloxamer NPs induces a persistent block in G0/G1 phase of the cell cycle up to 72 h, thus overcoming the drug tolerance phenomenon, normally evidenced with free CURC.

  20. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression.

    Science.gov (United States)

    Xia, Xi; Yu, Yang; Zhang, Li; Ma, Yang; Wang, Hong

    2016-09-01

    Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless‑type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β‑catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs. PMID:27432753

  1. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Simona [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Ranzato, Elia, E-mail: ranzato@unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Parodi, Monica [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); DI.ME.S., Università degli Studi di Genova, Via L. Alberti 2, 16132 Genova (Italy); Vitale, Massimo [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Burlando, Bruno [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy)

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  2. Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies

    Science.gov (United States)

    Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl

    2014-06-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.

  3. TRPV3 Channel Negatively Regulates Cell Cycle Progression and Safeguards the Pluripotency of Embryonic Stem Cells.

    Science.gov (United States)

    Lo, Iek Chi; Chan, Hing Chung; Qi, Zenghua; Ng, Kwun Lam; So, Chun; Tsang, Suk Ying

    2016-02-01

    Embryonic stem cells (ESCs) have tremendous potential for research and future therapeutic purposes. However, the calcium handling mechanism in ESCs is not fully elucidated. Aims of this study are (1) to investigate if transient receptor potential vanilloid-3 (TRPV3) channels are present in mouse ESCs (mESCs) and their subcellular localization; (2) to investigate the role of TRPV3 in maintaining the characteristics of mESCs. Western blot and immunocytochemistry showed that TRPV3 was present at the endoplasmic reticulum (ER) of mESCs. Calcium imaging showed that, in the absence of extracellular calcium, TRPV3 activators camphor and 6-tert-butyl-m-cresol increased the cytosolic calcium. However, depleting the ER store in advance of activator addition abolished the calcium increase, suggesting that TRPV3 released calcium from the ER. To dissect the functional role of TRPV3, TRPV3 was activated and mESC proliferation was measured by trypan blue exclusion and MTT assays. The results showed that TRPV3 activation led to a decrease in mESC proliferation. Cell cycle analysis revealed that TRPV3 activation increased the percentage of cells in G2 /M phase; consistently, Western blot also revealed a concomitant increase in the expression of inactive form of cyclin-dependent kinase 1, suggesting that TRPV3 activation arrested mESCs at G2 /M phase. TRPV3 activation did not alter the expression of pluripotency markers Oct-4, Klf4 and c-Myc, suggesting that the pluripotency was preserved. Our study is the first study to show the presence of TRPV3 at ER. Our study also reveals the novel role of TRPV3 in controlling the cell cycle and preserving the pluripotency of ESCs.

  4. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment

    OpenAIRE

    Zhang, Yi; Chen, Liuh-Yow; Han, Xin; XIE, Wei; Kim, Hyeung; Yang, Dong; Liu, Dan; Songyang, Zhou

    2013-01-01

    Telomere maintenance is essential for organisms with linear chromosomes and is carried out by telomerase during cell cycle. The precise mechanism by which cell cycle controls telomeric access of telomerase and telomere elongation in mammals remains largely unknown. Previous work has established oligonucleotide/oligosaccharide binding (OB) fold-containing telomeric protein TPP1, formerly known as TINT1, PTOP, and PIP1, as a key factor that regulates telomerase recruitment and activity. However...

  5. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  6. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2012-05-01

    Full Text Available The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.

  7. Influence of Cell Cycle and Oncogene Activity upon Topoisomerase IIα Expression and Drug Toxicity

    OpenAIRE

    Stacey, Dennis W.; Hitomi, Masahiro; Chen, Guan

    2000-01-01

    The cell cycle, oncogenic signaling, and topoisomerase (topo) IIα levels all influence sensitivity to anti-topo II drugs. Because the cell cycle and oncogenic signaling influence each other as well as topo IIα levels, it is difficult to assess the importance of any one of these factors independently of the others during drug treatment. Such information, however, is vital to an understanding of the cellular basis of drug toxicity. We, therefore, developed a series of analytical procedures to i...

  8. Inhibition of TFII-I-Dependent Cell Cycle Regulation by p53

    OpenAIRE

    Desgranges, Zana P.; Ahn, Jinwoo; Lazebnik, Maria B.; Ashworth, Todd; Lee, Caleb; Pestell, Richard C.; Rosenberg, Naomi; Prives, Carol; Roy, Ananda L.

    2005-01-01

    The multifunctional transcription factor TFII-I is tyrosine phosphorylated in response to extracellular growth signals and transcriptionally activates growth-promoting genes. However, whether activation of TFII-I also directly affects the cell cycle profile is unknown. Here we show that under normal growth conditions, TFII-I is recruited to the cyclin D1 promoter and transcriptionally activates this gene. Most strikingly, upon cell cycle arrest resulting from genotoxic stress and p53 activati...

  9. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fue...

  10. Identification of G1-regulated genes in normally cycling human cells.

    Directory of Open Access Journals (Sweden)

    Maroun J Beyrouthy

    Full Text Available BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.

  11. Inhibition of ultraviolet B (UVB) induced apoptosis in A431 cells by mimosine is not dependent on cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Cliche, D.O.; Girouard, S.; Bissonnette, N.; Hunting, D.J. [CIHR Group in the Radiation Sciences, Faculte de Medecine, Univ. de Sherbrooke, Sherbrooke, Quebec (Canada)

    2002-07-01

    Ultraviolet (UV) radiation is a strong apoptotic trigger in many cell types. We have. previously reported that a plant amino acid, mimosine ({beta}-[N-(3-hydroxy-4-pyridone)]-{alpha}-aminopropionic acid), with a well-known reversible G1 cell cycle arrest activity can inhibit apoptosis induced by UV irradiation and RNA polymerase II blockage in human A431 cells. Here, apoptosis was measured with a fluorimetric caspase activation assay. Interestingly, the protective state was effective up to 24 h following removal of mimosine from the culture medium while cells were progressing in the cell cycle. Our results demonstrate that the protective effect of mimosine against UV-induced apoptosis can be dissociated from its G1 cell-cycle arrest activity. (author)

  12. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle;

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle......-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude....

  13. A quantitative study of the division cycle of Caulobacter crescentus stalked cells.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2008-01-01

    Full Text Available Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three "master regulator" proteins (CtrA, GcrA, and DnaA, is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of alpha-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine.

  14. Functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis.

    Science.gov (United States)

    Chen, Zhiwei; Yu, Yongfeng; Fu, Da; Li, Ziming; Niu, Xiaoming; Liao, Meilin; Lu, Shun

    2010-06-01

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is the major enzyme in the Phosphatidylcholine (PC) cycle and is involved in many long-term cellular responses such as activation, proliferation, and differentiation events. Cell division cycle 20 homolog (Cdc20) is an essential cell-cycle regulator required for the completion of mitosis. Our previous studies identified the interaction between PC-PLC and Cdc20. Through the interaction, Cdc20 could mediate the degradation of PC-PLC by Cdc20-mediated ubiquitin proteasome pathway (UPP). In this study, we found that PC-PLC might not be involved in cancer metastasis. Inhibition of PC-PLC by D609 could cause cell proliferation inhibition and apoptosis inhibition in CBRH-7919 cells. Inhibition of PC-PLC could also influence the cell cycle by arresting the cells in G1 phase, and Cdc20 might be involved in these processes. Taken together, in this report, we provided new evidence for the functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis in CBRH-7919 cells.

  15. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes.

    Science.gov (United States)

    Santos, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene.

  16. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    Science.gov (United States)

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma.

  17. Radical intermediate generation and cell cycle arrest by an aqueous extract of Thunbergia Laurifolia Linn. In human breast cancer cells.

    Science.gov (United States)

    Jetawattana, Suwimol; Boonsirichai, Kanokporn; Charoen, Savapong; Martin, Sean M

    2015-01-01

    Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an IC50 value of 843 μg/ml. Treatments with extract for 24 h at 250 μg/ml or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals. PMID:26028099

  18. Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Lin-hui LIANG; Xiang-huo HE

    2011-01-01

    The cell cycle,which is precisely controlled by a number of regulators,including cyclins and cyclin-dependent kinases (CDKs),is crucial for the life cycle of mammals.Cell cycle dysregulation is implicated in many diseases,including cancer.Recently,compelling evidence has been found that microRNAs play important roles in the regulation of cell cycle progression by modulating the expression of cyclins,CDKs and other cell cycle regulators.Herein,the recent findings on the regulation of the cell cycle by microRNAs are summarized,and the potential implications of miRNAs in anti-cancer therapies are discussed.

  19. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos.

    Directory of Open Access Journals (Sweden)

    Tony Y-C Tsai

    2014-02-01

    Full Text Available During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min and the subsequent 11 cycles are short (∼30 min and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.

  20. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4.

    Science.gov (United States)

    Bancos, Simona; Cao, Qingyu; Bowers, William J; Crispe, Ian Nicholas

    2009-01-01

    The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.

  1. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  2. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  3. Lineage-Specific Early Differentiation of Human Embryonic Stem Cells Requires a G2 Cell Cycle Pause.

    Science.gov (United States)

    Van Oudenhove, Jennifer J; Grandy, Rodrigo A; Ghule, Prachi N; Del Rio, Roxana; Lian, Jane B; Stein, Janet L; Zaidi, Sayyed K; Stein, Gary S

    2016-07-01

    Human embryonic stem cells (hESCs) have an abbreviated G1 phase of the cell cycle that allows rapid proliferation and maintenance of pluripotency. Lengthening of G1 corresponds to loss of pluripotency during differentiation. However, precise mechanisms that link alterations in the cell cycle and early differentiation remain to be defined. We investigated initial stages of mesendodermal lineage commitment in hESCs, and observed a cell cycle pause. Transcriptome profiling identified several genes with known roles in regulation of the G2/M transition that were differentially expressed early during lineage commitment. WEE1 kinase, which blocks entry into mitosis by phosphorylating CDK1 at Y15, was the most highly expressed of these genes. Inhibition of CDK1 phosphorylation by a specific inhibitor of WEE1 restored cell cycle progression by preventing the G2 pause. Directed differentiation of hESCs revealed that cells paused during commitment to the endo- and mesodermal, but not ectodermal, lineages. Functionally, WEE1 inhibition during meso- and endodermal differentiation selectively decreased expression of definitive endodermal markers SOX17 and FOXA2. Our findings identify a novel G2 cell cycle pause that is required for endodermal differentiation and provide important new mechanistic insights into early events of lineage commitment. Stem Cells 2016;34:1765-1775. PMID:26946228

  4. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication.

    Science.gov (United States)

    Lori, C; Ozaki, S; Steiner, S; Böhm, R; Abel, S; Dubey, B N; Schirmer, T; Hiller, S; Jenal, U

    2015-07-01

    Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.

  5. Molecular signatures of cell cycle transcripts in the pathogenesis of Glial tumors

    Directory of Open Access Journals (Sweden)

    Bhattacharya Rabindra

    2004-01-01

    Full Text Available Abstract Background Astrocytic brain tumors are among the most lethal and morbid tumors of adults, often occurring during the prime of life. These tumors form an interesting group of cancer to understand the molecular mechanism of pathogenesis. Histological grading of Astrocytoma based on WHO classification does not provide complete information on the proliferation potential and biological behavior of the tumors. It is known that cancer results from the disruption of the orderly regulated cycle of replication and division. In the present study, we made an attempt to identify the cell cycle signatures and their involvement in the clinical aggressiveness of gliomas. Methods The variation in expression of various cell cycle genes was studied in different stages of glial tumor progression (low and high grades, and the results were compared with their corresponding expression levels in the normal brain tissue. Macroarray analysis was used for the purpose. Results Macroarray analysis of 114 cell cycle genes in different grades of glioma indicated differential expression pattern in 34% of the gene transcripts, when compared to the normal tissue. Majority of the transcripts belong to the intracellular kinase networks, cell cycle regulating kinases, transcription factors and transcription activators. Conclusion Based on the observation in the expression pattern in low grade and high grade gliomas, it can be suggested that the upregulation of cell cycle activators are seen as an early event in glioma; however, in malignancy it is not the cell cycle activators alone, which are involved in tumorigenesis. Understanding the molecular details of cell cycle regulation and checkpoint abnormalities in cancer could offer an insight into potential therapeutic strategies.

  6. Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Wei Luo; Wei Xiong; Jun Zhou; Zhong Fang; Wenjian Chen; Yubo Fan; Feng Li

    2011-01-01

    Biomechanical forces are emerging as critical regulators of cell function and fluid flow is a potent mechanical stimulus. Although the mechanisms of osteoblasts and osteocytes responding to fluid flow are being elucidated,little is known about how the osteoprogenitors, mesenchymal stem cells (MSCs), respond to fluid flow. Here, we examined the effects of laminar shear stress (LSS) on MSCs in vitro. MSCs from bone marrow of SpragueDawley rats were isolated, purified, and subjected to physiological levels of LSS. DNA synthesis and cell cycle were measured through [3H]thymidine and by flow cytometry,respectively, to detect the cellular proliferation. Annexin V immunostaining and Bcl-2/Bax mRNA expression were evaluated to determine the effect of LSS on MSCs apoptosis. Results showed that fluid shear stress caused a doserelated reduction of MSCs' proliferation rate with the majority of cells being arrested in the Go or G1 phase.Moreover, it was found that physiological levels of LSS exerted a potent suppression effect on MSC apoptosis, In summary, these data revealed a critical role of LSS in maintaining the quiescence of MSCs.

  7. Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo

    International Nuclear Information System (INIS)

    Chk1 inhibitors have emerged as promising anticancer therapeutic agents particularly when combined with antimetabolites such as gemcitabine, cytarabine or hydroxyurea. Here, we address the importance of appropriate drug scheduling when gemcitabine is combined with the Chk1 inhibitor MK-8776, and the mechanisms involved in the schedule dependence. Growth inhibition induced by gemcitabine plus MK-8776 was assessed across multiple cancer cell lines. Experiments used clinically relevant “bolus” administration of both drugs rather than continuous drug exposures. We assessed the effect of different treatment schedules on cell cycle perturbation and tumor cell growth in vitro and in xenograft tumor models. MK-8776 induced an average 7-fold sensitization to gemcitabine in 16 cancer cell lines. The time of MK-8776 administration significantly affected the response of tumor cells to gemcitabine. Although gemcitabine induced rapid cell cycle arrest, the stalled replication forks were not initially dependent on Chk1 for stability. By 18 h, RAD51 was loaded onto DNA indicative of homologous recombination. Inhibition of Chk1 at 18 h rapidly dissociated RAD51 leading to the collapse of replication forks and cell death. Addition of MK-8776 from 18–24 h after a 6-h incubation with gemcitabine induced much greater sensitization than if the two drugs were incubated concurrently for 6 h. The ability of this short incubation with MK-8776 to sensitize cells is critical because of the short half-life of MK-8776 in patients’ plasma. Cell cycle perturbation was also assessed in human pancreas tumor xenografts in mice. There was a dramatic accumulation of cells in S/G2 phase 18 h after gemcitabine administration, but cells had started to recover by 42 h. Administration of MK-8776 18 h after gemcitabine caused significantly delayed tumor growth compared to either drug alone, or when the two drugs were administered with only a 30 min interval. There are two reasons why delayed

  8. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis*

    OpenAIRE

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycl...

  9. Cell Cycle Inhibition from Ethylacetate Extracts of Plectranthus amboinicus, (Lour.) Spreng.) Leaves on HeLa Cells Lines

    OpenAIRE

    Rosidah; Hasibuan, Poppy Anjelisa Z.; Satria, Denny

    2016-01-01

    Objective: To evaluate the effects of ethylacetate extract (EAE) of Plectranthus amboinicus (Lour.) Spreng.) leaves on cell cyle on HeLa cell lines. Methods: Analysis of cell cycle distribution was performed using flowcytometer and the data was analyzed using ModFit LT 3.0 program. Results: The EAE changes the accumulation of cell cycle phase from G0 -G1 phase (54.61%) to sub-G1 phase (69.73%). Conclusions: Based on the results, EAE is potential to be developed as co-chemoth...

  10. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells

    OpenAIRE

    Zhengxiang Xia; Hong Zhang; Danqing Xu; Yuanzhi Lao; Wenwei Fu; Hongsheng Tan; Peng Cao; Ling Yang; Hongxi Xu

    2015-01-01

    Two new xanthones, cowaxanthones G (1) and H (2), and 23 known analogues were isolated from an acetone extract of the leaves of Garcinia cowa. The isolated compounds were evaluated for cytotoxicity against three cancer cell lines and immortalized HL7702 normal liver cells, whereby compounds 1, 5, 8, and 15–17 exhibited significant cytotoxicity. Cell cycle analysis using flow cytometry showed that 5 induced cell cycle arrest at the S phase in a dose-dependent manner, 1 and 16 at the G2/M phase...

  11. Activation of the Retinoblastoma Tumor Suppressor Mediates Cell Cycle Inhibition and Cell Death in Specific Cervical Cancer Cell Lines

    OpenAIRE

    Bourgo, Ryan J.; Braden, Wesley A.; Wells, Susanne I.; Knudsen, Erik S.

    2009-01-01

    High-risk human papilloma virus (HPV) encodes two oncoproteins, E6 and E7, which are vital to viral replication and contribute to the development of cervical cancer. HPV16 E7 can target over 20 cellular proteins, but is best known for inactivating the retinoblastoma (RB) tumor suppressor. RB functions by restraining cells from entering S-phase of the cell cycle, thus preventing aberrant proliferation. While it is well established that HPV16 E7 facilitates the degradation of the RB protein, th...

  12. Induced differentiation of cancer cells: second generation potent hybrid polar compounds target cell cycle regulators

    International Nuclear Information System (INIS)

    Hybrid polar compounds are potent inducers of differentiation of a wide variety of cancer transformed cells. Hexamethylene bisacetamide (HMBA) has been used as a prototype of these compounds to investigate their mechanism of action. Employing murine erythroleukemia (MEL) cells as a model, three characteristics of inducer-mediated commitment to terminal differentiation were demonstrated: (I) induced commitment was stochastic, requiring up to 5 cell cycles to recruit essentially all cells to commit to growth arrest in G1; (II) inducers caused a prolongation of the initial G1; and (III) the hybrid polar compounds induced a wide variety of transformed cells to terminal differentiation. These findings suggested that the rate limiting factor or factors for induction by these agents may be at the level of protein(s) regulating G1-to-S progression, which are common to most eukaryotic cells. It was found that HMBA induced a profound suppression of cyclin dependent kinase, cdk4, which reflected a marked decrease in stability of the protein, and is a critical change in the pathway of induced differentiation. HMBA also induced an increase in pRB and in the active, underphosphorylated form of this protein, an increase in the pRB related protein, p107, and an increase in the cyclin dependent kinase inhibitor, p21. Further, the free form of the transcription factor, E2F, was markedly decreased within hours of exposure of transformed cells to HMBA and found to complex with p107 and cdk 2. A phase II clinical trial was conducted using HMBA to treat patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. Of 28 patients, 9 patients achieved a complete or partial remission lasting from 1 to 16 months. These clinical studies also provided direct evidence that HMBA induces differentiation of transformed cells in patients. In four separate courses of treatment with HMBA, a patient with MDS and the monosomy 7 karyotype marking the malignant clone of bone marrow blast

  13. Dynamics of the mammalian cell cycle in physiological and pathological conditions.

    Science.gov (United States)

    Gérard, Claude; Goldbeter, Albert

    2016-01-01

    A network of cyclin-dependent kinases (Cdks) controls progression along the successive phases G1, S, G2, and M of the mammalian cell cycle. Deregulations in the expression of molecular components in this network often lead to abusive cell proliferation and cancer. Given the complex nature of the Cdk network, it is fruitful to resort to computational models to grasp its dynamical properties. Investigated by means of bifurcation diagrams, a detailed computational model for the Cdk network shows how the balance between quiescence and proliferation is affected by activators (oncogenes) and inhibitors (tumor suppressors) of cell cycle progression, as well as by growth factors and other external factors such as the extracellular matrix (ECM) and cell contact inhibition. Suprathreshold changes in all these factors can trigger a switch in the dynamical behavior of the network corresponding to a bifurcation between a stable steady state, associated with cell cycle arrest, and sustained oscillations of the various cyclin/Cdk complexes, corresponding to cell proliferation. The model for the Cdk network accounts for the dependence or independence of cell proliferation on serum and/or cell anchorage to the ECM. Such computational approach provides an integrated view of the control of cell proliferation in physiological or pathological conditions. Whether the balance is tilted toward cell cycle arrest or cell proliferation depends on the direction in which the threshold associated with the bifurcation is passed once the cell integrates the multiple signals, internal or external to the Cdk network, that promote or impede progression in the cell cycle. PMID:26613368

  14. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP-tagged 74-kDa intermediate chain (IC74. IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs, suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.

  15. Unidirectional P-body transport during the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Cecilia Garmendia-Torres

    Full Text Available P-bodies belong to a large family of RNA granules that are associated with post-transcriptional gene regulation, conserved from yeast to mammals, and influence biological processes ranging from germ cell development to neuronal plasticity. RNA granules can also transport RNAs to specific locations. Germ granules transport maternal RNAs to the embryo, and neuronal granules transport RNAs long distances to the synaptic dendrites. Here we combine microfluidic-based fluorescent microscopy of single cells and automated image analysis to follow p-body dynamics during cell division in yeast. Our results demonstrate that these highly dynamic granules undergo a unidirectional transport from the mother to the daughter cell during mitosis as well as a constrained "hovering" near the bud site half an hour before the bud is observable. Both behaviors are dependent on the Myo4p/She2p RNA transport machinery. Furthermore, single cell analysis of cell size suggests that PBs play an important role in daughter cell growth under nutrient limiting conditions.

  16. Levels of Ycg1 Limit Condensin Function during the Cell Cycle

    Science.gov (United States)

    Arsenault, Heather E.; Benanti, Jennifer A.

    2016-01-01

    During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin, is cell cycle-regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. This cyclical expression pattern is established by a combination of cell cycle-regulated transcription and constitutive degradation. Interestingly, overexpression of YCG1 and mutations that stabilize Ycg1 each result in delayed cell-cycle entry and an overall proliferation defect. Overexpression of no other condensin subunit impacts the cell cycle, suggesting that Ycg1 is limiting for condensin complex formation. Consistent with this possibility, we find that levels of intact condensin complex are reduced in G1 phase compared to mitosis, and that increased Ycg1 expression leads to increases in both levels of condensin complex and binding to chromatin in G1. Together, these results demonstrate that Ycg1 levels limit condensin function in interphase cells, and suggest that the association of condensin with chromosomes must be reduced following mitosis to enable efficient progression through the cell cycle. PMID:27463097

  17. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    Science.gov (United States)

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events.

  18. Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line

    Science.gov (United States)

    Dai, Lu; Li, Ji-Lin; Liang, Xin-Qiang; Li, Lin; Feng, Yan; Liu, Hai-Zhou; Wei, Wen-Er; Ning, Shu-Fang; Zhang, Li-Tu

    2016-01-01

    The present study aimed to investigate the chemo-preventive effect of Camellia nitidissima flowers water extract (CNFE) on the Eca109 human esophageal squamous cell carcinoma (ESCC) cell line. The antiproliferative effect on Eca109 cells was determined using the trypan blue exclusion assay. The effects of CNFE on apoptosis and cell cycle arrest were investigated by flow cytometry. CNFE inhibited cell growth in both a dose- and time-dependent manner in Eca109 cells. CNFE also caused dose- and time-dependent apoptosis of these cells. Treatment of cells with CNFE resulted in dose-dependent G0/G1 phase arrest of the cell cycle. The data demonstrated that CNFE serves antiproliferative effects against human ESCC Eca109 cells by inducing apoptosis and interrupting the cell cycle. These results suggested that CNFE has the potential to be a chemoprotective agent for ESCC. PMID:27314447

  19. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    Science.gov (United States)

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  20. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans.

    Science.gov (United States)

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi

    2014-01-01

    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  1. Measurement of human embryonic stem cell in the growing cycle

    Science.gov (United States)

    Li, X.; Zhao, L.; Oh, Steve K. W.; Chong, W. K.; Ong, J. K.; Chen, Allen K.; Choo, Andre B. H.

    2008-09-01

    A measurement and imaging system has been developed for in-line continuous measurement of live, unmodified, human embryonic stem cells (hESC). The measurement will not affect cell growth, structure, sterility and suitability for clinical use. The stem cell imaging system (SCIS) can be used to support the optimization of automated stem cell growth for invitro study and for high-volume bio-manufacture. This paper present the experimental and analysis for the optimization of system parameters. A non-linear lighting is developed to obtain a clear images. The individual cluster can be traced from day one to day two. The whole system is calibrated with measurement microscope and haemacytometer. The measurement accuracy is better than 90%.

  2. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    Science.gov (United States)

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  3. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    Science.gov (United States)

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  4. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells.

    Science.gov (United States)

    García, Víctor; Lara-Chica, Maribel; Cantarero, Irene; Sterner, Olov; Calzado, Marco A; Muñoz, Eduardo

    2016-01-26

    Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage response (DDR) inducing CHK1, H2AX phosphorylation (fH2AX) and CDC25C downregulation. Inhibition of the ATM/ATR activation with caffeine reverted GL-induced G2/M cell cycle arrest, apoptosis and DNA damage measured by fH2AX. In contrast, UCN-01, a CHK1 inhibitor, prevented GL-induced cell cycle arrest but enhanced apoptosis in DU145 cells. Furthermore, we found that GL did not increase the levels of intracellular ROS, but the antioxidant N-acetylcysteine (NAC) completely prevented the effects of GL on fH2AX, G2/M cell cycle arrest and apoptosis. In contrast to NAC, other antioxidants such as ambroxol and EGCG did not interfere with the activity of GL on cell cycle. GL significantly suppressed DU145 xenograft growth in vivo and induced the expression of fH2AX in the tumors. These findings identify for the first time that GL activates DDR in prostate cancer.

  5. Slow-Cycling Therapy-Resistant Cancer Cells

    OpenAIRE

    Moore, Nathan; Houghton, JeanMarie; Lyle, Stephen

    2011-01-01

    Tumor recurrence after chemotherapy is a major cause of patient morbidity and mortality. Recurrences are thought to be secondary to small subsets of cancer cells that are better able to survive traditional forms of chemotherapy and thus drive tumor regrowth. The ability to isolate and better characterize these therapy-resistant cells is critical for the future development of targeted therapies aimed at achieving more robust and long-lasting responses. Using a novel application for the prolife...

  6. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation.

    Science.gov (United States)

    Wu, Jun; Fang, Jiasheng; Yang, Zhuanyi; Chen, Fenghua; Liu, Jingfang; Wang, Yanjin

    2012-10-01

    Wnt proteins are powerful regulators of cell proliferation and differentiation, and activation of the Wnt signalling pathway is involved in the pathogenesis of several types of human tumours. Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumour suppressor. Previous studies have shown that reducing expression of the WIF-1 gene aberrantly activates Wnt signalling and induces the development of certain types of cancers. In the present study, we examined the expression of WIF-1 in human primary glioblastoma multiforme (GBM) tumours. Studies using semiquantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis revealed that WIF-1 expression is lower in human GBM than in normal brain tissue. To clarify the role of WIF-1, we transfected U251 human glioblastoma-derived cells, which do not express WIF-1, with the pcDNA3.1-WIF1 vector to restore WIF-1 expression. The results of cell proliferation, colony formation and apoptosis assays, as well as flow cytometry, indicate that exogenous WIF-1 has no effect on U251 cell apoptosis, but does arrest cells at the G(0)/G(1) phase and inhibit cell growth. Collectively, our data suggest that WIF-1 is a potent inhibitor of GBM growth. PMID:22901505

  7. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-KB in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Dong-Wook HAN; Mi Hee LEE; Hak Hee KIM; Suong-Hyu HYON; Jong-Chul PARK

    2011-01-01

    Aim: To investigate the effects of (-)epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, on cell growth, cell cycle and phosphorylated nuclear factor-kB (pNF-KB) expression in neonatal human dermal fibroblasts (nHDFs).Methods: The proliferation and cell-cycle of nHDFs were determined using WST-8 cell growth assay and flow cytometry, respectively. The apoptosis was examined using DNA ladder and Annexin V-FITC assays. The expression levels of pNF-kB and cell cycle-related genes and proteins in nHDFs were measured using cDNA microarray analyses and Western blot. The cellular uptake of EGCG was examined using fluorescence (FITC)-Iabeled EGCG (FITC-EGCG) in combination with confocal microscopy.Results: The effect of EGCG on the growth of nHDFs depended on the concentration tested. At a low concentration (200 μmol/L), EGCG resulted in a slight decrease in the proportion of ceils in the S and G/M phases of cell cycle with a concomitant increase in the proportion of cells in G/G phase. At the higher doses (400 and 800 pmol/L), apoptosis was induced. The regulation of EGCG on the expression of pNF-kB was also concentration-dependent, whereas it did not affect the unphosphorylated NF-kB expression, cDNA microarray analysis showed that cell cycle-related genes were down-regulated by EGCG (200 μmol/L). The expression of cyclins A/B and cyclin-dependent kinase 1 was reversibly regulated by EGCG (200 μmol/L). FITC-EGCG was found to be internalized into the cyto-plasm and translocated into the nucleus of nHDFs.Conclusion: EGCG, through uptake into cytoplasm, reversibly regulated the cell growth and expression of cell cycle-related proteins and genes in normal fibroblasts.

  8. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  9. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  10. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.

    Science.gov (United States)

    Castanheira, Sónia; Pérez-Martín, José

    2015-01-01

    Many of the most important plant diseases are caused by fungal pathogens that form specialized cell structures to breach the leaf surface as well as to proliferate inside the plant. To initiate pathogenic development, the fungus responds to a set of inductive cues. Some of them are of extracellular nature (environmental signals) while others respond to intracellular conditions (developmental signals). These signals have to be integrated into a single response that has as a major outcome changes in the morphogenesis of the fungus. The cell cycle regulation is pivotal during these cellular differentiations, and we hypothesized that cell cycle regulation would be likely to provide control points for infection development by fungal pathogens. Although efforts have been done in various fungal systems, there is still limited information available regarding the relationship of these processes with the induction of the virulence programs. Hence, the role of fungal cell cycle regulators -which are wide conserved elements- as true virulence factors, has yet to be defined. Here we discuss the recent finding that the formation of the appressorium, a structure required for plant penetration, in the corn smut fungus Ustilago maydis seems to be incompatible with an active cell cycle and, therefore genetic circuits evolved in this fungus to arrest the cell cycle during the growth of this fungus on plant surface, before the appressorium-mediated penetration into the plant tissue.

  11. Funneled landscape leads to robustness of cell networks: yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2006-11-01

    Full Text Available We uncovered the underlying energy landscape for a cellular network. We discovered that the energy landscape of the yeast cell-cycle network is funneled towards the global minimum (G0/G1 phase from the experimentally measured or inferred inherent chemical reaction rates. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. The funneled landscape can be seen as a possible realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.

  12. Cell cycle responses of heterogeneous human colon adenocarcinoma subpopulations to X-irradiation

    International Nuclear Information System (INIS)

    The cell cycle responses of two exponentially growing subpopulations of cells (clones A and D), originally obtained from a human colon adenocarcinoma to X-irradiation, were studied using centrifugal elutriation. Cell suspensions were separated by changing counter-current flow rate while keeping the rotor speed constant and the composition of eluted fractions was determined using flow cytometry. The X-ray sensitivity of unseparated clone D cells was somewhat greater than that of clone A cells. This difference appeared to be due to a greater value of the α parameter (one-hit cell killing), using the linear-quadratic equation in which the relative survival S/Ssub(o) = exp -(αD + βD2) with dose (D) in Gy. This finding was confirmed in the cell cycle studies where the α parameter was always greater for the clone D cells than for the clone A cells. The β parameter was essentially the same for both cell lines through the cell cycle. (author)

  13. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  14. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells.

    Science.gov (United States)

    Velma, Venkatramreddy; Dasari, Shaloam R; Tchounwou, Paul B

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  15. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression

    OpenAIRE

    Homma, Miwako Kato; Wada, Ikuo; Suzuki, Toshiyuki; Yamaki, Junko; Krebs, Edwin G.; Homma, Yoshimi

    2005-01-01

    Casein kinase 2 (CK2) is a ubiquitous eukaryotic Ser/Thr protein kinase that plays an important role in cell cycle progression. Although its function in this process remains unclear, it is known to be required for the G1 and G2/M phase transitions in yeast. Here, we show that CK2 activity changes notably during cell cycle progression and is increased within 3 h of serum stimulation of quiescent cells. During the time period in which it exhibits high enzymatic activity, CK2 associates with and...

  16. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae

    OpenAIRE

    Gale, Cheryl A.; Leonard, Michelle D.; Finley, Kenneth R.; Christensen, Leah; McClellan, Mark; Abbey, Darren; Kurischko, Cornelia; Bensen, Eric; Tzafrir, Iris; Kauffman, Sarah; Becker, Jeff; Berman, Judith

    2009-01-01

    The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other c...

  17. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  18. [CHROMATIN ORGANIZATION IN CELL CYCLE OF AMOEBA PROTEUS ACCORDING TO OPTICAL TOMOGRAPHY DATA].

    Science.gov (United States)

    Demin, S Yu; Berdieva, M A; Podlipaeva, Yu I; Yudin, A L; Goodkov, A V

    2015-01-01

    For the first time the nuclear cycle of large freshwater amoeba Amoeba proteus was studied by the method of optical tomography. The nuclei were fixed in situ in the cells of synchronized culture, stained by DAPI and examined by confocal laser scanning microscope. 3D-images of intranuclear chromatin were studied in details at different stages of nuclear cycle. The obtained data, together with literary ones allow represent the dynamics of structural organization of the nucleus in Amoeba proteus cell cycle in a new fashion. It was concluded that in this species the two-stage interphase takes place, as well as mitosis of peculiar type which does not correspond to any known type of mitosis according to classification existing now. It is presumed that in the course of nuclear cycle the chromosomes and/or their fragments are amplified, this presumption being in a good correspondence with the data about nuclear DNA hyperreplication in the cell cycle of A. proteus. As a result of chromosomes amplification their number may vary at different stages of cell cycle, and it allows to explain the contradictory data concerning the exact number of chromosomes in this species. The elimination of extra-DNA occurs mainly at the stage between prophase and prometaphase. We presume the majority of chromosomes, or may be even all of them to be referred to cholocentric type according to their behaviour during the mitosis.

  19. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    Science.gov (United States)

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  20. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  1. Role and regulation of kinesin-8 motors through the cell cycle.

    Science.gov (United States)

    Messin, Liam J; Millar, Jonathan B A

    2014-09-01

    Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics. PMID:25136382

  2. Selenium as an essential micronutrient: roles in cell cycle and apoptosis.

    Science.gov (United States)

    Zeng, Huawei

    2009-03-23

    Selenium is an essential trace element for humans and animals, and selenium deficiency is associated with several disease conditions such as immune impairment. In addition, selenium intakes that are greater than the recommended daily allowance (RDA) appear to protect against certain types of cancers. In humans and animals, cell proliferation and death must be regulated to maintain tissue homeostasis, and it has been well documented that numerous human diseases are directly related to the control of cell cycle progression and apoptosis. Thus, the elucidation of the mechanisms by which selenium regulates the cell cycle and apoptosis can lead to a better understanding of the nature of selenium's essentiality and its role in disease prevention. This article reviews the status of knowledge concerning the effect of selenium on cell cycle and apoptosis.

  3. Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback

    CERN Document Server

    Young, Todd; Buckalew, Richard; Moses, Gregory; Boczko, Erik; 10.1016/j.jtbi.2011.10.002.

    2011-01-01

    Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude fr...

  4. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila;

    2009-01-01

    ) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal......-transduction properties of FFLs allow one (or a few) Cdk signal(s) to drive a host of cell cycle responses in correct temporal sequence.......The eukaryotic cell cycle requires precise temporal coordination of the activities of hundreds of 'executor' proteins (EPs) involved in cell growth and division. Cyclin-dependent protein kinases (Cdks) play central roles in regulating the production, activation, inactivation and destruction...

  5. Adaptation to alkalosis induces cell cycle delay and apoptosis in cortical collecting duct cells: role of Aquaporin-2.

    Science.gov (United States)

    Rivarola, Valeria; Flamenco, Pilar; Melamud, Luciana; Galizia, Luciano; Ford, Paula; Capurro, Claudia

    2010-08-01

    Collecting ducts (CD) not only constitute the final site for regulating urine concentration by increasing apical membrane Aquaporin-2 (AQP2) expression, but are also essential for the control of acid-base status. The aim of this work was to examine, in renal cells, the effects of chronic alkalosis on cell growth/death as well as to define whether AQP2 expression plays any role during this adaptation. Two CD cell lines were used: WT- (not expressing AQPs) and AQP2-RCCD(1) (expressing apical AQP2). Our results showed that AQP2 expression per se accelerates cell proliferation by an increase in cell cycle progression. Chronic alkalosis induced, in both cells lines, a time-dependent reduction in cell growth. Even more, cell cycle movement, assessed by 5-bromodeoxyuridine pulse-chase and propidium iodide analyses, revealed a G2/M phase cell accumulation associated with longer S- and G2/M-transit times. This G2/M arrest is paralleled with changes consistent with apoptosis. All these effects appeared 24 h before and were always more pronounced in cells expressing AQP2. Moreover, in AQP2-expressing cells, part of the observed alkalosis cell growth decrease is explained by AQP2 protein down-regulation. We conclude that in CD cells alkalosis causes a reduction in cell growth by cell cycle delay that triggers apoptosis as an adaptive reaction to this environment stress. Since cell volume changes are prerequisite for the initiation of cell proliferation or apoptosis, we propose that AQP2 expression facilitates cell swelling or shrinkage leading to the activation of channels necessary to the control of these processes. PMID:20432437

  6. Research of Effect of 60Co γ-ray Irradiation on Cell Cycle of SMMC, 7721 Tumor Cell with Flow Cytometery

    Institute of Scientific and Technical Information of China (English)

    DangBingrong; MaQiufeng; GaoQingxiang; LiWenjian; HaoJifang; XieYi; GuoChuanling

    2003-01-01

    The resultsMost researchof cell cycle play an important role in resear, ching tumor occurrence, development and treatment. results show that malignant grade and pharmic sensitivity of tumor are relative to cell cycle. The sensitivity of medications is different to different phases of cell cycle of tumor. In general, the cell of M are more sensitivity. On the side, different medications have different action in different cell cycle. The irradiation can change cell cycle proccss and can induce the pattern of changes in cell cycle. For cxamplc, G1 arrest, G2 arrest and S arrest. So, thc research rcsults of tumor cell cycle in different irradiation have not only biological means but also realistic means for selecting chemical therapy medication after radiotherapy.

  7. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation.

    Science.gov (United States)

    Heidenreich, Erich; Eisler, Herfried; Lengheimer, Theresia; Dorninger, Petra; Steinboeck, Ferdinand

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.

  8. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  9. Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; WANG Tong-shan; LI Xiao-yu; LI Nan; HUANG Ding-zhi; CHEN Qi; BA Yi

    2007-01-01

    Background Uncontrolled cell division is one of the hallmarks of tumor growth. Researches have been focused on numerous molecules involved in this process. Cyclins are critical regulatory proteins of cell cycle progression and/or transcription. The present study aimed to investigate the anti-proliferative effect of cyclin L2, and to define its growth regulatory mechanisms using human lung adenocarcinoma cell line A549.Methods Human cyclin L2 was transfected into human lung adenocarcinoma cells (A549 cell), and was expressed in a mammalian expression vector pcDNA3.1. The effects and mechanisms of the cyclin L2 in cell growth, cell cycle analysis and apoptosis were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry or Western blot, respectively.Results Overexpression of cyclin L2 inhibited the growth of A549 cells. Cell cycle analysis in cells transfected with pCCNL2 revealed an increment in proportion in G0/G1 phase ((68.07 ± 4.2)%) in contrast to (60.39 ± 2.82)% of the cells transfected with mock vector. Apoptosis occurred in (7.25 ± 0.98)% cells transfected with pCCNL2, as compared with (1.25 ± 0.21)% of the mock vector control group. Cyclin L2-induced-G0/G1 arrest and apoptosis involved upregulation of caspase-3 and downregulation of Bcl-2 and survivin.Conclusion The results indicate that overexpression of cyclin L2 protein may promote efficient growth inhibition of human lung adenocarcinoma cells by inducing G0/G1 cell cycle arrest and apoptosis.

  10. Paris chinensis dioscin induces G2/M cell cycle arrest and apoptosis in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Lin-Lin Gao; Fu-Rong Li; Peng Jiao; Ming-Feng Yang; Xiao-Jun Zhou; Yan-Hong Si; Wen-Jian Jiang; Ting-Ting Zheng

    2011-01-01

    AIM: To investigate the anti-tumor effects of Paris chinensis dioscin (PCD) and mechanisms regarding cell cycle regulation and apoptosis in human gastric cancer SGC-7901 cells.METHODS: Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Cell apoptosis was evaluated by flow cytometry and laser scanning confocal microscope (LSCM) using Annexin-V/propidium iodide (PI) staining, and the cell cycle was evaluated using PI staining with flow cytometry. Intracellular calcium ions were detected under fluorescence microscope. The expression of cell cycle and apoptosis-related proteins cyclin B1, CDK1, cytochrome C and caspase-3 was measured by immunohistochemical staining. RESULTS: PCD had an anti-proliferation effect on human gastric cancer SGC-7901 cells in a dose- and time-dependent manner. After tre