WorldWideScience

Sample records for cell cycle regulators

  1. Regulation of the cell cycle by irradiation

    International Nuclear Information System (INIS)

    Akashi, Makoto

    1995-01-01

    The molecular mechanism of cell proliferation is extremely complex; deregulation results in neoplastic transformation. In eukaryotes, proliferation of cells is finely regulated through the cell cycle. Studies have shown that the cell cycle is regulated by s series of enzymes known as cyclin-dependent kinases (CDKs). The activities of CDKs are controlled by their association with regulatory subunits, cyclins; the expression of cyclins and the activation of the different cyclin-CDK complexes are required for the cell to cycle. Thus, the cell cycle is regulated by activating and inhibiting phosphorylation of the CDK subunits and this program has internal check points at different stages of the cell cycle. When cells are exposed to external insults such as DNA damaging agents, negative regulation of the cell cycle occurs; arrest in either G1 or G2 stage is induced to prevent the cells from prematurely entering into the next stage before DNA is repaired. Recently, a potent inhibitor of CDKs, which inhibits the phosphorylation of retinoblastoma susceptibility (Rb) gene product by cyclin A-CDK2, cyclin E-CDK2, cyclin D1-CDK4, and cyclin D2-CDK4 complexes has been identified. This protein named WAF1, Sdi1, Cip1, or p21 (a protein of Mr 21,000) contains a p53-binding site in its promoter and studies have reported that the expression of WAF1 was directly regulated by p53; cells with loss of p53 activity due to mutational alteration were unable to induce WAF1. This chapter will be focused on the mechanisms of the cell cycle including inhibitors of CDKs, and the induction of WAF1 by irradiation through a pathway independent of p53 will be also described. (author)

  2. Regulation of the cell cycle by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Makoto [National Inst. of Radiological Sciences, Chiba (Japan)

    1995-12-01

    The molecular mechanism of cell proliferation is extremely complex; deregulation results in neoplastic transformation. In eukaryotes, proliferation of cells is finely regulated through the cell cycle. Studies have shown that the cell cycle is regulated by s series of enzymes known as cyclin-dependent kinases (CDKs). The activities of CDKs are controlled by their association with regulatory subunits, cyclins; the expression of cyclins and the activation of the different cyclin-CDK complexes are required for the cell to cycle. Thus, the cell cycle is regulated by activating and inhibiting phosphorylation of the CDK subunits and this program has internal check points at different stages of the cell cycle. When cells are exposed to external insults such as DNA damaging agents, negative regulation of the cell cycle occurs; arrest in either G1 or G2 stage is induced to prevent the cells from prematurely entering into the next stage before DNA is repaired. Recently, a potent inhibitor of CDKs, which inhibits the phosphorylation of retinoblastoma susceptibility (Rb) gene product by cyclin A-CDK2, cyclin E-CDK2, cyclin D1-CDK4, and cyclin D2-CDK4 complexes has been identified. This protein named WAF1, Sdi1, Cip1, or p21 (a protein of Mr 21,000) contains a p53-binding site in its promoter and studies have reported that the expression of WAF1 was directly regulated by p53; cells with loss of p53 activity due to mutational alteration were unable to induce WAF1. This chapter will be focused on the mechanisms of the cell cycle including inhibitors of CDKs, and the induction of WAF1 by irradiation through a pathway independent of p53 will be also described. (author)

  3. Flavonoids: from cell cycle regulation to biotechnology.

    Science.gov (United States)

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC).

  4. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  5. CGGBP1 regulates cell cycle in cancer cells

    Directory of Open Access Journals (Sweden)

    Uhrbom Lene

    2011-07-01

    Full Text Available Abstract Background CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. Results In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. Conclusions Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.

  6. Cell cycle regulation and radiation-induced cell death

    International Nuclear Information System (INIS)

    Favaudon, V.

    2000-01-01

    Tight control of cell proliferation is mandatory to prevent cancer formation as well as to normal organ development and homeostasis. This occurs through checkpoints that operate in both time and space and are involved in the control of numerous pathways including DNA replication and transcription, cell cycle progression, signal transduction and differentiation. Moreover, evidence has accumulated to show that apoptosis is tightly connected with the regulation of cell cycle progression. In this paper we describe the main pathways that determine checkpoints in the cell cycle and apoptosis. It is also recalled that in solid tumors radiation-induced cell death occurs most frequently through non-apoptotic mechanisms involving oncosis, and mitotic or delayed cell death. (author)

  7. Cell cycle regulation by the bacterial nucleoid

    OpenAIRE

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2014-01-01

    Division site selection presents a fundamental challenge to all organisms. Bacterial cells are small and the chromosome (nucleoid) often fills most of the cell volume. Thus, in order to maximise fitness and avoid damaging the genetic material, cell division must be tightly co-ordinated with chromosome replication and segregation. To achieve this, bacteria employ a number of different mechanisms to regulate division site selection. One such mechanism, termed nucleoid occlusion, allows the nucl...

  8. Cyclin A2: a genuine cell cycle regulator?

    Science.gov (United States)

    Bendris, Nawal; Loukil, Abdelhalim; Cheung, Caroline; Arsic, Nikola; Rebouissou, Cosette; Hipskind, Robert; Peter, Marion; Lemmers, Bénédicte; Blanchard, Jean Marie

    2012-12-01

    Abstract Cyclin A2 belongs to the core cell cycle regulators and participates in the control of both S phase and mitosis. However, several observations suggest that it is also endowed with other functions, and our recent data shed light on its involvement in cytoskeleton dynamic and cell motility. From the transcription of its gene to its posttranslational modifications, cyclin A2 regulation reveals the complexity of the regulatory network shaping cell cycle progression. We summarize our current knowledge on this cell cycle regulator and discuss recent findings raising the possibility that cyclin A2 might play a much broader role in epithelial tissues homeostasis.

  9. Cell cycle regulation by the bacterial nucleoid.

    Science.gov (United States)

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2014-12-01

    Division site selection presents a fundamental challenge to all organisms. Bacterial cells are small and the chromosome (nucleoid) often fills most of the cell volume. Thus, in order to maximise fitness and avoid damaging the genetic material, cell division must be tightly co-ordinated with chromosome replication and segregation. To achieve this, bacteria employ a number of different mechanisms to regulate division site selection. One such mechanism, termed nucleoid occlusion, allows the nucleoid to protect itself by acting as a template for nucleoid occlusion factors, which prevent Z-ring assembly over the DNA. These factors are sequence-specific DNA-binding proteins that exploit the precise organisation of the nucleoid, allowing them to act as both spatial and temporal regulators of bacterial cell division. The identification of proteins responsible for this process has provided a molecular understanding of nucleoid occlusion but it has also prompted the realisation that substantial levels of redundancy exist between the diverse systems that bacteria employ to ensure that division occurs in the right place, at the right time.

  10. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    or deactivated at specific stages during the cell cycle through a wide variety of mechanisms including transcriptional regulation, phosphorylation, subcellular translocation and targeted degradation. In a series of integrative analyses of different genome-scale data sets, we have studied how these different...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...... are often mirrored by changes in other layers, implying that independent layers of control coevolve. By taking a bird's eye view of the cell cycle, we demonstrate how the modular organization of cellular systems possesses a built-in flexibility, which allows evolution to find many different solutions...

  11. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... or deactivated at specific stages during the cell cycle through a wide variety of mechanisms including transcriptional regulation, phosphorylation, subcellular translocation and targeted degradation. In a series of integrative analyses of different genome-scale data sets, we have studied how these different...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...

  12. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  13. Regulation of cell cycle by the anaphase spindle midzone

    Directory of Open Access Journals (Sweden)

    Sluder Greenfield

    2004-12-01

    Full Text Available Abstract Background A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. Results We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. Conclusions We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle.

  14. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  15. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  16. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  17. Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.

    Science.gov (United States)

    Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua

    2017-05-01

    Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.

  18. LTA4H regulates cell cycle and skin carcinogenesis.

    Science.gov (United States)

    Oi, Naomi; Yamamoto, Hiroyuki; Langfald, Alyssa; Bai, Ruihua; Lee, Mee-Hyun; Bode, Ann M; Dong, Zigang

    2017-07-01

    Leukotriene A4 hydrolase (LTA4H), a bifunctional zinc metallo-enzyme, is reportedly overexpressed in several human cancers. Our group has focused on LTA4H as a potential target for cancer prevention and/or therapy. In the present study, we report that LTA4H is a key regulator of cell cycle at the G0/G1 phase acting by negatively regulating p27 expression in skin cancer. We found that LTA4H is overexpressed in human skin cancer tissue. Knocking out LTA4H significantly reduced skin cancer development in the 7,12-dimethylbenz(a)anthracene (DMBA)-initiated/12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted two-stage skin cancer mouse model. LTA4H depletion dramatically decreased anchorage-dependent and -independent skin cancer cell growth by inducing cell cycle arrest at the G0/G1 phase. Moreover, our findings showed that depletion of LTA4H enhanced p27 protein stability, which was associated with decreased phosphorylation of CDK2 at Thr160 and inhibition of the CDK2/cyclin E complex, resulting in down-regulated p27 ubiquitination. These findings indicate that LTA4H is critical for skin carcinogenesis and is an important mediator of cell cycle and the data begin to clarify the mechanisms of LTA4H's role in cancer development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  20. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.

    Science.gov (United States)

    Foyer, Christine H; Wilson, Michael H; Wright, Megan H

    2018-03-29

    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  1. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  2. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  3. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  4. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly.

    Science.gov (United States)

    Gil-Ranedo, Jon; Hernando, Eva; Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M

    2015-06-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  5. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  6. p27kip1-independent cell cycle regulation by MYC

    NARCIS (Netherlands)

    Berns, K.; Martins, C.; Dannenberg, J.-H.; Berns, A.J.M.; Riele, H. te; Bernards, R.A.

    2000-01-01

    MYC transcription factors are potent stimulators of cell proliferation. It has been suggested that the CDK-inhibitor p27kip1 is a critical G1 phase cell cycle target of c-MYC. We show here that mouse embryo fibroblasts deficient for both p27kip1 and the related p21cip1 are still responsive to

  7. Perspectives in cell cycle regulation: lessons from an anoxic vertebrate.

    Science.gov (United States)

    Biggar, Kyle K; Storey, Kenneth B

    2009-12-01

    The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.

  8. The cell cycle regulators p15, p16, p18 and p19 : functions and regulation during normal cell cycle and in multistep carcinogenesis

    OpenAIRE

    Thullberg, Minna

    2000-01-01

    The tumor suppressor protein p16INK4a and its family members p15INK4b, p18INK4c and p19INK4d (the INK4 proteins) inhibit the cyclin-dependent kinases CDK4 and CDK6, which are key regulators of the retinoblastoma protein (pRb). pRb guards entry into the S phase of the mammalian cell division cycle (the cell cycle), a process evolved to ensure balanced cell proliferation. Deregulation of the cell cycle including the 'RB pathway' may have devastating consequences such as develo...

  9. Mitochondrial regulation of cell cycle progression through SLC25A43

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielson, Marike; Reizer, Edwin [School of Health and Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 70182 Örebro (Sweden); Stål, Olle [Department of Clinical and Experimental Medicine, Linköping University, SE 58185 Linköping (Sweden); Department of Oncology, Linköping University, SE 58185 Linköping (Sweden); Tina, Elisabet, E-mail: elisabet.tina@regionorebrolan.se [Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE 70182 Örebro (Sweden)

    2016-01-22

    An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclear Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G{sub 1}-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G{sub 1}-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. - Highlights: • Proposed cell cycle regulation through the mitochondrial transporter SLC25A43. • SLC25A43 alters cell proliferation rate and cell cycle progression. • Suppressed SLC25A43 influences transcription of cell cycle regulatory genes.

  10. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  11. Transcriptional regulation is a major controller of cell cycle transition dynamics

    DEFF Research Database (Denmark)

    Romanel, Alessandro; Jensen, Lars Juhl; Cardelli, Luca

    2012-01-01

    DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries...... in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through...

  12. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bisteau, Xavier [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); Caldez, Matias J.; Kaldis, Philipp, E-mail: kaldis@imcb.a-star.edu.sg [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); National University of Singapore (NUS), Department of Biochemistry, Singapore 117597 (Singapore)

    2014-01-13

    The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.

  13. Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1

    DEFF Research Database (Denmark)

    Walmod, Peter S.; Hartmann-Petersen, Rasmus; Prag, S.

    2004-01-01

    was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels...... comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner......, and that an enhancement of Rac1 activity is sufficient for a delay of the reduced cell displacement otherwise seen in G2....

  14. Cell cycle regulation and radiation-induced cell death; Regulation du cycle cellulaire et de la mort cellulaire radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V. [Centre Universitaire d' Orsay, Institut Curie, Section de Recherche, Lab. Raymond-Latarjet, Unite 350 Inserm, 91 (France)

    2000-10-01

    Tight control of cell proliferation is mandatory to prevent cancer formation as well as to normal organ development and homeostasis. This occurs through checkpoints that operate in both time and space and are involved in the control of numerous pathways including DNA replication and transcription, cell cycle progression, signal transduction and differentiation. Moreover, evidence has accumulated to show that apoptosis is tightly connected with the regulation of cell cycle progression. In this paper we describe the main pathways that determine checkpoints in the cell cycle and apoptosis. It is also recalled that in solid tumors radiation-induced cell death occurs most frequently through non-apoptotic mechanisms involving oncosis, and mitotic or delayed cell death. (author)

  15. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation.

    Science.gov (United States)

    Strzalka, Wojciech; Ziemienowicz, Alicja

    2011-05-01

    PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.

  16. Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1.

    Science.gov (United States)

    Zeng, Ye; Liu, Xiaoheng; Yan, Zhiping; Xie, Linshen

    2017-11-24

    Sphingosine 1-phosphate (S1P) plays an important role in hepatocarcinogenesis. We previously demonstrated that S1P induced epithelial-mesenchymal transition of hepatocellular carcinoma (HCC) cells via an MMP-7/Syndecan-1/TGF-β autocrine loop. In the present study, we investigated the regulative role of S1P in cell survival and progression of HCC cells, and tested whether syndecan-1 is required in the S1P action. After transfected with syndecan-1 shRNA, HepG2 and SMMC7721 cells were treated with S1P for 72 h, and then cell proliferation was detected by CCK8 assay, and cell cycle progression and cell apoptosis were detected by flow cytometry. The levels of apoptosis markers including cleaved-Caspase-3 and cleaved-PARP in SMMC7721 cells were examined by western blotting. Results showed that S1P significantly enhanced cell proliferation in HCC cells, which was significantly inhibited by syndecan-1 shRNA. S1P induced the cell proportion in S phase in HCC cells, whereas S1P decreased the proportion of cells in both early and late apoptosis. Syndecan-1 shRNA induced the G2/M arrest in the presence of S1P. In the syndecan-1 shRNA transfected HCC cells, the proportions of late and early apoptotic cells, and levels of cleaved-Caspase-3 and cleaved-PARP were significantly increased in cells with or without S1P treatment. Thus, S1P augments the proportion of cells in S phase of the cell cycle that might translate to enhance HCC cell proliferation and inhibit the cell apoptosis via syndecan-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21.

    Science.gov (United States)

    Gongpan, Pianchou; Lu, Yanting; Wang, Fang; Xu, Yuhui; Xiong, Wenyong

    2016-07-02

    AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.

  18. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    International Nuclear Information System (INIS)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang

    2014-01-01

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients

  19. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  20. The functional role for condensin in the regulation of chromosomal organization during the cell cycle.

    Science.gov (United States)

    Kagami, Yuya; Yoshida, Kiyotsugu

    2016-12-01

    In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.

  1. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration.

    Science.gov (United States)

    Mohamed, Tamer M A; Ang, Yen-Sin; Radzinsky, Ethan; Zhou, Ping; Huang, Yu; Elfenbein, Arye; Foley, Amy; Magnitsky, Sergey; Srivastava, Deepak

    2018-03-22

    Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-β and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F

    DEFF Research Database (Denmark)

    Hateboer, G; Wobst, A; Petersen, B O

    1998-01-01

    functions similar to those of E2F proteins in higher eukaryotes, by regulating the timed expression of genes implicated in cell cycle progression and DNA synthesis. The CDC6 gene is a target for MBF and SBF-regulated transcription. S. cerevisiae Cdc6p induces the formation of the prereplication complex......The E2F transcription factors are essential regulators of cell growth in multicellular organisms, controlling the expression of a number of genes whose products are involved in DNA replication and cell proliferation. In Saccharomyces cerevisiae, the MBF and SBF transcription complexes have...... and is essential for initiation of DNA replication. Interestingly, the Cdc6p homolog in Schizosaccharomyces pombe, Cdc18p, is regulated by DSC1, the S. pombe homolog of MBF. By cloning the promoter for the human homolog of Cdc6p and Cdc18p, we demonstrate here that the cell cycle-regulated transcription...

  3. Expression of proliferation markers and cell cycle regulators in T cell lymphoproliferative skin disorders.

    Science.gov (United States)

    Gambichler, Thilo; Bischoff, Stefan; Bechara, Falk G; Altmeyer, Peter; Kreuter, Alexander

    2008-02-01

    Abnormal cell proliferation, which results from deregulation of the cell cycle, is fundamental in tumorigenesis. To investigate the expression of proliferation markers and cell cycle regulators in a range of T cell lymphoproliferative skin diseases. We studied skin specimens of 51 patients with parapsoriasis (PP), mycosis fungiodes (MF), or lymphomatoid papulosis (LyP). Immunohistochemistry was performed for Ki-67, proliferating cell nuclear antigen (PCNA), minichromosome maintenance protein 7 (MCM7), and p21. MF with stage IIB-IV and LyP showed a significantly greater number of Ki-67-positive cells than PP (P=0.02 and 0.001) and MF I-IIA (P=0.019 and 0.003), respectively. MCM7 staining revealed significantly higher labeling indices for MF IIB-IV and LyP when compared to PP (P=0.002 and 0.04) and MF I-IIA (P=0.0005 and 0.01), respectively. Compared to PP and MF I-IIA, MF IIB-IV was associated with significantly higher labeling indices for PCNA (P=0.006 and 0.0004). p21 staining was significantly increased in MF IIB-IV and LyP when compared to PP (P=0.006 and 0.003) and MF I-IIA (P=0.003). However, p21 staining was all in all very weak. Ki-67 and PCNA seem to be useful immunohistological parameters for the correlation with the clinical stage of MF. In the differentiation and prognostication of T cell lymphoproliferative skin disorders, MCM7 may serve as a novel biomarker which is, in contrast to Ki-67 and PCNA, stable throughout the cell cycle.

  4. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  5. Corepressor MMTR/DMAP1 is an intrinsic negative regulator of CAK kinase to regulate cell cycle progression

    International Nuclear Information System (INIS)

    Research highlights: → Co-repressor MMTR/DMAP1 is an intrinsic negative regulator of CAK kinase. → MMTR inhibited cell proliferation due to delays of G1/S and G2/M transitions. → Co-expression of MAT1 and MMTR rescued both cell growth and proliferation rate. → MMTR blocked the CAK kinase-mediated phosphorylation of CDK1. → The expression level of MMTR was modulated during cell cycle progression. -- Abstract: We have previously reported that MMTR (MAT1-mediated transcriptional repressor) is a co-repressor that inhibits TFIIH-mediated transcriptional activity via interaction with MAT1 (Kang et al., 2007). Since MAT1 is a member of the CAK kinase complex that is crucial for cell cycle progression and that regulates CDK phosphorylation as well as the general transcription factor TFIIH, we investigated MMTR function in cell cycle progression. We found that MMTR over-expression delayed G1/S and G2/M transitions, whereas co-expression of MAT1 and MMTR rescued the cell growth and proliferation rate. Moreover, MMTR was required for inhibition of CAK kinase-mediated CDK1 phosphorylation. We also showed that the expression level of MMTR was modulated during cell cycle progression. Our data support the notion that MMTR is an intrinsic negative cell cycle regulator that modulates the CAK kinase activity via interaction with MAT1.

  6. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth

    Energy Technology Data Exchange (ETDEWEB)

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki [School of Life Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503 (Japan); Nakayama, Keiichi I. [Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582 (Japan); Takeuchi, Takashi, E-mail: takeuchi@med.tottori-u.ac.jp [School of Life Sciences, Faculty of Medicine, Tottori University, Yonago 683-8503 (Japan)

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21{sup Cip1} and p27{sup Kip1}, regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21{sup Cip1} and p27{sup Kip1} also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21{sup Cip1} knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21{sup Cip1} knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21{sup Cip1} and p27{sup Kip1}) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21{sup Cip1} inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. - Highlights: • Many postnatal cardiomyocytes entered an additional cell cycle by cyclin D1 induction. • The majority of cardiomyocytes could not enter M-phase after cyclin D1 induction. • Cell cycle progressed markedly in p21{sup Cip1} knockout mice after postnatal day 14. • Tri- and tetranucleated cardiomyocytes increased in p21{sup Cip1} knockout mice.

  7. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes.

    Science.gov (United States)

    Santos, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Analogies between geminivirus and oncovirus: Cell cycle regulation ...

    African Journals Online (AJOL)

    Geminiviruses are a large family of plant viruses whose genome is composed of one or two circular and single strand of DNA. They replicate in the cell nucleus being Rep protein, the only viral protein necessary for their replication process. Geminiviruses as same as animal DNA oncoviruses, like SV40, adenovirus and ...

  9. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors.

    Science.gov (United States)

    Grant, Gavin D; Brooks, Lionel; Zhang, Xiaoyang; Mahoney, J Matthew; Martyanov, Viktor; Wood, Tammara A; Sherlock, Gavin; Cheng, Chao; Whitfield, Michael L

    2013-12-01

    We identify the cell cycle-regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle-regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle-regulated genes. FOXM1 is bound to cell cycle-regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle-regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle.

  10. P27: a pleiotropic regulator of cellular phenotype and a target for cell cycle dys-regulation in cancer; P27: un regulateur pleiotrope du cycle cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Desdouets, C.; Brechot, C. [Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital Necker, 75 - Paris (France). Unite de Recherches sur les Maladies du Metabolisme chez l' Enfant

    2000-04-01

    The eukaryotic cell cycle is regulated by the sequential activation of cyclin-dependent kinases (CDKs). CDK activation is regulated by phosphorylation of the subunit, by binding to activating (cyclins) and inactivating subunits (cyclin-dependent kinase inhibitor). In this review, we will focus on the role of the cyclin-dependent kinase inhibitor p27 which has been recently the subject of extensive work. This negative regulator of cell growth indeed illustrates the pleiotropic biological effects of such molecules in both normal and cancer cells and the complexity of the regulatory mechanisms involved. (authors)

  11. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F

    DEFF Research Database (Denmark)

    Hateboer, G; Wobst, A; Petersen, B O

    1998-01-01

    The E2F transcription factors are essential regulators of cell growth in multicellular organisms, controlling the expression of a number of genes whose products are involved in DNA replication and cell proliferation. In Saccharomyces cerevisiae, the MBF and SBF transcription complexes have...... of this gene is dependent on E2F. In vivo footprinting data demonstrate that the identified E2F sites are occupied in resting cells and in exponentially growing cells, suggesting that E2F is responsible for downregulating the promoter in early phases of the cell cycle and the subsequent upregulation when cells...

  12. Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry

    Science.gov (United States)

    Haase, Steven B.; Wittenberg, Curt

    2014-01-01

    Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls. PMID:24395825

  13. Profiling of Hepatocellular Carcinoma Cell Cycle Regulating Genes Targeted by Calycosin

    OpenAIRE

    Zhang, Dongqing; Wang, Shufang; Zhu, Liguo; Tian, Yaping; Wang, Haibao; Zhuang, Yuan; Li, Yu; Wang, Deqing

    2013-01-01

    We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402) to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G1 phase (P < 0.01) on the IC50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 migh...

  14. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila

    2009-01-01

    The eukaryotic cell cycle requires precise temporal coordination of the activities of hundreds of 'executor' proteins (EPs) involved in cell growth and division. Cyclin-dependent protein kinases (Cdks) play central roles in regulating the production, activation, inactivation and destruction......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal......-transduction properties of FFLs allow one (or a few) Cdk signal(s) to drive a host of cell cycle responses in correct temporal sequence....

  15. Ca2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle

    Directory of Open Access Journals (Sweden)

    Yue Han

    2018-01-01

    Full Text Available Summary: While it is appreciated that reactive oxygen species (ROS can act as second messengers in both homeostastic and stress response signaling pathways, potential roles for ROS during early vertebrate development have remained largely unexplored. Here, we show that fertilization in Xenopus embryos triggers a rapid increase in ROS levels, which oscillate with each cell division. Furthermore, we show that the fertilization-induced Ca2+ wave is necessary and sufficient to induce ROS production in activated or fertilized eggs. Using chemical inhibitors, we identified mitochondria as the major source of fertilization-induced ROS production. Inhibition of mitochondrial ROS production in early embryos results in cell-cycle arrest, in part, via ROS-dependent regulation of Cdc25C activity. This study reveals a role for oscillating ROS levels in early cell cycle regulation in Xenopus embryos. : Han et al. show that the fertilization-triggered calcium wave induces reactive oxygen species production from mitochondria, which oscillate with each cell division in Xenopus embryos. Moreover, they demonstrate that inhibition of mitochondrial ROS production disrupts cell cycle progression. Keywords: mitochondria, reactive oxygen species, ROS, Xenopus, Cdc25C, cell cycle, fertilization, Ca2+ wave, HyPer, respiratory burst

  16. The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis

    Directory of Open Access Journals (Sweden)

    Mengoni Alessio

    2010-04-01

    Full Text Available Abstract Background In the bacterium Caulobacter crescentus, CtrA coordinates DNA replication, cell division, and polar morphogenesis and is considered the cell cycle master regulator. CtrA activity varies during cell cycle progression and is modulated by phosphorylation, proteolysis and transcriptional control. In a phosphorylated state, CtrA binds specific DNA sequences, regulates the expression of genes involved in cell cycle progression and silences the origin of replication. Although the circuitry regulating CtrA is known in molecular detail in Caulobacter, its conservation and functionality in the other alpha-proteobacteria are still poorly understood. Results Orthologs of Caulobacter factors involved in the regulation of CtrA were systematically scanned in genomes of alpha-proteobacteria. In particular, orthologous genes of the divL-cckA-chpT-ctrA phosphorelay, the divJ-pleC-divK two-component system, the cpdR-rcdA-clpPX proteolysis system, the methyltransferase ccrM and transcriptional regulators dnaA and gcrA were identified in representative genomes of alpha-proteobacteria. CtrA, DnaA and GcrA binding sites and CcrM putative methylation sites were predicted in promoter regions of all these factors and functions controlled by CtrA in all alphas were predicted. Conclusions The regulatory cell cycle architecture was identified in all representative alpha-proteobacteria, revealing a high diversification of circuits but also a conservation of logical features. An evolutionary model was proposed where ancient alphas already possessed all modules found in Caulobacter arranged in a variety of connections. Two schemes appeared to evolve: a complex circuit in Caulobacterales and Rhizobiales and a simpler one found in Rhodobacterales.

  17. Ca2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle.

    Science.gov (United States)

    Han, Yue; Ishibashi, Shoko; Iglesias-Gonzalez, Javier; Chen, Yaoyao; Love, Nick R; Amaya, Enrique

    2018-01-02

    While it is appreciated that reactive oxygen species (ROS) can act as second messengers in both homeostastic and stress response signaling pathways, potential roles for ROS during early vertebrate development have remained largely unexplored. Here, we show that fertilization in Xenopus embryos triggers a rapid increase in ROS levels, which oscillate with each cell division. Furthermore, we show that the fertilization-induced Ca 2+ wave is necessary and sufficient to induce ROS production in activated or fertilized eggs. Using chemical inhibitors, we identified mitochondria as the major source of fertilization-induced ROS production. Inhibition of mitochondrial ROS production in early embryos results in cell-cycle arrest, in part, via ROS-dependent regulation of Cdc25C activity. This study reveals a role for oscillating ROS levels in early cell cycle regulation in Xenopus embryos. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID.

    Directory of Open Access Journals (Sweden)

    Quy Le

    2015-09-01

    Full Text Available AID (Activation Induced Deaminase deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.

  19. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  20. Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson's disease models.

    Directory of Open Access Journals (Sweden)

    Hongcai Wang

    Full Text Available In Parkinson's disease (PD, neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN of rats following stereotactic (ST infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc and the substantia nigra pars reticulate (SNr of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.

  1. AIB1 regulates the ovarian cancer cell cycle through TUG1.

    Science.gov (United States)

    Li, L; Gan, Z-H; Qin, L; Jiao, S-H; Shi, Y

    2017-12-01

    To explore the mechanism of amplified in breast cancer 1 (AIB1) to promote ovarian cancer progress. Cor correlation analysis was performed to obtain the top 100 lncRNAs that were positively correlated with AIB1. The relationship of taurine upregulated gene 1 (TUG1) and clinicopathological characteristics. Moreover, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were performed to predict the biological process where TUG1 may be involved in. At last, Cell Counting Kit-8 (CCK-8), colon formation and flow cytometry were conducted to explore the biological process that TUG1 may influence. Meanwhile, Western blot was performed to explore the mechanism of TUG1. In this study, it was found that P73 antisense RNA 1T (TP73-AS1), LINC00654 and TUG1 had the tumor-promoting effect in the top 100 lncRNAs that were positively correlated with AIB1. The expression level of TUG1 was significantly decreased after intervention of AIB1. Then, the clinical data were analyzed and the results showed that TUG1 was related to the tumor residue, tumor staging, tumor grade and lymph node metastasis. Moreover, the bioinformatics analysis revealed that TUG1 was mainly involved in the regulation of cell cycle. After intervention in TUG1, it was found that the cell proliferation capacity was significantly decreased, and the cell cycle was arrested in G1 phase. Finally, Western blot revealed that the expressions of G1 phase-related proteins were significantly changed. This study indicated that AIB1 regulates the cycle of ovarian cancer cells through TUG1. This study proved that AIB1 can regulate the cell cycle through regulating TUG1.

  2. Profiling of Hepatocellular Carcinoma Cell Cycle Regulating Genes Targeted by Calycosin

    Directory of Open Access Journals (Sweden)

    Dongqing Zhang

    2013-01-01

    Full Text Available We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402 to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G1 phase (P<0.01 on the IC50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 might affect cell cycle of tumor cells. Furthermore, we checked the transcription pattern using 2D gel method to find different expression of proteins in human hepatocellular carcinoma cells after exposure to calycosin. Fourteen proteins were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS. Twelve proteins expression were increased such as transgelin 2, pyridoxine 5′-phosphate, stress-induced-phosphoprotein 1, peroxiredoxin 1, endoplasmic reticulum protein 29, and phosphoglycerate mutase 1. Only thioredoxin peroxidase and high-mobility group box1 proteins’ expression decreased. Both genes and proteins changes might be relate to the mechanism of antitumor effect under treatment of calycosin. In conclusion, calycosin has a potential effect to inhibit the BEL-7402 cell growth by inhibiting some oncogene expression and increasing anticancer genes expression, what is more, by blocking cell cycle.

  3. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations

    Science.gov (United States)

    Logsdon, Michelle M.; Aldridge, Bree B.

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis, tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity. PMID:29619019

  4. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    Science.gov (United States)

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  5. Simulation of Cell Group Formation Regulated by Coordination Number, Cell Cycle and Duplication Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-08-01

    Full Text Available The effects of coordination number, a cell cycle and duplication frequency on cell-group formation have been investigated in a computer simulation. In the simulation, multiplication occurs in the last three steps of a cell cycle with a probability function to give variations in the interval. Each cell has a constant coordination number: four or six. When a cell gets surrounded by adjacent cells, its status changes from an active stage to a resting stage. Each cell repeats multiplication, and disappears when the times of multiplication reach to the limit. Variation was made in the coordination number, in the interval of multiplication and in the limited times of multiplication. The cells of the colony, which have the larger number of coordination, have reached the larger maximum population and disappeared earlier.

  6. Cell cycle-regulated membrane binding of NuMA contributes to efficient anaphase chromosome separation.

    Science.gov (United States)

    Zheng, Zhen; Wan, Qingwen; Meixiong, Gerry; Du, Quansheng

    2014-03-01

    Accurate and efficient separation of sister chromatids during anaphase is critical for faithful cell division. It has been proposed that cortical dynein-generated pulling forces on astral microtubules contribute to anaphase spindle elongation and chromosome separation. In mammalian cells, however, definitive evidence for the involvement of cortical dynein in chromosome separation is missing. It is believed that dynein is recruited and anchored at the cell cortex during mitosis by the α subunit of heterotrimeric G protein (Gα)/mammalian homologue of Drosophila Partner of Inscuteable/nuclear mitotic apparatus (NuMA) ternary complex. Here we uncover a Gα/LGN-independent lipid- and membrane-binding domain at the C-terminus of NuMA. We show that the membrane binding of NuMA is cell cycle regulated-it is inhibited during prophase and metaphase by cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation and only occurs after anaphase onset when CDK1 activity is down-regulated. Further studies indicate that cell cycle-regulated membrane association of NuMA underlies anaphase-specific enhancement of cortical NuMA and dynein. By replacing endogenous NuMA with membrane-binding-deficient NuMA, we can specifically reduce the cortical accumulation of NuMA and dynein during anaphase and demonstrate that cortical NuMA and dynein contribute to efficient chromosome separation in mammalian cells.

  7. Cell-cycle regulation in green algae dividing by multiple fission

    Czech Academy of Sciences Publication Activity Database

    Bišová, Kateřina; Zachleder, Vilém

    2014-01-01

    Roč. 65, č. 10 (2014), s. 2585-2602 ISSN 0022-0957 R&D Projects: GA ČR M200201205; GA MŠk LH12145 Grant - others:Centre for Algal Biotechnologies (Algatech)(CZ) CZ.1.05/2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : cell cycle * regulation * growth * light Subject RIV: EE - Microbiology, Virology Impact factor: 5.526, year: 2014

  8. Functional analysis of the cell cycle regulator Rca1 in Drosophila melanogaster

    OpenAIRE

    Zielke, Norman

    2007-01-01

    Tight regulation of APC/C activity is essential for cell cycle progression. An important class of negative APC/C regulators are the Rca1/Emi1 family proteins. All members of the Rca1/Emi1 family share a conserved zinc binding region (ZBR) which is essential for their inhibitory activity. The Rca1/Emi1 proteins belong to the class of F-box proteins that are known to act as substrate recognition subunits in SCF-E3-ligase complexes. Emi1 and Rca1 interact in vitro with members of the Skp family ...

  9. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Siwo Geoffrey

    2010-10-01

    Full Text Available Abstract Background Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration. Results Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle. Conclusions We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c, a Zinc finger transcription factor (PFL0465c both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c.

  10. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors.

    Directory of Open Access Journals (Sweden)

    Kristin Mussar

    Full Text Available Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.

  11. High-content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries.

    Science.gov (United States)

    Strezoska, Žaklina; Perkett, Matthew R; Chou, Eldon T; Maksimova, Elena; Anderson, Emily M; McClelland, Shawn; Kelley, Melissa L; Vermeulen, Annaleen; Smith, Anja van Brabant

    2017-06-10

    The CRISPR-Cas9 system has been utilized for large-scale, loss-of-function screens mainly using lentiviral pooled formats and cell-survival phenotypic assays. Screening in an arrayed format expands the types of phenotypic readouts that can be used to now include high-content, morphology-based assays, and with the recent availability of synthetic crRNA libraries, new studies are emerging. Here, we use a cell cycle reporter cell line to perform an arrayed, synthetic crRNA:tracrRNA screen targeting 169 genes (>600 crRNAs) and used high content analysis (HCA) to identify genes that regulate the cell cycle. Seven parameters were used to classify cells into cell cycle categories and multiple parameters were combined using a new analysis technique to identify hits. Comprehensive hit follow-up experiments included target gene expression analysis, confirmation of DNA insertions/deletions, and validation with orthogonal reagents. Our results show that most hits had three or more independent crRNAs per gene that demonstrated a phenotype with consistent individual parameters, indicating that our screen produced high-confidence hits with low off-target effects and allowed us to identify hits with more subtle phenotypes. The results of our screen demonstrate the power of using arrayed, synthetic crRNAs for functional phenotypic screening using multiparameter HCA assays. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Eukaryotic Cell Cycle as a Test Case for Modeling Cellular Regulation in a Collaborative Problem-Solving Environment

    Science.gov (United States)

    2007-03-01

    regulatory networks in living cells, and (2) an integrated set of models of cell cycle regulation in bacteria , yeasts, and metazoans that are accurate...26 3.3 Mutants used to derive the model and specify the parameter values 27 3.4 Numbers of molecules (per haploid yeast cell) for several cell cycle...molecular machinery governing DNA synthesis and cell division in bacteria is completely different from the machinery in eukaryotes. The control

  13. A data-driven, mathematical model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Michael C Weis

    Full Text Available Few of >150 published cell cycle modeling efforts use significant levels of data for tuning and validation. This reflects the difficultly to generate correlated quantitative data, and it points out a critical uncertainty in modeling efforts. To develop a data-driven model of cell cycle regulation, we used contiguous, dynamic measurements over two time scales (minutes and hours calculated from static multiparametric cytometry data. The approach provided expression profiles of cyclin A2, cyclin B1, and phospho-S10-histone H3. The model was built by integrating and modifying two previously published models such that the model outputs for cyclins A and B fit cyclin expression measurements and the activation of B cyclin/Cdk1 coincided with phosphorylation of histone H3. The model depends on Cdh1-regulated cyclin degradation during G1, regulation of B cyclin/Cdk1 activity by cyclin A/Cdk via Wee1, and transcriptional control of the mitotic cyclins that reflects some of the current literature. We introduced autocatalytic transcription of E2F, E2F regulated transcription of cyclin B, Cdc20/Cdh1 mediated E2F degradation, enhanced transcription of mitotic cyclins during late S/early G2 phase, and the sustained synthesis of cyclin B during mitosis. These features produced a model with good correlation between state variable output and real measurements. Since the method of data generation is extensible, this model can be continually modified based on new correlated, quantitative data.

  14. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kito, Hiroaki [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  15. Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2015-01-01

    Store-operated Ca 2+ entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca 2+ influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs

  16. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    Science.gov (United States)

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-03

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells.

  17. ASPL-TFE3 Oncoprotein Regulates Cell Cycle Progression and Induces Cellular Senescence by Up-Regulating p21

    Directory of Open Access Journals (Sweden)

    Naoko Ishiguro

    2016-10-01

    Full Text Available Alveolar soft part sarcoma is an extremely rare soft tissue sarcoma with poor prognosis. It is characterized by the unbalanced recurrent chromosomal translocation der(17t(X;17(p11;q25, resulting in the generation of an ASPL-TFE3 fusion gene. ASPL-TFE3 oncoprotein functions as an aberrant transcriptional factor and is considered to play a crucial role in the tumorigenesis of alveolar soft part sarcoma. However, the underlying molecular mechanisms are poorly understood. In this study, we identified p21 (p21WAF1/CIP1 as a direct transcriptional target of ASPL-TFE3. Ectopic ASPL-TFE3 expression in 293 cells resulted in cell cycle arrest and significant increases in protein and mRNA levels of p21. ASPL-TFE3 activated p21 expression in a p53-independent manner through direct transcriptional interactions with the p21 promoter region. When ASPL-TFE3 was expressed in human bone marrow–derived mesenchymal stem cells in a tetracycline-inducible manner, we observed the up-regulation of p21 expression and the induction of senescence-associated β-galactosidase activity. Suppression of p21 significantly decreased the induction of ASPL-TFE3-mediated cellular senescence. Furthermore, ASPL-TFE3 expression in mesenchymal stem cells resulted in a significant up-regulation of proinflammatory cytokines associated with senescence-associated secretory phenotype (SASP. These results show that ASPL-TFE3 regulates cell cycle progression and induces cellular senescence by up-regulating p21 expression. In addition, our data suggest a potential mechanism by which ASPL-TFE3-induced senescence may play a role in tumorigenesis by inducing SASP, which could promote the protumorigenic microenvironment.

  18. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestica) fruitlets.

    Science.gov (United States)

    Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos

    2015-04-01

    Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development.

    Science.gov (United States)

    Swali, Angelina; McMullen, Sarah; Hayes, Helen; Gambling, Lorraine; McArdle, Harry J; Langley-Evans, Simon C

    2011-01-01

    Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common "gatekeepers" which may drive nutritional programming.Both protein and iron deficiency in utero reduced the nephron complement in adult male Wistar and Rowett Hooded Lister rats (Pproteomic and pathway analyses identified diet-specific and strain-specific gatekeeper genes, proteins and processes which shared a common association with the regulation of the cell cycle, especially the G1/S and G2/M checkpoints, and cytoskeletal remodelling. A cell cycle-specific PCR array confirmed the down-regulation of cyclins with protein restriction and the up-regulation of apoptotic genes with iron deficiency.The timing and experimental design of this study have been carefully controlled to isolate the common molecular mechanisms which may initiate the sequelae of events involved in nutritional programming of embryonic development. We propose that despite differences in the individual genes and proteins affected in each strain and with each diet, the general response to nutrient deficiency in utero is perturbation of the cell cycle, at the level of interaction with the cytoskeleton and the mitotic checkpoints, thereby diminishing control over the integrity of DNA which is allowed to replicate. These findings offer novel insight into the primary causes and mechanisms leading to the pathologies which have been identified by previous

  20. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development.

    Directory of Open Access Journals (Sweden)

    Angelina Swali

    Full Text Available Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common "gatekeepers" which may drive nutritional programming.Both protein and iron deficiency in utero reduced the nephron complement in adult male Wistar and Rowett Hooded Lister rats (P<0.05. This occurred in the absence of damage to the glomerular ultrastructure. Microarray, proteomic and pathway analyses identified diet-specific and strain-specific gatekeeper genes, proteins and processes which shared a common association with the regulation of the cell cycle, especially the G1/S and G2/M checkpoints, and cytoskeletal remodelling. A cell cycle-specific PCR array confirmed the down-regulation of cyclins with protein restriction and the up-regulation of apoptotic genes with iron deficiency.The timing and experimental design of this study have been carefully controlled to isolate the common molecular mechanisms which may initiate the sequelae of events involved in nutritional programming of embryonic development. We propose that despite differences in the individual genes and proteins affected in each strain and with each diet, the general response to nutrient deficiency in utero is perturbation of the cell cycle, at the level of interaction with the cytoskeleton and the mitotic checkpoints, thereby diminishing control over the integrity of DNA which is allowed to replicate. These findings offer novel

  1. Function of cell-cycle regulators in predicting silent pituitary adenoma progression following surgical resection.

    Science.gov (United States)

    Park, Sung Hyun; Jang, Ji Hwan; Lee, Young Min; Kim, Joon Soo; Kim, Kyu Hong; Kim, Young Zoon

    2017-12-01

    The present study investigated the use of cell-cycle regulators for predicting the progression of silent pituitary adenoma (SPA) following surgical resection, via immunohistochemical analysis of tumor samples obtained by surgical resection. The medical records of patients diagnosed with SPA between January 2000 and December 2013 in the Samsung Changwon Hospital, Sungkyunkwan University School of Medicine (Changwon, South Korea) were reviewed. Immunohistochemical staining was performed on sections of the archived, paraffin-embedded tissues obtained by surgery, with all tissues stained for cell-cycle regulatory proteins p16, p15, p21, cyclin-dependent kinase (CDK)4, CDK6, retinoblastoma protein (pRb) and cyclin D1, as well as E3 ubiquitin-protein ligase mib1 (MIB-1) antigen and p53. The primary end-point was to investigate the expression of cell-cycle regulatory proteins in SPA. The secondary end-point was to estimate the progression-free survival of patients with SPA following surgical resection and to identify its association with the expression of cell-cycle regulatory proteins. Of the 127 SPA samples, 44 (34.6%) were from patients with progression during a mean follow-up period of 62.4 months (range, 24.2-118.9 months). Immunohistochemical overexpression was identified in 61 samples (48.0%) for p16, 38 samples (29.9%) for p15, 19 samples (15.0%) for p21, 49 samples (38.6%) for CDK4, 17 samples (13.4%) for CDK6, 57 samples (44.9%) for pRb and in 65 samples (51.2%) for cyclin D1. Multivariate analysis revealed that null cell adenoma [95% confidence interval (CI), 0.276-0.808], somatotroph SPAs (95% CI, 1.296-3.121), corticotroph SPAs (95% CI, 1.811-4.078), pluripotent SPAs (95% CI, 2.264-5.194), decreased expression of p16 (95% CI, 2.724-5.588), overexpression of pRb (95% CI, 2.557-5.333), cyclin D1 (95% CI, 1.894-4.122) and MIB-1 (95% CI, 1.561-4.133), increased mitotic index (95% CI, 1.228-4.079), increased p53 expression (95% CI, 1.307-4.065) and invasion into

  2. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Dunwoodie, Sally L. [Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010 (Australia); St. Vincent' s Clinical School and the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033 (Australia); Ku, Bon Jeong, E-mail: bonjeong@cnu.ac.kr [Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jeong, Jae-Wook, E-mail: JaeWook.Jeong@hc.msu.edu [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Department of Women' s Health, Spectrum Health System, Grand Rapids, MI (United States)

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.

  3. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes

    OpenAIRE

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gen...

  4. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    Science.gov (United States)

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  5. Probing the role of nascent helicity in p27 function as a cell cycle regulator.

    Directory of Open Access Journals (Sweden)

    Steve Otieno

    Full Text Available p27 regulates the activity of Cdk complexes which are the principal governors of phase transitions during cell division. Members of the p27 family of proteins, which also includes p21 and p57, are called the Cip/Kip cyclin-dependent kinase regulators (CKRs. Interestingly, the Cip/Kip CKRs play critical roles in cell cycle regulation by being intrinsically unstructured, a characteristic contrary to the classical structure-function paradigm. They exhibit nascent helicity which has been localized to a segment referred to as sub-domain LH. The nascent helicity of this sub-domain is conserved and we hypothesize that it is an important determinant of their functional properties. To test this hypothesis, we successfully designed and prepared p27 variants in which domain LH was either more or less helical with respect to the wild-type protein. Thermal denaturation experiments showed that the ternary complexes of the p27 variants bound to Cdk2/Cyclin A were less stable compared to the wild-type complex. Isothermal titration calorimetry experiments showed a decrease in the enthalpy of binding for all the mutants with respect to p27. The free energies of binding varied within a much narrower range. In vitro Cdk2 inhibition assays showed that the p27 variants exhibited disparate inhibitory potencies. Furthermore, when over-expressed in NIH 3T3 mouse fibroblast cells, the less helical p27 variants were less effective in causing cell cycle arrest relative to the wild-type p27. Our results indicate that the nascent helicity of sub-domain LH plays a key role mediating the biological function of p27.

  6. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  7. In Vitro Effects of Bromoalkyl Phenytoin Derivatives on Regulated Death, Cell Cycle and Ultrastructure of Leukemia Cells.

    Science.gov (United States)

    Śladowska, Katarzyna; Opydo-Chanek, Małgorzata; Król, Teodora; Trybus, Wojciech; Trybus, Ewa; Kopacz-Bednarska, Anna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia

    2017-11-01

    To search for new antileukemic agents, the chemical structure of phenytoin was modified. A possible cytotoxic activity of three bromoalkyl phenytoin analogs, methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate (PH2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH3) and 1-(4-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH4) on regulated cell death, the cell cycle and cell ultrastructure was assessed. The experiments were performed in vitro on HL-60 and U937 cells, using flow cytometry and electron microscopy methods. Application of PH2, PH3, and PH4 resulted in cell surface exposure of phosphatidylserine and plasma membrane impairment, caspase-8, -9, and -3/7 activation, dissipation of mitochondrial membrane potential, DNA breakage, cell-cycle disturbance and cell ultrastructural changes. In general, PH3 appeared to be the most active against the leukemia cells, and all bromoalkyl hydantoins, PH2-PH4, were more active in HL-60 cells than in U937 cells. The antileukemic activity of the bromoalkyl phenytoin analogs depended on the combination of N-hydantoin substituents and the human cell line used. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...

  9. Slug is temporally regulated by cyclin E in cell cycle and controls genome stability.

    Science.gov (United States)

    Wang, W-L; Huang, H-C; Kao, S-H; Hsu, Y-C; Wang, Y-T; Li, K-C; Chen, Y-J; Yu, S-L; Wang, S-P; Hsiao, T-H; Yang, P-C; Hong, T-M

    2015-02-26

    The transcriptional repressor Slug is best known to control epithelial-mesenchymal transition (EMT) and promote cancer invasion/metastasis. In this study, we demonstrate that Slug is temporally regulated during cell cycle progression. At G1/S transition, cyclin E-cyclin-dependent kinase 2 mediates the phosphorylation of Slug at Ser-54 and Ser-104, resulting in its ubiquitylation and degradation. Non-phosphorylatable Slug is markedly stabilized at G1/S transition compared with wild-type Slug and greatly leads to downregulation of DNA synthesis and checkpoint-related proteins, including TOP1, DNA Ligase IV and Rad17, reduces cell proliferation, delays S-phase progression and contributes to genome instability. Our results indicate that Slug has multifaceted roles in cancer progression by controlling both EMT and genome stability.

  10. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation.

    Science.gov (United States)

    Halaby, Marie-jo; Hakem, Razqallah; Hakem, Anne

    2013-09-01

    Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH. By ubiquitylating these proteins, Pirh2 regulates cell cycle checkpoints and cell death in response to DNA double-strand breaks or the formation of bulky DNA lesions. We also discuss how Pirh2 affects cell proliferation and differentiation in unstressed conditions through ubiquitylation and degradation of c-Myc, p63, and p27(kip1). Finally, we link these different functions of Pirh2 to its role as a tumor suppressor in mice and as a prognosis marker in various human cancer subtypes.

  11. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival. PMID:25616580

  12. ATP-binding cassette G-subfamily transporter 2 regulates cell cycle progression and asymmetric division in mouse cardiac side population progenitor cells.

    Science.gov (United States)

    Sereti, Konstantina-Ioanna; Oikonomopoulos, Angelos; Unno, Kazumasa; Cao, Xin; Qiu, Yiling; Liao, Ronglih

    2013-01-04

    After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously have found that the cell surface ATP-binding cassette G-subfamily transporter 2 (Abcg2) influences the proliferation of cardiac side population (CSP) progenitor cells, but through unclear mechanisms. To determine the role of Abcg2 on cell cycle progression and mode of division in mouse CSP cells. Herein, using CSP cells isolated from wild-type and Abcg2 knockout mice, we found that Abcg2 regulates G1-S cell cycle transition by fluorescence ubiquitination cell cycle indicators, cell cycle-focused gene expression arrays, and confocal live-cell fluorescent microscopy. Moreover, we found that modulation of cell cycle results in transition from symmetric to asymmetric cellular division in CSP cells lacking Abcg2. Abcg2 modulates CSP cell cycle progression and asymmetric cell division, establishing a mechanistic link between this surface transporter and cardiac progenitor cell function. Greater understanding of progenitor cell biology and, in particular, the regulation of resident progenitor cell homeostasis is vital for guiding the future development of cell-based therapies for cardiac regeneration.

  13. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1

    DEFF Research Database (Denmark)

    Petersen, B O; Wagener, C; Marinoni, F

    2000-01-01

    CDC6 is conserved during evolution and is essential and limiting for the initiation of eukaryotic DNA replication. Human CDC6 activity is regulated by periodic transcription and CDK-regulated subcellular localization. Here, we show that, in addition to being absent from nonproliferating cells, CDC6...... is targeted for ubiquitin-mediated proteolysis by the anaphase promoting complex (APC)/cyclosome in G(1). A combination of point mutations in the destruction box and KEN-box motifs in CDC6 stabilizes the protein in G(1) and in quiescent cells. Furthermore, APC, in association with CDH1, ubiquitinates CDC6...... in vitro, and both APC and CDH1 are required and limiting for CDC6 proteolysis in vivo. Although a stable mutant of CDC6 is biologically active, overexpression of this mutant or wild-type CDC6 is not sufficient to induce multiple rounds of DNA replication in the same cell cycle. The APC-CDH1-dependent...

  14. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  15. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis

    DEFF Research Database (Denmark)

    Yde, C W; Olsen, B B; Meek, D

    2008-01-01

    Cell-cycle transition from the G(2) phase into mitosis is regulated by the cyclin-dependent protein kinase 1 (CDK1) in complex with cyclin B. CDK1 activity is controlled by both inhibitory phosphorylation, catalysed by the Myt1 and Wee1 kinases, and activating dephosphorylation, mediated by the CDC...... interference results in delayed cell-cycle progression at the onset of mitosis. Knockdown of CK2beta causes stabilization of Wee1 and increased phosphorylation of CDK1 at the inhibitory Tyr15. PLK1-Wee1 association is an essential event in the degradation of Wee1 in unperturbed cell cycle. We have found...... regulatory subunit, identifying it as a new component of signaling pathways that regulate cell-cycle progression at the entry of mitosis.Oncogene advance online publication, 12 May 2008; doi:10.1038/onc.2008.146....

  16. Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length.

    Science.gov (United States)

    Borrell, Victor; Calegari, Federico

    2014-09-01

    In the last few years, several studies have revisited long-held assumptions in the field of brain development and evolution providing us with a fundamentally new vision on the mechanisms controlling its size and shape, hence function. Among these studies, some described hitherto unforeseeable subtypes of neural progenitors while others reinterpreted long-known observations about their cell cycle in alternative new ways. Most remarkably, this knowledge combined has allowed the generation of mammalian model organisms in which brain size and folding has been selectively increased giving us the means to understand the mechanisms underlying the evolution of the most complex and sophisticated organ. Here we review the key findings made in this area and make a few conjectures about their evolutionary meaning including the likelihood of Martians conquering our planet. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; von der Maase, Hans; Sørensen, Flemming Brandt

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors.METHODS: The tissue material consisted of bladder tumors from three groups of patients...

  18. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells

    Directory of Open Access Journals (Sweden)

    Fujita Masatoshi

    2006-10-01

    Full Text Available Abstract In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1 functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2 replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.

  19. STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells.

    Directory of Open Access Journals (Sweden)

    Pao-Lin Kuo

    Full Text Available Serine/threonine kinase 31 (STK31 is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.

  20. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes.

    Directory of Open Access Journals (Sweden)

    Dallas R Donohoe

    Full Text Available A prodigious number of microbes inhabit the human body, especially in the lumen of the gastrointestinal (GI tract, yet our knowledge of how they regulate metabolic pathways within our cells is rather limited. To investigate the role of microbiota in host energy metabolism, we analyzed ATP levels and AMPK phosphorylation in tissues isolated from germfree and conventionally-raised C57BL/6 mice. These experiments demonstrated that microbiota are required for energy homeostasis in the proximal colon to a greater extent than other segments of the GI tract that also harbor high densities of bacteria. This tissue-specific effect is consistent with colonocytes utilizing bacterially-produced butyrate as their primary energy source, whereas most other cell types utilize glucose. However, it was surprising that glucose did not compensate for butyrate deficiency. We measured a 3.5-fold increase in glucose uptake in germfree colonocytes. However, (13C-glucose metabolic-flux experiments and biochemical assays demonstrated that they shifted their glucose metabolism away from mitochondrial oxidation/CO(2 production and toward increased glycolysis/lactate production, which does not yield enough ATPs to compensate. The mechanism responsible for this metabolic shift is diminished pyruvate dehydrogenase (PDH levels and activity. Consistent with perturbed PDH function, the addition of butyrate, but not glucose, to germfree colonocytes ex vivo stimulated oxidative metabolism. As a result of this energetic defect, germfree colonocytes exhibited a partial block in the G(1-to-S-phase transition that was rescued by a butyrate-fortified diet. These data reveal a mechanism by which microbiota regulate glucose utilization to influence energy homeostasis and cell-cycle progression of mammalian host cells.

  1. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells.

    Directory of Open Access Journals (Sweden)

    Pankaj Goyal

    Full Text Available BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs, and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1 phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1 to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1 to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a leading to G(1 arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear

  2. The retinoblastoma gene family in cell cycle regulation and suppression of tumorigenesis.

    Science.gov (United States)

    Dannenberg, Jan-Hermen; te Riele, Hein P J

    2006-01-01

    Since its discovery in 1986, as the first tumor suppressor gene, the retinoblastoma gene (Rb) has been extensively studied. Numerous biochemical and genetic studies have elucidated in great detail the function of the Rb gene and placed it at the heart of the molecular machinery controlling the cell cycle. As more insight was gained into the genetic events required for oncogenic transformation, it became clear that the retinoblastoma gene is connected to biochemical pathways that are dysfunctional in virtually all tumor types. Besides regulating the E2F transcription factors, pRb is involved in numerous biological processes such as apoptosis, DNA repair, chromatin modification, and differentiation. Further complexity was added to the system with the discovery of p107 and p130, two close homologs of Rb. Although the three family members share similar functions, it is becoming clear that these proteins also have unique functions in differentiation and regulation of transcription. In contrast to Rb, p107 and p130 are rarely found inactivated in human tumors. Yet, evidence is accumulating that these proteins are part of a "tumor-surveillance" mechanism and can suppress tumorigenesis. Here we provide an overview of the knowledge obtained from studies involving the retinoblastoma gene family with particular focus on its role in suppressing tumorigenesis.

  3. AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana

    Science.gov (United States)

    Xu, Peipei; Chen, Haiying; Ying, Lu; Cai, Weiming

    2016-01-01

    In contrast to animals, plant development involves continuous organ formation, which requires strict regulation of cell proliferation. The core cell cycle machinery is conserved across plants and animals, but plants have developed new mechanisms that precisely regulate cell proliferation in response to internal and external stimuli. Here, we report that the DOF transcription factor OBP4 negatively regulates cell proliferation and expansion. OBP4 is a nuclear protein. Constitutive and inducible overexpression of OBP4 reduced the cell size and number, resulting in dwarf plants. Inducible overexpression of OBP4 in Arabidopsis also promoted early endocycle onset and inhibited cell expansion, while inducible overexpression of OBP4 fused to the VP16 activation domain in Arabidopsis delayed endocycle onset and promoted plant growth. Furthermore, gene expression analysis showed that cell cycle regulators and cell wall expansion factors were largely down-regulated in the OBP4 overexpression lines. Short-term inducible analysis coupled with in vivo ChIP assays indicated that OBP4 targets the CyclinB1;1, CDKB1;1 and XTH genes. These results strongly suggest that OBP4 is a negative regulator of cell cycle progression and cell growth. These findings increase our understanding of the transcriptional regulation of the cell cycle in plants. PMID:27297966

  4. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  5. Expression of the nucleus-encoded chloroplast division genes and proteins regulated by the algal cell cycle.

    Science.gov (United States)

    Miyagishima, Shin-Ya; Suzuki, Kenji; Okazaki, Kumiko; Kabeya, Yukihiro

    2012-10-01

    Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle. In order to understand both the regulation of the timing of chloroplast division in algal cells and how the system evolved, we examined the expression of chloroplast division genes and proteins in the cell cycle of algae containing chloroplasts of cyanobacterial primary endosymbiotic origin (glaucophyte, red, green, and streptophyte algae). The results show that the nucleus-encoded chloroplast division genes and proteins of both cyanobacterial and eukaryotic host origin are expressed specifically during the S phase, except for FtsZ in one graucophyte alga. In this glaucophyte alga, FtsZ is persistently expressed throughout the cell cycle, whereas the expression of the nucleus-encoded MinD and MinE as well as FtsZ ring formation are regulated by the phases of the cell cycle. In contrast to the nucleus-encoded division genes, it has been shown that the expression of chloroplast-encoded division genes is not regulated by the host cell cycle. The endosymbiotic gene transfer of minE and minD from the chloroplast to the nuclear genome occurred independently on multiple occasions in distinct lineages, whereas the expression of nucleus-encoded MIND and MINE is regulated by the cell cycle in all lineages examined in this study. These results suggest that the timing of chloroplast division in algal cell cycle is restricted by the cell cycle-regulated expression of some but not all of the chloroplast division genes. In addition, it is

  6. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Estrogen Receptor Beta Displays Cell Cycle-Dependent Expression and Regulates the G1 Phase through a Non-Genomic Mechanism in Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Antoni Hurtado

    2008-01-01

    Full Text Available Background: It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERβ remain elusive.

  8. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    Science.gov (United States)

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  9. Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Oldenhof, H.; Zachleder, Vilém; van den Ende, H.

    2006-01-01

    Roč. 41, č. 3 (2006), s. 313-320 ISSN 0967-0262 R&D Projects: GA AV ČR(CZ) KJB5020305 Institutional research plan: CEZ:AV0Z50200510 Keywords : blue light * cell cycle * cell division Subject RIV: EE - Microbiology, Virology Impact factor: 1.293, year: 2006

  10. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  11. A cell cycle-regulated histone H3 gene of alfalfa with an atypical promoter structure.

    Science.gov (United States)

    Robertson, A J; Kapros, T; Waterborg, J H

    1997-01-01

    The control of cell cycle expression of histone genes in plants is incompletely understood. A new histone H3 gene was cloned from alfalfa (Medicago sativa) that codes for the replication-dependent histone H3.1 variant protein. Despite lacking all promoter sequence motifs that have been associated with cell cycle-dependent histone gene expression in plants, northern analysis of synchronized cells clearly linked gene expression to DNA replication. TTAATNA was recognized as a new sequence element in the 3' untranslated regions of this and all other cell cycle-dependent histone H3 genes of dicotyledonous plants. It is not found in the replication-independent histone H3 genes.

  12. Combining optimization and machine learning techniques for genome-wide prediction of human cell cycle-regulated genes.

    Science.gov (United States)

    De Santis, Marianna; Rinaldi, Francesco; Falcone, Emmanuela; Lucidi, Stefano; Piaggio, Giulia; Gurtner, Aymone; Farina, Lorenzo

    2014-01-15

    The identification of cell cycle-regulated genes through the cyclicity of messenger RNAs in genome-wide studies is a difficult task due to the presence of internal and external noise in microarray data. Moreover, the analysis is also complicated by the loss of synchrony occurring in cell cycle experiments, which often results in additional background noise. To overcome these problems, here we propose the LEON (LEarning and OptimizatioN) algorithm, able to characterize the 'cyclicity degree' of a gene expression time profile using a two-step cascade procedure. The first step identifies a potentially cyclic behavior by means of a Support Vector Machine trained with a reliable set of positive and negative examples. The second step selects those genes having peak timing consistency along two cell cycles by means of a non-linear optimization technique using radial basis functions. To prove the effectiveness of our combined approach, we use recently published human fibroblasts cell cycle data and, performing in vivo experiments, we demonstrate that our computational strategy is able not only to confirm well-known cell cycle-regulated genes, but also to predict not yet identified ones. All scripts for implementation can be obtained on request.

  13. Cell-cycle-dependent Xenopus TRF1 recruitment to telomere chromatin regulated by Polo-like kinase

    Science.gov (United States)

    Nishiyama, Atsuya; Muraki, Keiko; Saito, Motoki; Ohsumi, Keita; Kishimoto, Takeo; Ishikawa, Fuyuki

    2006-01-01

    Telomeres are regulated by a homeostatic mechanism that includes telomerase and telomeric repeat binding proteins, TRF1 and TRF2. Recently, it has been hypothesized that telomeres assume distinct configurations in a cell-cycle-dependent manner, although direct biochemical evidence is lacking. Here we demonstrated that Xenopus TRF1 (xTRF1) associates with telomere chromatin specifically in mitotic Xenopus egg extracts, and dissociates from it upon mitotic exit. Both the N-terminal TRF-homology (TRFH) domain and the linker region connecting the TRFH domain and the C-terminal Myb domain are required for this cell-cycle-dependent association of xTRF1 with chromatin. In contrast, Xenopus TRF2 (xTRF2) associates with chromatin throughout the cell cycle. We showed that Polo-like kinase (Plx1) phosphorylates xTRF1 in vitro. Moreover, the mitotic xTRF1–chromatin association was significantly impaired when Plx1 was immunodepleted from the extracts. Finally, high telomerase activities were detected in association with replicating interphase chromatin compared with mitotic chromatin. These results indicate that telomere chromatin is actively regulated by cell-cycle-dependent processes, and provide an insight for understanding how telomeres undergo DNA metabolisms during the cell cycle. PMID:16424898

  14. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2......We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most...

  15. Male germ line development in Arabidopsis. duo pollen mutants reveal gametophytic regulators of generative cell cycle progression.

    Science.gov (United States)

    Durbarry, Anjusha; Vizir, Igor; Twell, David

    2005-01-01

    Male germ line development in flowering plants is initiated with the formation of the generative cell that is the progenitor of the two sperm cells. While structural features of the generative cell are well documented, genetic programs required for generative cell cycle progression are unknown. We describe two novel Arabidopsis (Arabidopsis thaliana) mutants, duo pollen1 (duo1) and duo pollen2 (duo2), in which generative cell division is blocked, resulting in the formation of bicellular pollen grains at anthesis. duo1 and duo2 map to different chromosomes and act gametophytically in a male-specific manner. Both duo mutants progress normally through the first haploid division at pollen mitosis I (PMI) but fail at distinct stages of the generative cell cycle. Mutant generative cells in duo1 pollen fail to enter mitosis at G2-M transition, whereas mutant generative cells in duo2 enter PMII but arrest at prometaphase. In wild-type plants, generative and sperm nuclei enter S phase soon after inception, implying that male gametic cells follow a simple S to M cycle. Mutant generative nuclei in duo1 complete DNA synthesis but bypass PMII and enter an endocycle during pollen maturation. However, mutant generative nuclei in duo2 arrest in prometaphase of PMII with a 2C DNA content. Our results identify two essential gametophytic loci required for progression through different phases of the generative cell cycle, providing the first evidence to our knowledge for genetic regulators of male germ line development in flowering plants.

  16. Male Germ Line Development in Arabidopsis. duo pollen Mutants Reveal Gametophytic Regulators of Generative Cell Cycle Progression1[w

    Science.gov (United States)

    Durbarry, Anjusha; Vizir, Igor; Twell, David

    2005-01-01

    Male germ line development in flowering plants is initiated with the formation of the generative cell that is the progenitor of the two sperm cells. While structural features of the generative cell are well documented, genetic programs required for generative cell cycle progression are unknown. We describe two novel Arabidopsis (Arabidopsis thaliana) mutants, duo pollen1 (duo1) and duo pollen2 (duo2), in which generative cell division is blocked, resulting in the formation of bicellular pollen grains at anthesis. duo1 and duo2 map to different chromosomes and act gametophytically in a male-specific manner. Both duo mutants progress normally through the first haploid division at pollen mitosis I (PMI) but fail at distinct stages of the generative cell cycle. Mutant generative cells in duo1 pollen fail to enter mitosis at G2-M transition, whereas mutant generative cells in duo2 enter PMII but arrest at prometaphase. In wild-type plants, generative and sperm nuclei enter S phase soon after inception, implying that male gametic cells follow a simple S to M cycle. Mutant generative nuclei in duo1 complete DNA synthesis but bypass PMII and enter an endocycle during pollen maturation. However, mutant generative nuclei in duo2 arrest in prometaphase of PMII with a 2C DNA content. Our results identify two essential gametophytic loci required for progression through different phases of the generative cell cycle, providing the first evidence to our knowledge for genetic regulators of male germ line development in flowering plants. PMID:15618418

  17. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes

    DEFF Research Database (Denmark)

    Santos Delgado, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase-available at http://www.cyclebase.org-an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version...... 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNAand protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface......, designed around an overview figure that summarizes all the cell-cycle-related data for a gene....

  18. CREPT and p15RS regulate cell proliferation and cycling in chicken DF-1 cells through the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jin, Kai; Chen, Hao; Zuo, Qisheng; Huang, Chuanli; Zhao, Ruifeng; Yu, Xinjian; Wang, Yinjie; Zhang, Yani; Chang, Zhijie; Li, Bichu

    2018-01-01

    The CREPT (cell cycle-related and expression elevated protein in tumor, also known as RPRD1B) and p15RS (p15 INK4b -related sequence, also known as RPRD1A) have been shown to regulate cell proliferation and alter the cell cycle through Wnt/β-catenin pathway downstream genes in human. Although several studies have revealed the mechanism by which CREPT and p15RS regulate cell proliferation in human and mammals, it is still unclear how these genes function in poultry. In order to determine the function of CREPT and p15RS in chicken, we examined the expression of CREPT and p15RS in a variety of chicken tissues and DF-1 cells. Then, we determined the effect of overexpression or depletion of CREPT or p15RS, by transiently transfecting chicken DF-1 cells with overexpression and short hairpin RNA (shRNA) vectors respectively, on the regulation of cell proliferation. The results showed that CREPT and p15RS had different expression patterns and opposite effects on the cell cycling and proliferation. Knockdown of p15RS expression or overexpression of CREPT facilitated cell proliferation by promoting the cell-cycle transition from G0/G1 to S-phase and G2/M, whereas knockdown of CREPT or overexpression of p15RS inhibited cell proliferation. Mechanistically, CREPT and p15RS control DF-1 cell proliferation by regulating the expression of Wnt/β-catenin pathway downstream regulatory genes, including β-catenin, TCF4, and Cyclin D1. In conclusion, CREPT and p15RS regulate cell proliferation and the cell-cycle transition in chicken DF-1 cells by regulating the transcription of Wnt/β-catenin pathway downstream regulatory genes. © 2017 Wiley Periodicals, Inc.

  19. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most...... cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2...... and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  20. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    Science.gov (United States)

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions.

  1. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation; Molekularbiologische Mechanismen II. Molekulare Mechanismen der Zellzyklusregulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, T. [Bundesamt fuer Strahlenschutz Neuherberg (Germany). Institut fuer Strahlenhygiene

    2000-07-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [German] Der eukaryotische Zellzyklus wird reguliert durch zentrale Zellzyklus-steuernde Proteinkinase Komplexe. Diese Proteinkomplexe betehen jeweils aus einer katalytischen Untereinheit aus der Familie der Cyclin-abhaengigen Proteinkinasen (CDK) und einer regulatorischen Untereinheit, den Cyclinen, deren Name von der im Zellzyklus periodischen Synthese und Proteolyse herstammt. Jede Zellzyklusphase ist charakterisiert durch eine spezifische Kombination bestimmter CDKs und Cycline. Die Aktivitaet der CDK/Cyclin Komplexe

  2. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    International Nuclear Information System (INIS)

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-01-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression

  3. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes

    Science.gov (United States)

    Fischer, Martin; Quaas, Marianne; Steiner, Lydia; Engeland, Kurt

    2016-01-01

    The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used. Here, we identify genes regulated by p53 through this pathway in a genome-wide computational approach. The bioinformatic analysis is based on genome-wide DREAM complex binding data, p53-depedent mRNA expression data and a genome-wide definition of phylogenetically conserved CHR promoter elements. We find 210 target genes that are expected to be regulated by the p53-p21-DREAM-CDE/CHR pathway. The target gene list was verified by detailed analysis of p53-dependent repression of the cell cycle genes B-MYB (MYBL2), BUB1, CCNA2, CCNB1, CHEK2, MELK, POLD1, RAD18 and RAD54L. Most of the 210 target genes are essential regulators of G2 phase and mitosis. Thus, downregulation of these genes through the p53-p21-DREAM-CDE/CHR pathway appears to be a principal mechanism for G2/M cell cycle arrest by p53. PMID:26384566

  4. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ya-Chen; Hsu, Chiao-Yu [Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan (China); Yao, Ya-Li [Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Yang, Wen-Ming, E-mail: yangwm@nchu.edu.tw [Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.

  5. Transcriptional coregulation by the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4

    NARCIS (Netherlands)

    Baetz, K; Moffat, J; Haynes, J; Chang, M; Andrews, B

    2001-01-01

    In Saccharomyces cerevisiae, the heterodimeric transcription factor SBF (for SCB binding factor) is composed of Swi4 and Swi6 and activates gene expression at the G(1)/S-phase transition of the mitotic cell cycle. Cell cycle commitment is associated not only with major alterations in gene expression

  6. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Increased Expression of SETD7 Promotes Cell Proliferation by Regulating Cell Cycle and Indicates Poor Prognosis in Hepatocellular Carcinoma.

    Science.gov (United States)

    Chen, Yuanyuan; Yang, Shengsheng; Hu, Jiewei; Yu, Chaoqin; He, Miaoxia; Cai, Zailong

    2016-01-01

    To investigate the role of SET domain containing 7 (SETD7) in hepatocellular carcinoma (HCC) and determine whether SETD7 can be used as a predictor of overall survival in HCC patients. mRNAs and proteins of SETD7 and related genes in HCC tumor samples and paired adjacent non-tumorous liver tissues (ANLTs) (n = 20) or culture cells were determined by quantitative real-time PCR and Western blot. Cell proliferation and apoptosis with SETD7 knockdown SMMC-7721 cells or SETD7 overexpressed HepG2 cells were analyzed by CCK8 assay or flow cytometry. Gene expression alterations in SETD7 knockdown of SMMC-7721 cells were determined by digital gene expression (DGE) profiling. Defined data on patients (n = 225) with HCC were retrieved for the further study. Tissue microarrays (TMAs) were performed using paraffin tissues with tumor and ANLTs. SETD7 and related proteins were determined by TMAs immunohistochemistry. Statistical analyses were conducted to associate SETD7 expression with tumor features and patient outcomes, as well as related proteins expression. SETD7 expression was significantly higher in HCC tumor tissues than in ANLTs. SETD7 overexpression in vitro can promote HepG2 cell proliferation, whereas SETD7 knockdown can inhibit SMMC-7721 cell proliferation by regulating the cell cycle. SETD7 expression was significantly correlated with five genes expression. Increased SETD7 is associated with metastasis, recurrence, large tumor size, and poor tumor differentiation, and indicates poor prognosis in HCC patients. SETD7 plays a critical role in HCC, and its immunohistochemistry signature provides potential clinical significance for personalized prediction of HCC prognosis.

  8. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins

    NARCIS (Netherlands)

    Bernards, R.A.; Beijersbergen, R.L.

    1996-01-01

    The retinoblastoma family of growth-inhibitory proteins act by binding and inhibiting several proteins with growth-stimulatory activity, the most prominent of which is the cellular transcription factor E2F. In higher organisms, progression through the cell division cycle is accompanied by the

  9. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production.

    Science.gov (United States)

    Martínez-Torres, Ana Carolina; Reyes-Ruiz, Alejandra; Benítez-Londoño, Milena; Franco-Molina, Moises Armides; Rodríguez-Padilla, Cristina

    2018-01-03

    Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.

  10. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  11. Differentially transcriptional regulation on cell cycle pathway by silver nanoparticles from ionic silver in larval zebrafish (Danio rerio).

    Science.gov (United States)

    Kang, Jae Soon; Bong, Jinjong; Choi, Jin-Soo; Henry, Theodore B; Park, June-Woo

    2016-10-28

    Silver nanoparticles (AgNPs) have a strong antibacterial activity and the relevant modes of actions have regarded as direct or indirect causes of toxicity observed in the environment. In this study, the transcriptomic profiles in larval zebrafish (Danio rerio) exposed to AgNPs (about 50 nm in size) and AgNO 3 as a comparative ionic silver were investigated and analyzed using differential expressed gene (DEG), Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results indicated that underlying molecular mechanisms are different each other. Interestingly, the global gene expression profiling showed that cell cycle pathway is affected by both AgNPs and dissolved Ag + , however its regulation pattern was opposite each other. To the best of our knowledge, the up-regulation of cell cycle pathway by AgNPs and down-regulation by Ag + is the first reporting and suggests the distinguished toxicological perspective from a well-known hypothesis that Ag + mainly regulates the cell cycle. This study provides novel insights onto the genotoxicological mechanisms of AgNPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qi-lin; Yang, Tian-lun [Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Yin, Ji-ye [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Peng, Zhen-yu [Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Yu, Min [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan (China); Chen, Fang-ping, E-mail: xychenfp@public.cs.hn.Cn [Department of Haematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China)

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  13. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    International Nuclear Information System (INIS)

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye; Peng, Zhen-yu; Yu, Min; Liu, Zhao-qian; Chen, Fang-ping

    2009-01-01

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT 1 ) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 μmol/L) induced HUVECs arrested at G 0 /G 1 , enhanced the expression level of AT 1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT 1 mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G 0 /G 1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  14. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2014-01-01

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  15. Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle.

    Science.gov (United States)

    Jackson, Catherine L

    2018-01-01

    When eukaryotic cells divide, they must faithfully segregate not only the genetic material but also their membrane-bound organelles into each daughter cell. To assure correct partitioning of cellular contents, cells use regulatory mechanisms to verify that each stage of cell division has been correctly accomplished before proceeding to the next step. A great deal is known about mechanisms that regulate chromosome segregation during cell division, but we know much less about the mechanisms by which cellular organelles are partitioned, and how these processes are coordinated. The Golgi apparatus, the central sorting and modification station of the secretory pathway, disassembles during mitosis, a process that depends on Arf1 and its regulators and effectors. Prior to total disassembly, the Golgi ribbon in mammalian cells, composed of alternating cisternal stacks and tubular networks, undergoes fission of the tubular networks to produce individual stacks. Failure to carry out this unlinking leads to cell division arrest at late G2 prior to entering mitosis, an arrest that can be relieved by inhibition of Arf1 activation. The level of active Arf1-GTP drops during mitosis, due to inactivation of the major Arf1 guanine nucleotide exchange factor at the Golgi, GBF1. Expression of constitutively active Arf1 prevents Golgi disassembly, and leads to defects in chromosome segregation and cytokinesis. In this review, we describe recent advances in understanding the functions of Arf1 regulators and effectors in the crosstalk between Golgi structure and cell cycle regulation.

  16. Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle

    Directory of Open Access Journals (Sweden)

    Catherine L. Jackson

    2018-03-01

    Full Text Available When eukaryotic cells divide, they must faithfully segregate not only the genetic material but also their membrane-bound organelles into each daughter cell. To assure correct partitioning of cellular contents, cells use regulatory mechanisms to verify that each stage of cell division has been correctly accomplished before proceeding to the next step. A great deal is known about mechanisms that regulate chromosome segregation during cell division, but we know much less about the mechanisms by which cellular organelles are partitioned, and how these processes are coordinated. The Golgi apparatus, the central sorting and modification station of the secretory pathway, disassembles during mitosis, a process that depends on Arf1 and its regulators and effectors. Prior to total disassembly, the Golgi ribbon in mammalian cells, composed of alternating cisternal stacks and tubular networks, undergoes fission of the tubular networks to produce individual stacks. Failure to carry out this unlinking leads to cell division arrest at late G2 prior to entering mitosis, an arrest that can be relieved by inhibition of Arf1 activation. The level of active Arf1-GTP drops during mitosis, due to inactivation of the major Arf1 guanine nucleotide exchange factor at the Golgi, GBF1. Expression of constitutively active Arf1 prevents Golgi disassembly, and leads to defects in chromosome segregation and cytokinesis. In this review, we describe recent advances in understanding the functions of Arf1 regulators and effectors in the crosstalk between Golgi structure and cell cycle regulation.

  17. Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells.

    Science.gov (United States)

    Sasaki, Taeko; Sato, Yoshikatsu; Higashiyama, Tetsuya; Sasaki, Narie

    2017-09-12

    Mitochondrial DNA (mtDNA) is organized in nucleoprotein complexes called mitochondrial nucleoids (mt-nucleoids), which are critical units of mtDNA replication and transmission. In humans, several hundreds of mt-nucleoids exist in a cell. However, how numerous mt-nucleoids are maintained during the cell cycle remains elusive, because cell cycle synchronization procedures affect mtDNA replication. Here, we analyzed regulation of the maintenance of mt-nucleoids in the cell cycle, using a fluorescent cell cycle indicator, Fucci2. Live imaging of mt-nucleoids with higher temporal resolution showed frequent attachment and detachment of mt-nucleoids throughout the cell cycle. TFAM, an mtDNA packaging protein, was involved in the regulation of this dynamic process, which was important for maintaining proper mt-nucleoid number. Both an increase in mt-nucleoid number and activation of mtDNA replication occurred during S phase. To increase mt-nucleoid number, mtDNA replication, but not nuclear DNA replication, was necessary. We propose that these dynamic and regulatory processes in the cell cycle maintain several hundred mt-nucleoids in proliferating cells.

  18. Arabidopsis EST1/SMG7-like protein is a novel regulator of meiotic cell cycle progression

    Czech Academy of Sciences Publication Activity Database

    Riehs, N.; Akimcheva, S.; Bulánková, P.; Idol, R.; Široký, Jiří; Shippen, D.; Schweizer, D.; Říha, K.

    2007-01-01

    Roč. 274, č. 1 (2007), s. 71 ISSN 1742-464X. [32nd FEBS Congress - Molecular Machines. 07.07.2007-12.07.2007, Vienna] R&D Projects: GA ČR(CZ) GA522/06/0380 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : meiosis * Arabidopsis * cell cycle Subject RIV: BO - Biophysics

  19. Exploration of cell cycle regulation and modulation of the DNA methylation mechanism of pelargonidin: Insights from the molecular modeling approach.

    Science.gov (United States)

    Karthi, Natesan; Karthiga, Arumugasamy; Kalaiyarasu, Thangaraj; Stalin, Antony; Manju, Vaiyapuri; Singh, Sanjeev Kumar; Cyril, Ravi; Lee, Sang-Myeong

    2017-10-01

    Pelargonidin is an anthocyanidin isolated from plant resources. It shows strong cytotoxicity toward various cancer cell lines, even though the carcinogenesis-modulating pathway of pelargonidin is not yet known. One of our previous reports showed that pelargonidin arrests the cell cycle and induces apoptosis in HT29 cells. Flowcytometry and immunoblot analysis confirmed that pelargonidin specifically inhibits the activation of CDK1 and blocks the G2-M transition of the cell cycle. In addition, DNA fragmentation was observed along with induction of cytochrome c release-mediated apoptosis. Hence, the aim of the present study was to investigate the molecular mechanism of pelargonidin's action on cell cycle regulators CDK1, CDK4, and CDK6 as well as the substrate-binding domain of DNMT1 and DNMT3A, which regulate the epigenetic signals related to DNA methylation. The results of docking analysis, binding free energy calculation, and molecular dynamics simulation correlated with the experimental results, and pelargonidin showed a specific interaction with CDK1. In this context, pelargonidin may also inhibit the recognition of DNA and catalytic binding by DNMT1 and DNMT3A. The HOMO-LUMO analysis mapped the functional groups of pelargonidin. Prediction of pharmacological descriptors suggested that pelargonidin can serve as a multitarget inhibitor for cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cell-cycle-dependent Xenopus TRF1 recruitment to telomere chromatin regulated by Polo-like kinase

    OpenAIRE

    Nishiyama, Atsuya; Muraki, Keiko; Saito, Motoki; Ohsumi, Keita; Kishimoto, Takeo; Ishikawa, Fuyuki

    2006-01-01

    Telomeres are regulated by a homeostatic mechanism that includes telomerase and telomeric repeat binding proteins, TRF1 and TRF2. Recently, it has been hypothesized that telomeres assume distinct configurations in a cell-cycle-dependent manner, although direct biochemical evidence is lacking. Here we demonstrated that Xenopus TRF1 (xTRF1) associates with telomere chromatin specifically in mitotic Xenopus egg extracts, and dissociates from it upon mitotic exit. Both the N-terminal TRF-homology...

  1. Critical role of Ror2 receptor tyrosine kinase in regulating cell cycle progression of reactive astrocytes following brain injury.

    Science.gov (United States)

    Endo, Mitsuharu; Ubulkasim, Guljahan; Kobayashi, Chiho; Onishi, Reiko; Aiba, Atsu; Minami, Yasuhiro

    2017-01-01

    Ror2 receptor tyrosine kinase plays crucial roles in developmental morphogenesis and tissue-/organo-genesis. In the developing brain, Ror2 is expressed in neural stem/progenitor cells (NPCs) and involved in the regulation of their stemness. However, it remains largely unknown about its role in the adult brain. In this study, we show that Ror2 is up-regulated in reactive astrocytes in the neocortices within 3 days following stab-wound injury. Intriguingly, Ror2-expressing astrocytes were detected primarily at the area surrounding the injury site, where astrocytes express Nestin, a marker of NPCs, and proliferate in response to injury. Furthermore, we show by using astrocyte-specific Ror2 knockout (KO) mice that a loss of Ror2 in astrocytes attenuates injury-induced proliferation of reactive astrocytes. It was also found that basic fibroblast growth factor (bFGF) is strongly up-regulated at 1 day post injury in the neocortices, and that stimulation of cultured quiescent astrocytes with bFGF restarts their cell cycle and induces expression of Ror2 during the G1 phase predominantly in proliferating cells. By using this culture method, we further show that the proportions of Ror2-expressing astrocytes increase following treatment with the histone deacetylases inhibitors including valproic acid, and that bFGF stimulation increases the levels of Ror2 expression within the respective cells. Moreover, we show that bFGF-induced cell cycle progression into S phase is inhibited or promoted in astrocytes from Ror2 KO mice or NPCs stably expressing Ror2-GFP, respectively. Collectively, these findings indicate that Ror2 plays a critical role in regulating the cell cycle progression of reactive astrocytes following brain injury, GLIA 2016. GLIA 2017;65:182-197. © 2016 Wiley Periodicals, Inc.

  2. Autophagy mediates cell cycle response by regulating nucleocytoplasmic transport of PAX6 in limbal stem cells under ultraviolet-A stress.

    Directory of Open Access Journals (Sweden)

    Maria Laggner

    Full Text Available Limbal stem cells (LSC account for homeostasis and regeneration of corneal epithelium. Solar ultraviolet A (UVA is the major source causing oxidative damage in the ocular surface. Autophagy, a lysosomal degradation mechanism, is essential for physiologic function and stress defense of stem cells. PAX6, a master transcription factor governing corneal homeostasis by regulating cell cycle and cell fate of LSC, responds to oxidative stress by nucleocytoplasmic shuttling. Impaired autophagy and deregulated PAX6 have been reported in oxidative stress-related ocular surface disorders. We hypothesize a functional role for autophagy and PAX6 in LSC's stress response to UVA. Therefore, human LSC colonies were irradiated with a sub-lethal dose of UVA and autophagic activity and intracellular reactive oxygen species (ROS were measured by CYTO-ID assay and CM-H2DCFDA live staining, respectively. Following UVA irradiation, the percentage of autophagic cells significantly increased in LSC colonies while intracellular ROS levels remained unaffected. siRNA-mediated knockdown (KD of ATG7 abolished UVA-induced autophagy and led to an excessive accumulation of ROS. Upon UVA exposure, LSCs displayed nuclear-to-cytoplasmic translocation of PAX6, while ATG7KD or antioxidant pretreatment largely attenuated the intracellular trafficking event. Immunofluorescence showing downregulation of proliferative marker PCNA and induction of cell cycle regulator p21 indicates cell cycle arrest in UVA-irradiated LSC. Abolishing autophagy, adenoviral-assisted restoration of nuclear PAX6 or antioxidant pretreatment abrogated the UVA-induced cell cycle arrest. Adenoviral expression of an ectopic PAX gene, PAX7, did not affect UVA cell cycle response. Furthermore, knocking down PAX6 attenuated the cell cycle progression of irradiated ATG7KD LSC by de-repressing p21 expression. Collectively, our data suggest a crosstalk between autophagy and PAX6 in regulating cell cycle response of

  3. Tumour suppressor PTEN regulates cell cycle and protein kinase B/Akt pathway in breast cancer cells

    Czech Academy of Sciences Publication Activity Database

    Hlobilková, Alice; Knillová, J.; Šváchová, M.; Skypalová, P.; Kryštof, Vladimír; Kolář, Z.

    2006-01-01

    Roč. 26, 2A (2006), s. 1015-1022 ISSN 0250-7005 R&D Projects: GA MZd NR7828 Institutional research plan: CEZ:AV0Z50380511 Keywords : breast cancer cell lines * cell cycle * phosphatase activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.479, year: 2006

  4. Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4.

    Science.gov (United States)

    Barhoover, Melissa A; Hall, Julie M; Greenlee, William F; Thomas, Russell S

    2010-02-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with constitutive activities and those induced by xenobiotic ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One unexplained cellular role for the AHR is its ability to promote cell cycle progression in the absence of exogenous ligands, whereas treatment with exogenous ligands induces cell cycle arrest. Within the cell cycle, progression from G(1) to S phase is controlled by sequential phosphorylation of the retinoblastoma protein (RB1) by cyclin D-cyclin-dependent kinase (CDK) 4/6 complexes. In this study, the functional interactions between the AHR, CDK4, and cyclin D1 (CCND1) were investigated as a potential mechanism for the cell cycle regulation by the AHR. Time course cell cycle and molecular experiments were performed in human breast cancer cells. The results demonstrated that the AHR and CDK4 interact within the cell cycle, and the interaction was disrupted upon TCDD treatment. The disruption was temporally correlated with G(1) cell cycle arrest and decreased phosphorylation of RB1. Biochemical reconstitution assays using in vitro-translated protein recapitulated the AHR and CDK4 interaction and showed that CCND1 was also part of the complex. In vitro assays for CDK4 kinase activity demonstrated that RB1 phosphorylation by the AHR/CDK4/CCND1 complex was reduced in the presence of TCDD. The results suggest that the AHR interacts in a complex with CDK4 and CCND1 in the absence of exogenous ligands to facilitate cell cycle progression. This interaction is disrupted by exogenous ligands, such as TCDD, to induce G(1) cell cycle arrest.

  5. Hepatitis B virus induces G1 phase arrest by regulating cell cycle genes in HepG2.2.15 cells

    Directory of Open Access Journals (Sweden)

    Zhang Chong

    2011-05-01

    Full Text Available Abstract Background To investigate the effect of HBV on the proliferative ability of host cells and explore the potential mechanism. Methods MTT, colony formation assay and tumourigenicity in nude mice were performed to investigate the effect of HBV on the proliferative capability of host cells. In order to explore the potential mechanism, cell cycle and apoptosis were analysed. The cell cycle genes controlling the G1/S phase transition were detected by immunohistochemistry, westernblot and RT-PCR. Results HepG2.2.15 cells showed decreased proliferation ability compared to HepG2 cells. G1 phase arrest was the main cause but was not associated with apoptosis. p53, p21 and total retinoblastoma (Rb were determined to be up-regulated, whereas cyclinE was down-regulated at both the protein and mRNA levels in HepG2.2.15 cells. The phosphorylated Rb in HepG2.2.15 cells was decreased. Conclusions Our results suggested that HBV inhibited the capability of proliferation of HepG2.2.15 cells by regulating cell cycle genes expression and inducing G1 arrest.

  6. Dimethylfumarate induces cell cycle arrest and apoptosis via regulating intracellular redox systems in HeLa cells.

    Science.gov (United States)

    Han, Guocan; Zhou, Qiang

    2016-12-01

    Dimethylfumarate (DMF) is cytotoxic to several kinds of cells and serves as an anti-tumor drug. This study was designed to investigate the effects and underlying mechanism of DMF on cervical cancer cells. HeLa cells were cultured and treated with 0, 50, 100, 150, and 200 μM DMF, respectively. After 24 h, cell growth was evaluated using Cell Counting Kit-8 (CCK-8) assay and the cell cycle was examined using flow cytometry. In addition, cell apoptosis was detected by Annexin V/propidium iodide (PI) staining and the expressions of caspase-3 and poly-ADP-ribose polymerase (PARP) were detected using western blotting. The redox-related factors were then assessed. Furthermore, all of the indicators were detected in HeLa cells after combined treatment of DMF and N-acetyl-L-cysteine (NAC, an oxygen-free radical scavenger). The cell number and cell growth of HeLa were obviously inhibited by DMF in a dose-dependent manner, as the cell cycle was arrested at G0/G1 phase (P HeLa cells were markedly increased, and the expression levels of caspase-3 and PARP were significantly increased in a DMF concentration-dependent way (P cell proliferation and apoptosis of HeLa cells was mainly related to the intracellular redox systems by depletion of intracellular GSH.

  7. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle.

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-06-28

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.

  8. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1

    DEFF Research Database (Denmark)

    Petersen, B O; Wagener, C; Marinoni, F

    2000-01-01

    CDC6 is conserved during evolution and is essential and limiting for the initiation of eukaryotic DNA replication. Human CDC6 activity is regulated by periodic transcription and CDK-regulated subcellular localization. Here, we show that, in addition to being absent from nonproliferating cells, CD...

  9. Rb-mediated neuronal differentiation through cell-cycle-independent regulation of E2f3a.

    Directory of Open Access Journals (Sweden)

    Danian Chen

    2007-07-01

    Full Text Available It has long been known that loss of the retinoblastoma protein (Rb perturbs neural differentiation, but the underlying mechanism has never been solved. Rb absence impairs cell cycle exit and triggers death of some neurons, so differentiation defects may well be indirect. Indeed, we show that abnormalities in both differentiation and light-evoked electrophysiological responses in Rb-deficient retinal cells are rescued when ectopic division and apoptosis are blocked specifically by deleting E2f transcription factor (E2f 1. However, comprehensive cell-type analysis of the rescued double-null retina exposed cell-cycle-independent differentiation defects specifically in starburst amacrine cells (SACs, cholinergic interneurons critical in direction selectivity and developmentally important rhythmic bursts. Typically, Rb is thought to block division by repressing E2fs, but to promote differentiation by potentiating tissue-specific factors. Remarkably, however, Rb promotes SAC differentiation by inhibiting E2f3 activity. Two E2f3 isoforms exist, and we find both in the developing retina, although intriguingly they show distinct subcellular distribution. E2f3b is thought to mediate Rb function in quiescent cells. However, in what is to our knowledge the first work to dissect E2f isoform function in vivo we show that Rb promotes SAC differentiation through E2f3a. These data reveal a mechanism through which Rb regulates neural differentiation directly, and, unexpectedly, it involves inhibition of E2f3a, not potentiation of tissue-specific factors.

  10. The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription.

    Science.gov (United States)

    Müller, Gerd A; Engeland, Kurt

    2010-02-01

    The cell cycle-dependent element (CDE) and the cell cycle genes homology region (CHR) control the transcription of genes with maximum expression in G(2) phase and in mitosis. Promoters of these genes are repressed by proteins binding to CDE/CHR elements in G(0) and G(1) phases. Relief from repression begins in S phase and continues into G(2) phase and mitosis. Generally, CDE sites are located four nucleotides upstream of CHR elements in TATA-less promoters of genes such as Cdc25C, Cdc2 and cyclin A. However, expression of some other genes, such as human cyclin B1 and cyclin B2, has been shown to be controlled only by a CHR lacking a functional CDE. To date, it is not fully understood which proteins bind to and control CDE/CHR-containing promoters. Recently, components of the DREAM complex were shown to be involved in CDE/CHR-dependent transcriptional regulation. In addition, the expression of genes regulated by CDE/CHR elements is mostly achieved through CCAAT-boxes, which bind heterotrimeric NF-Y proteins as well as the histone acetyltransferase p300. Importantly, many CDE/CHR promoters are downregulated by the tumor suppressor p53. In this review, we define criteria for CDE/CHR-regulated promoters and propose to distinguish two classes of CDE/CHR-regulated genes. The regulation through transcription factors potentially binding to the CDE/CHR is discussed, and recently discovered links to central pathways regulated by E2F, the pRB family and p53 are highlighted.

  11. [Quercetin regulates cell cycle-related gene expression in a model of glucose-oxygen deprivation in astrocytes].

    Science.gov (United States)

    Yao, Fang; Zhang, Lanlan; Yuan, Zhaohu; Zeng, Yong; Wu, Bingyi

    2013-09-01

    To study the effect of quercetin on gene expression in astrocytes after glucose-oxygen deprivation and the underlying mechanism. The primary cultured astrocytes were randomly divided into glucose-oxygen deprivation group (only treated with glucose-oxygen deprivation for 4 hours) and glucose-oxygen deprivation combined with quercetin-treated group (glucose-oxygen deprivation for 4 hours combined with quercetin treatment for 24 hours). Their mRNA expressions were analyzed by the large-scale oligo microarray. The differential genes obtained were further confirmed by real-time quantitative PCR (qRT-PCR). Compared with the glucose-oxygen deprivation group, the glucose-oxygen deprivation combined with quercetin-treated group presented the changes in the expressions of 31 genes that were related to cell cycle, of which 5 genes were up-regulated and 26 were down-regulated. Six of those differential genes were confirmed by qRT-PCR and the result of their differential expressions was consistent with that by large-scale oligo microarray. Quercetin can regulate some of cell cycle-related genes in astrocytes after glucose-oxygen deprivation.

  12. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning

    International Nuclear Information System (INIS)

    Wang Xinming; Gao Xiang; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    Tob (transducer of ErbB-2) is a negative cell cycle regulator with anti-proliferative activity in peripheral tissues. Our previous study identified Tob as a protein involved in hippocampus-dependent memory consolidation (M.L. Jin, X.M. Wang, Y.Y. Tu, X.H. Zhang, X. Gao, N. Guo, Z.Q. Xie, G.P. Zhao, N.H. Jing, B.M. Li, Y.Yu, The negative cell cycle regulator, Tob (Transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory, Neuroscience 131 (2005) 647-659). Here, we provide evidence that Tob in the central nervous system is engaged in acquisition of motor skill. Tob has a relatively high expression in the cerebellum. Tob expression is up-regulated in the cerebellum after rats receive training on a rotarod-running task. Rats infused with Tob antisense oligonucleotides into the 4th ventricle exhibit a severe deficit in running on a rotating rod or walking across a horizontally elevated beam

  13. PSCA promotes prostate cancer proliferation and cell-cycle progression by up-regulating c-Myc.

    Science.gov (United States)

    Li, Ermao; Liu, Luhao; Li, Futian; Luo, Lianmin; Zhao, Shankun; Wang, Jiamin; Kang, Ran; Luo, Jintai; Zhao, Zhigang

    2017-12-01

    The Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI)-anchored protein. Increasing evidence has indicated PSCA plays an important role in tumorigenesis. However, its function and the underlying molecular mechanisms in prostate cancer (PCa) are still not fully elucidated. In this study, we aimed to explore the effect of PSCA on cell cycle of PCa cells and its mechanism research. Immunohistochemistry, quantitative reverse transcription-PCR (qRT-PCR) and Western blotting were used to quantify PSCA expression pattern in PCa tissues and cell lines. The association of PSCA expression with the biochemical recurrence (BCR)-free survival and overall survival (OS) of PCa patients were analyzed using Kaplan-Meier method. The roles of PSCA in PCa were confirmed based on both in vitro and in vivo systems. Immunohistochemistry results showed that PSCA was upregulated in PCa tissue. PSCA overexpression were significantly associated with high Gleason score (GS) (P = 0.028), positive BCR (P = 0.002), and poor OS (P = 0.032) and high c-Myc expression (P = 0.019). PSCA promoted PCa cell cycle progression and tumor growth via increased c-Myc expression. Additional, PI3K/AKT signaling pathways was involved in PSCA-mediated c-Myc expression and cell proliferation. PSCA is a novel cell cycle regulator with a key role in mediating c-Myc-induced proliferation. PSCA may be a potential diagnostic marker and therapeutic target for patients with PCa. © 2017 Wiley Periodicals, Inc.

  14. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    Science.gov (United States)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  15. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Margot Mayer

    Full Text Available Ionizing radiation (IR exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system.

  16. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    Science.gov (United States)

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which

  17. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Zvonimir Marelja

    2018-02-01

    Full Text Available Iron sulfur (Fe-S clusters and the molybdenum cofactor (Moco are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii increased iron transiently displaces manganese on superoxide

  18. GLI1 is involved in cell cycle regulation and proliferation of NT2 embryonal carcinoma stem cells

    DEFF Research Database (Denmark)

    Vestergaard, Janni; Lind-Thomsen, Allan; Pedersen, Mikkel W.

    2008-01-01

    target Patched (PTCH) is downregulated in the early stages of retinoic acid-induced neuronal differentiation of NT2 cells. To identify transcriptional targets of the HH transcription factor GLI1 in NT2 cells, we performed global expression profiling following GLI1 RNA interference (RNAi). Of the similar...... to 8500 transcripts represented on the microarrays, expression of 88 genes was downregulated and expression of 26 genes was upregulated. Nineteen of these genes are involved in cell cycle and proliferation. Further, GLI1 RNAi leads to a significant decrease in NT2 proliferation and changes expression of G...

  19. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site

    DEFF Research Database (Denmark)

    Schulze, A; Zerfass, K; Spitkovsky, D

    1995-01-01

    Cyclin A is involved in the control of S phase and mitosis in mammalian cells. Expression of the cyclin A gene in nontransformed cells is characterized by repression of its promoter during the G1 phase of the cell cycle and its induction at S-phase entry. We show that this mode of regulation...... is mediated by the transcription factor E2F, which binds to a specific site in the cyclin A promoter. It differs from the prototype E2F site in nucleotide sequence and protein binding; it is bound by E2F complexes containing cyclin E and p107 but not pRB. Ectopic expression of cyclin D1 triggers premature...... activation of the cyclin A promoter by E2F, and this effect is blocked by the tumor suppressor protein p16INK4....

  20. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  1. Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration.

    Science.gov (United States)

    Gendreau, Emmanuel; Romaniello, Sébastien; Barad, Sophie; Leymarie, Juliette; Benech-Arnold, Roberto; Corbineau, Françoise

    2008-01-01

    Various studies indicate that cell division is a post-germination phenomenon, with radicle protrusion occurring by cell elongation, while others demonstrate that induction of the cell cycle occurs in osmo-conditioned seeds prior to radicle growth. The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to grain hydration, using: (i) a flow cytometry technique to estimate the percentage of cell nuclei in G(1) and G(2) phases of the cell cycle; and (ii) reverse transcription-PCR (RT-PCR) in order to characterize the expression of the genes encoding cyclin-dependent kinases (CDKA1, CDKB1, and CDKD1) and cyclins (CYCA3, CYCB1, and CYCD4), the main genes involved in the cell cycle and its regulation. Radicle tips of embryos were isolated from seeds placed for various times on water at 30 degrees C and from grains partially hydrated at moisture contents ranging from 11% to 51% fresh weight (FW), which prevent radicle elongation. Abscisic acid (ABA) contents of the embryos during seed germination at 30 degrees C and after 48 h of partial hydration were also measured. In dry embryos, cells are mostly arrested in the G(1) phase of the cell cycle (82%), the remaining cells being in the G(2) phase, and the ABA content of the embryo was 432.7 ng g(-1) dry weight (DW). Seed imbibition was associated with a sharp decrease in ABA content as early as 5 h, while the cell cycle reactivation was a late process taking place approximately 4-6 h prior to radicle protrusion. Hydration of seeds resulted in a decrease in embryo ABA content, but it remained at a high level (207-273 ng g(-1) DW) even after 48 h at 0.41-0.51 g H2O g(-1) FW. The cell population of the radicle tips in the G(2) phase of the cell cycle, i.e. 4C nuclei, increased from 9% up to 34% at a moisture content of 51% FW. In dry seeds, CDKA1 and CDKD1 mRNAs were present at low levels, but transcripts of CDKB1, CYCA3, CYCB1, and CYCD4 were not detected. Radicle

  2. Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells

    Science.gov (United States)

    Filippi-Chiela, Eduardo C.; Villodre, Emilly Schlee; Zamin, Lauren L.; Lenz, Guido

    2011-01-01

    Prognosis of patients with glioblastoma (GBM) remains very poor, thus making the development of new drugs urgent. Resveratrol (Rsv) is a natural compound that has several beneficial effects such as neuroprotection and cytotoxicity for several GBM cell lines. Here we evaluated the mechanism of action of Rsv on human GBM cell lines, focusing on the role of autophagy and its crosstalk with apoptosis and cell cycle control. We further evaluated the role of autophagy and the effect of Rsv on GBM Cancer Stem Cells (gCSCs), involved in GBM resistance and recurrence. Glioma cells treated with Rsv was tested for autophagy, apoptosis, necrosis, cell cycle and phosphorylation or expression levels of key players of these processes. Rsv induced the formation of autophagosomes in three human GBM cell lines, accompanied by an upregulation of autophagy proteins Atg5, beclin-1 and LC3-II. Inhibition of Rsv-induced autophagy triggered apoptosis, with an increase in Bax and cleavage of caspase-3. While inhibition of apoptosis or autophagy alone did not revert Rsv-induced toxicity, inhibition of both processes blocked this toxicity. Rsv also induced a S-G2/M phase arrest, accompanied by an increase on levels of pCdc2(Y15), cyclin A, E and B, and pRb (S807/811) and a decrease of cyclin D1. Interestingly, this arrest was dependent on the induction of autophagy, since inhibition of Rsv-induced autophagy abolishes cell cycle arrest and returns the phosphorylation of Cdc2(Y15) and Rb(S807/811), and levels of cyclin A, and B to control levels. Finally, inhibition of autophagy or treatment with Rsv decreased the sphere formation and the percentage of CD133 and OCT4-positive cells, markers of gCSCs. In conclusion, the crosstalk among autophagy, cell cycle and apoptosis, together with the biology of gCSCs, has to be considered in tailoring pharmacological interventions aimed to reduce glioma growth using compounds with multiple targets such as Rsv. PMID:21695150

  3. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  4. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  5. Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells.

    Science.gov (United States)

    Hatfield, Kimberley Joanne; Reikvam, Håkon; Bruserud, Øystein

    2014-11-01

    The malignant cell population of acute myeloid leukemia (AML) includes a small population of stem/progenitor cells with long-term in vitro proliferation. We wanted to compare long-term AML cell proliferation for unselected patients, investigate the influence of endothelial cells on AML cell proliferation and identify biological characteristics associated with clonogenic capacity. Cells were cultured in medium supplemented with recombinant growth factors FMS-like tyrosine kinase-3 ligand, stem cell factor, IL-3, G-CSF and thrombopoietin. The colony-forming unit assay was used to estimate the number of progenitors in AML cell populations after 35 days of culture, and microarray was used to study global gene expression profiles between AML patients. Long-term cell proliferation was observed in 7 of 31 patients, whereas 3 additional patients showed long-term proliferation after endothelial cell coculture. Patient-specific differences in constitutive cytokine release were maintained during cell culture. Patients with long-term proliferation showed altered expression in six cell cycle-related genes (HMMR, BUB1, NUSAP1, AURKB, CCNF, DLGAP5), two genes involved in DNA replication (TOP2A, RFC3) and one gene with unknown function (LHFPL2). We identified a subset of AML patients characterized by long-term in vitro cell proliferation and altered expression of cell cycle regulators that may be potential candidates for treatment of AML.

  6. Regulation of Microtubule, Apoptosis, and Cell Cycle-Related Genes by Taxotere in Prostate Cancer Cells Analyzed by Microarray

    Directory of Open Access Journals (Sweden)

    Yiwei Li

    2004-03-01

    Full Text Available Taxotere showed antitumor activity against solid tumors including prostate cancer. However, the molecular mechanism(s of action of Taxotere has not been fully elucidated. In order to establish such molecular mechanism(s in both hormone-insensitive (PC3 and hormone-sensitive (LNCaP prostate cancer cells, comprehensive gene expression profiles were obtained by Affymetrix Human Genome U133A Array. The RNA from the cells treated with 2 nM Taxotere was subjected to microarray analysis. We found that a total of 166, 365, and 1785 genes showed greater than twofold change in PC3 cells after 6, 36, and 72 hours of treatment, respectively compared to 57, 823, and 964 genes in LNCaP cells. The expression of tubulin was decreased, whereas the expression of microtubuleassociated proteins was increased in Taxotere-treated prostate cancer cells, confirming the microtubuletargeting effect of Taxotere. Clustering analysis showed downregulation of some genes for cell proliferation and cell cycle. In contrast, Taxotere upregulated some genes that are related to induction of apoptosis and cell cycle arrest. From these results, we conclude that Taxotere caused alterations of a large number of genes, many of which may contribute to the molecular mechanism(s by which Taxotere affects prostate cancer cells. Further molecular studies are needed in order to determine the cause and effect relationships between these genes altered by Taxotere. Nevertheless, our results could be further exploited for devising strategies to optimize therapeutic effects of Taxotere for the treatment of prostate cancer.

  7. Cell-cycle regulation of non-enzymatic functions of the Drosophila methyltransferase PR-Set7.

    Science.gov (United States)

    Zouaz, Amel; Fernando, Céline; Perez, Yannick; Sardet, Claude; Julien, Eric; Grimaud, Charlotte

    2018-04-06

    Tight cell-cycle regulation of the histone H4-K20 methyltransferase PR-Set7 is essential for the maintenance of genome integrity. In mammals, this mainly involves the interaction of PR-Set7 with the replication factor PCNA, which triggers the degradation of the enzyme by the CRL4CDT2 E3 ubiquitin ligase. PR-Set7 is also targeted by the SCFβ-TRCP ligase, but the role of this additional regulatory pathway remains unclear. Here, we show that Drosophila PR-Set7 undergoes a cell-cycle proteolytic regulation, independently of its interaction with PCNA. Instead, Slimb, the ortholog of β-TRCP, is specifically required for the degradation of the nuclear pool of PR-Set7 prior to S phase. Consequently, inactivation of Slimb leads to nuclear accumulation of PR-Set7, which triggers aberrant chromatin compaction and G1/S arrest. Strikingly, these phenotypes result from non-enzymatic PR-Set7 functions that prevent proper histone H4 acetylation independently of H4K20 methylation. Altogether, these results identify the Slimb-mediated PR-Set7 proteolysis as a new critical regulatory mechanism required for proper interphase chromatin organization at G1/S transition.

  8. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    He, Licheng; Lu, Na; Dai, Qinsheng; Zhao, Yue; Zhao, Li; Wang, Hu; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2013-01-01

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  9. SDF-1/CXCR4 Axis Regulates Cell Cycle Progression and Epithelial-Mesenchymal Transition via Up-regulation of Survivin in Glioblastoma.

    Science.gov (United States)

    Liao, Anyan; Shi, Ranran; Jiang, Yuliang; Tian, Suqing; Li, Panpan; Song, Fuxi; Qu, Yalan; Li, Jinna; Yun, Haiqin; Yang, Xiangshan

    2016-01-01

    Stromal cell-derived factor 1 (SDF-1)/CXCR4 ligand-receptor axis is widely recommended as an attractive target for cancer therapy. Meanwhile, epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. As one of inhibitors of apoptosis proteins, survivin is implicated in the onset and development of cancer. In the present study, we tried to determine the cause-effect associations between SDF-1/CXCR4 axis and survivin expression in glioblastoma U-251 cell line. Survivin activation and inhibition were induced with exogenous SDF-1 and survivin small interfering RNA (survivin siRNA), respectively. Western blot was used to detect relevant proteins in SDF-1/CXCR4 axis. Western blot analysis revealed that survivin expression in U-251 increased in a dose- and time-dependent manner in response to SDF-1 treatment. However, the interference with MEK/ERK and PI3K/AKT pathway prohibited SDF-1-induced survivin up-regulation. Importantly, survivin knockdown abrogated cell cycle progression and the expression of snail and N-cadherin, compared with non-transfectants. In conclusion, the present study shows that SDF-1 up-regulates survivin via MEK/ERK and PI3K/AKT pathway, leading to cell cycle progression and EMT occurrence dependent on survivin. The blockade of survivin will allow for the treatment of glioblastoma.

  10. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    International Nuclear Information System (INIS)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Jamal, Shazia; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-01-01

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  11. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  12. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  13. Maternal Embryonic Leucine Zipper Kinase (MELK: A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

    Directory of Open Access Journals (Sweden)

    Pengfei Jiang

    2013-10-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.

  14. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  15. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction.

    Science.gov (United States)

    Park, Ho; Park, Hyeon; Pak, Ha-Jin; Yang, Dong-Yun; Kim, Yun-Hong; Choi, Won-Jun; Park, Se-Jin; Cho, Jung-Ah; Lee, Kyo-Won

    2015-01-01

    MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  16. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle.

    Science.gov (United States)

    Choi, Byeong Hyeok; Pagano, Michele; Dai, Wei

    2014-05-16

    PTEN is a well known tumor suppressor through the negative regulation of the PI3K signaling pathway. Here we report that PTEN plays an important role in regulating mitotic timing, which is associated with increased PTEN phosphorylation in the C-terminal tail and its localization to chromatin. Pulldown analysis revealed that Plk1 physically interacted with PTEN. Biochemical studies showed that Plk1 phosphorylates PTEN in vitro in a concentration-dependent manner and that the phosphorylation was inhibited by Bi2635, a Plk1-specific inhibitor. Deletional and mutational analyses identified that Plk1 phosphorylated Ser-380, Thr-382, and Thr-383, but not Ser-385, a cluster of residues known to affect the PTEN stability. Interestingly, a combination of molecular and genetic analyses revealed that only Ser-380 was significantly phosphorylated in vivo and that Plk1 regulated the phosphorylation, which was associated with the accumulation of PTEN on chromatin. Moreover, expression of phospho-deficient mutant, but not wild-type PTEN, caused enhanced mitotic exit. Taken together, our studies identify Plk1 as an important regulator of PTEN during the cell cycle. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Differences in cell cycle regulation after platinum derivatives treatment in sensitive and cisplatin resistant ovarian cancer cell lines

    Czech Academy of Sciences Publication Activity Database

    Horváth, Viktor; Souček, Karel; Šindlerová, Lenka; Hofmanová, Jiřina; Sova, P.; Kozubík, Alois

    2006-01-01

    Roč. 100, č. 5 (2006), s. 383-384 ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /6./. 14.06.2006-17.06.2006, Milovy] R&D Projects: GA AV ČR(CZ) 1QS500040507; GA MPO(CZ) PZ-Z2/29 Institutional research plan: CEZ:AV0Z50040507 Keywords : ovarian cancer * cell cycle * cisplatin Subject RIV: BO - Biophysics

  18. MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation cell cycle and migration in human breast cancer

    Directory of Open Access Journals (Sweden)

    Liu D

    2016-08-01

    Full Text Available Dayue Liu,1,* Haoming Xia,1,* Fang Wang,2 Cui Chen,2 Jianting Long2 1Department of Surgery, Breast Disease Center, 2Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: In this study, we investigated the functional correlation between microRNA-210 (miR-210 and gene of F-box protein 31 (FBXO31 in regulating breast cancer.Methods: Dual-luciferase assay and quantitative real-time polymerase chain reaction were used to investigate the binding of miR-210 with FBXO31 and their expression patterns in breast cancer. miR-210 was inhibited in breast cancer T47D and MCF-7 cells to assess its effect on cancer proliferation, cell cycle progression, and migration. FBXO31 was also downregulated in breast cancer cells to examine its effect on miR-210-mediated breast cancer regulation. The interaction between miR-210 and FBXO31 was further investigated by examining the effect of overexpressing miR-210 on FBXO31-induced suppression of breast cancer proliferation.Results: FBXO31 was the downstream target gene of miR-210 in breast cancer. miR-210 and FBXO31 are inversely expressed in breast cancer cell lines. miR-210 downregulation reduced cancer progression, induced cell cycle arrest, and inhibited cancer migration in T47D and MCF-7 cells. Tumor suppression by miR-210 downregulation was reversed by downregulating FBXO31. In FBXO31-overexpressed breast cancer cells, upregulating miR-210 also reversed the tumor-suppressive effect of FBXO31 on breast cancer proliferation.Conclusion: Our work demonstrated that the expression pattern and tumor regulatory functions of miR-210 and FBXO31 are inversely correlated in breast cancer. Keywords: breast cancer, miR-210, FBXO31, cancer proliferation, cancer migration

  19. Fueling the Cell Division Cycle.

    Science.gov (United States)

    Salazar-Roa, María; Malumbres, Marcos

    2017-01-01

    Cell division is a complex process with high energy demands. However, how cells regulate the generation of energy required for DNA synthesis and chromosome segregation is not well understood. Recent data suggest that changes in mitochondrial dynamics and metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis crosstalk with, and are tightly regulated by, the cell division machinery. Alterations in energy availability trigger cell-cycle checkpoints, suggesting a bidirectional connection between cell division and general metabolism. Some of these connections are altered in human disease, and their manipulation may help in designing therapeutic strategies for specific diseases including cancer. We review here recent studies describing the control of metabolism by the cell-cycle machinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    International Nuclear Information System (INIS)

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-01-01

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  1. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Karin [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden); Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Grawé, Jan [Department of Genetics and Pathology, Uppsala University, Uppsala 75185 (Sweden); McKinney-Freeman, Shannon L. [Department of Hematology, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States); Daley, George Q. [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Welsh, Michael, E-mail: michael.welsh@mcb.uu.se [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden)

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via

  2. Cell Cycle Regulating Kinase Cdk4 as a Potential Target for Tumor Cell Treatment and Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Franziska Graf

    2009-01-01

    Full Text Available The cyclin-dependent kinase (Cdk-cyclin D/retinoblastoma (pRb/E2F cascade, which controls the G1/S transition of cell cycle, has been found to be altered in many neoplasias. Inhibition of this pathway by using, for example, selective Cdk4 inhibitors has been suggested to be a promising approach for cancer therapy. We hypothesized that appropriately radiolabeled Cdk4 inhibitors are suitable probes for tumor imaging and may be helpful studying cell proliferation processes in vivo by positron emission tomography. Herein, we report the synthesis and biological, biochemical, and radiopharmacological characterizations of two I124-labeled small molecule Cdk4 inhibitors (8-cyclopentyl-6-iodo-5-methyl-2-(4-piperazin-1-yl-phenylamino-8H-pyrido[2,3-d]-pyrimidin-7-one (CKIA and 8-cyclopentyl-6-iodo-5-methyl-2-(5-(piperazin-1-yl-pyridin-2-yl-amino-8H-pyrido[2,3-d]pyrimidin-7-one (CKIB. Our data demonstrate a defined and specific inhibition of tumor cell proliferation through CKIA and CKIB by inhibition of the Cdk4/pRb/E2F pathway emphasizing potential therapeutic benefit of CKIA and CKIB. Furthermore, radiopharmacological properties of [I124]CKIA and [I124]CKIB observed in human tumor cells are promising prerequisites for in vivo biodistribution and imaging studies.

  3. Flowcytometric evaluation of cell cycle regulators (cyclins and cyclin dependent kinase inhibitors expressed on bone marrow cells of patients with chronic myelogenous leukemia and multiple myeloma

    Directory of Open Access Journals (Sweden)

    Selami Koçak Toprak

    2012-03-01

    Full Text Available OBJECTIVE: Etiopathology of malignancy can be demonstrated by the comparison of the quantified changes in the different phases of the cycle about cyclins and cyclin dependent kinase inhibitors (CDKI in healthy and malignant proliferated cells. The aim of this study is to analyze flow cytometric expression of cell cycle regulating elements in the malignant diseases with low and high proliferative signature. METHODS: The levels of cyclin D, E, A, B and CDKI's p16, p21 were studied by flowcytometry in patients with chronic myeloid leukemia (CML (n=16, multiple myeloma (MM (n=13 and control subjects (n=15. RESULTS: The distributions of the cell cycle S phase were 10, 63%, 6, 72% and 3, 59%; for CML, MM and control subjects, respectively. Among all the cyclins expressed during the S phase, cyclin D expression was the lowest, in CML patients. While the distribution of cyclins and CDKI’s was similar between MM and control groups in G2/M phase; cyclins expressions were parallel in all three phases in MM and chronic myeloid leukemia groups. CONCLUSION: CML and MM are diseases presenting with variable degrees of proliferation. The increase of cyclins in cell cycle phases in patient group was not associated with the augmentation of the expression of CDKI’s. This finding may contribute the mechanisms effective in the etiopathogenesis of hematological malignancy.

  4. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  5. An active extract of Ulmus pumila inhibits adipogenesis through regulation of cell cycle progression in 3T3-L1 cells.

    Science.gov (United States)

    Ghosh, Chiranjit; Chung, Ha-Yull; Nandre, Rahul M; Lee, John Hwa; Jeon, Tae-Il; Kim, In-Sook; Yang, Seung Hak; Hwang, Seong-Gu

    2012-06-01

    Obesity and its associated metabolic disorders has become a major obstacle in improving the average life span. In this regard therapeutic approach using natural compounds are currently receiving much attention. Herbal compounds rich in triterpenes are well known to regulate glucose and lipid metabolism. Here, we have found that Ulmus pumila (UP) contained at least four different triterpenoids and inhibited adipogenesis of 3T3-L1 cells. The cell viability was dose dependently decreased by UP showing the increase of cell accumulation in G1 phase while reducing in S and G2/M phase of cell cycle. UP treatment also significantly decreased the GPDH activity and intracellular lipid accumulation. In addition, UP inhibited the mRNA levels of adipogenic transcription factors and lipogenic genes such as PPARγ, C/EBPα, SREBP1c and FAS while showing no effects on C/EBP-β and C/EBP-δ. Importantly enough, treatment of cells with UP suppressed the TNF-α induced activation of NF-κB signaling. Collectively, our results indicate that UP extract effectively attenuated adipogenesis by controlling cell cycle progression and down regulating adipogenic gene expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection.

    Science.gov (United States)

    Zhu, Chunyuan; Yang, Xiaoyan; Lv, Rongfei; Li, Zhuang; Ding, Xiaomeng; Tyler, Brett M; Zhang, Xiuguo

    2016-04-01

    SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4',6-diamidino-2-phenylindole (DAPI) staining and PcSDA1-green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non-filamentous yeasts and human cells. © 2015 BSPP and John Wiley & Sons Ltd.

  7. De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development.

    Directory of Open Access Journals (Sweden)

    Patricia C Sanchez-Diaz

    Full Text Available microRNAs (miRNAs have been implicated in the control of many biological processes and their deregulation has been associated with many cancers. In recent years, the cancer stem cell (CSC concept has been applied to many cancers including pediatric. We hypothesized that a common signature of deregulated miRNAs in the CSCs fraction may explain the disrupted signaling pathways in CSCs.Using a high throughput qPCR approach we identified 26 CSC associated differentially expressed miRNAs (DEmiRs. Using BCmicrO algorithm 865 potential CSC associated DEmiR targets were obtained. These potential targets were subjected to KEGG, Biocarta and Gene Ontology pathway and biological processes analysis. Four annotated pathways were enriched: cell cycle, cell proliferation, p53 and TGF-beta/BMP. Knocking down hsa-miR-21-5p, hsa-miR-181c-5p and hsa-miR-135b-5p using antisense oligonucleotides and small interfering RNA in cell lines led to the depletion of the CSC fraction and impairment of sphere formation (CSC surrogate assays.Our findings indicated that CSC associated DEmiRs and the putative pathways they regulate may have potential therapeutic applications in pediatric cancers.

  8. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  9. Outcome of triple-negative breast cancer in patients with or without markers regulating cell cycle and cell death

    OpenAIRE

    Ryu, Dong Won; Lee, Chung Han

    2012-01-01

    Purpose The genes p53 and B-cell lymphoma (bcl)-2 play an important role in regulating the mechanisms of apoptosis. In this paper, we retrospectively applied these factors to our series of triple negative breast cancer (TNBC) patients, in conjunction with an evaluation of the prognostic significance of these factors' influence on TNBC survival rate. Particular focus was placed on the role of bcl-2, p53, Ki-67. Methods The study subjects, 94 women with TNBC, were a subset of patients operated ...

  10. p27Kip1represses the Pitx2-mediated expression of p21Cip1and regulates DNA replication during cell cycle progression.

    Science.gov (United States)

    Gallastegui, E; Biçer, A; Orlando, S; Besson, A; Pujol, M J; Bachs, O

    2017-01-19

    The tumor suppressor p21 regulates cell cycle progression and peaks at mid/late G 1 . However, the mechanisms regulating its expression during cell cycle are poorly understood. We found that embryonic fibroblasts from p27 null mice at early passages progress slowly through the cell cycle. These cells present an elevated basal expression of p21 suggesting that p27 participates to its repression. Mechanistically, we found that p27 represses the expression of Pitx2 (an activator of p21 expression) by associating with the ASE-regulatory region of this gene together with an E2F4 repressive complex. Furthermore, we found that Pitx2 binds to the p21 promoter and induces its transcription. Finally, silencing Pitx2 or p21 in proliferating cells accelerates DNA replication and cell cycle progression. Collectively, these results demonstrate an unprecedented connection between p27, Pitx2 and p21 relevant for the regulation of cell cycle progression and cancer and for understanding human pathologies associated with p27 germline mutations.

  11. Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication

    DEFF Research Database (Denmark)

    Piunti, Andrea; Rossi, Alessandra; Cerutti, Aurora

    2014-01-01

    The ability of PRC1 and PRC2 to promote proliferation is a main feature that links polycomb (PcG) activity to cancer. PcGs silence the expression of the tumour suppressor locus Ink4a/Arf, whose products positively regulate pRb and p53 functions. Enhanced PcG activity is a frequent feature of human...

  12. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... foci specifically during S phase. We have shown previously that Rad52 foci are centers of DNA repair where multiple DNA double-strand breaks colocalize. Here we report a correlation between the timing of Rad52 focus formation and modification of the Rad52 protein. In addition, we show that the two ends...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  13. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival

    Directory of Open Access Journals (Sweden)

    Silverman Lee

    2007-07-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C, had enhanced checkpoint kinase 1 (Chk1 serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1, diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T-cell

  14. N-Alkoxy derivatization of indole-3-carbinol increases the efficacy of the G1 cell cycle arrest and of I3C-specific regulation of cell cycle gene transcription and activity in human breast cancer cells.

    Science.gov (United States)

    Jump, Sarah M; Kung, Jenny; Staub, Richard; Kinseth, Matthew A; Cram, Erin J; Yudina, Larisa N; Preobrazhenskaya, Maria N; Bjeldanes, Leonard F; Firestone, Gary L

    2008-02-01

    Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables, such as cabbage, broccoli, and Brussels sprouts, induces a G1 cell cycle arrest of human breast cancer cells. Structure-activity relationships of I3C that mediate this anti-proliferative response were investigated using synthetic and natural I3C derivatives that contain substitutions at the indole nitrogen. Nitrogen substitutions included N-alkoxy substituents of one to four carbons in length, which inhibit dehydration and the formation of the reactive indolenine. Analysis of growth and cell cycle arrest of indole-treated human breast cancer cells revealed a striking increase in efficacy of the N-alkoxy I3C derivatives that is significantly enhanced by the presence of increasing carbon lengths of the N-alkoxy substituents. Compared to I3C, the half maximal growth arrest responses occurred at 23-fold lower indole concentration for N-methoxy I3C, 50-fold lower concentration for N-ethoxy I3C, 217-fold lower concentration for N-propoxy I3C, and 470-fold lower concentration for N-butoxy I3C. At these lower concentrations, each of the N-alkoxy substituted compounds induced the characteristic I3C response in that CDK6 gene expression, CDK6 promoter activity, and CDK2 specific enzymatic activity for its retinoblastoma protein substrate were strongly down-regulated. 3-Methoxymethylindole and 3-ethoxymethylindole were approximately as bioactive as I3C, whereas both tryptophol and melatonin failed to induce the cell cycle arrest, showing the importance of the C-3 hydroxy methyl substituent on the indole ring. Taken together, our study establishes the first I3C structure-activity relationship for cytostatic activities, and implicates I3C-based N-alkoxy derivatives as a novel class of potentially more potent experimental therapeutics for breast cancer.

  15. Immunohistochemical investigation of cell cycle and apoptosis regulators (Survivin, β-Catenin, P53, Caspase 3 in canine appendicular osteosarcoma

    Directory of Open Access Journals (Sweden)

    Bongiovanni Laura

    2012-06-01

    Full Text Available Abstract Background Osteosarcoma (OSA represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53 involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI and overall survival (OS. Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells was significantly associated with the development of metastasis (P = 0.014; moderate/high nuclear p53 expression (≥10% positive cells was significantly associated with moderate/high histological grade (P = 0.017 and shorter OS (P = 0.049. Moderate/high nuclear survivin expression (≥15% positive cells showed a tendency toward a longer OS (P = 0,088. Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies

  16. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    Directory of Open Access Journals (Sweden)

    Xiaojing Zou

    2017-01-01

    Full Text Available Platelets (PLTs are produced by megakaryocytes (MKs that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI, nicotinamide (NIC, Src inhibitor (SI, and Aurora B inhibitor (ABI and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  17. Korean Byungkyul - Citrus platymamma Hort.et Tanaka flavonoids induces cell cycle arrest and apoptosis, regulating MMP protein expression in Hep3B hepatocellular carcinoma cells.

    Science.gov (United States)

    Hong, Gyeong Eun; Lee, Ho Jeong; Kim, Jin A; Yumnam, Silvia; Raha, Suchismita; Venkatarame Gowda Saralamma, Venu; Heo, Jeong Doo; Lee, Sang Joon; Kim, Eun Hee; Won, Chun Kil; Kim, Gon Sup

    2017-02-01

    Citrus platymamma Hort.et Tanaka is an indigenous fruit of Jeju island in Korea. In this study the bioactivity of C. platymamma flavonoids were evaluated on human hepatoma Hep3B cell lines. Eleven flavonoids were identified from the peels of C. platymamma Hort.et Tanaka through high-performance liquid chromatography-Tandem mass spectrometry and the anticancer effect of these C. platymamma flavonoids on human hepatoma Hep3B were studied. Chromatin condensation was observed in Hep3B cells treated with C. platymamma flavonoids. DNA fragmentation was confirmed through agarose gel electrophoresis and TUNEL assay. An increase in the total apoptotic cells and G2/M cell cycle arrest with decreased protein expression of CDC25C, CDK1, cyclin B1 and p21 were observed in Hep3B cells treated with flavonoids of C. platymamma. Further, protein expression of Bcl-XL, Bax, caspase-3 and -9 were also modulated by C. platymamma flavonoids treatment indicating that cell death is through intrinsic apoptotic pathway. Moreover, C. platymamma flavonoids also regulated the phosphorylation of MAPKs, PI3K, and Akt in Hep3B cells. Relevant to inhibiting metastasis, C. platymamma treatment reduced wound closure of Hep3B cells and the protein expression of matrix metalloproteinase-2 and -9 were reduced in C. platymamma treated cells. The results show that C. platymamma flavonoids induce cell cycle arrest and apoptosis following activation of MAPKs and suppression of PI3K/Akt pathway which eventually inhibits cell migration in Hep3B cells. The finding provides evidence on biochemical activities of C. platymamma Hort.et Tanaka, which would be an essential agent for hepatocellular carcinoma (HCC) treatment.

  18. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors.

    Science.gov (United States)

    Casoni, Filippo; Croci, Laura; Bosone, Camilla; D'Ambrosio, Roberta; Badaloni, Aurora; Gaudesi, Davide; Barili, Valeria; Sarna, Justyna R; Tessarollo, Lino; Cremona, Ottavio; Hawkes, Richard; Warming, Søren; Consalez, G Giacomo

    2017-10-15

    The Zfp423/ZNF423 gene encodes a 30-zinc-finger transcription factor involved in key developmental pathways. Although null Zfp423 mutants develop cerebellar malformations, the underlying mechanism remains unknown. ZNF423 mutations are associated with Joubert Syndrome, a ciliopathy causing cerebellar vermis hypoplasia and ataxia. ZNF423 participates in the DNA-damage response (DDR), raising questions regarding its role as a regulator of neural progenitor cell cycle progression in cerebellar development. To characterize in vivo the function of ZFP423 in neurogenesis, we analyzed allelic murine mutants in which distinct functional domains are deleted. One deletion impairs mitotic spindle orientation, leading to premature cell cycle exit and Purkinje cell (PC) progenitor pool deletion. The other deletion impairs PC differentiation. In both mutants, cell cycle progression is remarkably delayed and DDR markers are upregulated in cerebellar ventricular zone progenitors. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time strengthens the emerging notion that an impaired DDR may be a key factor in the pathogenesis of JS and other ciliopathies. © 2017. Published by The Company of Biologists Ltd.

  19. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines.

    Science.gov (United States)

    Lam, Siew Hong; Lee, Serene G P; Lin, Chin Y; Thomsen, Jane S; Fu, Pan Y; Murthy, Karuturi R K; Li, Haixia; Govindarajan, Kunde R; Nick, Lin C H; Bourque, Guillaume; Gong, Zhiyuan; Lufkin, Thomas; Liu, Edison T; Mathavan, Sinnakaruppan

    2011-05-16

    The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen) and an anti-estrogen (ICI 182,780). Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa). Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE), is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry points for estrogen regulation. The findings

  20. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  1. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Abel L Carcagno

    Full Text Available BACKGROUND: A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. CONCLUSIONS/SIGNIFICANCE: The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell

  2. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  3. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  4. Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle.

    Science.gov (United States)

    Graf, Marco; Bonetti, Diego; Lockhart, Arianna; Serhal, Kamar; Kellner, Vanessa; Maicher, André; Jolivet, Pascale; Teixeira, Maria Teresa; Luke, Brian

    2017-06-29

    Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Nuclear Smad7 Overexpressed in Mesenchymal Cells Acts as a Transcriptional Corepressor by Interacting with HDAC-1 and E2F to Regulate Cell Cycle

    Directory of Open Access Journals (Sweden)

    Takashi Emori

    2012-02-01

    Smad family proteins are essential intracellular mediators that regulate transforming growth factor-β (TGF-β ligand signaling. In response to diverse stimuli, Smad7 is rapidly expressed and acts as a cytoplasmic inhibitor that selectively interferes with signals elicited from TGF-β family receptors. In addition, earlier works have indicated that retrovirally transduced Smad7 induces long-lasting cell proliferation arrest in a variety of mesenchymal cells through down-regulation of G1 cyclins. However, the molecular mechanisms underlying the cytostatic effects of Smad7 remain unknown. We show here that Smad7 can form a complex with endogenous histone deacetylase proteins HDAC-1 and HDAC-3 in NIH 3T3 mouse fibroblast cells. By contrast, forced expression of a dominant-negative variant of HDAC-1 efficiently protected cells against Smad7 proliferation inhibition, suggesting that Smad7 depends on the deacetylase activity of its associated HDAC-1 to arrest the cell cycle. Furthermore, Smad7 caused HDAC-1 bind to E2F-1 to form a ternary complex on chromosomal DNA containing an E2F-binding motif and leading to repression in the activity of the E2F target genes. Smad7 mutations that prevented its binding to either HDAC-1 or E2F-1 resulted in a significant decrease in Smad7-mediated inhibition of cell proliferation. The present results strongly suggest that nuclear Smad7 is a transcriptional corepressor for E2F, providing a molecular basis for the Smad7-induced arrest of the cell cycle.

  6. The Circadian Molecular Clock Regulates Adult Hippocampal Neurogenesis by Controlling the Timing of Cell-Cycle Entry and Exit

    Directory of Open Access Journals (Sweden)

    Pascale Bouchard-Cannon

    2013-11-01

    Full Text Available The subgranular zone (SGZ of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body.

  7. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.

  8. Morphological adaptation of sheep's rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis.

    Science.gov (United States)

    Xu, Lei; Wang, Yue; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2018-01-01

    The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n  = 5), 14 (G14, n  = 5) and 28 d (G28, n  = 5), respectively. In contrast, the control group (CON, n  = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased ( P  Bad mRNA expression tended to decrease (cubic, P  = 0.053) after HG feeding. These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.

  9. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shouping [Department of Diagnostic Imaging, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Wang, Xianjun [Department of Neurology, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Li, Xiao [Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Cao, Yuandong, E-mail: yuandongcao@sina.com [Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China)

    2015-11-13

    MicroRNA-139-5p was identified to be significantly down-regulated in glioblastoma multiform (GBM) by miRNA array. In this report we aimed to clarify its biological function, molecular mechanisms and direct target gene in GBM. Twelve patients with GBM were analyzed for the expression of miR-139-5p by quantitative RT-PCR. miR-139-5p overexpression was established by transfecting miR-139-5p-mimic into U87MG and T98G cells, and its effects on cell proliferation were studied using MTT assay and colony formation assays. We concluded that ectopic expression of miR-139-5p in GBM cell lines significantly suppressed cell proliferation and inducing apoptosis. Bioinformatics coupled with luciferase and western blot assays also revealed that miR-139-5p suppresses glioma cell proliferation by targeting ELTD1 and regulating cell cycle. - Highlights: • miR-139-5p is downregulated in GBM. • miR-139-5p regulates cell proliferation through inducing apoptosis. • miR-139-5p regulates glioblastoma tumorigenesis by targeting 3′UTR of ELTD1. • miR-139-5p is involved in cell cycle regulation.

  10. Fatty acid degradation plays an essential role in proliferation of mouse female primordial germ cells via the p53-dependent cell cycle regulation.

    Science.gov (United States)

    Teng, Hui; Sui, Xuesong; Zhou, Cheng; Shen, Cong; Yang, Ye; Zhang, Pang; Guo, Xuejiang; Huo, Ran

    2016-01-01

    Primordial germ cells (PGCs) are embryonic founders of germ cells that ultimately differentiate into oocytes and spermatogonia. Embryonic proliferation of PGCs starting from E11.5 ensures the presence of germ cells in adulthood, especially in female mammals whose total number of oocytes declines after this initial proliferation period. To better understand mechanisms underlying PGC proliferation in female mice, we constructed a proteome profile of female mouse gonads at E11.5. Subsequent KEGG pathway analysis of the 3,662 proteins profiled showed significant enrichment of pathways involved in fatty acid degradation. Further, the number of PGCs found in in vitro cultured fetal gonads significantly decreased with application of etomoxir, an inhibitor of the key rate-limiting enzyme of fatty acid degradation carnitine acyltransferase I (CPT1). Decrease in PGCs was further determined to be the result of reduced proliferation rather than apoptosis. The inhibition of fatty acid degradation by etomoxir has the potential to activate the Ca(2+)/CamKII/5'-adenosine monophosphate-activated protein kinase (AMPK) pathway; while as an upstream activator, activated AMPK can function as activator of p53 to induce cell cycle arrest. Thus, we detected the expressional level of AMPK, phosphorylated AMPK (P-AMPK), phosphorylated p53 (P-p53) and cyclin-dependent kinase inhibitor 1 (p21) by Western blots, the results showed increased expression of them after treatment with etomoxir, suggested the activation of p53 pathway was the reason for reduced proliferation of PGCs. Finally, the involvement of p53-dependent G1 cell cycle arrest in defective proliferation of PGCs was verified by rescue experiments. Our results demonstrate that fatty acid degradation plays an important role in proliferation of female PGCs via the p53-dependent cell cycle regulation.

  11. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription

    DEFF Research Database (Denmark)

    Christensen, Jesper; Cloos, Paul; Toftegaard, Ulla

    2005-01-01

    The E2F family of transcription factors are downstream effectors of the retinoblastoma protein, pRB, pathway and are essential for the timely regulation of genes necessary for cell-cycle progression. Here we describe the characterization of human and murine E2F8, a new member of the E2F family...

  12. P120-catenin isoforms 1 and 3 regulate proliferation and cell cycle of lung cancer cells via β-catenin and Kaiso respectively.

    Directory of Open Access Journals (Sweden)

    Guiyang Jiang

    Full Text Available BACKGROUND: The different mechanisms involved in p120-catenin (p120ctn isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date. METHODS AND FINDINGS: We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection with siRNA-cyclin D1 in p120ctn depleted cells restoring p120ctn-1A or 3A, the expression of cyclin E was slightly decreased, not increased, implying that p120ctn isoforms 1 and 3 cannot up-regulate cyclin E directly but may do so through up-regulation of cyclin D1. Interestingly, overexpression of p120ctn-1A increased β-catenin and cyclin D1 expression, while co-transfection with siRNA targeting β-catenin abolishes the effect of p120ctn-1A on up-regulation of cyclin D1, suggesting a role of β-catenin in mediating p120ctn-1A's regulatory function on cyclin D1 expression. On the other hand, overexpression of p120ctn isoform 3A reduced nuclear Kaiso localization, thus decreasing the binding of Kaiso to KBS on the cyclin D1 promoter and thereby enhancing the expression of cyclin D1 gene by relieving the repressor effect of Kaiso. Because overexpressing NLS-p120ctn-3A (p120ctn-3A nuclear target localization plasmids or inhibiting nuclear export of p120ctn-3 by Leptomycin B (LMB caused translocation of Kaiso to the nucleus, it is plausible that the nuclear export of Kaiso is p120ctn-3-dependent. CONCLUSIONS: Our results suggest that p120ctn isoforms 1 and 3 up-regulate cyclin D1, and thereby cyclin E, resulting in the promotion of cell proliferation and cell cycle progression in lung cancer cells probably via different protein mediators, namely, β-catenin for isoform 1 and Kaiso, a negative transcriptional factor of cyclin D1, for isoform 3.

  13. Analysis of cell cycle regulated and regulating proteins following exposure of lung derived cells to sub-lethal doses of a-rays

    Science.gov (United States)

    Trani, D.; Claudio, P. P.; Cassone, M.; Lucchetti, C.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Introduction Since the last century mankind had to face an increased exposure to man made and natural sources of radiation Radiation represents a therapeutic instrument for radiosensitive cancers as well as a cytotoxic agent for normal human tissues The effects of prolonged exposure to low doses of high energy radiation are still not well-known at the molecular and clinical level Understanding their molecular effects will aid in developing more tailored therapeutic strategies as well as implementing radio-protective measures essential prerequisite for the long-time permanence of men in space Objective of the study The general aim of this study was to evaluate the susceptibility and the response of lung epithelial cells to DNA damage induced by ionizing radiations We decided to study a panel of epithelial bronchial cell lines because of their fast-growth rate and their prominent exposure to both environmental and medical radiations The specific objective of our study was to qualitatively and semi-quantitatively assess the involvement and behaviour of selected genes in DNA damage DNA-repair mechanisms and apoptosis which follow radiation exposure with the aim to determine the involvement of the most promising targets for the early detection of radiation-mediated lung damage before chronic disease develops Methods Four epithelial cell lines one normal and three neoplastic were selected in order to detect and compare survival cell cycle and protein expression differences related to their different genetic asset

  14. MiR-376c-3p regulates the proliferation, invasion, migration, cell cycle and apoptosis of human oral squamous cancer cells by suppressing HOXB7.

    Science.gov (United States)

    Wang, Kai; Jin, Jun; Ma, Tengxiao; Zhai, Hongfeng

    2017-07-01

    To test the influence of miR-376c-3p on the proliferation, invasion, migration, cell cycle and apoptosis of human oral squamous cancer cells (OSCC) and the relevant mechanism. We applied qRT-PCR and Western blot to compare the expression level of miR-376c-3p and HOXB7 in SCC-4, SCC-9, SCC-15, SCC-25 OSCC cell lines and 49 paired OSCC and normal oral epithelial tissue specimens were included in our present study. Also we analyzed the relative relationship of expression level between miR-376c-3p and HOXB7 in cancer tissues. Luciferase assay was used to confirm the target relationship between miR-376c-3p and HOXB7. Besides, MTT, Transwell, wound healing, colony formation and flow cytometer experiments were applied to evaluate the proliferation, cell viability, apoptosis, invasion and migration of transfected OSCC. MiR-376c-3p was down-regulated while HOXB7 was up-regulated in OSCC tissues and cells than the normal ones. MiR-376c-3p directly targeted HOXB7 and reduced the expression of HOXB7. Overexpression of miR-376c-3p attenuated proliferation of SCC-9, SCC-15, SCC-24 and SCC-25 cells. Moreover, miR-376c-3p suppressed proliferation, viability, migration and invasion and induced G1/G0 arrest and cell apoptosis of SCC-25 cells. Besides, overexpression of HOXB7 efficiently abrogates these influences caused by overexpression of miR-376c-3p. MiR-376c-3p suppresses the fission, proliferation, migration and invasion and induces cell apoptosis of OSCC via targeting HOXB7. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation

    Directory of Open Access Journals (Sweden)

    Hye Young Park

    Full Text Available AbstractFucoidan, a sulfated polysaccharide found in marine algae and brown seaweeds, has been shown to inhibit the in vitro growth of human cancer cells. This study was conducted in cultured human bladder cancer EJ cells to elucidate the possible mechanisms by which fucoidan exerts its anti-proliferative activity, which until now has remained poorly understood. Fucoidan treatment of EJ cells resulted in dose-dependent inhibition of cell growth and induced apoptotic cell death. Flow cytometric analysis revealed that fucoidan led to G1 arrest in cell cycle progression. It was associated with down-regulation of cyclin D1, cyclin E, and cyclin-dependent-kinases (Cdks in a concentration-dependent manner, without any change in Cdk inhibitors, such as p21 and p27. Furthermore, dephosphorylation of retinoblastoma protein (pRB by this compound was associated with enhanced binding of pRB with the transcription factors E2F-1 and E2F-4. Overall, our results demonstrate that fucoidan possesses anticancer activity potential against bladder cancer cells by inhibiting pRB phosphorylation.

  16. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong-Jun; Kang, Hana [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Kim, Min Young [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Pyo, Suhkneung [College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do (Korea, Republic of); Yang, Kwang Hee, E-mail: kwangheey@khnp.co.kr [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of)

    2016-04-01

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.

  17. Prevention of B cell antigen receptor-induced apoptosis by ligation of CD40 occurs downstream of cell cycle regulation

    NARCIS (Netherlands)

    Mackus, Wendelina J. M.; Lens, Susanne M. A.; Medema, René H.; Kwakkenbos, Mark J.; Evers, Ludo M.; Oers, Marinus H. J. van; van Lier, René A. W.; Eldering, Eric

    2002-01-01

    Cross-linking of the B cell antigen receptor (BCR) on germinal center B cells can induce growth arrest and apoptosis, thereby eliminating potentially autoreactive B cells. Using the Burkitt lymphoma cell line Ramos as a model, we studied the commitment to apoptosis following growth arrest, as well

  18. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers

    Directory of Open Access Journals (Sweden)

    Sun J

    2015-12-01

    <0.05. The general apoptosis biomarker, Bcl-2, was significantly decreased and the Bax was significantly increased compared to the control group (P<0.05. In contrast to that in MCF-7, D. candidum does not affect cell proliferation at any concentration and any time points in normal breast epithelial cells, MCF10A cells. Conclusion: D. candidum could decrease the cell viability of MCF-7 cells by inducing cell cycle arrest at the G2/M phase and regulating the key biomarkers in breast cancer cells. Keywords: breast cancer, D. candidum, proliferation, biomarker, inhibition

  19. Oncostatin M-stimulated apical plasma membrane biogenesis requires p27(Kip1)-regulated cell cycle dynamics

    NARCIS (Netherlands)

    Van IJzendoorn, Sven C D; Théard, Delphine; Van Der Wouden, Johanna M; Visser, Willy; Wojtal, Kacper A; Hoekstra, Dick

    Oncostatin M regulates membrane traffic and stimulates apicalization of the cell surface in hepatoma cells in a protein kinase A-dependent manner. Here, we show that oncostatin M enhances the expression of the cyclin-dependent kinase (cdk)2 inhibitor p27(Kip1), which inhibits G(1)-S-phase

  20. Effects of in vitro exposure to diarrheic toxin producer Prorocentrum lima on gene expressions related to cell cycle regulation and immune response in Crassostrea gigas.

    Science.gov (United States)

    de Jesús Romero-Geraldo, Reyna; García-Lagunas, Norma; Hernández-Saavedra, Norma Yolanda

    2014-01-01

    Crassostrea gigas accumulates diarrheic shellfish toxins (DSP) associated to Prorocentrum lima of which Okadaic acid (OA) causes specific inhibitions of serine and threonine phosphatases 1 and 2A. Its toxic effects have been extensively reported in bivalve mollusks at cellular and physiological levels, but genomic approaches have been scarcely studied. Acute and sub-chronic exposure effects of P. lima were investigated on farmed juvenile C. gigas (3-5 mm). The Pacific oysters were fed with three dinoflagellate concentrations: 0.3, 3, and 30 ×10(3) cells mL-1 along with a nontoxic control diet of Isochrysis galbana. The effects of P. lima on C. gigas were followed by analyzing expression levels of a total of four genes, three involved in cell cycle regulation and one in immune response by polymerase chain reaction and real time quantitative PCR, where changes in time and cell concentration were found. The highest expression levels were found in oysters fed 3 × 10(3) cells mL-1 at 168 h for the cycle regulator p21 protein (9 fold), chromatin assembly factor 1 p55 subunit (8 fold), elongation factor 2 (2 fold), and lipopolysaccharide/β-1, 3 glucan binding protein (13 fold above base line). Additionally, the transcript level of all the genes decreased in oysters fed wich the mixed diet 30 × 10(3) cells mL-1 of dinoflagellate after 72 h and was lowest in the chromatin assembly factor 1 p55 subunit (0.9 fold below baseline). On C. gigas the whole cell ingestion of P lima caused a clear mRNA modulation expression of the genes involved in cell cycle regulation and immune system. Over-expression could be related to DNA damage, disturbances in cell cycle continuity, probably a genotoxic effect, as well as an activation of its innate immune system as first line of defense.

  1. Effects of in vitro exposure to diarrheic toxin producer Prorocentrum lima on gene expressions related to cell cycle regulation and immune response in Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Reyna de Jesús Romero-Geraldo

    Full Text Available BACKGROUND: Crassostrea gigas accumulates diarrheic shellfish toxins (DSP associated to Prorocentrum lima of which Okadaic acid (OA causes specific inhibitions of serine and threonine phosphatases 1 and 2A. Its toxic effects have been extensively reported in bivalve mollusks at cellular and physiological levels, but genomic approaches have been scarcely studied. METHODOLOGY/PRINCIPAL FINDINGS: Acute and sub-chronic exposure effects of P. lima were investigated on farmed juvenile C. gigas (3-5 mm. The Pacific oysters were fed with three dinoflagellate concentrations: 0.3, 3, and 30 ×10(3 cells mL-1 along with a nontoxic control diet of Isochrysis galbana. The effects of P. lima on C. gigas were followed by analyzing expression levels of a total of four genes, three involved in cell cycle regulation and one in immune response by polymerase chain reaction and real time quantitative PCR, where changes in time and cell concentration were found. The highest expression levels were found in oysters fed 3 × 10(3 cells mL-1 at 168 h for the cycle regulator p21 protein (9 fold, chromatin assembly factor 1 p55 subunit (8 fold, elongation factor 2 (2 fold, and lipopolysaccharide/β-1, 3 glucan binding protein (13 fold above base line. Additionally, the transcript level of all the genes decreased in oysters fed wich the mixed diet 30 × 10(3 cells mL-1 of dinoflagellate after 72 h and was lowest in the chromatin assembly factor 1 p55 subunit (0.9 fold below baseline. CONCLUSIONS: On C. gigas the whole cell ingestion of P lima caused a clear mRNA modulation expression of the genes involved in cell cycle regulation and immune system. Over-expression could be related to DNA damage, disturbances in cell cycle continuity, probably a genotoxic effect, as well as an activation of its innate immune system as first line of defense.

  2. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins

    Directory of Open Access Journals (Sweden)

    Ying H

    2018-02-01

    Full Text Available Hanning Ying,1,2 Zhiyao Xu,3 Mingming Chen,1,2 Senjun Zhou,1,2 Xiao Liang,1,2 Xiujun Cai1,2 1Department of General Surgery, 2Key Laboratory of Endoscopic Technique Research of Zhejiang Province, 3Central Lab of Biomedical Research Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China Introduction: Zwint, a centromere-complex component required for the mitotic spindle checkpoint, has been reported to be overexpressed in different human cancers, but it has not been studied in human hepatocellular carcinoma (HCC.Materials and methods: The role of Zwint in hepatocellular carcinoma cell proliferation capacities was evaluated by using cell counting kit-8 (CCK8, flow cytometry, clone formation and tumor formation assay in nude mice. Western blot analysis and qPCR assay were performed to assess Zwint interacting with cell-cycle-related proteins.Results: We report that ZWINT mRNA and protein expression were upregulated in HCC samples and cell lines. An independent set of 106 HCC-tissue pairs and corresponding noncancerous tissues was evaluated for Zwint expression using immunohistochemistry, and elevated Zwint expression in HCC tissues was significantly correlated with clinicopathological features, such as tumor size and number. Kaplan–Meier survival and Cox regression analysis revealed that high expression of Zwint was correlated with poor overall survival and a greater tendency for tumor recurrence. Ectopic expression of Zwint promoted HCC-cell proliferation, and Zwint expression affected the expression of several cell-cycle proteins, including PCNA, cyclin B1, Cdc25C and CDK1.Conclusion: Our findings suggest that upregulation of Zwint may contribute to the progression of HCC and may be a prognostic biomarker and potential therapeutic target for treating HCC. Keywords: Zwint, hepatocellular carcinoma, HCC, prognosis, cell proliferation, cell cycle

  3. Cell cycle entry in C. elegans development

    NARCIS (Netherlands)

    Korzelius, J.P.

    2010-01-01

    Cell division is controlled by a mechanism that uses Cyclins, in association with their Cyclin-dependent kinase partners (Cdk’s), to regulate the transitions in the cell cycle.Studies in mammalian cell culture and single cell eukaryotes such as budding and fission yeast have uncovered much about how

  4. HBXIP regulates etoposide-induced cell cycle checkpoints and apoptosis in MCF-7 human breast carcinoma cells.

    Science.gov (United States)

    Fei, Hong-Rong; Li, Zhao-Jun; Ying-Zhang; Yue-Liu; Wang, Feng-Ze

    2018-03-20

    Etoposide, an anticancer DNA topoisomerase II poison, plays an important role in the therapy for human cancers. Unfortunately, many cancers develop etoposide resistance and do not respond to chemotherapy, leading to difficulty in treatment and poor prognosis. In this study, we investigate the effects of HBXIP gene silencing on etoposide chemosensitivity in MCF-7 human breast cancer cells. We find that etoposide increases HBXIP expression and promotes mobilization of HBXIP to the nucleus in MCF-7 cells. Knockdown of HBXIP alleviates etoposide-induced G2/M or S phase arrest. Upregulation of p53 and p21 upon etoposide treatment is attenuated in HBXIP knock-down cells. Moreover, HBXIP gene silencing sensitizes etoposide-induced cell apoptosis and cleavage of caspase-9 and PARP in MCF-7 cells. Knockdown of HBXIP expression by RNAi abrogates the etoposide-activated ERK and Akt. These results indicate that HBXIP can modulate the etoposide sensitivity of MCF-7 cell lines and further implicate HBXIP as a target for human breast cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Analysis of Cell Cycle Dynamics using Probabilistic Cell Cycle Models

    Science.gov (United States)

    Gurkan-Cavusoglu, Evren; Schupp, Jane E.; Kinsella, Timothy J.; Loparo, Kenneth A.

    2013-01-01

    In this study, we develop asynchronous probabilistic cell cycle models to quantitatively assess the effect of ionizing radiation on a human colon cancer cell line. We use both synchronous and asynchronous cell populations and follow treated cells for up to 2 cell cycle times. The model outputs quantify the changes in cell cycle dynamics following ionizing radiation treatment, principally in the duration of both G1 and G2/M phases. PMID:22254270

  6. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2013-01-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  7. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  8. Transforming growth factor beta isoforms regulation of Akt activity and XIAP levels in rat endometrium during estrous cycle, in a model of pseudopregnancy and in cultured decidual cells

    Directory of Open Access Journals (Sweden)

    Asselin Eric

    2009-08-01

    Full Text Available Abstract Background During the estrous cycle, the rat uterine endometrium undergoes many changes such as cell proliferation and apoptosis. If implantation occurs, stromal cells differentiate into decidual cells and near the end of pregnancy, a second wave of apoptosis occurs. This process called decidual regression, is tightly regulated as is it crucial for successful pregnancy. We have previously shown that TGF-beta1, TGF-beta2 and TGF-beta3 are expressed in the endometrium during decidual basalis regression, but although we had demonstrated that TGF- beta1 was involved in the regulation of apoptosis in decidual cells, the ability of TGF- beta2 and TGF-beta3 isoforms to trigger apoptotic mechanisms in these cells remains unknown. Moreover, we hypothesized that the TGF-betas were also present and regulated in the non-pregnant endometrium during the estrous cycle. The aim of the present study was to determine and compare the specific effect of each TGF-β isoform in the regulation of apoptosis in sensitized endometrial stromal cells in vitro, and to investigate the regulation of TGF-beta isoforms in the endometrium during the estrous cycle in vivo. Methods Rats with regular estrous cycle (4 days were killed at different days of estrous cycle (diestrus, proestrus, estrus and metestrus. Pseudopregnancy was induced with sex steroids in ovariectomized rats and rats were killed at different days (days 1–9. Uteri were collected and either fixed for immunohistochemical staining (IHC or processed for RT-PCR and Western analyses. For the in vitro part of the study, rats were ovariectomized and decidualization was induced using sex steroids. Endometrial stromal decidual cells were purified, cultured and treated with different concentrations of TGF-beta isoforms. Results Our results showed that all three TGF-beta isoforms are present, but are localized differently in the endometrium during the estrous cycle and their expression is regulated differently

  9. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest.

    Science.gov (United States)

    Yoo, Su-Hyang; Lim, Yong; Kim, Seung-Jung; Yoo, Kyu-Dong; Yoo, Hwan-Soo; Hong, Jin-Tae; Lee, Mi-Yea; Yun, Yeo-Pyo

    2013-01-01

    Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis. © 2013.

  10. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle

    OpenAIRE

    Boros, László G; D’Agostino, Dominic P.; Katz, Howard E.; Roth, Justine P.; Meuillet, Emmanuelle J.; Somlyai, Gábor

    2015-01-01

    The naturally occurring isotope of hydrogen (1H), deuterium (2H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain redu...

  11. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer

    International Nuclear Information System (INIS)

    Chang, J.-L.; Chen, T.-H.; Wang, C.-F.; Chiang, Y.-H.; Huang, Y.-L.; Wong, F.-H.; Chou, C.-K.; Chen, C.-M.

    2006-01-01

    Chromosomal passenger proteins including Aurora B, Survivin, and Borealin/Dasra B, also called CDCA8/FLJ10468, are known to play crucial roles during mitosis and cell division. Inappropriate chromosomal segregation and cell division may cause auneuploidy leading to cancer. However, it is still unclear how the expression of chromosomal passenger proteins may be linked to cancer. In this study, we demonstrated that Borealin is a cell cycle-regulated gene and is upregulated at G2-M phases of the cell cycle. We showed that Borealin interacts with Survivin but not with Aurora B. The interaction domain of Survivin in Borealin was mapped to the N-terminal 92 amino-acid residues of Borealin. To examine the linkage between expression of Borealin and cancer, we performed immunohistochemistry analysis using anti-Borealin specific antibody on the paraffin-embedded gastric cancer tissues. Our results showed that Borealin expression is significantly correlated with Survivin (P = 0.003) and Ki67 (P = 0.007) in gastric cancer. Interestingly, an increased nuclear Borealin level reveals borderline association with a poor survival rate (P = 0.047). Taken together, our results demonstrated that Borealin is a cell cycle-regulated chromosomal passenger protein and its aberrant expression is linked to a poor prognosis for gastric cancer

  12. Expression of the cell cycle regulation proteins p53 and p21WAF1 in different types of non-dysplastic leukoplakias

    OpenAIRE

    Visioli, Fernanda; Lauxen, Isabel Silva; Sant'Ana Filho, Manoel; Rados, Pantelis Varvaki

    2012-01-01

    OBJECTIVES: The aim of this study was to analyze the immunolabeling of two cell cycle protein regulators, p53 and p21WAF1, in non-dysplastic leukoplakias with different epithelial alterations: acanthosis, hyperkeratosis and acanthosis combined with hyperkeratosis, and compare them with dysplastic leukoplakias. MATERIAL AND METHODS: This was a prospective cohort study involving 36 patients with oral homogeneous leukoplakias. excisional biopsies were performed and the patients remain under clin...

  13. Effectiveness and student perceptions of an active learning activity using a headline news story to enhance in-class learning of cell cycle regulation.

    Science.gov (United States)

    Dirks-Naylor, Amie J

    2016-06-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation, students completed a 10-question multiple-choice quiz before and after engaging in the activity. The activity involved reading of a headline news article published by ScienceDaily.com entitled "One Gene Lost Equals One limb Regained." The name of the gene was deleted from the article and, thus, the end goal of the activity was to determine the gene of interest by the description in the story. The activity included compiling a list of all potential gene candidates before sufficient information was given to identify the gene of interest (p21). A survey was completed to determine student perceptions of the activity. Quiz scores improved by an average of 20% after the activity (40.1 ± 1.95 vs. 59.9 ± 2.14,Pactivity, found the news article interesting, and believed that the activity improved their understanding of cell cycle regulation. The majority of students agreed that the in-class activity piqued their interest for learning the subject matter and also agreed that if they understand a concept during class, they are more likely to want to study that concept outside of class. In conclusion, the activity improved in-class understanding and enhanced interest in cell cycle regulation. Copyright © 2016 The American Physiological Society.

  14. MicroRNA-302/367 Cluster Governs hESC Self-Renewal by Dually Regulating Cell Cycle and Apoptosis Pathways

    Directory of Open Access Journals (Sweden)

    Zhonghui Zhang

    2015-04-01

    Full Text Available miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle and apoptosis in dose-dependent manner. Gene profiling and functional studies identified key targets of the miR-302/367 cluster in regulating hESC self-renewal and apoptosis. We demonstrate that in addition to its role in cell cycle regulation, miR-302/367 cluster conquers apoptosis by downregulating BNIP3L/Nix (a BH3-only proapoptotic factor and upregulating BCL-xL expression. Furthermore, we show that butyrate, a natural compound, upregulates miR-302/367 cluster expression and alleviates hESCs from apoptosis induced by knockdown of miR-302/367 cluster. In summary, our findings provide new insights in molecular mechanisms of how miR-302/367 cluster regulates hESCs.

  15. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  16. Interferon regulatory factor-1 together with reactive oxygen species promotes the acceleration of cell cycle progression by up-regulating the cyclin E and CDK2 genes during high glucose-induced proliferation of vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Xi; Liu, Long; Chen, Chao; Chi, Ya-Li; Yang, Xiang-Qun; Xu, Yan; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Shen, Man-Ru; Sun, Yu; Zhang, Chuan-Sen; Hu, Kai-Meng

    2013-10-14

    The high glucose-induced proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the development of diabetic vascular diseases. In a previous study, we confirmed that Interferon regulatory factor-1 (Irf-1) is a positive regulator of the high glucose-induced proliferation of VSMCs. However, the mechanisms remain to be determined. The levels of cyclin/CDK expression in two cell models involving Irf-1 knockdown and overexpression were quantified to explore the relationship between Irf-1 and its downstream effectors under normal or high glucose conditions. Subsequently, cells were treated with high glucose/NAC, normal glucose/H₂O₂, high glucose/U0126 or normal glucose/H₂O₂/U0126 during an incubation period. Then proliferation, cyclin/CDK expression and cell cycle distribution assays were performed to determine whether ROS/Erk1/2 signaling pathway was involved in the Irf-1-induced regulation of VSMC growth under high glucose conditions. We found that Irf-1 overexpression led to down-regulation of cyclin D1/CDK4 and inhibited cell cycle progression in VSMCs under normal glucose conditions. In high glucose conditions, Irf-1 overexpression led to an up-regulation of cyclin E/CDK2 and an acceleration of cell cycle progression, whereas silencing of Irf-1 suppressed the expression of both proteins and inhibited the cell cycle during the high glucose-induced proliferation of VSMCs. Treatment of VSMCs with antioxidants prevented the Irf-1 overexpression-induced proliferation of VSMCs, the up-regulation of cyclin E/CDK2 and the acceleration of cell cycle progression in high glucose conditions. In contrast, under normal glucose conditions, H₂O₂ stimulation and Irf-1 overexpression induced cell proliferation, up-regulated cyclin E/CDK2 expression and promoted cell cycle acceleration. In addition, overexpression of Irf-1 promoted the activation of Erk1/2 and when VSMCs overexpressing Irf-1 were treated with U0126, the specific Erk1/2 inhibitor

  17. SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells.

    Science.gov (United States)

    Kang, Seongeun; Kim, Byungtak; Kang, Han-Sung; Jeong, Gookjoo; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Kim, Sun Jung

    2015-11-01

    Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (pcells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.

  18. Virus manipulation of cell cycle.

    Science.gov (United States)

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  19. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: to manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation.

    Science.gov (United States)

    Singh, Badri Nath; Achary, V Mohan Murali; Panditi, Varakumar; Sopory, Sudhir K; Reddy, Malireddy K

    2017-08-01

    The topoisomerase II expression varies as a function of cell proliferation. Maximal topoisomerase II expression was tightly coupled to S phase and G2/M phase via both transcriptional and post-transcriptional regulation. Investigation in meiosis using pollen mother cells also revealed that it is not the major component of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed. Synchronized tobacco BY-2 cell cultures were used to study the role of topoisomerase II in various stages of the cell cycle. Topoisomerase II transcript accumulation was observed during the S- and G2/M- phase of cell cycle. This biphasic expression pattern indicates the active requirement of topoisomerase II during these stages of the cell cycle. Through immuno-localization of topoisomerase II was observed diffusely throughout the nucleoplasm in interphase nuclei, whereas, the nucleolus region exhibited a more prominent immuno-positive staining that correlated with rRNA transcription, as shown by propidium iodide staining and BrUTP incorporation. The immuno-staining analysis also showed that topoisomerase II is the major component of mitotic chromosomes and remain attached to the chromosomes during cell division. The inhibition of topoisomerase II activity using specific inhibitors revealed quite dramatic effect on condensation of chromatin and chromosome individualization from prophase to metaphase transition. Partially condensed chromosomes were not arranged on metaphase plate and chromosomal perturbations were observed when advance to anaphase, suggesting the importance of topoisomerase II activity for proper chromosome condensation and segregation during mitosis. Contrary, topoisomerase II is not the major component of meiotic chromosomes, even though mitosis and meiosis share many processes, including the DNA replication, chromosome condensation and precisely regulated partitioning of chromosomes into daughter cells. Even if topoisomerase II is

  20. TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.

    Science.gov (United States)

    Wu, Junfang; Renn, Cynthia L; Faden, Alan I; Dorsey, Susan G

    2013-07-24

    Spinal cord injury (SCI) frequently causes severe, persistent central neuropathic pain that responds poorly to conventional pain treatments. Brain-derived neurotrophic factor (BDNF) signaling appears to contribute to central sensitization and nocifensive behaviors in certain animal models of chronic pain through effects mediated in part by the alternatively spliced truncated isoform of the BDNF receptor tropomyosin-related kinase B.T1 (trkB.T1). Mechanisms linking trkB.T1 to SCI-induced chronic central pain are unknown. Here, we examined the role of trkB.T1 in central neuropathic pain after spinal cord contusion. Genetic deletion of trkB.T1 in mice significantly reduced post-SCI mechanical hyperesthesia, locomotor dysfunction, lesion volumes, and white matter loss. Whole genome analysis, confirmed at the protein level, revealed that cell cycle genes were upregulated in trkB.T1(+/+) but not trkB.T1(-/-) spinal cord after SCI. TGFβ-induced reactive astrocytes from WT mice showed increased cell cycle protein expression that was significantly reduced in astrocytes from trkB.T1(-/-) mice that express neither full-length trkB nor trkB.T1. Administration of CR8, which selectively inhibits cyclin-dependent kinases, reduced hyperesthesia, locomotor deficits, and dorsal horn (SDH) glial changes after SCI, similar to trkB.T1 deletion, without altering trkB.T1 protein expression. In trkB.T1(-/-) mice, CR8 had no effect. These data indicate that trkB.T1 contributes to the pathobiology of SCI and SCI pain through modulation of cell cycle pathways and suggest new therapeutic targets.

  1. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway.

    Science.gov (United States)

    Kim, Joo-Young; Yi, Bo-Rim; Go, Ryeo-Eun; Hwang, Kyung-A; Nam, Ki-Hoan; Choi, Kyung-Chul

    2014-05-01

    Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Harrison David J

    2007-11-01

    Full Text Available Abstract Background TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how Rb-deficiency would affect responses to TGFβ-induced cell cycle arrest. Results Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16INK4A and P21Cip and reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16INK4A was not activated and the great majority of cells continued cycling. Rb is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cip1 and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of p53 and p21Cip1. Hepatocytes deficient in p53 or p21Cip1 showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21Cip and P53 work through the same pathway to regulate G1/S in response to TGFβ. In Rb-deficient cells however, p53 but not p21Cip deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity. Conclusion The present results show that otherwise genetically normal hepatocytes with disabled p53, p21Cip1 or Rb genes respond less well to the antiproliferative effects of TGFβ. As the function of

  3. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast.

    Directory of Open Access Journals (Sweden)

    Richard C Silva

    Full Text Available The Saccharomyces cerevisiae protein Yih1, when overexpressed, inhibits the eIF2 alpha kinase Gcn2 by competing for Gcn1 binding. However, deletion of YIH1 has no detectable effect on Gcn2 activity, suggesting that Yih1 is not a general inhibitor of Gcn2, and has no phenotypic defect identified so far. Thus, its physiological role is largely unknown. Here, we show that Yih1 is involved in the cell cycle. Yeast lacking Yih1 displays morphological patterns and DNA content indicative of a delay in the G2/M phases of the cell cycle, and this phenotype is independent of Gcn1 and Gcn2. Accordingly, the levels of phosphorylated eIF2α, which show a cell cycle-dependent fluctuation, are not altered in cells devoid of Yih1. We present several lines of evidence indicating that Yih1 is in a complex with Cdc28. Yih1 pulls down endogenous Cdc28 in vivo and this interaction is enhanced when Cdc28 is active, suggesting that Yih1 modulates the function of Cdc28 in specific stages of the cell cycle. We also demonstrate, by Bimolecular Fluorescence Complementation, that endogenous Yih1 and Cdc28 interact with each other, confirming Yih1 as a bona fide Cdc28 binding partner. Amino acid substitutions within helix H2 of the RWD domain of Yih1 enhance Yih1-Cdc28 association. Overexpression of this mutant, but not of wild type Yih1, leads to a phenotype similar to that of YIH1 deletion, supporting the view that Yih1 is involved through Cdc28 in the regulation of the cell cycle. We further show that IMPACT, the mammalian homologue of Yih1, interacts with CDK1, the mammalian counterpart of Cdc28, indicating that the involvement with the cell cycle is conserved. Together, these data provide insights into the cellular function of Yih1/IMPACT, and provide the basis for future studies on the role of this protein in the cell cycle.

  4. Transcriptional landscape of the human cell cycle.

    Science.gov (United States)

    Liu, Yin; Chen, Sujun; Wang, Su; Soares, Fraser; Fischer, Martin; Meng, Feilong; Du, Zhou; Lin, Charles; Meyer, Clifford; DeCaprio, James A; Brown, Myles; Liu, X Shirley; He, Housheng Hansen

    2017-03-28

    Steady-state gene expression across the cell cycle has been studied extensively. However, transcriptional gene regulation and the dynamics of histone modification at different cell-cycle stages are largely unknown. By applying a combination of global nuclear run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-modification Chip sequencing (ChIP-seq), we depicted a comprehensive transcriptional landscape at the G0/G1, G1/S, and M phases of breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis identified different cell-cycle-regulated genes, suggesting a lag between transcription and steady-state expression during the cell cycle. Interestingly, we identified genes actively transcribed at early M phase that are longer in length and have low expression and are accompanied by a global increase in active histone 3 lysine 4 methylation (H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifications. In addition, we identified 2,440 cell-cycle-regulated enhancer RNAs (eRNAs) that are strongly associated with differential active transcription but not with stable expression levels across the cell cycle. Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4) as a key regulator of G1/S transition, and this identification was validated experimentally. Taken together, our combined analysis characterized the transcriptional and histone-modification profile of the human cell cycle and identified dynamic transcriptional signatures across the cell cycle.

  5. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L.

    2009-01-01

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10 -7 and 10 -6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10 -5 and 10 -4 M), and COX-2 inhibitor: celecoxib (10 -6 and 10 -5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27 kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27 kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27 kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  6. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    Directory of Open Access Journals (Sweden)

    Ferguson Moira M

    2010-07-01

    Full Text Available Abstract Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing and mapped using family-based indels/SNPs in rainbow trout (RT(Oncorhynchus mykiss, Arctic charr (AC(Salvelinus alpinus, and Atlantic salmon (AS(Salmo salar mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL for life history and growth traits (i.e., reproduction and cell cycling. Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh, regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2, regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs are located in other life-history QTL regions within

  7. Aqueous extract of red deer antler promotes hair growth by regulating the hair cycle and cell proliferation in hair follicles.

    Science.gov (United States)

    Li, Jing-jie; Li, Zheng; Gu, Li-juan; Wang, Yun-bo; Lee, Mi-ra; Sung, Chang-keun

    2014-01-01

    Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4 °C or 100 °C and injected subcutaneously to two separate groups of mice (n = 9) at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4 °C and the 100 °C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region.

  8. Aqueous Extract of Red Deer Antler Promotes Hair Growth by Regulating the Hair Cycle and Cell Proliferation in Hair Follicles

    Directory of Open Access Journals (Sweden)

    Jing-jie Li

    2014-01-01

    Full Text Available Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4°C or 100°C and injected subcutaneously to two separate groups of mice (n=9 at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4°C and the 100°C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region.

  9. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Teresa L.F. Ho

    2016-04-01

    Full Text Available Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.

  10. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    Science.gov (United States)

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-08

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. MsJ1, an alfalfa DnaJ-like gene, is tissue-specific and transcriptionally regulated during cell cycle.

    Science.gov (United States)

    Frugis, G; Mele, G; Giannino, D; Mariotti, D

    1999-06-01

    DnaJ-like proteins are molecular chaperones that regulate Hsp70 ATPase activity both in protein folding, assembly and disassembly of protein complexes. Here we report the isolation of MsJ1, an alfalfa gene encoding a protein homologous to cytosolic DnaJ-like proteins. MsJ1 was induced under heat-shock treatment in both leaves and stems of adult plants. In the absence of heat shock MsJ1 expression was tissue-specific with the highest levels of mRNA in roots and in embryonal structures. High levels of transcript were also detected in cotyledons where active degradation of storage protein occurs. In synchronized alfalfa suspension-cultured cells the MsJ1 transcript was actively expressed and showed a phase-specific modulation during cell cycle with a 2-fold induction in G2/M. These findings suggest that DnaJ-like proteins play an active role in regulating normal cellular events like protein degradation, morphogenesis and cell cycle progression.

  12. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  13. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  14. Transcriptional control of the cell cycle.

    Science.gov (United States)

    Sánchez, I; Dynlacht, B D

    1996-06-01

    Although a significant amount of evidence has demonstrated that there are intimate connections between transcriptional controls and cell cycle regulation, the precise mechanisms underlying these connections remain largely obscure. A number of recent advances have helped to define how critical cell cycle regulators, such as the retinoblastoma family of tumor suppressor proteins and the cyclin-dependent kinases, might function on a biochemical level and how such mechanisms of action have been conserved not only in the regulation of transcription by all three RNA polymerases but also across species lines. In addition, the use of in vivo techniques has begun to explain how the activity of the E2F transcription factor family is tied to the cell cycle dependent expression of target genes.

  15. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  16. Negative regulators of cell proliferation

    Science.gov (United States)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  17. Purification, characterization, and kinetic mechanism of cyclin D1. CDK4, a major target for cell cycle regulation.

    Science.gov (United States)

    Konstantinidis, A K; Radhakrishnan, R; Gu, F; Rao, R N; Yeh, W K

    1998-10-09

    The cyclin D1.CDK4-pRb (retinoblastoma protein) pathway plays a central role in the cell cycle, and its deregulation is correlated with many types of cancers. As a major drug target, we purified dimeric cyclin D1.CDK4 complex to near-homogeneity by a four-step procedure from a recombinant baculovirus-infected insect culture. We optimized the kinase activity and stability and developed a reproducible assay. We examined several catalytic and kinetic properties of the complex and, via steady-state kinetics, derived a kinetic mechanism with a peptide (RbING) and subsequently investigated the mechanistic implications with a physiologically relevant protein (Rb21) as the phosphoacceptor. The complex bound ATP 130-fold tighter when Rb21 instead of RbING was used as the phosphoacceptor. By using staurosporine and ADP as inhibitors, the kinetic mechanism of the complex appeared to be a "single displacement or Bi-Bi" with Mg2+.ATP as the leading substrate and phosphorylated RbING as the last product released. In addition, we purified a cyclin D1-CDK4 fusion protein to homogeneity by a three-step protocol from another recombinant baculovirus culture and observed similar kinetic properties and mechanisms as those from the complex. We attempted to model staurosporine in the ATP-binding site of CDK4 according to our kinetic data. Our biochemical and modeling data provide validation of both the complex and fusion protein as highly active kinases and their usefulness in antiproliferative inhibitor discovery.

  18. Omeprazole Inhibits Cell Proliferation and Induces G0/G1 Cell Cycle Arrest through Up-regulating miR-203a-3p Expression in Barrett’s Esophagus Cells

    Directory of Open Access Journals (Sweden)

    Yichao Hou

    2018-01-01

    Full Text Available Existing data suggest that proton pump inhibitors (PPIs, particularly omeprazole, have significant anti-tumor action in monotherapy and or combination chemotherapy. Hedgehog (Hh signaling pathway represents a leading candidate as a molecular mediator of Barrett’s esophagus (BE. Studies have indicated reduced miRNAs in BE progression, however, little is known about the latent anti-neoplasm effects of miRNAs in BE cells. Here, we investigated whether omeprazole could inhibit BE progression by regulating Hh pathway and explored the promising Hh-targeted miRNAs in BE cells. We conducted qRT-PCR and immunoblotting assay to evaluate the effects of omeprazole on the expression of Hh signaling components and miR-203a-3p in CP-A and CP-B cells. The promising target genes of miR-203a-3p were predicted by bioinformatics methods, and verified by luciferase assays and qRT-PCR. The effects of omeprazole on BE cell proliferation and cell cycle distribution were determined. The overexpression or silencing of miR-203a-3p was performed to test its anti-proliferative effects. Finally, rescue experiments that miR-203a-3p inhibitor alleviated the effects of omeprazole on decreasing the levels of Gli1 mRNA, protein and luciferase were performed. Mechanistic studies showed that omeprazole could inhibit the expression of Gli1 and the nuclear localization of Gli1. Moreover, we determined that omeprazole could selectively up-regulated the expression of miR-203a-3p, and Gli1 was a bona fide target of miR-203a-3p. miR-203a-3p inhibitor alleviated the suppressing effects of omeprazole on Gli1 luciferase activity, mRNA and protein level. The functional assay suggested that omeprazole could dose-dependently inhibit BE cell growth and induce cell cycle arrest in G0/G1 phase. Additionally, overexpression and silencing of miR-203a-3p in BE cells disrupted cell cycle progress, resulting in suppressing and accelerating cell proliferation, respectively. Taken together, these data

  19. Omeprazole Inhibits Cell Proliferation and Induces G0/G1 Cell Cycle Arrest through Up-regulating miR-203a-3p Expression in Barrett's Esophagus Cells.

    Science.gov (United States)

    Hou, Yichao; Hu, Qiang; Huang, Jiao; Xiong, Hua

    2017-01-01

    Existing data suggest that proton pump inhibitors (PPIs), particularly omeprazole, have significant anti-tumor action in monotherapy and or combination chemotherapy. Hedgehog (Hh) signaling pathway represents a leading candidate as a molecular mediator of Barrett's esophagus (BE). Studies have indicated reduced miRNAs in BE progression, however, little is known about the latent anti-neoplasm effects of miRNAs in BE cells. Here, we investigated whether omeprazole could inhibit BE progression by regulating Hh pathway and explored the promising Hh-targeted miRNAs in BE cells. We conducted qRT-PCR and immunoblotting assay to evaluate the effects of omeprazole on the expression of Hh signaling components and miR-203a-3p in CP-A and CP-B cells. The promising target genes of miR-203a-3p were predicted by bioinformatics methods, and verified by luciferase assays and qRT-PCR. The effects of omeprazole on BE cell proliferation and cell cycle distribution were determined. The overexpression or silencing of miR-203a-3p was performed to test its anti-proliferative effects. Finally, rescue experiments that miR-203a-3p inhibitor alleviated the effects of omeprazole on decreasing the levels of Gli1 mRNA, protein and luciferase were performed. Mechanistic studies showed that omeprazole could inhibit the expression of Gli1 and the nuclear localization of Gli1. Moreover, we determined that omeprazole could selectively up-regulated the expression of miR-203a-3p, and Gli1 was a bona fide target of miR-203a-3p. miR-203a-3p inhibitor alleviated the suppressing effects of omeprazole on Gli1 luciferase activity, mRNA and protein level. The functional assay suggested that omeprazole could dose-dependently inhibit BE cell growth and induce cell cycle arrest in G0/G1 phase. Additionally, overexpression and silencing of miR-203a-3p in BE cells disrupted cell cycle progress, resulting in suppressing and accelerating cell proliferation, respectively. Taken together, these data provide a novel

  20. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  1. Cell cycle control across the eukaryotic kingdom.

    Science.gov (United States)

    Harashima, Hirofumi; Dissmeyer, Nico; Schnittger, Arp

    2013-07-01

    Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Antiproliferative Effects of Cucurbitacin B in Breast Cancer Cells: Down-Regulation of the c-Myc/hTERT/Telomerase Pathway and Obstruction of the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Suwit Duangmano

    2010-12-01

    Full Text Available Naturally occurring cucurbitacins have been shown to have anticancer, antimicrobial and anti-inflammatory activities. In this study, we determined the effects of cucurbitacin B extracted from the Thai herb Trichosanthes cucumerina L. on telomerase regulation in three human breast cancer cell lines (T47D, SKBR-3, and MCF-7 and a mammary epithelium cell line (HBL-100. Cell viability after treatment with cucurbitacin B, which is an active ingredient of this herb, was assessed. Telomeric Repeat Amplification Protocol (TRAP assays and RT-PCR (qualitative and realtime were performed to investigate activity of telomerase as well as expression of human telomerase reverse transcriptase (hTERT and c-Myc. The c-Myc protein level was also determined in SKBR-3 and HBL-100 cells. Our results show that the cucurbitacin B inhibits growth and telomerase activity in the three breast cancer cell lines and exerts an obvious inhibitory effect in the estrogen receptor (ER-negative breast cancer SKBR-3 cells. The expression of hTERT and c-Myc were also inhibited by cucurbitacin B, In addition, a clear reduction of c-Myc protein was observed after treatment in SKBR-3 cells even with a concentration of cucurbitacin B that was ten-times lower compared to the concentration used for HBL-100. Our findings imply that cucurbitacin B exerts an anticancer effect by inhibiting telomerase via down regulating both the hTERT and c-Myc expression in breast cancer cells.

  3. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  4. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  5. p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.

    Science.gov (United States)

    Chang, Chih-Ning; Feng, Mow-Jung; Chen, Yu-Ling; Yuan, Ray-Hwang; Jeng, Yung-Ming

    2013-01-01

    The p15(PAF)/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA)-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF) expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF) expression peaks during the S phase of the cell cycle. We observed that p15(PAF) knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF) resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF) promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF) expression. Binding of E2F4 and E2F6 to the p15(PAF) promoter caused transcriptional repression. Overall, these results indicate that p15(PAF) is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF) upregulation, which facilitates DNA synthesis and S-phase progression.

  6. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models

    International Nuclear Information System (INIS)

    Park, Min-Ah; Hwang, Kyung-A; Lee, Hye-Rim; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► BP-1 induced cell growth was reversed by an ER antagonist in BG-1 cells. ► BP-1 up-regulated the mRNA expression of cyclin D1. ► Up-regulation of cyclin D1 by BP-1 was reversed by an ER antagonist. ► BP-1 is a potential endocrine disruptor that exerts estrogenic effects. - Abstract: 2,4-Dihydroxybenzophenone (benzophenone-1; BP-1) is an UV stabilizer primarily used to prevent polymer degradation and deterioration in quality due to UV irradiation. Recently, BP-1 has been reported to bioaccumulate in human bodies by absorption through the skin and has the potential to induce health problems including endocrine disruption. In the present study, we examined the xenoestrogenic effect of BP-1 on BG-1 human ovarian cancer cells expressing estrogen receptors (ERs) and relevant xenografted animal models in comparison with 17-β estradiol (E2). In in vitro cell viability assay, BP-1 (10 −8 –10 −5 M) significantly increased BG-1 cell growth the way E2 did. The mechanism underlying the BG-1 cell proliferation was proved to be related with the up-regulation of cyclin D1, a cell cycle progressor, by E2 or BP-1. Both BP-1 and E2 induced cell growth and up-regulation of cyclin D1 were reversed by co-treatment with ICI 182,780, an ER antagonist, suggesting that BP-1 may mediate the cancer cell proliferation via an ER-dependent pathway like E2. On the other hand, the expression of p21, a regulator of cell cycle progression at G 1 phase, was not altered by BP-1 though it was down-regulated by E2. In xenograft mouse models transplanted with BG-1 cells, BP-1 or E2 treatment significantly increased the tumor mass formation compared to a vehicle (corn oil) within 8 weeks. In histopathological analysis, the tumor sections of E2 or BP-1 group displayed extensive cell formations with high density and disordered arrangement, which were supported by the increased number of BrdUrd positive nuclei and the over-expression of cyclin D1 protein. Taken together, these

  7. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  8. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac.

    Science.gov (United States)

    Minz-Dub, Anna; Sharon, Amir

    2017-05-01

    Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac. © 2017 John Wiley & Sons Ltd.

  9. Alteration/Deficiency in Activation 3 (ADA3) Protein, a Cell Cycle Regulator, Associates with the Centromere through CENP-B and Regulates Chromosome Segregation*

    Science.gov (United States)

    Mohibi, Shakur; Srivastava, Shashank; Wang-France, Jun; Mirza, Sameer; Zhao, Xiangshan; Band, Hamid; Band, Vimla

    2015-01-01

    ADA3 (alteration/deficiency in activation 3) is a conserved component of several transcriptional co-activator and histone acetyltransferase (HAT) complexes. Recently, we generated Ada3 knock-out mice and demonstrated that deletion of Ada3 leads to early embryonic lethality. The use of Ada3FL/FL mouse embryonic fibroblasts with deletion of Ada3 using adenovirus Cre showed a critical role of ADA3 in cell cycle progression through mitosis. Here, we demonstrate an association of ADA3 with the higher order repeat region of the α-satellite region on human X chromosome centromeres that is consistent with its role in mitosis. Given the role of centromere proteins (CENPs) in mitosis, we next analyzed whether ADA3 associates with the centromere through CENPs. Both an in vivo proximity ligation assay and immunofluorescence studies confirmed the association of ADA3 with CENP-B protein, a highly conserved centromeric protein that binds to the 17-bp DNA sequences on α-satellite DNA. Deletional analysis showed that ADA3 directly associates with CENP-B through its N terminus, and a CENP-B binding-deficient mutant of ADA3 was incompetent in cell proliferation rescue. Notably, knockdown of ADA3 decreased binding of CENP-B onto the centromeres, suggesting that ADA3 is required for the loading of CENP-B onto the centromeres. Finally, we show that deletion of Ada3 from Ada3FL/FL mouse embryonic fibroblasts exhibited various chromosome segregation defects. Taken together, we demonstrate a novel ADA3 interaction with CENP-B-centromere that may account for its previously known function in mitosis. This study, together with its known function in maintaining genomic stability and its mislocalization in cancers, suggests an important role of ADA3 in mitosis. PMID:26429915

  10. Alteration/Deficiency in Activation 3 (ADA3) Protein, a Cell Cycle Regulator, Associates with the Centromere through CENP-B and Regulates Chromosome Segregation.

    Science.gov (United States)

    Mohibi, Shakur; Srivastava, Shashank; Wang-France, Jun; Mirza, Sameer; Zhao, Xiangshan; Band, Hamid; Band, Vimla

    2015-11-20

    ADA3 (alteration/deficiency in activation 3) is a conserved component of several transcriptional co-activator and histone acetyltransferase (HAT) complexes. Recently, we generated Ada3 knock-out mice and demonstrated that deletion of Ada3 leads to early embryonic lethality. The use of Ada3(FL/FL) mouse embryonic fibroblasts with deletion of Ada3 using adenovirus Cre showed a critical role of ADA3 in cell cycle progression through mitosis. Here, we demonstrate an association of ADA3 with the higher order repeat region of the α-satellite region on human X chromosome centromeres that is consistent with its role in mitosis. Given the role of centromere proteins (CENPs) in mitosis, we next analyzed whether ADA3 associates with the centromere through CENPs. Both an in vivo proximity ligation assay and immunofluorescence studies confirmed the association of ADA3 with CENP-B protein, a highly conserved centromeric protein that binds to the 17-bp DNA sequences on α-satellite DNA. Deletional analysis showed that ADA3 directly associates with CENP-B through its N terminus, and a CENP-B binding-deficient mutant of ADA3 was incompetent in cell proliferation rescue. Notably, knockdown of ADA3 decreased binding of CENP-B onto the centromeres, suggesting that ADA3 is required for the loading of CENP-B onto the centromeres. Finally, we show that deletion of Ada3 from Ada3(FL/FL) mouse embryonic fibroblasts exhibited various chromosome segregation defects. Taken together, we demonstrate a novel ADA3 interaction with CENP-B-centromere that may account for its previously known function in mitosis. This study, together with its known function in maintaining genomic stability and its mislocalization in cancers, suggests an important role of ADA3 in mitosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Choosing Cell Fate Through a Dynamic Cell Cycle.

    Science.gov (United States)

    Chen, Xinyue; Hartman, Amaleah; Guo, Shangqin

    2015-01-01

    A close relationship between proliferation and cell fate specification has been well documented in many developmental systems. In addition to the gradual cell fate changes accompanying normal development and tissue homeostasis, it is now commonly appreciated that cell fate could also undergo drastic changes, as illustrated by the induction of pluripotency from many differentiated somatic cell types during the process of Yamanaka reprogramming. Strikingly, the drastic cell fate change induced by Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) is preceded by extensive cell cycle acceleration. Prompted by our recent discovery that progression toward pluripotency from rare somatic cells could bypass the stochastic phase of reprogramming and that a key feature of these somatic cells is an ultrafast cell cycle (~8 h/cycle), we assess whether cell cycle dynamics could provide a general framework for controlling cell fate. Several potential mechanisms on how cell cycle dynamics may impact cell fate determination by regulating chromatin, key transcription factor concentration, or their interactions are discussed. Specific challenges and implications for studying and manipulating cell fate are considered.

  12. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  13. Expression of the cell cycle regulation proteins p53 and p21WAF1 in different types of non-dysplastic leukoplakias.

    Science.gov (United States)

    Visioli, Fernanda; Lauxen, Isabel Silva; Sant'ana Filho, Manoel; Rados, Pantelis Varvaki

    2012-01-01

    The aim of this study was to analyze the immunolabeling of two cell cycle protein regulators, p53 and p21WAF1, in non-dysplastic leukoplakias with different epithelial alterations: acanthosis, hyperkeratosis and acanthosis combined with hyperkeratosis, and compare them with dysplastic leukoplakias. This was a prospective cohort study involving 36 patients with oral homogeneous leukoplakias. excisional biopsies were performed and the patients remain under clinical follow-up. The leukoplakias were divided into four groups: 6 acanthosis, 9 hyperkeratosis, 10 acanthosis combined with hyperkeratosis, and 11 epithelial dysplasias. Paraffin-embebeded sections were immunostained for p53 and p21WAF1. Five hundred cells from the basal layer and 500 from the parabasal layer were counted to determine the percentage of positive cells. A qualitative analysis was also carried out to determine the presence or absence of immunohistochemical staining in the intermediate and superficial layers. Groups were compared with ANOVA (pepithelial cells were stained in the four different studied groups with no statistically significant difference (p>0.05). Our findings failed to differentiate the non-dysplastic lesions by means of p53 and p21WAF1 immunostaining, notwithstanding similar profiles between non-dysplastic and dysplastic leukoplakias were observed.

  14. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Chung-Weng Phang

    Full Text Available Flavokawain C (FKC is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki, with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak and death receptors (DR5, while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin, resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose polymerase (PARP. FKC was also found to cause endoplasmic reticulum (ER stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4, consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1, and hypophosphorylation of Rb.

  15. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Science.gov (United States)

    Favaro, Elena; Ramachandran, Anassuya; McCormick, Robert; Gee, Harriet; Blancher, Christine; Crosby, Meredith; Devlin, Cecilia; Blick, Christopher; Buffa, Francesca; Li, Ji-Liang; Vojnovic, Borivoj; Pires das Neves, Ricardo; Glazer, Peter; Iborra, Francisco; Ivan, Mircea; Ragoussis, Jiannis; Harris, Adrian L

    2010-04-26

    Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1) and a microRNA, hsa-miR-210 (miR-210) which is associated with a poor prognosis. In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS) in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis. Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  16. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Directory of Open Access Journals (Sweden)

    Elena Favaro

    2010-04-01

    Full Text Available Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1 and a microRNA, hsa-miR-210 (miR-210 which is associated with a poor prognosis.In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis.Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  17. The sweet side of the cell cycle.

    Science.gov (United States)

    Tan, Ee Phie; Duncan, Francesca E; Slawson, Chad

    2017-04-15

    Cell division (mitosis) and gamete production (meiosis) are fundamental requirements for normal organismal development. The mammalian cell cycle is tightly regulated by different checkpoints ensuring complete and precise chromosomal segregation and duplication. In recent years, researchers have become increasingly interested in understanding how O -GlcNAc regulates the cell cycle. The O -GlcNAc post-translation modification is an O -glycosidic bond of a single β- N -acetylglucosamine sugar to serine/threonine residues of intracellular proteins. This modification is sensitive toward changes in nutrient levels in the cellular environment making O -GlcNAc a nutrient sensor capable of influencing cell growth and proliferation. Numerous studies have established that O-GlcNAcylation is essential in regulating mitosis and meiosis, while loss of O-GlcNAcylation is lethal in growing cells. Moreover, aberrant O-GlcNAcylation is linked with cancer and chromosomal segregation errors. In this review, we will discuss how O -GlcNAc controls different aspects of the cell cycle with a particular emphasis on mitosis and meiosis. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Overexpression of N-terminal kinase like gene promotes tumorigenicity of hepatocellular carcinoma by regulating cell cycle progression and cell motility.

    Science.gov (United States)

    Wang, Jian; Liu, Ming; Chen, Leilei; Chan, Tim Hon Man; Jiang, Lingxi; Yuan, Yun-Fei; Guan, Xin-Yuan

    2015-01-30

    Amplification and overexpression of CHD1L is one of the most frequent genetic alterations in hepatocellular carcinoma (HCC). Here we found that one of CHD1L downstream targets, NTKL, was frequently upregulated in HCC, which was significantly correlated with vascular invasion (P = 0.012) and poor prognosis (P = 0.050) of HCC. ChIP assay demonstrated the binding of CHD1L to the promoter region of NTKL. QRT-PCR study showed that the expression of NTKL positively correlated with CHD1L expression in both clinical samples and cell lines. Functional study found that NTKL had strong oncogenic roles, including increased cell growth, colony formation in soft agar, and tumor formation in nude mice. Further study found that NTKL could promote G1/S transition by decreasing P53 and increasing CyclinD1 expressions. NTKL overexpression could accelerate the mitotic exit and chromosome segregation, which led to the cytokinesis failure and subsequently induced apoptosis. NTKL also regulated cell motility by facilitating philopodia and lamellipodia formation through regulating F-actin reorganization and the phosphorylation of small GTPase Rac1/cdc42. Using co-IP and mass spectrometry approach, we identified the large GTPase dynamin2 as an interacting protein of NTKL, which might be responsible for the phenotype alterations caused by NTKL overexpression, such as cytokinesis failure, increased cell motility and abnormal of cell division.

  19. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle.

    NARCIS (Netherlands)

    S. Dhondt; F. Coppens; F. de Winter; K. Swarup; R.M.H. Merks (Roeland); D. Inze; M.J. Bennett; G.T.S. Beemster

    2010-01-01

    htmlabstractSHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis (Arabidopsis thaliana) root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity,

  20. Cyclin D3 expression in non-Hodgkin lymphoma. Correlation with other cell cycle regulators and clinical features

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    2001-01-01

    analyzed immunohistochemically for cyclin D3 expression. In 43 lymphomas (21.7%), cyclin D3 was overexpressed. T-cell lymphomas more frequently overexpressed cyclin D3 than B-cell lymphomas. Furthermore, cyclin D3-overexpressing indolent lymphomas were associated with higher proliferation rate, higher p21......Waf1 expression, lower p27Kip1 expression, and altered p53. Cyclin D3 overexpression identified a subgroup of patients with indolent B-cell lymphoma with adverse clinical features: patients were older, more frequently had "B" symptoms and extranodal involvement, and were more frequently in the high...

  1. Expression of the cell cycle regulation proteins p53 and p21WAF1 in different types of non-dysplastic leukoplakias

    Directory of Open Access Journals (Sweden)

    Fernanda Visioli

    2012-06-01

    Full Text Available OBJECTIVES: The aim of this study was to analyze the immunolabeling of two cell cycle protein regulators, p53 and p21WAF1, in non-dysplastic leukoplakias with different epithelial alterations: acanthosis, hyperkeratosis and acanthosis combined with hyperkeratosis, and compare them with dysplastic leukoplakias. MATERIAL AND METHODS: This was a prospective cohort study involving 36 patients with oral homogeneous leukoplakias. excisional biopsies were performed and the patients remain under clinical follow-up. The leukoplakias were divided into four groups: 6 acanthosis, 9 hyperkeratosis, 10 acanthosis combined with hyperkeratosis, and 11 epithelial dysplasias. Paraffin-embebeded sections were immunostained for p53 and p21WAF1. Five hundred cells from the basal layer and 500 from the parabasal layer were counted to determine the percentage of positive cells. A qualitative analysis was also carried out to determine the presence or absence of immunohistochemical staining in the intermediate and superficial layers. Groups were compared with ANOVA (p0.05. CONCLUSIONS: Our findings failed to differentiate the non-dysplastic lesions by means of p53 and p21WAF1 immunostaining, notwithstanding similar profiles between non-dysplastic and dysplastic leukoplakias were observed.

  2. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  3. A nuclear glutathione cycle within the cell cycle.

    Science.gov (United States)

    Diaz Vivancos, Pedro; Wolff, Tonja; Markovic, Jelena; Pallardó, Federico V; Foyer, Christine H

    2010-10-15

    The complex antioxidant network of plant and animal cells has the thiol tripeptide GSH at its centre to buffer ROS (reactive oxygen species) and facilitate cellular redox signalling which controls growth, development and defence. GSH is found in nearly every compartment of the cell, including the nucleus. Transport between the different intracellular compartments is pivotal to the regulation of cell proliferation. GSH co-localizes with nuclear DNA at the early stages of proliferation in plant and animal cells. Moreover, GSH recruitment and sequestration in the nucleus during the G1- and S-phases of the cell cycle has a profound impact on cellular redox homoeostasis and on gene expression. For example, the abundance of transcripts encoding stress and defence proteins is decreased when GSH is sequestered in the nucleus. The functions of GSHn (nuclear GSH) are considered in the present review in the context of whole-cell redox homoeostasis and signalling, as well as potential mechanisms for GSH transport into the nucleus. We also discuss the possible role of GSHn as a regulator of nuclear proteins such as histones and PARP [poly(ADP-ribose) polymerase] that control genetic and epigenetic events. In this way, a high level of GSH in the nucleus may not only have an immediate effect on gene expression patterns, but also contribute to how cells retain a memory of the cellular redox environment that is transferred through generations.

  4. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    DEFF Research Database (Denmark)

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA repli...

  6. miR-139-5p regulates proliferation, apoptosis, and cell cycle of uterine leiomyoma cells by targeting TPD52

    Directory of Open Access Journals (Sweden)

    Chen H

    2016-10-01

    Full Text Available Hong Chen,1 Hong Xu,1 Yu-gang Meng,1 Yun Zhang,2 Jun-ying Chen,1 Xiao-ning Wei1 1Department of Gynaecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 2Department of Gynaecology, The People’s Hospital of Suzhou High Tech District, Suzhou, Jiangsu, People’s Republic of China Background: Uterine leiomyoma is one of the most common benign tumors in women. It dramatically decreases the quality of life in the affected women. However, there is a lack of effective treatment paradigms. Micro-RNAs are small noncoding RNA molecules that are extensively expressed in organisms, and they are interrelated with the occurrence and development of the tumor. miR-139-5p was found to be downregulated in various cancers, but its function and mechanism in uterine leiomyoma remain unknown. The aim of this study was to investigate the role of miR-139-5p and its target gene in uterine leiomyoma.Methods: By using a bioinformatic assay, it was found that TPD52 was a potential target gene of miR-139-5p. Then, expressions of miR-139-5p and TPD52 in uterine leiomyoma and adjacent myometrium tissues were evaluated by quantitative real-time polymerase chain reaction and Western blot. Proliferation, apoptosis, and cell cycle of uterine leiomyoma cells transfected by miR-139-5p mimics or TPD52 siRNA were determined.Results: It was observed that the expression of miR-139-5p in uterine leiomyoma tissues was significantly lower (P<0.001 than that in the adjacent myometrium tissues. Overexpression of miR-139-5p inhibited the growth of uterine leiomyoma cells and induced apoptosis and G1 phase arrest. Dual-luciferase reporter assay and Western blot validated that TPD52 is the target gene of miR-139-5p. Furthermore, downregulation of TPD52 by siRNA in uterine leiomyoma cells inhibited cell proliferation and induced cell apoptosis and G1 phase arrest.Conclusion: Data suggested that miR-139-5p inhibited the proliferation of uterine leiomyoma cells

  7. Krebs Cycle Moonlights in Caspase Regulation

    OpenAIRE

    Minis, Adi; Steller, Hermann

    2016-01-01

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation.

  8. Krebs Cycle Moonlights in Caspase Regulation.

    Science.gov (United States)

    Minis, Adi; Steller, Hermann

    2016-04-04

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. GSK3β and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle.

    Science.gov (United States)

    Pandey, Shweta; Talukdar, Indrani; Jain, Buddhi P; Goswami, Shyamal K

    2017-08-08

    Striatin and SG2NA are essential constituents of the multi-protein STRIPAK assembly harbouring protein phosphatase PP2A and several kinases. SG2NA has several isoforms generated by mRNA splicing and editing. While the expression of striatin is largely restricted to the striatum in brain, that of SG2NAs is ubiquitous. In NIH3T3 cells, only the 78 kDa isoform is expressed. When cells enter into the S phase, the level of SG2NA increases; reaches maximum at the G2/M phase and declines thereafter. Downregulation of SG2NA extends G1 phase and its overexpression extends G2. Ectopic expression of the 35 kDa has no effects on the cell cycle. Relative abundance of phospho-SG2NA is high in the microsome and cytosol and the nucleus but low in the mitochondria. Okadoic acid, an inhibitor of PP2A, increases the level of SG2NA which is further enhanced upon inhibition of proteasomal activity. Phospho-SG2NA is thus more stable than the dephosphorylated form. Inhibition of GSK3β by LiCl reduces its level, but the inhibition of ERK by PD98059 increases it. Thus, ERK decreases the level of phospho-SG2NA by inhibiting GSK3β. In cells depleted from SG2NA by shRNA, the levels of pGSK3β and pERK are reduced, suggesting that these kinases and SG2NA regulate each other's expression.

  10. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  11. A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability.

    Science.gov (United States)

    Balding, Claire; Blaby, Ian; Summers, David

    2006-07-01

    Multimers of multicopy plasmids cause instability. They arise by homologous recombination and accumulate by over-replication in a process known as the dimer catastrophe. Dimers are resolved to monomers by site-specific recombination systems such as Xer-cer of plasmid ColE1. In addition, the Rcd checkpoint hypothesis proposes that a short transcript (Rcd) coded within ColE1 cer delays the division of multimer-containing cells. The crucial observation underpinning the checkpoint hypothesis is that when the Rcd promoter (P(cer)) is inactivated by mutation of its invariant T, the plasmid becomes unstable. Recently, we discovered that this mutation also alters a potential Fis binding site in cer. ColE1-like plasmids are less stable in fis mutant hosts and it is conceivable that instability caused by the mutation is due to altered Fis binding, rather than the loss of Rcd expression per se. We have therefore undertaken an independent test of the role of P(cer)-Rcd in multicopy plasmid stability. We have generated a series of loss-of-function mutants of Rcd and detailed analysis of two of these shows that they cause a level of instability indistinguishable from P(cer) inactivation. This result is consistent with the predictions of the checkpoint hypothesis and confirms the role of Rcd in plasmid stability.

  12. Analysis of Cell Cycle Switches in Drosophila Oogenesis.

    Science.gov (United States)

    Jia, Dongyu; Huang, Yi-Chun; Deng, Wu-Min

    2015-01-01

    The study of Drosophila oogenesis provides invaluable information about signaling pathway regulation and cell cycle programming. During Drosophila oogenesis, a string of egg chambers in each ovariole progressively develops toward maturity. Egg chamber development consists of 14 stages. From stage 1 to stage 6 (mitotic cycle), main-body follicle cells undergo mitotic divisions. From stage 7 to stage 10a (endocycle), follicle cells cease mitosis but continue three rounds of endoreduplication. From stage 10b to stage 13 (gene amplification), instead of whole genome duplication, follicle cells selectively amplify specific genomic regions, mostly for chorion production. So far, Drosophila oogenesis is one of the most well studied model systems used to understand cell cycle switches, which furthers our knowledge about cell cycle control machinery and sheds new light on potential cancer treatments. Here, we give a brief summary of cell cycle switches, the associated signaling pathways and factors, and the detailed experimental procedures used to study the cell cycle switches.

  13. Tumor Suppressors and Cell-Cycle Proteins in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Alfonso Baldi

    2011-01-01

    Full Text Available The cell cycle is the cascade of events that allows a growing cell to duplicate all its components and split into two daughter cells. Cell cycle progression is mediated by the activation of a highly conserved family of protein kinases, the cyclin-dependent kinases (CDKs. CDKs are also regulated by related proteins called cdk inhibitors grouped into two families: the INK4 inhibitors (p16, p15, p19, and p18 and the Cip/Kip inhibitors (p21, p27, and p53. Several studies report the importance of cell-cycle proteins in the pathogenesis and the prognosis of lung cancer. This paper will review the most recent data from the literature about the regulation of cell cycle. Finally, based essentially on the data generated in our laboratory, the expression, the diagnostic, and prognostic significance of cell-cycle molecules in lung cancer will be examined.

  14. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    checkpoints' which are known to regulate the eukaryotic cell cycle may be absent or altered in. E. histolytica. [Banerjee S, Das S and Lohia A 2002 Eukaryotic checkpoints are absent in the cell division cycle of Entamoeba histolytica; J. Biosci. (Suppl.

  15. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancer‑specific antigen and cell cycle-regulatory genes in human LNCaP cancer cells.

    Science.gov (United States)

    Kang, Nam-Hee; Shin, Hee-Chang; Oh, Seunghyun; Lee, Kyun-Hee; Lee, Yoon-Bok; Choi, Kyung-Chul

    2016-08-01

    Soy milk, which is produced from whole soybeans, contains a variety of biologically active components. Isoflavones are a class of soy-derived phytoestrogens with beneficial effects, among which genistein (GEN) has been previously indicated to reduce the risk of prostate cancer. The present study evaluated the effects of soy milk digestion extract (SMD) on the progression of prostate cancer via the estrogen receptor (ER)β in human LNCaP prostate cancer cells. To evaluate the effects of SMD (daizein, 1.988 mg/100g, glycitein, 23.537 mg/100 g and GEN, 0.685 mg/100g) on cell proliferation, LNCaP cells were cultured in media containing vehicle (0.1% dimethyl sulfoxide), 17β‑estradiol (E2; 2.7x10‑7 mg/ml), GEN (2.7x10-2 mg/ml) of SMD (total aglycon concentration, 0.79 mg/ml), after which the cell viability was examined using an MTT assay. The cell viability was significantly elevated by E2 (by 45±0.18%), while it was markedly reduced by GEN (73.2±0.03%) or SMD (74.8±0.09%). Semi‑quantitative reverse transcription polymerase chain reaction analysis was performed to assess the mRNA expression levels of target genes, including ERβ, prostate cancer‑specific antigen (PSA) and cell cycle regulators p21, Cyclin D1 and cyclin-dependent kinase (CDK)4. The expression of ERβ was almost completely diminished by E2, whereas it was significantly elevated by SMD. In addition, the expression levels of PSA were considerably reduced by SMD. The expression of p21 was significantly elevated by SMD, while it was markedly reduced by E2. Of note, the expression levels of Cyclin D1 and CDK4 were considerably elevated by E2, while being significantly reduced by GEN and SMD. All of these results indicated that SMD may inhibit the proliferation of human prostate cancer cells via regulating the expression of ERβ, PSA, p21, Cyclin D1 and CDK4 in an ER-dependent manner.

  16. Tudor Staphylococcal Nuclease (Tudor-SN), a Novel Regulator Facilitating G1/S Phase Transition, Acting as a Co-activator of E2F-1 in Cell Cycle Regulation*

    Science.gov (United States)

    Su, Chao; Zhang, Chunyan; Tecle, Adiam; Fu, Xue; He, Jinyan; Song, Juan; Zhang, Wei; Sun, Xiaoming; Ren, Yuanyuan; Silvennoinen, Olli; Yao, Zhi; Yang, Xi; Wei, Minxin; Yang, Jie

    2015-01-01

    Tudor staphylococcal nuclease (Tudor-SN) is a multifunctional protein implicated in a variety of cellular processes. In the present study, we identified Tudor-SN as a novel regulator in cell cycle. Tudor-SN was abundant in proliferating cells whereas barely expressed in terminally differentiated cells. Functional analysis indicated that ectopic overexpression of Tudor-SN promoted the G1/S transition, whereas knockdown of Tudor-SN caused G1 arrest. Moreover, the live-cell time-lapse experiment demonstrated that the cell cycle of MEF−/− (knock-out of Tudor-SN in mouse embryonic fibroblasts) was prolonged compared with wild-type MEF+/+. We noticed that Tudor-SN was constantly expressed in every cell cycle phase, but was highly phosphorylated in the G1/S border. Further study revealed that Tudor-SN was a potential substrate of Cdk2/4/6, supportively, we found the physical interaction of endogenous Tudor-SN with Cdk4/6 in G1 and the G1/S border, and with Cdk2 in the G1/S border and S phase. In addition, roscovitine (Cdk1/2/5 inhibitor) or CINK4 (Cdk4/6 inhibitor) could inhibit the phosphorylation of Tudor-SN, whereas ectopic overexpression of Cdk2/4/6 increased the Tudor-SN phosphorylation. The underlying molecular mechanisms indicated that Tudor-SN could physically interact with E2F-1 in vivo, and could enhance the physical association of E2F-1 with GCN5 (a cofactor of E2F-1, which possesses histone acetyltransferase activity), and promote the binding ability of E2F-1 to the promoter region of its target genes CYCLIN A and E2F-1, and as a result, facilitate the gene transcriptional activation. Taken together, Tudor-SN is identified as a novel co-activator of E2F-1, which could facilitate E2F-1-mediated gene transcriptional activation of target genes, which play essential roles in G1/S transition. PMID:25627688

  17. Developmental and cell cycle regulation of alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin.

    Science.gov (United States)

    Bögre, L; Jonak, C; Mink, M; Meskiene, I; Traas, J; Ha, D T; Swoboda, I; Plank, C; Wagner, E; Heberle-Bors, E; Hirt, H

    1996-03-01

    We report here the isolation and characterization of the nucMs1 alfalfa cDNA, whose predicted amino acid sequence structurally resembles the yeast Nsr1 protein and animal nucleolins. These proteins consist of an N-terminal acidic domain, centrally located RNA recognition motifs (RRMs), and a C-terminal glycine- and arginine-rich domain. In comparison with animal nucleolins that contain four RRMs, NucMs1 more closely resembles the yeast Nsr1 protein, which contains only two RRMs. A NucMs1 C-terminal peptide antibody specifically recognized a 95-kD nucleolar protein in alfalfa cells that changed its localization in a cell cycle-dependent manner. The nucMs1 transcript and p95nucMs1 protein levels correlated with cell proliferation, and nucMs1 gene expression was found to be induced in the G1 phase upon mitogenic stimulation of G0-arrested leaf cells. In situ hybridization analysis of different alfalfa organs during various developmental stages showed that nucMs1 gene expression is highest in root meristematic cells, but it is also found in other meristematic cells of the plant body. nucMs1 expression is tightly linked to cell proliferation but does not depend on a particular cell cycle phase. No nucMs1 expression was observed in cells that had exited the cell cycle and were undergoing differentiation or polar growth, indicating that nucMs1 may not be necessary for processes other than cell proliferation.

  18. Variation in traction forces during cell cycle progression.

    Science.gov (United States)

    Vianay, Benoit; Senger, Fabrice; Alamos, Simon; Anjur-Dietrich, Maya; Bearce, Elizabeth; Cheeseman, Bevan; Lee, Lisa; Théry, Manuel

    2018-02-01

    Tissue morphogenesis results from the interplay between cell growth and mechanical forces. While the impact of geometrical confinement and mechanical forces on cell proliferation has been fairly well characterised, the inverse relationship is much less understood. Here, we investigated how traction forces vary during cell cycle progression. Cell shape was constrained on micropatterned substrates in order to distinguish variations in cell contractility from cell size increase. We performed traction force measurements of asynchronously dividing cells expressing a cell-cycle reporter, to obtain measurements of contractile forces generated during cell division. We found that forces tend to increase as cells progress through G1, before reaching a plateau in S phase, and then decline during G2. While cell size increases regularly during cell cycle progression, traction forces follow a biphasic behaviour based on specific and opposite regulation of cell contractility during early and late growth phases. These results highlight the key role of cellular signalling in the regulation of cell contractility, independently of cell size and shape. Non-monotonous variations of cell contractility during cell cycle progression are likely to impact the mechanical regulation of tissue homoeostasis in a complex and non-linear manner. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  19. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  20. The bHLH Factors Extramacrochaetae and Daughterless Control Cell Cycle in Drosophila Imaginal Discs through the Transcriptional Regulation of the cdc25 Phosphatase string

    Science.gov (United States)

    Andrade-Zapata, Irene; Baonza, Antonio

    2014-01-01

    One of the major issues in developmental biology is about having a better understanding of the mechanisms that regulate organ growth. Identifying these mechanisms is essential to understand the development processes that occur both in physiological and pathological conditions, such as cancer. The E protein family of basic helix-loop helix (bHLH) transcription factors, and their inhibitors the Id proteins, regulate cell proliferation in metazoans. This notion is further supported because the activity of these factors is frequently deregulated in cancerous cells. The E protein orthologue Daughterless (Da) and the Id orthologue Extramacrochaetae (Emc) are the only members of these classes of bHLH proteins in Drosophila. Although these factors are involved in controlling proliferation, the mechanism underlying this regulatory activity is poorly understood. Through a genetic analysis, we show that during the development of epithelial cells in the imaginal discs, the G2/M transition, and hence cell proliferation, is controlled by Emc via Da. In eukaryotic cells, the main activator of this transition is the Cdc25 phosphatase, string. Our genetic analyses reveal that the ectopic expression of string in cells with reduced levels of Emc or high levels of Da is sufficient to rescue the proliferative defects seen in these mutant cells. Moreover, we present evidence demonstrating a role of Da as a transcriptional repressor of string. Taken together, these findings define a mechanism through which Emc controls cell proliferation by regulating the activity of Da, which transcriptionally represses string. PMID:24651265

  1. Study of the cell cycle control for human malignant mesothelioma lines. Interferon and radiations effect; Etude de la regulation du cycle cellulaire de lignees de mesotheliome malin humain. Effet de l'interferon et des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Vivo, C

    1999-07-01

    In order to better understand the inhibition mechanisms of the IFN-R-HU on tumoral development, the IFN-R-U effect on MM lines has been studied. Three groups of lines has been distinguished: eight sensitive lines, two intermediate and three resistant. The sensitive lines showed a triple locking of the cell cycle: in phases S, G1 and G2. The study of the cell cycle control points function, realized by the MM lines radiation exposure showed the points function on G1/S and-or on G2/M and the dependence or non dependence of the cycle stop of the protein P53 and P21 W at F1/CIP1. (A.L.B.)

  2. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    International Nuclear Information System (INIS)

    Mannioui, Abdelkrim; Schiffer, Cecile; Felix, Nathalie

    2004-01-01

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression

  3. Ethyl acetate extract of Chinese medicinal herb Sarcandra glabra induces growth inhibition on human leukemic HL-60 cells, associated with cell cycle arrest and up-regulation of pro-apoptotic Bax/Bcl-2 ratio.

    Science.gov (United States)

    Li, W Y; Chiu, Lawrence C M; Lam, W S; Wong, W Y; Chan, Y T; Ho, Y P; Wong, Elaine Y L; Wong, Y S; Ooi, Vincent E C

    2007-02-01

    Sarcandra glabra (Thunb.) Nakai, colloquially known as Caoshanhu, is a Chinese medicinal herb with reported anti-tumor, anti-inflammatory, anti-viral and non-specific immunoenhancing properties. Although the plant has been clinically used for treating a variety of diseases, its bioactive ingredients are largely unknown and its mode of action has never been investigated. In this study, the anti-tumor property of ethyl acetate (EA) extract of S. glabra was investigated by determining its in vitro growth-inhibitory effects on a panel of human cancer cell lines of different histotypes. Growth inhibition of the EA extract on the cancer cells seemed to be selective, and the leukemic HL-60 was found to be the most responsive after 48 h of treatment (IC50=58 microg/ml). Flow cytometric studies further illustrated that the extract might interfere with DNA replication and thus arrested the cell cycle at S phase in the leukemic cells, followed by DNA fragmentation and loss of phospholipid asymmetry in the plasma membrane after 72 h of treatment. Concurrently, the pro-apoptotic Bax/Bcl-2 ratio was also up-regulated by more than 178% of the control level. All these findings suggested that the extract had initiated apoptosis to kill the leukemic cells. Results from this pioneer study help to establish a scientific foundation for future research and development of the bioactive ingredients in EA extract of S. glabra as efficacious anti-cancer agents.

  4. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  5. "Constructing" the Cell Cycle in 3D

    Science.gov (United States)

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  6. Regulation of flux through metabolic cycles

    International Nuclear Information System (INIS)

    Walsh, K.

    1984-01-01

    The branchpoint of the tricarboxylic acid and glyoxylate shunt was characterized in the intact organism by a multidimensional approach. Theory and methodology were developed to determine velocities for the net flow of carbon through the major steps of acetate metabolism in E. coli. Rates were assigned based on the 13 C-NMR spectrum of intracellular glutamate, measured rates of substrate incorporation into end products, the constituent composition of E. coli and a series of conservation equations which described the system at steady state. The in vivo fluxes through the branchpoint of the tricarboxylic acid and glyoxylate cycles were compared to rates calculated from the kinetic constants of the branchpoint enzymes and the intracellular concentrations of their substrates. These studies elucidated the role of isocitrate dehydrogenase phosphorylation in the Krebs cycle and led to the development of a generalized mathematical description of the sensitivity of branchpoints to regulatory control. This theoretical analysis was termed the branchpoint effect and it describes conditions which result in large changes in the flux through an enzyme even though that enzyme is not subject to direct regulatory control. The theoretical and experimental characterization of this system provided a framework to study the effects of enzyme overproduction and underproduction on metabolic processes in the cell. An in vivo method was developed to determine the extent to which an enzyme catalyzes a rate-controlling reaction. The enzyme chosen for this study was citrate synthase

  7. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    Science.gov (United States)

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-10-01

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  8. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  9. Hoxc13 is a crucial regulator of murine hair cycle.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Tang, Hui; Yan, Hongtao; Wen, Xuhong; Zhang, Wei; Tan, Ranjing; Wang, Duan; Wu, Jinjin

    2016-04-01

    Hair follicles undergo cyclical growth and regression during postnatal life. Hair regression is an apoptosis-driven process strictly controlled by micro- and macro-environmental signals. However, how these signals are controlled remains largely unknown. Hoxc13, a member of the Hox gene family, is reported to play an important role in hair follicle differentiation. In the present study, we observed that Hoxc13 was highly expressed in the outer root sheath, matrix, medulla and inner root sheath of hair follicles in a hair cycle-dependent manner. We therefore investigated the role of Hoxc13 in hair follicle cycling. Injection of ShRNA (ShHoxc13) to suppress Hoxc13 in early anagen promoted premature catagen entry, shown by significantly decreased hair length and hair bulb size, increased percentage of catagen hair follicles, hair cycle score and TUNEL+ cells and inhibited proliferation. In contrast, local injection of recombinant Hoxc13 polypeptide (rhHoxc13) during the late anagen phase prolonged the anagen phase. Additionally, rhHoxc13 injections during the telogen phase significantly promoted hair growth and induced the anagen progression. At the molecular level, the expression of phosphorylated smad2 (p-smad2), a key factor of active TGF-β1 signaling, was up-regulated in the ShHoxc13-treated hair follicles and down-regulated in rhHoxc13-treated hair follicles, suggesting that Hoxc13 might block anagen-catagen transition by inhibiting the TGF-β1 signaling. Taken together, our data strongly suggest that Hoxc13 is a novel and crucial regulator of the hair cycle. This might also provide an understanding of the mechanism of the 'hair cycle clock' and the development of alopecia treatments.

  10. Chromatin association of UHRF1 during the cell cycle

    KAUST Repository

    Al-Gashgari, Bothayna

    2017-05-01

    Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a nuclear protein that associates with chromatin. Regardless of the various functions of UHRF1 in the cell, one of its more important functions is its role in the maintenance of DNA methylation patterns by the recruitment of DNMT1. Studies on UHRF1 based on this function have revealed the importance of UHRF1 during the cell cycle. Moreover, based on different studies various factors were described to be involved in the regulation of UHRF1 with different functionalities that can control its binding affinity to different targets on chromatin. These factors are regulated differently in a cell cycle specific manner. In light of this, we propose that UHRF1 has different binding behaviors during the cell cycle in regard to its association with chromatin. In this project, we first analyzed the binding behavior of endogenous UHRF1 from different unsynchronized cell systems in pull-down assays with peptides and oligonucleotides. Moreover, to analyze UHRF1 binding behavior during the cell cycle, we used two different approaches. First we sorted Jurkat and HT1080 cells based on their cell cycle stage using FACS analysis. Additionally, we synchronized HeLa cells to different stages of the cell cycle by chemical treatments, and used extracts from cellsorting and cell synchronization experiments for pull-down assays. We observed that UHRF1 in different cell systems has different preferences in regard to its binding to H3 unmodified and H3K9me3. Moreover, we detected that UHRF1, in general, displays different patterns between different stages of cell cycle; however, we cannot draw a final model for UHRF1 binding pattern during cell cycle.

  11. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice.

    Science.gov (United States)

    Jojima, Teruo; Uchida, Kohsuke; Akimoto, Kazumi; Tomotsune, Takanori; Yanagi, Kazunori; Iijima, Toshie; Suzuki, Kunihiro; Kasai, Kikuo; Aso, Yoshimasa

    2017-06-01

    Several studies have demonstrated that both native glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists suppress the progression of atherosclerosis in animal models. We investigated whether liraglutide, a GLP-1 analogue, could prevent the development of atherosclerosis in apolipoprotein E knockout mice (ApoE -/- ) on a high-fat diet. We also examined the influence of liraglutide on angiotensin II-induced proliferation of rat vascular smooth muscle cells (VSMCs) via enhancement of AMP-activated protein kinase (AMPK) signaling and regulation of cell cycle progression. Treatment of ApoE -/- mice with liraglutide (400 μg/day for 4 weeks) suppressed atherosclerotic lesions and increased AMPK phosphorylation in the aortic wall. Liraglutide also improved the endothelial function of thoracic aortas harvested from ApoE -/- mice in an ex vivo study. Furthermore, liraglutide increased AMPK phosphorylation in rat VSMCs, while liraglutide-induced activation of AMPK was abolished by exendin 9-39, a GLP-1 antagonist. Moreover, angiotensin (Ang) II-induced proliferation of VSMCs was suppressed by liraglutide in a dose-dependent manner, and flow cytometry of Ang II-stimulated VSMCs showed that liraglutide reduced the percentage of cells in G2/M phase (by arrest in G0/G1 phase). These findings suggest that liraglutide may inhibit Ang II-induced VSMC proliferation by activating AMPK signaling and inducing cell cycle arrest, thus delaying the progression of atherosclerosis independently of its glucose-lowering effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Altered Signaling and Cell Cycle Regulation in Embryonal Stem Cells with a Disruption of the Gene for Phosphoinositide 3-Kinase Regulatory Subunit p85α*

    OpenAIRE

    Hallmann, Daniel; Trümper, Katja; Trusheim, Heidi; Ueki, Kohjiro; Kahn, C. Ronald; Cantley, Lewis C.; Fruman, David A.; Hörsch, Dieter

    2002-01-01

    The p85α regulatory subunit of class IA phosphoinositide 3-kinases (PI3K) is derived from the Pik3r1 gene, which also yields alternatively spliced variants p50α and p55α. It has been proposed that excess monomeric p85 competes with functional PI3K p85-p110 heterodimers. We examined embryonic stem (ES) cells with heterozygous and homozygous disruptions in the Pik3r gene and found that wild type ES cells express virtually no monomeric p85α. Although, IGF-1-stimulated PI3K activity associated wi...

  13. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells.

    Science.gov (United States)

    Shang, Guanning; Ma, Xu; Lv, Gang

    2018-01-01

    Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.

  14. Expression of cell cycle regulators, 14-3-3σ and p53 proteins, and vimentin in canine transitional cell carcinoma of the urinary bladder.

    Science.gov (United States)

    Suárez-Bonnet, Alejandro; Herráez, Pedro; Aguirre, Maria; Suárez-Bonnet, Elena; Andrada, Marisa; Rodríguez, Francisco; Espinosa de Los Monteros, Antonio

    2015-07-01

    The study of the expression of 14-3-3σ, p53, and vimentin proteins in canine transitional cell carcinoma (TCC) evaluating differences with normal bladder tissues, and the association with clinicopathological variables. We analyze by immunohistochemistry in 19 canine TCCs the expression of 14-3-3σ, p53, and vimentin using monoclonal antibodys. A semiquantitative scoring method was employed and statistical analysis was performed to display relationships between variables. In contrast to normal urinary bladder epithelium, which showed high levels of 14-3-3σ, its expression was decreased in 53% of the studied tumors (P = 0.0344). The 14-3-3σ protein was expressed by neoplastic emboli and by highly infiltrative neoplastic cells. The p53 protein was expressed in 26% of TCCs, but no significant association between 14-3-3σ and p53 was detected. Neoplastic epithelial cells displayed vimentin immunoreactivity in 21% of TCCs, and a positive correlation with mitotic index was observed (P = 0.042). Coexpression of vimentin and 14-3-3σ by highly infiltrative neoplastic cells was also observed. 14-3-3σ is deregulated in canine TCCs and its expression by highly infiltrative tumor cells may be related to the acquisition of aggressive behavior. Furthermore, this article reinforce the role of canine TCC as relevant model of human urothelial carcinoma and we suggest 14-3-3σ as a potential therapeutic target. Further studies are necessary to clarify the role of 14-3-3σ in canine TCC. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Induction of G1 cell cycle arrest and cyclin D1 down-regulation in response to pericarp extract of Baneh in human breast cancer T47D cells.

    Science.gov (United States)

    Rezaei, Parisa Fathi; Fouladdel, Shamileh; Ghaffari, Seyed Mahmood; Amin, Gholamreza; Azizi, Ebrahim

    2012-12-28

    Natural products from plants have an important role in the development and production of new drugs mainly for cancer therapy. More recently, we have shown that the pericarp methanolic extract of Pistacia atlantica sub kurdica (with local name of Baneh) as a rich source of active biological components with high antioxidant and radical scavenging activities, has ability to cease proliferation and induce apoptosis in T47D human breast cancer cells. The present study aimed to clarify whether Baneh extract able to alter cell cycle progression of T47D cells or not. In order to study the possible effect of Baneh extract on cell cycle of T47D cells, we evaluated cell cycle distribution and its regulatory proteins by flow cytometry and western blot analysis respectively. Baneh extract induced G0/G1 cell cycle arrest in conjunction with a marked decrease in expression of cyclin D1 and cdk4 that was strongly dependent on time of exposure. In parallel, Dox-treated T47D cells in early time points were accumulated on S phase, but after 48 h cell cycle progression was inhibited on G2/M. Dox promoted striking accumulation of cyclin B1 rapidly and enhanced cyclin A abundance. Taken together, our results establish that the antitumor activity of the pericarp extract of Baneh partly is mediated via cell cycle arrest and downregulation of cyclin D1 and cdk4 expression. These findings warrant further evaluation regarding the mechanism(s) of action of this promising anticancer agent.

  16. Hydrologic Regulation of Global Geochemical Cycles

    Science.gov (United States)

    Maher, K.

    2015-12-01

    Earth's temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks. However, direct evidence for the operation of this feedback over million-year timescales is difficult to obtain. For example, weathering fluxes over the last 20 million years of the Cenozoic Era, calculated using marine isotopic proxies (i.e. 87Sr/86Sr, δ7Li, and 187Os/188Os), appear inconsistent with past atmospheric CO2 levels and carbon mass balance. Similarly, observations from modern catchments suggest that chemical weathering fluxes are strongly correlated with erosion rates and only weakly correlated with temperature. As an alternative approach to evaluating the operation of a negative feedback, we use the major surface reservoirs of carbon to determine the imbalance in the geologic carbon cycle and the required silicate weathering flux over the Cenozoic. A miniscule (0.5-1%) increase in silicate weathering is necessary to explain the long-term decline in CO2 levels over the Cenozoic, providing evidence for a strong negative feedback between silicate weathering and climate. Rather than an appreciable increase in the silicate weathering flux, the long-term decrease in CO2levels may be due to an increase in the strength of the silicate weathering feedback. To explain the observed variations in the strength of the weathering feedback during the Cenozoic, we present a model for silicate weathering where hydrologic processes regulate climatic and tectonic forcings due to the presence of a thermodynamic limit to weathering fluxes. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts. These results also motivate several key outstanding challenges in earth surface processes, including the need to

  17. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  18. Elucidating respective functions of two domains BIR and C-helix of human IAP survivin for precise targeted regulating mitotic cycle, apoptosis and autophagy of cancer cells.

    Science.gov (United States)

    Hu, Fabiao; Pan, Daxia; Zheng, Wenyun; Yan, Ting; He, Xiujuan; Ren, Fuzheng; Lu, Yiming; Ma, Xingyuan

    2017-12-26

    Survivin was the smallest member of the IAP family, which was over expressed in many different cancers, and considered to be a promising hot target for cancer therapy, and our previous study demonstrated that multiple dominant negative mutants from full-length survivin could have many complex effects on cancer cells, such as cell cycle, apoptosis, and autophagy. But it was not yet known what role the two main domains played in those functions, which would be very important for the design of targeted anticancer drugs and for the interpretation of their molecular mechanisms. In this study, based on preparation the two parts (BIR domain and CC domain) of survivin by genetic engineering and cell characterization assay, we discovered that BIR (T34A)-domain peptide could inhibit Bcap-37 cells growth in a dose- and time-dependent manner, increase the proportion of G2/M phase, and induce caspase-dependent apoptosis via the mitochondrial pathway. While CC (T117A)-domain peptide increased the proportion of S-phase cells and increased the level of the autophagy marker protein LC3B significantly. These further experiments confirmed that TAT-BIR (T34A) peptide could be used to inhibit cell proliferation, promote apoptosis, and block mitosis, and TAT-CC (T117A) peptide showed mainly to promote autophagy, process of DNA replication, and mitosis to breast cancer cells. This research will lay the foundation for interpreting the multifunction mechanism of survivin in cell fates, further make senses in developing the anticancer drugs targeting it precisely and efficiently.

  19. The influence of reactive oxygen species on cell cycle progression in mammalian cells.

    Science.gov (United States)

    Verbon, Eline Hendrike; Post, Jan Andries; Boonstra, Johannes

    2012-12-10

    Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  1. Subversion of Cell Cycle Regulatory Mechanisms by HIV.

    Science.gov (United States)

    Rice, Andrew P; Kimata, Jason T

    2015-06-10

    To establish a productive infection, HIV-1 must counteract cellular innate immune mechanisms and redirect cellular processes toward viral replication. Recent studies have discovered that HIV-1 and other primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to achieve these ends. The viral Vpr and Vpx proteins target cell cycle controls to counter innate immunity. The cell-cycle-related protein Cyclin L2 is also utilized to counter innate immunity. The viral Tat protein utilizes Cyclin T1 to activate proviral transcription, and regulation of Cyclin T1 levels in CD4(+) T cells has important consequences for viral replication and latency. This review will summarize this emerging evidence that primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to enhance replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  3. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  4. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators.

    Science.gov (United States)

    Kawakami, Eri; Tokunaga, Akinori; Ozawa, Manabu; Sakamoto, Reiko; Yoshida, Nobuaki

    2015-02-01

    Methylation and de-methylation of histone lysine residues play pivotal roles in mammalian early development; these modifications influence chromatin architecture and regulate gene transcription. Fbxl11 (F-box and leucine-rich repeat 11)/Kdm2a is a histone demethylase that selectively removes mono- and di-methylation from histone H3K36. Previously, two other histone H3K36 demethylases (Jmjd5 or Fbxl10) were analyzed based on the phenotypes of the corresponding knockout (KO) mice; the results of those studies implicated H3K36 demethylases in cell proliferation, apoptosis, and senescence (Fukuda et al., 2011; Ishimura et al., 2012). To elucidate the physiological role of Fbxl11, we generated and examined Fbxl11 KO mice. Fbxl11 was expressed throughout the body during embryogenesis, and the Fbxl11 KO mice exhibited embryonic lethality at E10.5-12.5, accompanied with severe growth defects leading to reduced body size. Furthermore, knockout of Fbxl11 decreased cell proliferation and increased apoptosis. The lack of Fbxl11 resulted in downregulation of the Polycomb group protein (PcG) Ezh2, PcG mediated H2A ubiquitination and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Taken together, our findings suggest that Fbxl11 plays an essential role in embryonic development and homeostasis by regulating cell proliferation and survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Stretched cell cycle model for proliferating lymphocytes

    Science.gov (United States)

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  6. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  7. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  8. Modulations of cell cycle checkpoints during HCV associated disease

    Directory of Open Access Journals (Sweden)

    Jafri Wasim

    2009-08-01

    Full Text Available Abstract Background Impaired proliferation of hepatocytes has been reported in chronic Hepatitis C virus infection. Considering the fundamental role played by cell cycle proteins in controlling cell proliferation, altered regulation of these proteins could significantly contribute to HCV disease progression and subsequent hepatocellular carcinoma (HCC. This study aimed to identify the alterations in cell cycle genes expression with respect to early and advanced disease of chronic HCV infection. Methods Using freshly frozen liver biopsies, mRNA levels of 84 cell cycle genes in pooled RNA samples from patients with early or advanced fibrosis of chronic HCV infection were studied. To associate mRNA levels with respective protein levels, four genes (p27, p15, KNTC1 and MAD2L1 with significant changes in mRNA levels (> 2-fold, p-value Results In the early fibrosis group, increased mRNA levels of cell proliferation genes as well as cell cycle inhibitor genes were observed. In the advanced fibrosis group, DNA damage response genes were up-regulated while those associated with chromosomal stability were down-regulated. Increased expression of CDK inhibitor protein p27 was consistent with its mRNA level detected in early group while the same was found to be negatively associated with liver fibrosis. CDK inhibitor protein p15 was highly expressed in both early and advanced group, but showed no correlation with fibrosis. Among the mitotic checkpoint regulators, expression of KNTC1 was significantly reduced in advanced group while MAD2L1 showed a non-significant decrease. Conclusion Collectively these results are suggestive of a disrupted cell cycle regulation in HCV-infected liver. The information presented here highlights the potential of identified proteins as predictive factors to identify patients with high risk of cell transformation and HCC development.

  9. Cell cycle control factors and skeletal development

    Directory of Open Access Journals (Sweden)

    Toru Ogasawara

    2013-05-01

    Full Text Available In the oral and maxillofacial region, conditions such as delayed bone healing after tooth extraction, bone fracture, trauma-induced bone or cartilage defects, and tumors or birth defects are common, and it is necessary to identify the molecular mechanisms that control skeletogenesis or the differentiation of cells, in order to establish new treatment strategies for these conditions. Multiple studies have been conducted to investigate the involvement of factors that may be crucial for skeletogenesis or the differentiation of cells, including transcription factors, growth factors and cell cycle factors. Several genetically engineered mouse models of cell cycle factors have been generated in research seeking to identify cell cycle factor(s involved in the differentiation of cells, carcinogenesis, etc. Many groups have also reported the importance of cell cycle factors in the differentiation of osteoblasts, osteoclasts, chondrocytes and other cell types. Herein, we review the phenotypes of the genetically engineered mouse models of cell cycle factors with a particular focus on the size, body weight and skeletal abnormalities of the mice, and we discuss the potential of cell cycle factors as targets of clinical applications.

  10. Cell cycle checkpoints: methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-09-01

    Full Text Available As it is well known at the end of each cell cycle step there are checkpoints to verify that DNA duplication and segregation (among other events met every requirements before the cell is allowed to proceed to the next step. Multiple signaling molecules, notably cyclins and the cyclin-dependent kinases (CDKs, play major roles in the cell cycle checkpoint’s control....

  11. The human papillomavirus type 11 and 16 E6 proteins modulate the cell-cycle regulator and transcription cofactor TRIP-Br1

    International Nuclear Information System (INIS)

    Gupta, Sanjay; Takhar, Param Parkash S; Degenkolbe, Roland; Heng Koh, Choon; Zimmermann, Holger; Maolin Yang, Christopher; Guan Sim, Khe; I-Hong Hsu, Stephen; Bernard, Hans-Ulrich

    2003-01-01

    The genital human papillomaviruses (HPVs) are a taxonomic group including HPV types that preferentially cause genital and laryngeal warts ('low-risk types'), such as HPV-6 and HPV-11, or cancer of the cervix and its precursor lesions ('high-risk types'), such as HPV-16. The transforming processes induced by these viruses depend on the proteins E5, E6, and E7. Among these oncoproteins, the E6 protein stands out because it supports a particularly large number of functions and interactions with cellular proteins, some of which are specific for the carcinogenic HPVs, while others are shared among low- and high-risk HPVs. Here we report yeast two-hybrid screens with HPV-6 and -11 E6 proteins that identified TRIP-Br1 as a novel cellular target. TRIP-Br1 was recently detected by two research groups, which described two separate functions, namely that of a transcriptional integrator of the E2F1/DP1/RB cell-cycle regulatory pathway (and then named TRIP-Br1), and that of an antagonist of the cyclin-dependent kinase suppression of p16INK4a (and then named p34SEI-1). We observed that TRIP-Br1 interacts with low- and high-risk HPV E6 proteins in yeast, in vitro and in mammalian cell cultures. Transcription activation of a complex consisting of E2F1, DP1, and TRIP-Br1 was efficiently stimulated by both E6 proteins. TRIP-Br1 has an LLG E6 interaction motif, which contributed to the binding of E6 proteins. Apparently, E6 does not promote degradation of TRIP-Br1. Our observations imply that the cell-cycle promoting transcription factor E2F1/DP1 is dually targeted by HPV oncoproteins, namely (i) by interference of the E7 protein with repression by RB, and (ii) by the transcriptional cofactor function of the E6 protein. Our data reveal the natural context of the transcription activator function of E6, which has been predicted without knowledge of the E2F1/DP1/TRIP-Br/E6 complex by studying chimeric constructs, and add a function to the limited number of transforming properties shared

  12. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  13. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.

    Science.gov (United States)

    Camilios-Neto, Doumit; Bonato, Paloma; Wassem, Roseli; Tadra-Sfeir, Michelle Z; Brusamarello-Santos, Liziane C C; Valdameri, Glaucio; Donatti, Lucélia; Faoro, Helisson; Weiss, Vinicius A; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M

    2014-05-16

    The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

  14. Inhibition of Anchorage-Independent Proliferation and G0/G1 Cell-Cycle Regulation in Human Colorectal Carcinoma Cells by 4,7-Dimethoxy-5-Methyl-l,3-Benzodioxole Isolated from the Fruiting Body of Antrodia camphorate

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2011-01-01

    Full Text Available In this study, 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1 was isolated from three different sources of dried fruiting bodies of Antrodia camphorate (AC. AC is a medicinal mushroom that grows on the inner heartwood wall of Cinnamomum kanehirai Hay (Lauraceae, an endemic species that is used in Chinese medicine for its anti-tumor and immunomodulatory properties. In this study, we demonstrated that SY-1 profoundly decreased the proliferation of human colon cancer cells (COLO 205 through G0/G1 cell-cycle arrest (50–150 μM and induction of apoptosis (>150 μM. Cell-cycle arrest induced by SY-1 was associated with a significant increase in levels of p53, p21/Cip1 and p27/Kip1, and a decrease in cyclins D1, D3 and A. In contrast, SY-1 treatment did not induce significant changes in G0/G1 phase cell-cycle regulatory proteins in normal human colonic epithelial cells (FHC. The cells were cultured in soft agar to evaluate anchorage-independent colony formation, and we found that the number of transformed colonies was significantly reduced in the SY-1-treated COLO 205 cells. These findings demonstrate for the first time that SY-1 inhibits human colon cancer cell proliferation through inhibition of cell growth and anchorage-independent colony formation in soft agar. However, the detailed mechanisms of these processes remain unclear and will require further investigation.

  15. The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination.

    Science.gov (United States)

    Savard, F; Richard, C; Guertin, M

    1996-11-01

    In the green unicellular alga Chlamydomonas reinhardtii, as in higher plants, the expression of the genes encoding the chlorophyll a/b-binding (CAB) polypeptides associated with photosystem I (PSI) and photosystem II (PSII) is regulated by endogenous (circadian clock) and exogenous signals (light and temperature). The circadian clock ensures that the oscillation in the levels of the different cab mRNAs is continuously kept in phase with light/dark (LD) cycles and is maximal by the middle of the day. On the other hand, light controls the amplitude of the oscillations. We report here the cloning and characterization of the C. reinhardtii LI818 gene, which identifies a CAB-related polypeptide and whose expression is regulated quite differently from the cab I/II genes. We show: (1) that in LD synchronized Chlamydomonas cells LI818 mRNA accumulation is subject to dual regulation that involves separable regulation by light and an endogenous oscillator; (2) that LI818 mRNA is fully expressed several hours before the cab I/II mRNAs and that the latter accumulate concomitantly; (3) that blocking the electron flow through PSII using DCMU prevents cells from accumulating cab I/II mRNAs but not LI818 mRNA and (4) that the accumulation of LI818 mRNA is abolished by blocking cytoplasmic protein synthesis, suggesting that these regulatory mechanisms are mediated by labile proteins.

  16. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific

  17. Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray

    Directory of Open Access Journals (Sweden)

    Jirström Karin

    2010-06-01

    Full Text Available Abstract Background Previous studies have shown that the ADIPOR1, ADORA1, BTG2 and CD46 genes differ significantly between long-term survivors of breast cancer and deceased patients, both in levels of gene expression and DNA copy numbers. The aim of this study was to characterize the expression of the corresponding proteins in breast carcinoma and to determine their correlation with clinical outcome. Methods Protein expression was evaluated using immunohistochemistry in an independent breast cancer cohort of 144 samples represented on tissue microarrays. Fisher's exact test was used to analyze the differences in protein expression between dead and alive patients. We used Cox-regression multivariate analysis to assess whether the new markers predict the survival status of the patients better than the currently used markers. Results BTG2 expression was demonstrated in a significantly lower proportion of samples from dead patients compared to alive patients, both in overall expression (P = 0.026 and cell membrane specific expression (P = 0.013, whereas neither ADIPOR1, ADORA1 nor CD46 showed differential expression in the two survival groups. Furthermore, a multivariate analysis showed that a model containing BTG2 expression in combination with HER2 and Ki67 expression along with patient age performed better than a model containing the currently used prognostic markers (tumour size, nodal status, HER2 expression, hormone receptor status, histological grade, and patient age. Interestingly, BTG2 has previously been described as a tumour suppressor gene involved in cell cycle arrest and p53 signalling. Conclusions We conclude that high-level BTG2 protein expression correlates with prolonged survival in patients with breast carcinoma.

  18. Estradiol partially recapitulates murine pituitary cell cycle response to pregnancy.

    Science.gov (United States)

    Toledano, Yoel; Zonis, Svetlana; Ren, Song-Guang; Wawrowsky, Kolja; Chesnokova, Vera; Melmed, Shlomo

    2012-10-01

    Because pregnancy and estrogens both induce pituitary lactotroph hyperplasia, we assessed the expression of pituitary cell cycle regulators in two models of murine pituitary hyperplasia. Female mice were assessed during nonpregnancy, pregnancy, day of delivery, and postpartum. We also implanted estradiol (E(2)) pellets in female mice and studied them for 2.5 months. Pituitary weight in female mice increased 2-fold after E(2) administration and 1.4-fold at day of delivery, compared with placebo-treated or nonpregnant females. Pituitary proliferation, as assessed by proliferating cell nuclear antigen and/or Ki-67 staining, increased dramatically during both mid-late pregnancy and E(2) administration, and lactotroph hyperplasia was also observed. Pregnancy induced pituitary cell cycle proliferative and inhibitory responses at the G(1)/S checkpoint. Differential cell cycle regulator expression included cyclin-dependent kinase inhibitors, p21(Cip1), p27(Kip1), and cyclin D1. Pituitary cell cycle responses to E(2) administration partially recapitulated those effects observed at mid-late pregnancy, coincident with elevated circulating mouse E(2), including increased expression of proliferating cell nuclear antigen, Ki-67, p15(INK4b), and p21(Cip1). Nuclear localization of pituitary p21(Cip1) was demonstrated at mid-late pregnancy but not during E(2) administration, suggesting a cell cycle inhibitory role for p21(Cip1) in pregnancy, yet a possible proproliferative role during E(2) administration. Most observed cell cycle protein alterations were reversed postpartum. Murine pituitary meets the demand for prolactin during lactation associated with induction of both cell proliferative and inhibitory pathways, mediated, at least partially, by estradiol.

  19. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle...... at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non...... that non-optimal (wobbly) matching codons influence protein synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage can give rise to cell-cycle regulation. In summary, our data indicate that cells exploit wobbling to generate cell cycle-dependent dynamics...

  20. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells.

    OpenAIRE

    Andreassen, P R; Margolis, R L

    1992-01-01

    BHK cells blocked at any of several points in the cell cycle override their drug-induced arrest and proceed in the cycle when exposed concurrently to the protein kinase inhibitor 2-aminopurine (2-AP). For cells arrested at various points in interphase, 2-AP-induced cell cycle progression is made evident by arrival of the drug-treated cell population in mitosis. Cells that have escaped from mimosine G1 arrest, from hydroxyurea or aphidicolin S-phase arrest, or from VM-26-induced G2 arrest subs...

  1. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types.

    Science.gov (United States)

    Giotti, Bruno; Joshi, Anagha; Freeman, Tom C

    2017-01-05

    Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G 1 /S-S and G 2 -M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.

  2. The global regulatory architecture of transcription during the Caulobacter cell cycle.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2015-01-01

    Full Text Available Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.

  3. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-01-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G 1 /G 0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  4. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  5. The role of neprilysin in regulating the hair cycle.

    Directory of Open Access Journals (Sweden)

    Naoko Morisaki

    Full Text Available In most mammals, each hair follicle undergoes a cyclic process of growing, regressing and resting phases (anagen, catagen, telogen, respectively called the hair cycle. Various biological factors have been reported to regulate or to synchronize with the hair cycle. Some factors involved in the extracellular matrix, which is a major component of skin tissue, are also thought to regulate the hair cycle. We have focused on an enzyme that degrades elastin, which is associated with skin elasticity. Since our previous study identified skin fibroblast elastase as neprilysin (NEP, we examined the fluctuation of NEP enzyme activity and its expression during the synchronized hair cycle of rats. NEP activity in the skin was elevated at early anagen, and decreased during catagen to telogen. The expression of NEP mRNA and protein levels was modulated similarly. Immunostaining showed changes in NEP localization throughout the hair cycle, from the follicular epithelium during early anagen to the dermal papilla during catagen. To determine whether NEP plays an important role in regulating the hair cycle, we used a specific inhibitor of NEP (NPLT. NPLT was applied topically daily to the dorsal skin of C3H mice, which had been depilated in advance. Mice treated with NPLT had significantly suppressed hair growth. These data suggest that NEP plays an important role in regulating the hair cycle by its increased expression and activity in the follicular epithelium during early anagen.

  6. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  7. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  8. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  9. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  10. Short-Stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-Like Cell Cycle.

    Science.gov (United States)

    Williams, Michelle; Hoffman, Michelle D; Daniel, Jeremy J; Madren, Seth M; Dhroso, Andi; Korkin, Dmitry; Givan, Scott A; Jacobson, Stephen C; Brown, Pamela J B

    2016-02-01

    The dimorphic alphaproteobacterium Prosthecomicrobium hirschii has both short-stalked and long-stalked morphotypes. Notably, these morphologies do not arise from transitions in a cell cycle. Instead, the maternal cell morphology is typically reproduced in daughter cells, which results in microcolonies of a single cell type. In this work, we further characterized the short-stalked cells and found that these cells have a Caulobacter-like life cycle in which cell division leads to the generation of two morphologically distinct daughter cells. Using a microfluidic device and total internal reflection fluorescence (TIRF) microscopy, we observed that motile short-stalked cells attach to a surface by means of a polar adhesin. Cells attached at their poles elongate and ultimately release motile daughter cells. Robust biofilm growth occurs in the microfluidic device, enabling the collection of synchronous motile cells and downstream analysis of cell growth and attachment. Analysis of a draft P. hirschii genome sequence indicates the presence of CtrA-dependent cell cycle regulation. This characterization of P. hirschii will enable future studies on the mechanisms underlying complex morphologies and polymorphic cell cycles. Bacterial cell shape plays a critical role in regulating important behaviors, such as attachment to surfaces, motility, predation, and cellular differentiation; however, most studies on these behaviors focus on bacteria with relatively simple morphologies, such as rods and spheres. Notably, complex morphologies abound throughout the bacteria, with striking examples, such as P. hirschii, found within the stalked Alphaproteobacteria. P. hirschii is an outstanding candidate for studies of complex morphology generation and polymorphic cell cycles. Here, the cell cycle and genome of P. hirschii are characterized. This work sets the stage for future studies of the impact of complex cell shapes on bacterial behaviors. Copyright © 2016, American Society for

  11. Endosomal Rab cycles regulate Parkin-mediated mitophagy.

    Science.gov (United States)

    Yamano, Koji; Wang, Chunxin; Sarraf, Shireen A; Münch, Christian; Kikuchi, Reika; Noda, Nobuo N; Hizukuri, Yohei; Kanemaki, Masato T; Harper, Wade; Tanaka, Keiji; Matsuda, Noriyuki; Youle, Richard J

    2018-01-23

    Damaged mitochondria are selectively eliminated by mitophagy. Parkin and PINK1, gene products mutated in familial Parkinson's disease, play essential roles in mitophagy through ubiquitination of mitochondria. Cargo ubiquitination by E3 ubiquitin ligase Parkin is important to trigger selective autophagy. Although autophagy receptors recruit LC3-labeled autophagic membranes onto damaged mitochondria, how other essential autophagy units such as ATG9A-integrated vesicles are recruited remains unclear. Here, using mammalian cultured cells, we demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. Furthermore, depletion of RAB7A inhibited ATG9A vesicle assembly and subsequent encapsulation of the mitochondria by autophagic membranes. These results strongly suggest that endosomal Rab cycles on damaged mitochondria are a crucial regulator of mitophagy through assembling ATG9A vesicles. © 2018, Yamano et al.

  12. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  13. Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber.

    Science.gov (United States)

    Graham, I. A.; Denby, K. J.; Leaver, C. J.

    1994-01-01

    We have previously proposed that metabolic status is important in the regulation of cucumber malate synthase (MS) and isocitrate lyase (ICL) gene expression during plant development. In this article, we used a cell culture system to demonstrate that intracellular metabolic status does influence expression of both of these genes. Starvation of cucumber cell cultures resulted in the coordinate induction of the expression of MS and ICL genes, and this effect was reversed when sucrose was returned to the culture media. The induction of gene expression was closely correlated with a drop in intracellular sucrose, glucose, and fructose below threshold concentrations, but it was not correlated with a decrease in respiration rate. Glucose, fructose, or raffinose in the culture media also resulted in repression of MS and ICL. Both 2-deoxyglucose and mannose, which are phosphorylated by hexokinase but not further metabolized, specifically repressed MS and ICL gene expression relative to a third glyoxylate cycle gene, malate dehydrogenase. However, the addition of 3-methylglucose, an analog of glucose that is not phosphorylated, did not result in repression of either MS or ICL. It is proposed that the signal giving rise to a change in gene expression originates from the intracellular concentration of hexose sugars or the flux of hexose sugars into glycolysis. PMID:12244257

  14. Relationship between photosynthetic metabolism and cell cycle in a synchronized culture of the marine alga Cylindrotheca fusiformis (Bacillariophyceae)

    NARCIS (Netherlands)

    Claquin, P.; Kromkamp, J.C.; Martin-Jezequel, V.

    2004-01-01

    The aim of this study was to characterize the variation and regulation of photosynthetic carbon metabolism in Cylindrotheca fusiformis during the cell cycle. The cells were synchronized using two cell cycle inhibitors: one for cells grown under light:dark cycles and one for growth in continuous

  15. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independe...

  16. Hippo signaling controls cell cycle and restricts cell plasticity in planarians.

    Directory of Open Access Journals (Sweden)

    Nídia de Sousa

    2018-01-01

    Full Text Available The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell-based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation.

  17. TIMP-3 recruits quiescent hematopoietic stem cells into active cell cycle and expands multipotent progenitor pool.

    Science.gov (United States)

    Nakajima, Hideaki; Ito, Miyuki; Smookler, David S; Shibata, Fumi; Fukuchi, Yumi; Morikawa, Yoshihiro; Ikeda, Yuichi; Arai, Fumio; Suda, Toshio; Khokha, Rama; Kitamura, Toshio

    2010-11-25

    Regulating transition of hematopoietic stem cells (HSCs) between quiescent and cycling states is critical for maintaining homeostasis of blood cell production. The cycling states of HSCs are regulated by the extracellular factors such as cytokines and extracellular matrix; however, the molecular circuitry for such regulation remains elusive. Here we show that tissue inhibitor of metalloproteinase-3 (TIMP-3), an endogenous regulator of metalloproteinases, stimulates HSC proliferation by recruiting quiescent HSCs into the cell cycle. Myelosuppression induced TIMP-3 in the bone marrow before hematopoietic recovery. Interestingly, TIMP-3 enhanced proliferation of HSCs and promoted expansion of multipotent progenitors, which was achieved by stimulating cell-cycle entry of quiescent HSCs without compensating their long-term repopulating activity. Surprisingly, this effect did not require metalloproteinase inhibitory activity of TIMP-3 and was possibly mediated through a direct inhibition of angiopoietin-1 signaling, a critical mediator for HSC quiescence. Furthermore, bone marrow recovery from myelosuppression was accelerated by over-expression of TIMP-3, and in turn, impaired in TIMP-3-deficient animals. These results suggest that TIMP-3 may act as a molecular cue in response to myelosuppression for recruiting dormant HSCs into active cell cycle and may be clinically useful for facilitating hematopoietic recovery after chemotherapy or ex vivo expansion of HSCs.

  18. Effects of Camphorquinone on Cytotoxicity, Cell Cycle Regulation and Prostaglandin E2 Production of Dental Pulp Cells: Role of ROS, ATM/Chk2, MEK/ERK and Hemeoxygenase-1.

    Science.gov (United States)

    Chang, Mei-Chi; Lin, Li-Deh; Wu, Min-Tsz; Chan, Chiu-Po; Chang, Hsiao-Hua; Lee, Ming-Shu; Sun, Tzu-Ying; Jeng, Po-Yuan; Yeung, Sin-Yuet; Lin, Hsueh-Jen; Jeng, Jiiang-Huei

    2015-01-01

    Camphorquinone (CQ) is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS), ATM/Chk2/p53 and hemeoxygenase-1 (HO-1) and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM) decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2) were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD), but can be promoted by Zinc protoporphyin (ZnPP). CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2) production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling.

  19. Effects of Camphorquinone on Cytotoxicity, Cell Cycle Regulation and Prostaglandin E2 Production of Dental Pulp Cells: Role of ROS, ATM/Chk2, MEK/ERK and Hemeoxygenase-1.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available Camphorquinone (CQ is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS, ATM/Chk2/p53 and hemeoxygenase-1 (HO-1 and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2 were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC, catalase and superoxide dismutase (SOD, but can be promoted by Zinc protoporphyin (ZnPP. CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2 production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling.

  20. Control points within the cell cycle

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures

  1. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    Science.gov (United States)

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  2. Hippo signaling controls cell cycle and restricts cell plasticity in planarians

    Science.gov (United States)

    de Sousa, Nídia; Rodríguez-Esteban, Gustavo; Rojo-Laguna, Jose Ignacio; Saló, Emili

    2018-01-01

    The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell–based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation. PMID:29357350

  3. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  4. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans.

    Science.gov (United States)

    Lu, Yu; Roy, Richard

    2014-01-01

    The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.

  5. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans.

    Directory of Open Access Journals (Sweden)

    Yu Lu

    Full Text Available The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.

  6. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  7. Dietary Compound Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves inhibit angiogenesis and regulate cell cycle of cisplatin-resistant ovarian cancer cells via targeting Akt pathway.

    Science.gov (United States)

    Zhang, Yu; Chen, Shiguo; Wei, Chaoyang; Rankin, Gary O; Rojanasakul, Yon; Ren, Ning; Ye, Xingqian; Chen, Yi Charlie

    2018-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancy and natural products have drawn great attention for cancer treatment. Chinese bayberry leaves proanthocyanidin (BLPs) with epigallocatechin-3-O-gallate (EGCG) as its terminal and major extension units is unusual in the plant kingdom. In the present study, BLPs showed strong growth inhibitory effects on cisplatin-resistant A2780/CP70 cells by inhibiting angiogenesis and inducing G1 cell cycle arrest. BLPs reduced the tube formation in HUVECs and attenuated the wound healing ability in A2780/CP70 cells. BLPs further reduced the level of ROS and targeted Akt/mTOR/p70S6K/4E-BP-1 pathway to reduce the expression of HIF-1α and VEGF, and thus inhibited angiogenesis. Furthermore, BLPs induced G1 cell cycle arrest by reducing the expressions of c-Myc, cyclin D1 and CDK4, which was also in accordance with the flow cytometry analysis. Overall, these results indicated that BLPs could be a valuable resource of natural compounds for cancer treatment.

  8. Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins.

    Science.gov (United States)

    Zencak, Dusan; Schouwey, Karine; Chen, Danian; Ekström, Per; Tanger, Ellen; Bremner, Rod; van Lohuizen, Maarten; Arsenijevic, Yvan

    2013-02-12

    The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.

  9. LIMD1 antagonizes E2F1 activity and cell cycle progression by enhancing Rb function in cancer cells.

    Science.gov (United States)

    Mayank, Adarsh K; Sharma, Shipra; Deshwal, Ravi K; Lal, Sunil K

    2014-07-01

    Tumour suppressor genes restrain inappropriate cell growth and division, as well as stimulate cell death to maintain tissue homeostasis. Loss of function leads to abnormal cellular behaviour, including hyperproliferation of cell and perturbation of cell cycle regulation. LIMD1 is a tumour suppressor gene located at chromosome 3p21.3, a region commonly deleted in many solid malignancies. LIMD1 interacts with retinoblastoma (Rb) and is involved in Rb-mediated downregulation of E2F1-target genes. However, the role of LIMD1 in cell cycle regulation remains unclear. We propose that LIMD1 induces cell cycle arrest, utilising Rb-E2F1 axis, and show that ectopic expression of LIMD1 in A549 cells results in hypo-phosphorylation that potentiates Rb function, which correlates with downregulation of E2F1. In agreement with these observations, LIMD1 overexpression retards cell cycle progression and blocks S-phase entry, as cells accumulate in G0/G1 phase and have reduced incorporation of BrdU. Most significantly, LIMD1-dependent effects on Rb function and cell cycle are reversed on depletion of endogenous LIMD1, underscoring its centrality in Rb-mediated cell cycle regulation. Hence, our findings provide new insight into cell cycle control by Rb-LIMD1 nexus. © 2014 International Federation for Cell Biology.

  10. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  11. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage

    DEFF Research Database (Denmark)

    Moessinger, Christine; Klizaite, Kristina; Steinhagen, Almut

    2014-01-01

    the release of lipoprotein from liver cells.ConclusionActivity of the Kennedy pathway regulates the balance between phospholipids and neutral lipids, while the Lands cycle regulates lipid droplet size by regulating surface availability and influencing surface to volume ratio. Differences in lipid droplet size...

  12. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  13. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  14. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.

  15. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer.

    Science.gov (United States)

    Agarwal, Payal; Sandey, Maninder; DeInnocentes, Patricia; Bird, R Curtis

    2013-06-01

    p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16-defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16-transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re-feeding to induce cell cycle re-entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16-associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re-entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by (3)H-thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16-transfected CMT27A and CMT27H cells exited cell cycle post-serum-starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post-serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non-proliferative states. Copyright © 2012 Wiley Periodicals, Inc.

  16. Substrate curvature regulates cell migration.

    Science.gov (United States)

    He, Xiuxiu; Jiang, Yi

    2017-05-23

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  17. Regulation of cell division in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, T.W.

    1992-01-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  18. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Matthijs, Michiel; Fabris, Michele; Obata, Toshihiro; Foubert, Imogen; Franco-Zorrilla, José Manuel; Solano, Roberto; Fernie, Alisdair R; Vyverman, Wim; Goossens, Alain

    2017-06-01

    Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle. © 2017 The Authors.

  19. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  20. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  1. Regulators of Tfh cell differentiation

    Directory of Open Access Journals (Sweden)

    Gajendra Motiram Jogdand

    2016-11-01

    Full Text Available The follicular helper T (Tfh cells help is critical for activation of B cells, antibody class switching and germinal center formation. The Tfh cells are characterized by the expression of CXCR5, ICOS, PD-1, Bcl-6, and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. Tfh cells are generated from naïve CD4 T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A, migration and positioning in the germinal center by CXCR5, surface receptors (ICOS/ICOSL, SAP/SLAM as well as transcription factor (Bcl-6, c-Maf, STAT3 signaling and repressor miR155. On the other hand Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7, surface receptor (PD-1, CTLA-4, transcription factors Blimp-1, STAT5, T-bet, KLF-2 signaling and repressor miR 146a. Interestingly, miR 17-92 and FOXO1 acts as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin Ligase and miRNA as positive and negative regulators for Tfh differentiation.

  2. Prp19 Arrests Cell Cycle via Cdc5L in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Renzheng Huang

    2017-04-01

    Full Text Available Pre-mRNA processing factor 19 (Prp19 is involved in many cellular events including pre-mRNA processing and DNA damage response. Recently, it has been identified as a candidate oncogene in hepatocellular carcinoma (HCC. However, the role of Prp19 in tumor biology is still elusive. Here, we reported that Prp19 arrested cell cycle in HCC cells via regulating G2/M transition. Mechanistic insights revealed that silencing Prp19 inhibited the expression of cell division cycle 5-like (Cdc5L via repressing the translation of Cdc5L mRNA and facilitating lysosome-mediated degradation of Cdc5L in HCC cells. Furthermore, we found that silencing Prp19 induced cell cycle arrest could be partially resumed by overexpressing Cdc5L. This work implied that Prp19 participated in mitotic progression and thus could be a promising therapeutic target of HCC.

  3. Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division.

    Science.gov (United States)

    Kumar, Arun; Sharma, Priyanka; Gomar-Alba, Mercè; Shcheprova, Zhanna; Daulny, Anne; Sanmartín, Trinidad; Matucci, Irene; Funaya, Charlotta; Beato, Miguel; Mendoza, Manuel

    2018-04-01

    The acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remain unclear. We have uncovered a mechanism that regulates NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter-cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the G1/S cyclin gene CLN2 in the following G1 phase. Hos3-dependent coordination of both events restrains Start in daughter, but not in mother, cells. We propose that deacetylation modulates transport-dependent and transport-independent functions of NPCs, leading to differential cell cycle progression in mother and daughter cells. Similar mechanisms might regulate NPC functions in specific cell types and/or cell cycle stages in multicellular organisms.

  4. Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells.

    Science.gov (United States)

    Patlolla, Jagan M R; Raju, Jayadev; Swamy, Malisetty V; Rao, Chinthalapally V

    2006-06-01

    Extracts of Aesculus hippocastanum (horse chestnut) seed have been used in the treatment of chronic venous insufficiency, edema, and hemorrhoids. Most of the beneficial effects of horse chestnut are attributed to its principal component beta-escin or aescin. Recent studies suggest that beta-escin may possess anti-inflammatory, anti-hyaluronidase, and anti-histamine properties. We have evaluated the chemopreventive efficacy of dietary beta-escin on azoxymethane-induced colonic aberrant crypt foci (ACF). In addition, we analyzed the cell growth inhibitory effects and the induction of apoptosis in HT-29 human colon cancer cell line. To evaluate the inhibitory properties of beta-escin on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.025%, or 0.05% beta-escin. After 1 week, the rats received s.c. injections of azoxymethane (15 mg/kg body weight, once weekly for 2 weeks) or an equal volume of normal saline (vehicle). Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.025% and 0.05% beta-escin significantly suppressed total colonic ACF formation up to approximately 40% (P escin showed dose-dependent inhibition (approximately 49% to 65%, P escin and analyzed by flow cytometry for apoptosis and cell cycle progression. Beta-escin treatment in HT-29 cells induced growth arrest at the G1-S phase, which was associated with the induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and this correlated with reduced phosphorylation of retinoblastoma protein. Results also indicate that beta-escin inhibited growth of colon cancer cells with either wild-type or mutant p53. This novel feature of beta-escin, a triterpene saponin, may be a useful candidate agent for colon cancer chemoprevention and treatment.

  5. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  6. Endometrial response to IVF hormonal manipulation: Comparative analysis of menopausal, down regulated and natural cycles

    Directory of Open Access Journals (Sweden)

    Gayer Nalini

    2004-04-01

    Full Text Available Abstract Background Uterine luminal epithelial cell response to different hormonal strategies was examined to determine commonality when an endometrium attains a receptive, stimulated, morphological profile that may lead to successful implantation. Methods Endometrial biopsies from 3 cohorts of patients were compared. The tissue samples taken from these patients were categorized into 8 different groups according to their baseline and the hormone regime used. Results Pre-treatment natural cycle tissue was variable in appearance. Downregulation with a GnRH analogue tissue appeared menopausal in character. HRT after downregulation resulted in tissue uniformity. HRT in menopause resulted in a 'lush' epithelial surface. HST in the natural cycle improved the morphology with significant difference in secretion between the two regimes examined. Conclusions Down regulation plus HRT standardized surface appearance but tissue response is significantly different from the natural cycle, natural cycle plus HRT or menopause plus HRT. HRT in menopause reinstates tissue to a state similar to a natural cycle but significantly different from a natural cycle plus HST. HST with a natural cycle is similar to tissue from the natural cycle but significant differences reflect the influence of the particular hormones present (at any point within the cycle.

  7. Endometrial response to IVF hormonal manipulation: Comparative analysis of menopausal, down regulated and natural cycles

    Science.gov (United States)

    Adams, Susan M; Terry, Vera; Hosie, Margot J; Gayer, Nalini; Murphy, Christopher R

    2004-01-01

    Background Uterine luminal epithelial cell response to different hormonal strategies was examined to determine commonality when an endometrium attains a receptive, stimulated, morphological profile that may lead to successful implantation. Methods Endometrial biopsies from 3 cohorts of patients were compared. The tissue samples taken from these patients were categorized into 8 different groups according to their baseline and the hormone regime used. Results Pre-treatment natural cycle tissue was variable in appearance. Downregulation with a GnRH analogue tissue appeared menopausal in character. HRT after downregulation resulted in tissue uniformity. HRT in menopause resulted in a 'lush' epithelial surface. HST in the natural cycle improved the morphology with significant difference in secretion between the two regimes examined. Conclusions Down regulation plus HRT standardized surface appearance but tissue response is significantly different from the natural cycle, natural cycle plus HRT or menopause plus HRT. HRT in menopause reinstates tissue to a state similar to a natural cycle but significantly different from a natural cycle plus HST. HST with a natural cycle is similar to tissue from the natural cycle but significant differences reflect the influence of the particular hormones present (at any point) within the cycle. PMID:15117407

  8. Effect of norcantharidin on the proliferation, apoptosis, and cell cycle of human mesangial cells.

    Science.gov (United States)

    Ye, Kun; Wei, Qiaoyu; Gong, Zhifeng; Huang, Yunfeng; Liu, Hong; Li, Ying; Peng, Xiaomei

    2017-11-01

    Norcantharidin (NCTD) regulates immune system function and reduces proteinuria. We sought to investigate the effect of NCTD on proliferation, apoptosis and cell cycle of cultured human mesangial cells (HMC) in vitro. HMC cells were divided into a normal control group, and various concentrations of NCTD group (2.5, 5, 10, 20, or 40 μg/mL). Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis was detected by Annexin V/propidium iodide (PI) assays, and morphological analysis was performed by Hoechest 33258 staining. Finally, cell cycle was analyzed by flow cytometry. NCTD dose and time dependently inhibits HMC proliferation significantly (p Cell-cycle analysis revealed that the number of cells in the G2 phase increased significantly, whereas the fraction of cells in the S phase decreased, especially 24 h after 5 μg/ml NCTD treatment. NCTD inhibits HMC cell proliferation, induces apoptosis, and affects the cell cycle.

  9. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  10. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  11. Effects of Auraptene on IGF-1 Stimulated Cell Cycle Progression in the Human Breast Cancer Cell Line, MCF-7

    Directory of Open Access Journals (Sweden)

    Prasad Krishnan

    2012-01-01

    Full Text Available Auraptene is being investigated for its chemopreventive effects in many models of cancer including skin, colon, prostate, and breast. Many mechanisms of action including anti-inflammatory, antiproliferative, and antiapoptotic effects are being suggested for the chemopreventive properties of auraptene. We have previously shown in the N-methylnitrosourea induced mammary carcinogenesis model that dietary auraptene (500 ppm significantly delayed tumor latency. The delay in time to tumor corresponded with a significant reduction in cyclin D1 protein expression in the tumors. Since cyclin D1 is a major regulator of cell cycle, we further studied the effects of auraptene on cell cycle and the genes related to cell cycle in MCF-7 cells. Here we show that auraptene significantly inhibited IGF-1 stimulated S phase of cell cycle in MCF-7 cells and significantly changed the transcription of many genes involved in cell cycle.

  12. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.

    Science.gov (United States)

    von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi

    2016-01-01

    River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.

  13. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  14. Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification

    Directory of Open Access Journals (Sweden)

    Thomas Zerjatke

    2017-05-01

    Full Text Available Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations.

  15. Extracellular matrix metalloproteinase inducer (CD147/BSG/EMMPRIN)-induced radioresistance in cervical cancer by regulating the percentage of the cells in the G2/m phase of the cell cycle and the repair of DNA Double-strand Breaks (DSBs).

    Science.gov (United States)

    Ju, Xingzhu; Liang, Shanhui; Zhu, Jun; Ke, Guihao; Wen, Hao; Wu, Xiaohua

    2016-01-01

    Our preliminary study found that CD147 is related to radioresistance and maybe an adverse prognostic factor in cervical cancer. To date, the mechanisms underlying CD147-induced radioresistance in cervical cancer remain unclear. In the present study, we investigated the mechanisms by which CD147 affects radiosensitivity in cervical cancer both in vitro and in vivo. In this study, the clonogenic assay showed that radiosensitivity was significantly higher in the experimental group (the CD147-negative cell lines) than in the control group (the CD147-positive cell lines). After radiotherapy, the residual tumour volume was significantly lower in the experimental group. FCM analysis showed the cells percentage in the G2/M phase of the cell cycle were significantly higher in the CD147-negative group than in the control group. However, there was no significant difference in terms of apoptosis. The expression of gamma-H2A histone family, member X (γH2AX) was dramatically elevated in the CD147-negative cell lines after irradiation, but the expression of ataxia-telangiectasia mutated (ATM) was not different between the two groups. WB analysis did not show any other proteins relating to the expression of CD147. In conclusion, it is likely that CD147 regulates radioresistance by regulating the percentage of the cells in the G2/M phase of the cell cycle and the repair of DNA double-strand breaks (DSBs). Inhibition of CD147 expression enhances the radiosensitivity of cervical cancer cell lines and promotes post-radiotherapy xenograft tumour regression in nude mice. Therefore, CD147 may be used in individualized therapy against cervical cancer and is worth further exploration.

  16. Cell swelling and volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    1992-01-01

    The extracellular space in the brain is typically 20% of the tissue volume and is reduced to at least half its size under conditions of neural insult. Whether there is a minimum size to the extracellular space was discussed. A general model for cell volume regulation was presented, followed...... by a discussion on how many of the generally involved mechanisms are identified in neural cells and (or) in astrocytes. There seems to be clear evidence suggesting that parallel K+ and Cl- channels mediate regulatory volume decrease in primary cultures of astrocytes, and a stretch-activated cation channel has...... been reported. The role of the different channels was discussed. A taurine leak pathway is clearly activated after cell swelling both in astrocytes and in neurones. The relations between the effect of glutamate and cell swelling were discussed. Discussion on the clearance of potassium from...

  17. WNT Takes Two to Tango: Molecular Links between the Circadian Clock and the Cell Cycle in Adult Stem Cells.

    Science.gov (United States)

    Matsu-Ura, Toru; Moore, Sean R; Hong, Christian I

    2018-02-01

    Like two dancers, the circadian clock and cell cycle are biological oscillators engaged in bidirectional communication, resulting in circadian clock-gated cell division cycles in species ranging from cyanobacteria to mammals. The identified mechanisms for this phenomenon have expanded beyond intracellular molecular coupling components to include intercellular connections. However, detailed molecular mechanisms, dynamics, and physiological functions of the circadian clock and cell cycle as coupled oscillators remain largely unknown. In this review, we discuss current understanding of this connection in light of recent findings that have uncovered intercellular coupling between the circadian clock in Paneth cells and the cell cycle in intestinal stem cells via WNT signaling. This extends the impact of circadian rhythms regulating the timing of cell divisions beyond the intracellular domain of homogenous cell populations into dynamic, multicellular systems. In-depth understanding of the molecular links and dynamics of these two oscillators will identify potential targets and temporal regimens for effective chronotherapy.

  18. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice

    Directory of Open Access Journals (Sweden)

    Nakayama Keiko

    2006-04-01

    Full Text Available Abstract Background The gonads are responsible for the production of germ cells through both mitosis and meiosis. Skp2 is the receptor subunit of an SCF-type ubiquitin ligase and is a major regulator of the progression of cells into S phase of the cell cycle, which it promotes by mediating the ubiquitin-dependent degradation of p27, an inhibitor of cell proliferation. However, the role of the Skp2-p27 pathway in germ cell development remains elusive. Results We now show that disruption of Skp2 in mice results in a marked impairment in the fertility of males, with the phenotypes resembling Sertoli cell-only syndrome in men. Testes of Skp2-/- mice manifested pronounced germ cell hypoplasia accompanied by massive apoptosis in spermatogenic cells. Flow cytometry revealed an increased prevalence of polyploidy in spermatozoa, suggesting that the aneuploidy of these cells is responsible for the induction of apoptosis. Disruption of the p27 gene of Skp2-/- mice restored germ cell development, indicating that the testicular hypoplasia of Skp2-/- animals is attributable to the antiproliferative effect of p27 accumulation. Conclusion Our results thus suggest that compromised cell cycle progression caused by the accumulation of p27 results in aneuploidy and the induction of apoptosis in gonadal cells of Skp2-/- mice. The consequent reduction in the number of mature gametes accounts for the decreased fertility of these animals. These findings reinforce the importance of the Skp2-p27 pathway in cell cycle regulation and in germ cell development.

  19. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    Science.gov (United States)

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal

    Directory of Open Access Journals (Sweden)

    Pfeifer Aleksandra

    2009-06-01

    Full Text Available Abstract Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.

  1. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element

    Science.gov (United States)

    Müller, Gerd A.; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J.; Stadler, Peter F.; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. PMID:25106871

  2. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  3. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  4. Tempol inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and apoptosis.

    Science.gov (United States)

    Han, Yong Hwan; Park, Woo Hyun

    2012-03-01

    A stable nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-osyl (Tempol) is widely used as an antioxidant in vitro and in vivo. In this study, we investigated the effects of Tempol on the growth of As4.1 juxtaglomerular cells in relation to cell cycle and cell death. Tempol dose-dependently decreased the growth of As4.1 cells with an IC50 of ~1 mM at 48 h. DNA flow cytometry analysis and BrdU staining indicated that Tempol induced S phase arrest, which is accompanied by a downregulation of cyclin A. Tempol also induced apoptotic cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆Ψm), an activation of caspase-3 and cleavage of poly(ADP-ribose)polymerase-1 (PARP-1). Furthermore, Tempol increased reactive oxygen species (ROS) levels, and the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). MEK and JNK inhibitors significantly attenuated a growth inhibition in Tempol-treated As4.1 cells. In conclusion, Tempol inhibited the growth of As4.1 cells via cell cycle arrest and apoptosis. Tempol also activated ERK and JNK signaling, which was responsible for cell growth inhibition. Our present data provide useful information for the toxicological effects of Tempol in juxtaglomerular cells in relation to cell growth inhibition and cell death.

  5. The basic helix-loop-helix transcription factor Nex-1/Math-2 promotes neuronal survival of PC12 cells by modulating the dynamic expression of anti-apoptotic and cell cycle regulators.

    Science.gov (United States)

    Uittenbogaard, Martine; Chiaramello, Anne

    2005-02-01

    The basic helix-loop-helix transcription factor Nex1/Math-2 belongs to the NeuroD subfamily, which plays a critical role during neuronal differentiation and maintenance of the differentiated state. Previously, we demonstrated that Nex1 is a key regulatory component of the nerve growth factor (NGF) pathway. Further supporting this hypothesis, this study shows that Nex1 has survival-inducing properties similar to NGF, as Nex1-overexpressing PC12 cells survive in the absence of trophic factors. We dissected the molecular mechanism by which Nex1 confers neuroprotection upon serum removal and found that constitutive expression of Nex1 maintained the expression of specific G1 phase cyclin-dependent kinase inhibitors and concomitantly induced a dynamic expression profile of key anti-apoptotic regulators. This study provides the first evidence of the underlying mechanism by which a member of the NeuroD-subfamily promotes an active anti-apoptotic program essential to the survival of neurons. Our results suggest that the survival program may be viewed as an integral component of the intrinsic programming of the differentiated state.

  6. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  7. Nuclear Localization of Diacylglycerol Kinase Alpha in K562 Cells Is Involved in Cell Cycle Progression.

    Science.gov (United States)

    Poli, Alessandro; Fiume, Roberta; Baldanzi, Gianluca; Capello, Daniela; Ratti, Stefano; Gesi, Marco; Manzoli, Lucia; Graziani, Andrea; Suh, Pann-Ghill; Cocco, Lucio; Follo, Matilde Y

    2017-09-01

    Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    Science.gov (United States)

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  9. Cell cycle arrest induced by theophylline in root meristem of Haplopappus gracilis.

    Science.gov (United States)

    Levi, M; Chiatante, D; Sparvoli, E

    1983-10-01

    Theophylline, an inhibitor of cyclic nucleotide phosphodiesterase, induced a block of the cell cycle in G1, a temporary arrest in G2 and 70% decrease in the uptake of labelled thymidine in roots of Haplopappus. These effects are compared to those previously found with aminophylline and discussed in view of the possible involvement of cAMP in the regulation of the cell cycle in plants.

  10. Cell cycle checkpoints: reversible when possible, irreversible when needed

    NARCIS (Netherlands)

    Krenning, L.

    2015-01-01

    Cell cycle checkpoints are reversible in nature, and can prevent progression into the next cell cycle phase if needed. In the case of DNA damage, cells can prevent progression from G1 into S phase, and from G2 into mitosis in the presence of DNA double strand breaks. Following DNA repair, these

  11. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equiva- lent function yet to be ... points controlling the cell division of these organisms? Is the cell division cycle of these organisms ..... mitotic-phase inhibitor and may become a useful tool for studies on the relationship ...

  12. Indirect-fired gas turbine dual fuel cell power cycle

    Science.gov (United States)

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  13. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  14. Cell cycle control by the thyroid hormone in neuroblastoma cells

    International Nuclear Information System (INIS)

    Garcia-Silva, Susana; Perez-Juste, German; Aranda, Ana

    2002-01-01

    The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-β cells that overexpress the β1 isoform of the T3 receptor. An element in the region responsible for premature termination of transcription mediates a rapid repression of c-myc gene expression by T3. The hormone also causes a decrease of cyclin D1 gene transcription, and is able to antagonize the activation of the cyclin D1 promoter by Ras. In addition, a strong and sustained increase of the levels of the cyclin kinase inhibitor (CKI) p27 Kip1 are found in T3-treated cells. The increased levels of p27 Kip1 lead to a marked inhibition of the kinase activity of the cyclin-CDK2 complexes. As a consequence of these changes, retinoblastoma proteins are hypophosphorylated in T3-treated N2a-β cells, and progression through the restriction point in the cell cycle is blocked

  15. Subversion of Cell Cycle Regulatory Mechanisms by HIV

    OpenAIRE

    Rice, Andrew P.; Kimata, Jason T.

    2015-01-01

    To establish a productive infection, HIV-1 must counteract cellular innate immune mechanisms and redirect cellular process towards viral replication. Recent studies have discovered that HIV-1 and other primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to achieve these ends. The viral Vpr and Vpx proteins target cell cycle controls to counter innate immunity. The cell cycle-related protein Cyclin L2 is also utilized to counter innate immunity. The viral Tat protein util...

  16. Quantitative characterization of cell behaviors through cell cycle progression via automated cell tracking.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell behaviors are reflections of intracellular tension dynamics and play important roles in many cellular processes. In this study, temporal variations in cell geometry and cell motion through cell cycle progression were quantitatively characterized via automated cell tracking for MCF-10A non-transformed breast cells, MCF-7 non-invasive breast cancer cells, and MDA-MB-231 highly metastatic breast cancer cells. A new cell segmentation method, which combines the threshold method and our modified edge based active contour method, was applied to optimize cell boundary detection for all cells in the field-of-view. An automated cell-tracking program was implemented to conduct live cell tracking over 40 hours for the three cell lines. The cell boundary and location information was measured and aligned with cell cycle progression with constructed cell lineage trees. Cell behaviors were studied in terms of cell geometry and cell motion. For cell geometry, cell area and cell axis ratio were investigated. For cell motion, instantaneous migration speed, cell motion type, as well as cell motion range were analyzed. We applied a cell-based approach that allows us to examine and compare temporal variations of cell behavior along with cell cycle progression at a single cell level. Cell body geometry along with distribution of peripheral protrusion structures appears to be associated with cell motion features. Migration speed together with motion type and motion ranges are required to distinguish the three cell-lines examined. We found that cells dividing or overlapping vertically are unique features of cell malignancy for both MCF-7 and MDA-MB-231 cells, whereas abrupt changes in cell body geometry and cell motion during mitosis are unique to highly metastatic MDA-MB-231 cells. Taken together, our live cell tracking system serves as an invaluable tool to identify cell behaviors that are unique to malignant and/or highly metastatic breast cancer cells.

  17. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2001-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that the government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared, in its capacity as safety regulatory authority, for future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  18. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2002-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared for, in its capacity of safety regulatory authority, future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  19. c-Myc regulates cell proliferation during lens development.

    Directory of Open Access Journals (Sweden)

    Gabriel R Cavalheiro

    Full Text Available Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.

  20. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung

    NARCIS (Netherlands)

    Kroon, A.A.; Wang, J.; Kavanagh, B.; Huang, Z.; Kuliszewski, M.; van Goudoever, J.B.; Post, M.

    2011-01-01

    The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats.

  1. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung

    NARCIS (Netherlands)

    A.A. Kroon (Abraham); J. Wang (Jinxia); B. Kavanagh (Brian); Z. Huang (Zhen); M. Kuliszewski (Maciej); J.B. van Goudoever (Hans); M.R. Post (Martin)

    2011-01-01

    textabstractRationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar

  2. Physiology of cell volume regulation in vertebrates

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Lambert, Ian H; Pedersen, Stine F

    2009-01-01

    organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review....

  3. Dividing Cells Regulate Their Lipid Composition and Localization

    Science.gov (United States)

    Atilla-Gokcumen, G. Ekin; Muro, Eleonora; Relat-Goberna, Josep; Sasse, Sofia; Bedigian, Anne; Coughlin, Margaret L.; Garcia-Manyes, Sergi; Eggert, Ulrike S.

    2014-01-01

    Summary Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology. PMID:24462247

  4. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling.

    Science.gov (United States)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Endocrine Regulation in the Ovary by MicroRNA during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Derek Toms

    2018-01-01

    Full Text Available Hormonal control of the estrous cycle that occurs in therian mammals is essential for the production of a functional egg. Supporting somatic cell types found within the ovary, such as granulosa and theca cells, respond to endocrine signals to support oocyte maturation and ovulation. Following the release of the egg, now available for fertilization, coordinated hormonal signaling between the mother and putative embryo are required for the establishment of pregnancy. If no conception occurs, both the ovary and uterus are “reset” in preparation for another cycle. The complex molecular changes that occur within cells in response to hormone signaling include a network of non-coding microRNAs (miRNAs that posttranscriptionally regulate gene expression. They are thus able to fine-tune cellular responses to hormones and confer robustness in gene regulation. In this review, we outline the important roles established for miRNAs in regulating female reproductive hormone signaling during estrus, with a particular focus on signaling pathways in the ovary. Understanding this miRNA network can provide important insights to improving assisted reproductive technologies and may be useful in the diagnosis of female reproductive disorders.

  6. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle<