WorldWideScience

Sample records for cell cycle proteins

  1. Protein feature based identification of cell cycle regulated proteins in yeast

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Jensen, Lars Juhl;

    2003-01-01

    DNA microarrays have been used extensively to identify cell cycle regulated genes in yeast; however, the overlap in the genes identified is surprisingly small. We show that certain protein features can be used to distinguish cell cycle regulated genes from other genes with high confidence (features...... include protein phosphorylation, glycosylation, subcellular location and instability/degradation). We demonstrate that co-expressed, periodic genes encode proteins which share combinations of features, and provide an overview of the proteome dynamics during the cycle. A large set of novel putative cell...... cycle regulated proteins were identified, many of which have no known function....

  2. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins.

    Science.gov (United States)

    Zheng, Nana; Wang, Zhiwei; Wei, Wenyi

    2016-04-01

    F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.

  3. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    Science.gov (United States)

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  4. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi;

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  5. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Xi [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); State Key Lab of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193 (China); Shi, Taiping [Chinese National Human Genome Center, Beijing. 3-707 North YongChang Road BDA, Beijing 100176 (China); Song, Quansheng [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Zhao, Hongshan, E-mail: hongshan@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Dalong [Department of Immunology, School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China); Human Disease Genomics Center, Peking University, No. 38 Xueyuan Road, Beijing 100191 (China)

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  6. Effects of cell-cycle-dependent expression on random fluctuations in protein levels.

    Science.gov (United States)

    Soltani, Mohammad; Singh, Abhyudai

    2016-12-01

    Expression of many genes varies as a cell transitions through different cell-cycle stages. How coupling between stochastic expression and cell cycle impacts cell-to-cell variability (noise) in the level of protein is not well understood. We analyse a model where a stable protein is synthesized in random bursts, and the frequency with which bursts occur varies within the cell cycle. Formulae quantifying the extent of fluctuations in the protein copy number are derived and decomposed into components arising from the cell cycle and stochastic processes. The latter stochastic component represents contributions from bursty expression and errors incurred during partitioning of molecules between daughter cells. These formulae reveal an interesting trade-off: cell-cycle dependencies that amplify the noise contribution from bursty expression also attenuate the contribution from partitioning errors. We investigate the existence of optimum strategies for coupling expression to the cell cycle that minimize the stochastic component. Intriguingly, results show that a zero production rate throughout the cell cycle, with expression only occurring just before cell division, minimizes noise from bursty expression for a fixed mean protein level. By contrast, the optimal strategy in the case of partitioning errors is to make the protein just after cell division. We provide examples of regulatory proteins that are expressed only towards the end of the cell cycle, and argue that such strategies enhance robustness of cell-cycle decisions to the intrinsic stochasticity of gene expression.

  7. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    Science.gov (United States)

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  8. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  9. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1...... the abundance of most of the CKIs, including p27Kip1, p57Kip2, p15ink4b and p18ink4c, was relatively maintained in the migrating epithelial tongue. These data indicate that downmodulation of several G(1)/S-phase cyclins and a relative excess of CKIs may cooperate to ensure the quiescent state of migrating...

  10. Ras protein participated in histone acetylation-mediated cell cycle control in Physarum polycephalum

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoxue; LU Jun; ZHAO Yanmei; WANG Xiuli; HUANG Baiqu

    2005-01-01

    In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neutralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.

  11. Pocket proteins critically regulate cell cycle exit of the trabecular myocardium and the ventricular conduction system

    Directory of Open Access Journals (Sweden)

    David S. Park

    2013-07-01

    During development, the ventricular conduction system (VCS arises from the trabecular or spongy myocardium. VCS and trabecular myocytes proliferate at a significantly slower rate than compact zone myocardial cells, establishing a transmural cell cycle gradient. The molecular determinants of VCS/trabecular myocyte cell cycle arrest are not known. Given the importance of pocket proteins (Rb, p107 and p130 in mediating G0/G1 arrest in many cell types, we examined the role of this gene family in regulating cell cycle exit of the trabecular myocardium and ventricular conduction system. Using a combinatorial knockout strategy, we found that graded loss of pocket proteins results in a spectrum of heart and lung defects. p107/p130 double knockout (dKO hearts manifest dysregulated proliferation within the compact myocardium and trabecular bases, while the remaining trabecular region cell cycle exits normally. Consequently, dKO hearts exhibit defective cardiac compaction, septal hyperplasia and biventricular outflow tract obstruction, while the VCS appears relatively normal. Loss of all three pocket proteins (3KO is necessary to completely disrupt the transmural cell cycle gradient. 3KO hearts exhibit massive overgrowth of the trabecular myocardium and ventricular conduction system, which leads to fetal heart failure and death. Hearts carrying a single pocket protein allele are able to maintain the transmural cell cycle gradient. These results demonstrate the exquisite sensitivity of trabecular and conduction myocytes to pocket protein function during ventricular chamber development.

  12. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins.

    Science.gov (United States)

    McKeown, Brendan T; McDougall, Luke; Catalli, Adriana; Hurta, Robert A R

    2014-01-01

    Prostate cancer, one of the most common cancers in the Western world, affects many men worldwide. This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on the behavior of 2 androgen insensitive human prostate cancer cell lines, DU145 and PC3, in vitro. Magnolol, in a 24-h exposure at 40 and 80 μM, was found to be cytotoxic to cells. Magnolol also affected cell cycle progression of DU145 and PC3 cells, resulting in alterations to the cell cycle and subsequently decreasing the proportion of cells entering the G2/M-phase of the cell cycle. Magnolol inhibited the expression of cell cycle regulatory proteins including cyclins A, B1, D1, and E, as well as CDK2 and CDK4. Protein expression levels of pRBp107 decreased and pRBp130 protein expression levels increased in response to magnolol exposure, whereas p16(INK4a), p21, and p27 protein expression levels were apparently unchanged post 24-h exposure. Magnolol exposure at 6 h did increase p27 protein expression levels. This study has demonstrated that magnolol can alter the behavior of androgen insensitive human prostate cancer cells in vitro and suggests that magnolol may have potential as a novel anti-prostate cancer agent.

  13. Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry

    Science.gov (United States)

    Orr, Stephen J; Boutz, Daniel R; Wang, Rong; Chronis, Constantinos; Lea, Nicholas C; Thayaparan, Thivyan; Hamilton, Emma; Milewicz, Hanna; Blanc, Eric; Mufti, Ghulam J; Marcotte, Edward M; Thomas, N Shaun B

    2012-01-01

    Regulating the transition of cells such as T lymphocytes from quiescence (G0) into an activated, proliferating state involves initiation of cellular programs resulting in entry into the cell cycle (proliferation), the growth cycle (blastogenesis, cell size) and effector (functional) activation. We show the first proteomic analysis of protein interaction networks activated during entry into the first cell cycle from G0. We also provide proof of principle that blastogenesis and proliferation programs are separable in primary human T cells. We employed a proteomic profiling method to identify large-scale changes in chromatin/nuclear matrix-bound and unbound proteins in human T lymphocytes during the transition from G0 into the first cell cycle and mapped them to form functionally annotated, dynamic protein interaction networks. Inhibiting the induction of two proteins involved in two of the most significantly upregulated cellular processes, ribosome biogenesis (eIF6) and hnRNA splicing (SF3B2/SF3B4), showed, respectively, that human T cells can enter the cell cycle without growing in size, or increase in size without entering the cell cycle. PMID:22415777

  14. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  15. APC/C activity during the cell cycle. Shifting gears in protein degradation

    NARCIS (Netherlands)

    Boekhout, M.

    2015-01-01

    For correct cell division to take place, many different mechanisms ensure genomic integrity and formation healthy daughter cells. One mechanism that has evolved to provide a safe passage from one cell cycle phase into the next, is protein degradation. With our work we provide new insights into activ

  16. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes.

    Science.gov (United States)

    Soltani, Mohammad; Vargas-Garcia, Cesar A; Antunes, Duarte; Singh, Abhyudai

    2016-08-01

    Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells.

  17. Cell-cycle control by protein kinase B

    NARCIS (Netherlands)

    Kops, G.J.P.L.

    2002-01-01

    Numerous cells in the body divide, and do so in a well-controlled manner. In some situations where this control is deregulated, cells may divide continuously. Such uncontrolled proliferation of cells is thought to be responsible for the onset of cancer. In order for a cell to divide in a normal set

  18. Systematic Characterization of Cell Cycle Phase-dependent Protein Dynamics and Pathway Activities by High-content Microscopy-assisted Cell Cycle Phenotyping

    Institute of Scientific and Technical Information of China (English)

    Christopher Bruhn; Torsten Kroll; Zhao-Qi Wang

    2014-01-01

    Cell cycle progression is coordinated with metabolism, signaling and other complex cel-lular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically pow-erful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular locali-zation at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3–4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis.

  19. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  20. Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins

    DEFF Research Database (Denmark)

    Tyanova, S.; Frishman, D.; Cox, J.;

    2013-01-01

    of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels...

  1. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.

    Science.gov (United States)

    Mizejewski, G J

    2016-09-01

    The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.

  2. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; Maase, Hans von der; Sørensen, Flemming B.

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors. METHODS: The tissue material consisted of bladder tumors from three groups......(kip1) ( P=0.03), Rb ( P=0.00002), and L-myc ( P=0.00000007) in muscle invasive tumors compared to noninvasive tumors. Tumors presenting as muscle invasive at first diagnosis had significantly lower levels of p16/CDKN2A ( P=0.01) when compared to muscle invasive tumors that followed Ta or T1 precursor...

  3. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  4. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038 (China); Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Fan, Daiming, E-mail: daimingfan@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Guo, Xuegang, E-mail: xuegangguo@126.com [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China)

    2013-10-18

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3.

  5. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Nicola Vitulo

    2007-01-01

    Full Text Available The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confi rming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals fi ve distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.

  6. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling.

    Science.gov (United States)

    Wang, Yanchang; Shirogane, Takahiro; Liu, Dou; Harper, J Wade; Elledge, Stephen J

    2003-03-07

    In S. cerevisiae cells undergoing anaphase, a ras-related GTPase, Tem1, is located on the spindle pole body that enters the daughter cell and activates a signal transduction pathway, MEN, to allow mitotic exit. MEN activation must be reversed after mitotic exit to reset the cell cycle in G1. We find that daughter cells activate an Antagonist of MEN pathway (AMEN) in part through induction of the Amn1 protein that binds directly to Tem1 and prevents its association with its target kinase Cdc15. Failure of Amn1 function results in defects of both the spindle assembly and nuclear orientation checkpoints and delays turning off Cdc14 in G1. Thus, Amn1 is part of a daughter-specific switch that helps cells exit from mitotic exit and reset the cell cycle.

  7. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells.

    Science.gov (United States)

    Perucca, Paola; Sommatis, Sabrina; Mocchi, Roberto; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2015-01-01

    DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.

  8. Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins.

    Directory of Open Access Journals (Sweden)

    Olga Wiens

    Full Text Available The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1, are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr, serine (p-Ser and threonine-proline (p-Thr-Pro epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state.

  9. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  10. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  11. Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba.

    Science.gov (United States)

    Polit, Justyna Teresa; Kaźmierczak, Andrzej; Walczak-Drzewiecka, Aurelia

    2012-01-01

    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition.

  12. The Interaction of the Gammaherpesvirus 68 orf73 Protein with Cellular BET Proteins Affects the Activation of Cell Cycle Promoters▿

    Science.gov (United States)

    Ottinger, Matthias; Pliquet, Daniel; Christalla, Thomas; Frank, Ronald; Stewart, James P.; Schulz, Thomas F.

    2009-01-01

    Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G1/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins. PMID:19244327

  13. Late phase cell cycle proteins in Alzheimer’s disease: a possible target for therapy?

    KAUST Repository

    Bajic, Vladan

    2017-02-22

    Alzheimer’s disease (AD) is represented by neuronal loss and this loss is correlated to a constant state of neuronal instability induced by intrinsic and extrinsic factors. In this paper data is presented regarding the possible roles of late phase cell cycle proteins in normal and affected neurons with the goal that understanding the mechanisms involved in the regulation of these proteins may represent a novel strategy for AD treatment. The results demonstrate a relative differential pattern of expression of certain proteins (APC/C, Mad1 and Mad2, Bub R1, Bub1, CDK 11, cohesin subunit Rad 21 and astrin) in the AD brain versus age matched controls, and it is suggested that targeting these proteins might translate into potential treatments for AD. Although the data presented here is of some interest, the ability to translate such information into clinical applications is often a challenge.

  14. Transcription-independent function of Polycomb group protein PSC in cell cycle control.

    Science.gov (United States)

    Mohd-Sarip, Adone; Lagarou, Anna; Doyen, Cecile M; van der Knaap, Jan A; Aslan, Ülkü; Bezstarosti, Karel; Yassin, Yasmin; Brock, Hugh W; Demmers, Jeroen A A; Verrijzer, C Peter

    2012-05-11

    Polycomb group (PcG) proteins control development and cell proliferation through chromatin-mediated transcriptional repression. We describe a transcription-independent function for PcG protein Posterior sex combs (PSC) in regulating the destruction of cyclin B (CYC-B). A substantial portion of PSC was found outside canonical PcG complexes, instead associated with CYC-B and the anaphase-promoting complex (APC). Cell-based experiments and reconstituted reactions established that PSC and Lemming (LMG, also called APC11) associate and ubiquitylate CYC-B cooperatively, marking it for proteosomal degradation. Thus, PSC appears to mediate both developmental gene silencing and posttranslational control of mitosis. Direct regulation of cell cycle progression might be a crucial part of the PcG system's function in development and cancer.

  15. Expression of survivin, a novel apoptosis inhibitor and cell cycle regulatory protein, in human gliomas

    Institute of Scientific and Technical Information of China (English)

    焦保华; 姚志刚; 耿少梅; 左书浩

    2004-01-01

    @@ Recently, a novel anti-apoptosis gene, named survivin,was identified as a structurally unique member of the inhibitor of apoptosis protein (lAP) family. The gene is located on chromosome 17q25. Survivin is a 16.5 kDa protein that is expressed in vivo in common human cancers, but not in normal adjacent tissue,1 during the G2/M phase of the cell cycle. Survivin expression is turned off during fetal development and not found in nonneoplastic adult human tissue, and it is turned on in most common human cancers. We investigated the expression of survivin in 50 patients with human gliomas, and determined its association with cell apoptosis and cell proliferation, and its impact on tumor progression and prognosis.

  16. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces

    DEFF Research Database (Denmark)

    Barends, Sharief; Zehl, Martin; Bialek, Sylwia;

    2010-01-01

    The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyces...... coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A......, elongation factor Tu3, and the cell-cycle control proteins DasR, SsgA, SsgF and SsgR. Although tmRNA-tagged proteins are degraded swiftly, the translation of dnaK and dasR messenger RNAs (mRNAs) depends fully on tmRNA, whereas transcription is unaffected. The data unveil a surprisingly dedicated...

  17. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer

    Institute of Scientific and Technical Information of China (English)

    Liang Yu; Zhong-Jie Sun; Sheng-Li Wu; Cheng-En Pan

    2003-01-01

    AIM: To study the antitumour activity of resveratrol and its effect on the expression of ceil cycle proteins including cyclin D1, cyclin B1 and p34cdc2 in transplanted liver cancer of murine.METHODS: Murine transplanted hepatoma H22 model was used to evaluate the in vivo antitumor activity of resveratrol.Following abdominal administration of resveratrol, the change in tumour size was recorded and the protein expression of cyclin D1, cyclin B1 and p34cdc2 in the tumor and adjacent noncancerous liver tissues were measured by immunohistochemistry.RESULTS: Following treatment of H22 tumour bearing mice with resveratrol at 10 or 15 mg/kg bodyweight for 10 days,the growth of murine transplantable liver cancer was inhibited by 36.3% or 49.3%, respectively. The inhibitory effect was significant compared to that in control group (P<0.05).The level of expression of cyclin B1 and p34cdc2 protein was decreased in the transplantable murine hepatoma 22treated with resveratrol whereas the expression of cyclin D1 protein did not change.CONCLUSION: Resveratrol exhibits anti-tumour activities on murine hepatoma H22. The underlying anti-tumour mechanism of resveratrol might involve the inhibition of the cell cycle progression by decreasing the expression of cyclinB1 and p34cdc2 protein.

  18. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Cai, Yingyue; Li, Yongshu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Jingjing [College of Life Science, Hubei Normal University, Huangshi 435002, Hubei (China); Liu, Kaiyu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Yi, E-mail: johnli2668@hotmail.com [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Bioengineering Department, Wuhan Bioengineering Institute, Wuhan 430415, Hubei (China); Yang, Yongbo, E-mail: yongboyang@mail.ccnu.edu.cn [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China)

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  19. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    Science.gov (United States)

    2005-01-01

    sequencing or hybridization array capillary chromatography. After a 6-min-long preliminary technologies.30,31 separation, fractions from the first...characterize single cells. These tools include mass cating cells contain diploid, S-phase and tetraploid frac- spectrometry, electrochemistry and capillary...separation tions; and some advanced tumors contain tetraploid and methods. This review focuses on the use of capillary aneuploid cells [2

  20. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    Science.gov (United States)

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  1. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  2. Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins

    Directory of Open Access Journals (Sweden)

    Senger Jenna-Lynn B

    2010-07-01

    Full Text Available Abstract Aim The aim of our study was to evaluate survival outcomes in malignant mixed Mullerian tumors (MMMT of the uterus with respect to the role of cell cycle and apoptotic regulatory proteins in the carcinomatous and sarcomatous components. Methods 23 cases of uterine MMMT identified from the Saskatchewan Cancer Agency (1970-1999 were evaluated. Immunohistochemical expression of Bad, Mcl-1, bcl-x, bak, mdm2, bax, p16, p21, p53, p27, EMA, Bcl-2, Ki67 and PCNA was correlated with clinico-pathological data including survival outcomes. Results Histopathological examination confirmed malignant epithelial component with homologous (12 cases and heterologous (11 cases sarcomatous elements. P53 was strongly expressed (70-95% in 15 cases and negative in 5 cases. The average survival in the p53+ve cases was 3.56 years as opposed to 8.94 years in p53-ve cases. Overexpression of p16 and Mcl-1 were observed in patients with longer survival outcomes (> 2 years. P16 and p21 were overexpressed in the carcinomatous and sarcomatous elements respectively. Cyclin-D1 was focally expressed only in the carcinomatous elements. Conclusions Our study supports that a cell cycle and apoptotic regulatory protein dysregulation is an important pathway for tumorigenesis and b p53 is an important immunoprognostic marker in MMMT of the uterus.

  3. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  4. Interaction of Mouse Pem Protein and Cell Division Cycle 37 Homolog

    Institute of Scientific and Technical Information of China (English)

    Fen GUO; Yue-Qin LI; Shi-Qian LI; Zhi-Wen LUO; Xin ZHANG; Dong-Sheng TANG; Tian-Hong ZHOU

    2005-01-01

    Mouse Pem, a homeobox gene, encodes a protein consisting of 210 amino acid residues. To study the function of mouse Pem protein, we used the yeast two-hybrid system to screen the library of 7-day mouse embryo with full-length mouse Pem eDNA. Fifty-two colonies were obtained after 1.57×108 colonies were screened by nutrition limitation and β-galactosidase assay. Seven individual insert fragments were obtained from the library, and three of them were identified, one of which was confirmed to be the cell division cycle 37 (Cdc37) homolog gene by sequencing. The interaction between mouse Pem and Cdc37homolog was then confirmed by glutathione S-transferase pull-down assay, and the possible interaction model was suggested.

  5. Robust reconstitution of active cell-cycle control complexes from co-expressed proteins in bacteria

    Directory of Open Access Journals (Sweden)

    Harashima Hirofumi

    2012-06-01

    Full Text Available Abstract Background Cell proliferation is an important determinant of plant growth and development. In addition, modulation of cell-division rate is an important mechanism of plant plasticity and is key in adapting of plants to environmental conditions. One of the greatest challenges in understanding the cell cycle of flowering plants is the large families of CDKs and cyclins that have the potential to form many different complexes. However, it is largely unclear which complexes are active. In addition, there are many CDK- and cyclin-related proteins whose biological role is still unclear, i.e. whether they have indeed enzymatic activity. Thus, a biochemical characterization of these proteins is of key importance for the understanding of their function. Results Here we present a straightforward system to systematically express and purify active CDK-cyclin complexes from E. coli extracts. Our method relies on the concomitant production of a CDK activating kinase, which catalyzes the T-loop phosphorylation necessary for kinase activity. Taking the examples of the G1-phase cyclin CYCLIN D3;1 (CYCD3;1, the mitotic cyclin CYCLIN B1;2 (CYCB1;2 and the atypical meiotic cyclin SOLO DANCERS (SDS in conjunction with A-, B1- and B2-type CDKs, we show that different CDKs can interact with various cyclins in vitro but only a few specific complexes have high levels of kinase activity. Conclusions Our work shows that both the cyclin as well as the CDK partner contribute to substrate specificity in plants. These findings refine the interaction networks in cell-cycle control and pinpoint to particular complexes for modulating cell proliferation activity in breeding.

  6. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Jason R.; Hura, Greg L.; Rubin, Seth M. (UCSC); (LBNL)

    2012-07-18

    Cyclin-dependent kinase (Cdk) phosphorylation of the Retinoblastoma protein (Rb) drives cell proliferation through inhibition of Rb complexes with E2F transcription factors and other regulatory proteins. We present the first structures of phosphorylated Rb that reveal the mechanism of its inactivation. S608 phosphorylation orders a flexible 'pocket' domain loop such that it mimics and directly blocks E2F transactivation domain (E2F{sup TD}) binding. T373 phosphorylation induces a global conformational change that associates the pocket and N-terminal domains (RbN). This first multidomain Rb structure demonstrates a novel role for RbN in allosterically inhibiting the E2F{sup TD}-pocket association and protein binding to the pocket 'LxCxE' site. Together, these structures detail the regulatory mechanism for a canonical growth-repressive complex and provide a novel example of how multisite Cdk phosphorylation induces diverse structural changes to influence cell cycle signaling.

  7. IMMUNOHISTOCHEMICAL ANALYSIS OF CELL CYCLE-ASSOCIATED PROTEINS IN OSTEOSARCOMA OF THE JAWS

    Institute of Scientific and Technical Information of China (English)

    司晓辉; 刘正; 杨连君

    2002-01-01

    Objective To analyze the expression of cell cycle-associated proteins in osteosarcoma of the jaws. Methods Cyclin D1 , CDK4 , p27, E2F-1 and Ets-1 expression were examined semi-quantitatively in 20 osteosarcoma and 8 osteochondroma of the jaws by immunohistochemical ABC method. Results The positive rates of cyclin D1, CDK4 , p27, E2F-1 and Ets-1 were 65% ( 13 of 20), 60% ( 12 of 20), 20% (4 of 20),70% ( 14 of 20 ) and 55% ( 11 of 20 ) in osteosarcoma of the jaws, respectively. There was no remarkable difference in the expression of these proteins among histopathological types ( P > 0. 05 ). In osteochondroma of t he jaws, the Positi ye ra res of CDK4 and E2F- 1 were both 12.5 % ( 1 of 8 ), whereas t ha t of p27 was 75 % ( 6 of 8). None of osteochondroma was positive for cyclin D1 and Ets-1. The positive rates of cyclin D1, CDK4,E2F-1 and Ets-1 were significantly higher while that of p27 was lower in osteosarcoma than that in osteochondroma of the jaws ( P < 0. 05 ). In addition, the metastatic osteosarcoma of the jaws had higher Positive rate of Ets- 1 than that of the non-metastatic ( P < 0 . 05). Conclusion The results suggest that the dysregulation of cell cycle-asso-ciated proteins may be involved in the occurrence and development of osteosarcoma of the jaws.

  8. STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells.

    Directory of Open Access Journals (Sweden)

    Pao-Lin Kuo

    Full Text Available Serine/threonine kinase 31 (STK31 is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.

  9. Effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    LUO Song; LIN Haiyan; QI Jianguo; WANG Yongchao

    2005-01-01

    This paper investigates the effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation. Full-length cenpb cDNA was subcloned into pBI-EGFP eukaryotic expression vector in both sense and antisense orientation. HeLa-Tet-Off cells were transfected with sense or antisense cenpb vectors. Sense transfection of HeLa-Tet-Off cells resulted in the formation of a large centromere/kinetochore complex, and apoptosis of cells following several times of cell division. A stable antisense cenpb transfected cell line, named HACPB, was obtained. The centromere/kinetochore complex of HACPB cells became smaller than control HeLa-Tet-Off cells and scattered, and the expression of CENP-B was down-regulated. In addition, delayed cell cycle progression, inhibited malignant phenotype, restrained ability of tumor formation in nude mice, and delayed entry from G2/M phase into next G1 phase were observed in HACPB cells. Furthermore, the expression of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) were modulated during different phases of the cell cycle. CENP-B is an essential protein for the maintenance of the structure and function of centromere/kinetochore complex, and plays important roles in cell cycle regulation.

  10. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    DEFF Research Database (Denmark)

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane;

    2016-01-01

    replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear...... the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms...... for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes....

  11. T-cell intracellular antigen (TIA-proteins deficiency in murine embryonic fibroblasts alters cell cycle progression and induces autophagy.

    Directory of Open Access Journals (Sweden)

    Carmen Sánchez-Jiménez

    Full Text Available Mice lacking either T-cell intracellular antigen 1 (TIA1 or TIA1 related/like protein (TIAR/TIAL1 show high rates of embryonic lethality, suggesting a relevant role for these proteins during embryonic development. However, intrinsic molecular and cellular consequences of either TIA1 or TIAR deficiency remain poorly defined. By using genome-wide expression profiling approach, we demonstrate that either TIA1 or TIAR inactivation broadly alter normal development-associated signalling pathways in murine embryonic fibroblasts (MEF. Indeed, these analyses highlighted alterations of cytokine-cytokine and ECM-receptor interactions and Wnt, MAPK, TGF-beta dependent signalling pathways. Consistent with these results, TIA1 and TIAR knockout (KO MEF show reduced rates of cell proliferation, cell cycle progression delay and increased cell size. Furthermore, TIA-proteins deficiency also caused metabolic deficiencies, increased ROS levels and DNA damage, promoting a gentle rise of cell death. Concomitantly, high rates of autophagy were detected in both TIA1 and TIAR KO MEF with induction of the formation of autophagosomes, as evidenced by the up-regulation of the LC3B protein, and autolysosomes, measured by colocalization of LC3B and LAMP1, as a survival mechanism attempt. Taken together, these observations support that TIA proteins orchestrate a transcriptome programme to activate specific developmental decisions. This program is likely to contribute to mouse physiology starting at early stages of the embryonic development. TIA1/TIAR might function as cell sensors to maintain homeostasis and promote adaptation/survival responses to developmental stress.

  12. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas;

    2012-01-01

    at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non......-optimal codon usage of genes expressed at this time, and lowest toward the end of G1, reflecting the optimal codon usage of G1 genes. Accordingly, protein levels of human glycyl-, threonyl-, and glutamyl-prolyl tRNA synthetases were found to oscillate, peaking in G2/M phase. In light of our findings, we propose...

  13. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis

    DEFF Research Database (Denmark)

    Yde, C W; Olsen, B B; Meek, D

    2008-01-01

    Cell-cycle transition from the G(2) phase into mitosis is regulated by the cyclin-dependent protein kinase 1 (CDK1) in complex with cyclin B. CDK1 activity is controlled by both inhibitory phosphorylation, catalysed by the Myt1 and Wee1 kinases, and activating dephosphorylation, mediated by the CDC...... interference results in delayed cell-cycle progression at the onset of mitosis. Knockdown of CK2beta causes stabilization of Wee1 and increased phosphorylation of CDK1 at the inhibitory Tyr15. PLK1-Wee1 association is an essential event in the degradation of Wee1 in unperturbed cell cycle. We have found...... regulatory subunit, identifying it as a new component of signaling pathways that regulate cell-cycle progression at the entry of mitosis.Oncogene advance online publication, 12 May 2008; doi:10.1038/onc.2008.146....

  14. The retinoblastoma protein: a master tumor suppressor acts as a link between cell cycle and cell adhesion

    Directory of Open Access Journals (Sweden)

    Engel BE

    2014-12-01

    Full Text Available Brienne E Engel,1 W Douglas Cress,1 Pedro G Santiago-Cardona2 1Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; 2Department of Biochemistry, Ponce School of Medicine, Ponce, Puerto Rico, USA Abstract: RB1 was the first tumor suppressor gene discovered. Over 4 decades of work have revealed that the Rb protein (Rb is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability, and apoptosis. While these many processes may account for a significant portion of RB1's potency as a tumor suppressor, a small but growing stream of evidence suggests that RB1 also significantly influences how a cell interacts with its environment, including cell-to-cell and cell-to-extracellular matrix interactions. This review will highlight Rb’s role in the control of cell adhesion and how alterations in the adhesive properties of tumor cells may drive the deadly process of metastasis. Keywords: cadherin, integrin, Rb, cancer, aggressiveness, metastasis

  15. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1...

  16. Detection of Changes in the Medicago sativa Retinoblastoma-Related Protein (MsRBR1) Phosphorylation During Cell Cycle Progression in Synchronized Cell Suspension Culture.

    Science.gov (United States)

    Ayaydin, Ferhan; Kotogány, Edit; Ábrahám, Edit; Horváth, Gábor V

    2017-01-01

    Deepening our knowledge on the regulation of the plant cell division cycle depends on techniques that allow for the enrichment of cell populations in defined cell cycle phases. Synchronization of cell division can be achieved using different plant tissues; however, well-established cell suspension cultures provide large amount of biological sample for further analyses. Here, we describe the methodology of the establishment, propagation, and analysis of a Medicago sativa suspension culture that can be used for efficient synchronization of the cell division. A novel 5-ethynyl-2'-deoxyuridine (EdU)-based method is used for the estimation of cell fraction that enters DNA synthesis phase of the cell cycle and we also demonstrate the changes in the phosphorylation level of Medicago sativa retinoblastoma-related protein (MsRBR1) during cell cycle progression.

  17. Characterization of functionally active interleukin-18/eGFP fusion protein expression during cell cycle phases in recombinant chicken DF1 Cells.

    Science.gov (United States)

    Wu, Hsing Chieh; Chen, Yu San; Shien, Jui Hung; Shen, Pin Chun; Lee, Long Huw

    2016-05-01

    The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL-18a cell line that stably expresses the fusion protein chIL-18 was constructed and the enhanced green fluorescence protein connected through a (G4 S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL-18a cells (1 × 10(5) ) were inoculated in 60-mm culture dishes containing 5 mL of media to achieve 50%-60% confluence and were cultured in the presence of the cycle-specific inhibitors 10058-F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058-F4, aphidicolin, and colchicine, respectively, the aphidicolin-induced single cells showed higher fusion protein levels than did the 10058-F4- or colchicine-induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin-treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN-γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581-591, 2016.

  18. Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2010-07-01

    Full Text Available Abstract Background Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. Results To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU and ultraviolet light (UV also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. Conclusions These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.

  19. Cell cycle related proteins in hyperplasia of usual type in breast specimens of patients with and without breast cancer

    Directory of Open Access Journals (Sweden)

    Gobbi Helenice

    2006-07-01

    Full Text Available Abstract Background Hyperplasia of usual type (HUT is a common proliferative lesion associated with a slight elevated risk for subsequent development of breast cancer. Cell cycle-related proteins would be helpful to determine the putative role of these markers in the process of mammary carcinogenesis. The aim of this study was to analyze the expression of cell cycle related proteins in HUT of breast specimens of patients with and without breast cancer, and compare this expression with areas of invasive carcinomas. Results Immunohistochemical evaluation was performed using antibodies against cell cycle related proteins ER, PR, p53, p21, p63, and Ki-67 in hyperplasia of usual type (HUT in specimens of aesthetic reduction mammaplasty (ARM, in specimens of mammaplasty contralateral to breast cancer (MCC, and in specimens of invasive mammary carcinomas (IMC presenting HUT in the adjacent parenchyma. The results showed that the immunoexpression of ER, PR, p21, p53, p63, and KI-67 was similar in HUT from the three different groups. The p63 expression in myoepithelial cells showed discontinuous pattern in the majority of HUT, different from continuous expression in normal lobules. Nuclear expression of p53 and p21 was frequently higher expressed in IMC and very rare in HUT. We also found cytoplasmic expression of p21 in benign hyperplastic lesions and in neoplastic cells of IMC. Conclusion Our data failed to demonstrate different expression of cell cycle related proteins in HUT from patients with and without breast cancer. However, we found discontinuous expression of p63 in myoepithelial cells around HUT adjacent to carcinomas and cytoplasmic expression of p21 in epithelial cells of hyperplastic foci. Further studies are needed to determine how these subgroups relate to molecular abnormalities and cancer risk.

  20. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Tapia, Rocio; Huerta, Miriam; Lopez-Bayghen, Esther

    2009-05-01

    ZO-2 is an adaptor protein of the tight junction that belongs to the MAGUK protein family. ZO-2 is a dual localization protein that in sparse cultures is present at the cell borders and the nuclei, whereas in confluent cultures it is concentrated at the cell boundaries. Here we have studied whether ZO-2 is able to regulate the expression of cyclin D1 (CD1) and cell proliferation. We have demonstrated that ZO-2 negatively regulates CD1 transcription by interacting with c-Myc at an E box present in CD1 promoter. We have further found that ZO-2 transfection into epithelial MDCK cells triggers a diminished expression of CD1 protein and decreases the rate of cell proliferation in a wound-healing assay.

  1. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle.

    Science.gov (United States)

    Blavet, Nicolas; Uřinovská, Jana; Jeřábková, Hana; Chamrád, Ivo; Vrána, Jan; Lenobel, René; Beinhauer, Jana; Šebela, Marek; Doležel, Jaroslav; Petrovská, Beáta

    2017-01-02

    Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear architecture, transport across the nuclear envelope and cell division. Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics during the cell's life and division is striking. Several factors hamper the analysis of the plant nuclear proteome, but the most critical seems to be the contamination of nuclei by cytosolic material during their isolation. With the availability of an efficient protocol for the purification of plant nuclei, based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized. Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S, and G2). This strategy has led to the identification of large number of nuclear proteins from barley (Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt, http://barley.gambrinus.ueb.cas.cz/ .

  2. Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit.

    OpenAIRE

    Pu, R T; Osmani, S A

    1995-01-01

    NIMA is a cell cycle regulated protein kinase required, in addition to p34cdc2/cyclin B, for initiation of mitosis in Aspergillus nidulans. Like cyclin B, NIMA accumulates when cells are arrested in G2 and is degraded as cells traverse mitosis. However, it is stable in cells arrested in mitosis. NIMA, and related kinases, have an N-terminal kinase domain and a C-terminal extension. Deletion of the C-terminus does not completely inactivate NIMA kinase activity but does prevent functional compl...

  3. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone.

    Science.gov (United States)

    Liu, Linhua; Ling, Xiaoxuan; Tang, Huanwen; Chen, Jialong; Wen, Qiaosheng; Zou, Fei

    2015-08-05

    Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.

  4. A predicted protein, KIAA0247, is a cell cycle modulator in colorectal cancer cells under 5-FU treatment

    Directory of Open Access Journals (Sweden)

    Chen Yan-Chu

    2011-05-01

    Full Text Available Abstract Background Colorectal cancer (CRC is the predominant gastrointestinal malignancy and the leading cause of cancer death. The identification of genes related to CRC is important for the development of successful therapies and earlier diagnosis. Methods Molecular analysis of feces was evaluated as a potential method for CRC detection. Expression of a predicted protein with unknown function, KIAA0247, was found in feces evaluated using specific quantitative real-time polymerase chain reaction. Its cellular function was then analyzed using immunofluorescent staining and the changes in the cell cycle in response to 5-fluorouracil (5-FU were assessed. Results Gastrointestinal tissues and peripheral blood lymphocytes ubiquitously expressed KIAA0247. 56 CRC patients fell into two group categories according to fecal KIAA0247 mRNA expression levels. The group with higher fecal KIAA0247 (n = 22; ≥ 0.4897 had a significantly greater five-year overall survival rate than the group with lower fecal KIAA0247 (n = 30; p = 0.035, log-rank test. Fecal expression of KIAA0247 inversely related to CRC tumor size (Kendall's tau-b = -0.202; p = 0.047. Immunofluorescent staining revealed that the cytoplasm of CRC cells evenly expresses KIAA0247 without 5-FU treatment, and KIAA0247 accumulates in the nucleus after 40 μM 5-FU treatment. In HCT116 p53-/- cells, which lack p53 cell cycle control, the proportion of cells in the G2/M phase was larger (13% in KIAA0247-silent cells than in the respective shLuc control (10% and KIAA0247-overexpressing cells (7% after the addition of low dose (40 μM 5-FU. Expression of three cyclin genes (cyclin A2, cyclin B1, and cyclin B2 also downregulated in the cells overexpressing KIAA0247. Conclusions This is the first description of a linkage between KIAA0247 and CRC. The study's data demonstrate overexpression of KIAA0247 associates with 5-FU therapeutic benefits, and also identify the clinical significance of fecal KIAA0247

  5. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression.

    Science.gov (United States)

    Jiang, Yanlin; Zhou, Shaoyu; Sandusky, George E; Kelley, Mark R; Fishel, Melissa L

    2010-11-01

    Pancreatic cancer is a deadly disease that is virtually never cured. Understanding the chemoresistance intrinsic to this cancer will aid in developing new regimens. High expression of APE1/Ref-1, a DNA repair and redox signaling protein, is associated with resistance, poor outcome, and angiogenesis; little is known in pancreatic cancer. Immunostaining of adenocarcinoma shows greater APE1/Ref-1 expression than in normal pancreas tissue. A decrease in APE1/Ref-1 protein levels results in pancreatic cancer cell growth inhibition, increased apoptosis, and altered cell cycle progression. Endogenous cell cycle inhibitors increase when APE1/ Ref-1 is reduced, demonstrating its importance to proliferation and growth of pancreatic cancer.

  6. Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes.

    Science.gov (United States)

    Lecona, Emilio; Rojas, Luis Alejandro; Bonasio, Roberto; Johnston, Andrew; Fernández-Capetillo, Oscar; Reinberg, Danny

    2013-12-01

    Polycomb group (PcG) proteins are transcriptional repressors of genes involved in development and differentiation, and also maintain repression of key genes involved in the cell cycle, indirectly regulating cell proliferation. The human SCML2 gene, a mammalian homologue of the Drosophila PcG protein SCM, encodes two protein isoforms: SCML2A that is bound to chromatin and SCML2B that is predominantly nucleoplasmic. Here, we purified SCML2B and found that it forms a stable complex with CDK/CYCLIN/p21 and p27, enhancing the inhibitory effect of p21/p27. SCML2B participates in the G1/S checkpoint by stabilizing p21 and favoring its interaction with CDK2/CYCE, resulting in decreased kinase activity and inhibited progression through G1. In turn, CDK/CYCLIN complexes phosphorylate SCML2, and the interaction of SCML2B with CDK2 is regulated through the cell cycle. These findings highlight a direct crosstalk between the Polycomb system of cellular memory and the cell-cycle machinery in mammals.

  7. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    Science.gov (United States)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  8. Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle.

    Directory of Open Access Journals (Sweden)

    Stuart K Archer

    2009-08-01

    Full Text Available Many genes that are required at specific points in the cell cycle exhibit cell cycle-dependent expression. In the early-diverging model eukaryote and important human pathogen Trypanosoma brucei, regulation of gene expression in the cell cycle and other processes is almost entirely post-transcriptional. Here, we show that the T. brucei RNA-binding protein PUF9 stabilizes certain transcripts during S-phase. Target transcripts of PUF9--LIGKA, PNT1 and PNT2--were identified by affinity purification with TAP-tagged PUF9. RNAi against PUF9 caused an accumulation of cells in G2/M phase and unexpectedly destabilized the PUF9 target mRNAs, despite the fact that most known Puf-domain proteins promote degradation of their target mRNAs. The levels of the PUF9-regulated transcripts were cell cycle dependent, peaking in mid- to late- S-phase, and this effect was abolished when PUF9 was targeted by RNAi. The sequence UUGUACC was over-represented in the 3' UTRs of PUF9 targets; a point mutation in this motif abolished PUF9-dependent stabilization of a reporter transcript carrying the PNT1 3' UTR. LIGKA is involved in replication of the kinetoplast, and here we show that PNT1 is also kinetoplast-associated and its over-expression causes kinetoplast-related defects, while PNT2 is localized to the nucleus in G1 phase and redistributes to the mitotic spindle during mitosis. PUF9 targets may constitute a post-transcriptional regulon, encoding proteins involved in temporally coordinated replicative processes in early G2 phase.

  9. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    Science.gov (United States)

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  10. Cytoskeleton disorder and cell cycle arrest may be associated with the alteration of protein CEP135 by microgravity

    Science.gov (United States)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan

    In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line

  11. Mitogen requirement for cell cycle progression in the absence of pocket protein activity

    NARCIS (Netherlands)

    Foijer, Floris; Wolthuis, Rob M F; Doodeman, Valerie; Medema, René H; te Riele, Hein

    2005-01-01

    Primary mouse embryonic fibroblasts lacking expression of all three retinoblastoma protein family members (TKO MEFs) have lost the G1 restriction point. However, in the absence of mitogens these cells become highly sensitive to apoptosis. Here, we show that TKO MEFs that survive serum depletion pass

  12. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal.

    Directory of Open Access Journals (Sweden)

    Nadia Korfali

    Full Text Available Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N:2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53(-/- cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held.

  13. Gene Expression Patterns Define Key Transcriptional Events InCell-Cycle Regulation By cAMP And Protein Kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon; Kanter, Joan R.; Prabhakar, Shyam; Salomonis, Nathan; Vranizan, Karen; Dubchak Inna,; Conklin, Bruce R.; Insel, Paul A.

    2005-06-01

    Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrest of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.

  14. Modifications in cell cycle kinetics and in expression of G1 phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation.

    Science.gov (United States)

    Lange, S; Viergutz, T; Simkó, M

    2004-10-01

    Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.

  15. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  16. The Trypanosoma cruzi nucleic acid binding protein Tc38 presents changes in the intramitochondrial distribution during the cell cycle

    Directory of Open Access Journals (Sweden)

    Nardelli Sheila C

    2009-02-01

    Full Text Available Abstract Background Tc38 of Trypanosoma cruzi has been isolated as a single stranded DNA binding protein with high specificity for the poly [dT-dG] sequence. It is present only in Kinetoplastidae protozoa and its sequence lacks homology to known functional domains. Tc38 orthologues present in Trypanosoma brucei and Leishmania were proposed to participate in quite different cellular processes. To further understand the function of this protein in Trypanosoma cruzi, we examined its in vitro binding to biologically relevant [dT-dG] enriched sequences, its expression and subcellular localization during the cell cycle and through the parasite life stages. Results By using specific antibodies, we found that Tc38 protein from epimastigote extracts participates in complexes with the poly [dT-dG] probe as well as with the universal minicircle sequence (UMS, a related repeated sequence found in maxicircle DNA, and the telomeric repeat. However, we found that Tc38 predominantly localizes into the mitochondrion. Though Tc38 is constitutively expressed through non-replicating and replicating life stages of T. cruzi, its subcellular localization in the unique parasite mitochondrion changes according to the cell cycle stage. In epimastigotes, Tc38 is found only in association with kDNA in G1 phase. From the S to G2 phase the protein localizes in two defined and connected spots flanking the kDNA. These spots disappear in late G2 turning into a diffuse dotted signal which extends beyond the kinetoplast. This later pattern is more evident in mitosis and cytokinesis. Finally, late in cytokinesis Tc38 reacquires its association with the kinetoplast. In non-replicating parasite stages such as trypomastigotes, the protein is found only surrounding the entire kinetoplast structure. Conclusions The dynamics of Tc38 subcellular localization observed during the cell cycle and life stages support a major role for Tc38 related to kDNA replication and maintenance.

  17. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  18. The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Etievant Chantal

    2009-02-01

    Full Text Available Abstract Background NEDD1 is a protein that binds to the gamma-tubulin ring complex, a multiprotein complex at the centrosome and at the mitotic spindle that mediates the nucleation of microtubules. Results We show that NEDD1 is expressed at comparable levels in a variety of tumor-derived cell lines and untransformed cells. We demonstrate that silencing of NEDD1 expression by treatment with siRNA has differential effects on cells, depending on their status of p53 expression: p53-positive cells arrest in G1, whereas p53-negative cells arrest in mitosis with predominantly aberrant monopolar spindles. However, both p53-positive and -negative cells arrest in mitosis if treated with low doses of siRNA against NEDD1 combined with low doses of the inhibitor BI2536 against the mitotic kinase Plk1. Simultaneous reduction of NEDD1 levels and inhibition of Plk1 act in a synergistic manner, by potentiating the anti-mitotic activity of each treatment. Conclusion We propose that NEDD1 may be a promising target for controlling cell proliferation, in particular if targeted in combination with Plk1 inhibitors.

  19. Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Chou, Yu-Cheng; Chang, Meng-Ya; Wang, Mei-Jen; Liu, Hsin-Chung; Chang, Shu-Jen; Harnod, Tomor; Hung, Chih-Huang; Lee, Hsu-Tung; Shen, Chiung-Chyi; Chung, Jing-Gung

    2017-01-01

    Glioblastoma is the most common and aggressive primary brain malignancy. Phenethyl isothiocyanate (PEITC), a member of the isothiocyanate family, can induce apoptosis in many human cancer cells. Our previous study disclosed that PEITC induces apoptosis through the extrinsic pathway, dysfunction of mitochondria, reactive oxygen species (ROS)-induced endoplasmic reticulum (ER) stress, and intrinsic (mitochondrial) pathway in human brain glioblastoma multiforme (GBM) 8401 cells. To the best of our knowledge, we first investigated the effects of PEITC on the genetic levels of GBM 8401 cells in vitro. PEITC may induce G0/G1 cell-cycle arrest through affecting the proteins such as cdk2, cyclin E, and p21 in GBM 8401 cells. Many genes associated with cell-cycle regulation of GBM 8401 cells were changed after PEITC treatment: 48 genes were upregulated and 118 were downregulated. The cell-division cycle protein 20 (CDC20), Budding uninhibited by benzimidazole 1 homolog beta (BUB1B), and cyclin B1 were downregulated, and clusterin was upregulated in GBM 8401 cells treated with PEITC. These changes of gene expression can provide the effects of PEITC on the genetic levels and potential biomarkers for glioblastoma. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 176-187, 2017.

  20. Avian reovirus nonstructural protein p17-induced G(2)/M cell cycle arrest and host cellular protein translation shutoff involve activation of p53-dependent pathways.

    Science.gov (United States)

    Chulu, Julius L C; Huang, Wei R; Wang, L; Shih, Wen L; Liu, Hung J

    2010-08-01

    The effects of avian reovirus (ARV) p17 protein on cell cycle progression and host cellular protein translation were studied. ARV infection and ARV p17 transfection resulted in the accumulation of infected and/or transfected cells in the G(2)/M phase of the cell cycle. The accumulation of cells in the G(2)/M phase was accompanied by upregulation and phosphorylation of the G(2)/M-phase proteins ATM, p53, p21(cip1/waf1), Cdc2, cyclin B1, Chk1, Chk2, and Cdc25C, suggesting that p17 induces a G(2)/M cell cycle arrest through activation of the ATM/p53/p21(cip1/waf1)/Cdc2/cyclin B1 and ATM/Chk1/Chk2/Cdc25C pathways. The G(2)/M cell cycle arrest resulted in increased virus replication. In the present study, we also provide evidence demonstrating that p17 protein is responsible for ARV-induced host cellular protein translation shutoff. Increased phosphorylation levels of the eukaryotic translation elongation factor 2 (eEF2) and initiation factor eIF2alpha and reduced phosphorylation levels of the eukaryotic translation initiation factors eIF4E, eIF4B, and eIF4G, as well as 4E-BP1 and Mnk-1 in p17-transfected cells, demonstrated that ARV p17 suppresses translation initiation factors and translation elongation factors to induce host cellular protein translation shutoff. Inhibition of mTOR by rapamycin resulted in a decrease in the levels of phosphorylated 4E-BP1, eIF4B, and eIF4G and an increase in the levels eEF2 but did not affect ARV replication, suggesting that ARV replication was not hindered by inhibition of cap-dependent translation. Taken together, our data indicate that ARV p17-induced G(2)/M arrest and host cellular translation shutoff resulted in increased ARV replication.

  1. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)].

    Science.gov (United States)

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles

    2012-09-01

    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis.

  2. Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins.

    Science.gov (United States)

    Schofield, Whitman B; Lim, Hoong Chuin; Jacobs-Wagner, Christine

    2010-09-15

    What regulates chromosome segregation dynamics in bacteria is largely unknown. Here, we show in Caulobacter crescentus that the polarity factor TipN regulates the directional motion and overall translocation speed of the parS/ParB partition complex by interacting with ParA at the new pole. In the absence of TipN, ParA structures can regenerate behind the partition complex, leading to stalls and back-and-forth motions of parS/ParB, reminiscent of plasmid behaviour. This extrinsic regulation of the parS/ParB/ParA system directly affects not only division site selection, but also cell growth. Other mechanisms, including the pole-organizing protein PopZ, compensate for the defect in segregation regulation in ΔtipN cells. Accordingly, synthetic lethality of PopZ and TipN is caused by severe chromosome segregation and cell division defects. Our data suggest a mechanistic framework for adapting a self-organizing oscillator to create motion suitable for chromosome segregation.

  3. Differential expression of Yes-associated protein is correlated with expression of cell cycle markers and pathologic TNM staging in non-small-cell lung carcinoma.

    Science.gov (United States)

    Kim, Jin Man; Kang, Dong Wook; Long, Liang Zhe; Huang, Song-Mei; Yeo, Min-Kyung; Yi, Eunhee S; Kim, Kyung-Hee

    2011-03-01

    Yes-associated protein, a downstream effector of the Hippo signaling pathway, has been linked to progression of non-small-cell lung carcinoma. The aim of this study was to investigate expression of Yes-associated protein in lung adenocarcinoma and squamous cell carcinoma. Associations of Yes-associated protein expression with clinicopathologic parameters, expression of cell cycle-specific markers, and epidermal growth factor receptor gene amplification were also analyzed. In a univariate analysis of the 66 adenocarcinomas, high nuclear expression of Yes-associated protein was significantly correlated with expression of cyclin A and mitogen-activated protein kinase. Multivariate analysis, including age and sex, showed that cyclin A expression was independently correlated with nuclear expression of Yes-associated protein in adenocarcinomas. Furthermore, high nuclear expression of Yes-associated protein was also a significant predictor of epidermal growth factor receptor gene amplification for adenocarcinoma. For the 102 squamous cell carcinomas, univariate analysis revealed that high cytoplasmic expression of Yes-associated protein was correlated with the low pathologic TNM staging (stage I) and histologic grading. Multivariate analysis, including age and sex, showed that cytoplasmic expression of Yes-associated protein was an independent predictor of low pathologic TNM staging. These results indicate that nuclear overexpression of Yes-associated protein contributes to pulmonary adenocarcinoma growth and that high cytoplasmic expression of Yes-associated protein is an independent predictor of low pathologic TNM staging and histologic grading. The differential effects of Yes-associated protein expression patterns in adenocarcinomas and squamous cell carcinomas suggest that Yes-associated protein may play important roles in different pathways in distinct tumor subtypes. These observations may, therefore, lead to new perspectives on therapeutic targeting of these tumor

  4. Telomerase Cajal body protein 1 depletion inhibits telomerase trafficking to telomeres and induces G1 cell cycle arrest in A549 cells.

    Science.gov (United States)

    Yuan, Ping; Wang, Zhitian; Lv, Wang; Pan, Hui; Yang, Yunhai; Yuan, Xiaoshuai; Hu, Jian

    2014-09-01

    Telomerase Cajal body protein 1 (TCAB1) is a telomerase holoenzyme, which is markedly enriched in Cajal bodies (CBs) and facilitates the recruitment of telomerase to CBs in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a telomerase RNA component. The majority of cancer cells are able to grow indefinitely due to telomerase and its mechanism of trafficking to telomeres. In the present study, a certain level of TCAB1 expression in A549 human lung cells was identified and TCAB1 knockdown exhibited a potent antiproliferative effect on these cells, which was coupled with a decrease in the cell density and activity of the cellular enzymes. In addition, TCAB1-depletion was demonstrated to inhibit telomerase trafficking to telomeres in the A549 cells, leading to subsequent G1 cell cycle arrest without inducing apoptotic cell death. Overall, these observations indicated that TCAB1 may be essential for A549 cell proliferation and cell cycle regulation, and may be a potential candidate for the development of a therapeutic target for lung adenocarcinomas.

  5. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner.

    Science.gov (United States)

    Zhang, Jian; Wei, Wei; Jin, Hui-Cheng; Ying, Rong-Chao; Zhu, A-Kao; Zhang, Fang-Jie

    2015-01-01

    Programmed cell death 2 (PDCD2) is a highly conserved nuclear protein, and aberrant PDCD2 expression alters cell apoptosis. The present study aimed to investigate PDCD2 expression in gastric cancer. Tissue specimens from 34 gastric cancer patients were collected for analysis of PDCD2 expression using immunohistochemistry, western blotting and qRT-PCR. Gastric cancer cell lines (a p53-mutated MKN28 line and a wild-type p53 MKN45 line) were used to assess the effects of PDCD2 overexpression. p53-/- nude mice were used to investigate the effect of PDCD2 on ultraviolet B (UVB)-induced skin carcinogenesis. The data showed that PDCD2 expression was reduced in gastric cancer tissue specimens, and loss of PDCD2 expression was associated with the poor survival of patients. PDCD2 expression induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis. The antitumor effects of PDCD2 expression were dependent on p53 expression in gastric cancer cells. Moreover, PDCD2 expression inhibited activity of the ATM/Chk1/2/p53 signaling pathway. In addition, PDCD2 expression suppressed UVB-induced skin carcinogenesis in p53+/+ nude mice, but not in p53-/- mice. The data from the present study demonstrated that loss of PDCD2 expression could contribute to gastric cancer development and progression and that PDCD2-induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis are p53-dependent.

  6. Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in Trypanosoma brucei

    Science.gov (United States)

    Levy, Gabriela V.; Moretti, Georgina; Tekiel, Valeria S.; Sánchez, Daniel O.

    2015-01-01

    Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family. PMID:26284933

  7. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs

    Directory of Open Access Journals (Sweden)

    Savas Sevtap

    2005-08-01

    Full Text Available Abstract Background Phosphorylation is a reversible post-translational modification that affects the intrinsic properties of proteins, such as structure and function. Non-synonymous single nucleotide polymorphisms (nsSNPs result in the substitution of the encoded amino acids and thus are likely to alter the phosphorylation motifs in the proteins. Methods In this study, we used the web-based NetPhos tool to predict candidate nsSNPs that either introduce or remove putative phosphorylation sites in proteins that act in DNA repair and cell cycle pathways. Results Our results demonstrated that a total of 15 nsSNPs (16.9% were likely to alter the putative phosphorylation patterns of 14 proteins. Three of these SNPs (CDKN1A-S31R, OGG1-S326C, and XRCC3-T241M have already found to be associated with altered cancer risk. We believe that this set of nsSNPs constitutes an excellent resource for further molecular and genetic analyses. Conclusion The novel systematic approach used in this study will accelerate the understanding of how naturally occurring human SNPs may alter protein function through the modification of phosphorylation mechanisms and contribute to disease susceptibility.

  8. Inhibitory Effects of NO-Fluvastatin on Proliferation of Human Lens Epithelial Cells in vitro by Modulating Cell Cycle Regulatory Proteins

    Institute of Scientific and Technical Information of China (English)

    Zhi WANG; Ruiying GAO; Qianqian SHI; Yukan HUANG; Wen CHEN; Kaiying SHI

    2008-01-01

    Summary: The effects of NO-Fluvastatin on proliferation of human lens epithelial cells (HLECs) and the action mechanism were investigated. Cell proliferation was assessed by MTT assay. Cell cycle was analyzed by flow cytometry. The expression of cell cycle regulatory proteins CyclinE mRNA and P21wafl mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). MTT staining colorimetry showed that HLECs proliferation was markedly inhibited by NO-Fluvastatin and the effect was dependently related to time (24, 48 and 72 h) and dosage (1, 5 and 20 μmol/L). Flow cytometry revealed that NO-Fluvastatin could significantly block HLECs in the G0/G1 phase, resulting in the increased cells in the G0G1 phase and decreased in the S phase (P<0.05). RT-PCR showed that NO-Fluvastatin could obviously inhibit the CyclinE mRNA expression and induce the P21wafl mRNA expression as compared with the negative control groups (P<0.05). This experiment suggested that NO-Fluvastatin could suppress the proliferation of HLECs by regulating cell cycle regulatory proteins (inhibiting the expression of CyclinE mRNA and inducing the expression of P21wafl mRNA), resulting in the arrest of HLECs in the G0/G1 phase, which can offer theory basis for NO-Fluvastatin in treating posterior capsular opacification in clinic practice.

  9. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability

    Science.gov (United States)

    Myers, Katie N.; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J.; Howard, Anna E.; Beveridge, Ryan D.; Maslen, Sarah; Skehel, J. Mark; Collis, Spencer J.

    2016-01-01

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions. PMID:27739501

  10. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Karin [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden); Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Grawé, Jan [Department of Genetics and Pathology, Uppsala University, Uppsala 75185 (Sweden); McKinney-Freeman, Shannon L. [Department of Hematology, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States); Daley, George Q. [HHMI, Children' s Hospital Boston, Harvard Medical School, Boston, 02115 MA (United States); Welsh, Michael, E-mail: michael.welsh@mcb.uu.se [Department of Medical Cell Biology, Uppsala University, Uppsala 751 23 (Sweden)

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via

  11. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wenbin [Department of Biotechnology, Jinan University, Guangzhou 510632 (China); Zhou, You [Minerva Foundation Institute for Medical Research, Helsinki (Finland); Li, Jiwei [Department of Biotechnology, Jinan University, Guangzhou 510632 (China); Mysore, Raghavendra [Minerva Foundation Institute for Medical Research, Helsinki (Finland); Luo, Wei; Li, Shiqian [Department of Biotechnology, Jinan University, Guangzhou 510632 (China); Chang, Mau-Sun [Institute of Biochemical Sciences, National Taiwan University, No. 1, Taipei, Taiwan (China); Olkkonen, Vesa M. [Minerva Foundation Institute for Medical Research, Helsinki (Finland); Yan, Daoguang, E-mail: tydg@jnu.edu.cn [Department of Biotechnology, Jinan University, Guangzhou 510632 (China)

    2014-04-01

    We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum/nuclear envelope oxysterol-binding protein implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, a yeast two-hybrid screen identified Homo sapiens sperm associated antigen 5 (SPAG5)/Astrin as interaction partner of ORP8. The putative interaction was further confirmed by pull-down and co-immunoprecipitation assays. ORP8 did not colocalize with kinetochore-associated SPAG5 in mitotic HepG2 or HuH7 cells, but overexpressed ORP8 was capable of recruiting SPAG5 onto endoplasmic reticulum membranes in interphase cells. In our experiments, 25-hydroxycholesterol (25OHC) retarded the HepG2 cell cycle, causing accumulation in G2/M phase; ORP8 overexpression resulted in the same phenotype. Importantly, ORP8 knock-down dramatically inhibited the oxysterol effect on HepG2 cell cycle, suggesting a mediating role of ORP8. Furthermore, knock-down of SPAG5 significantly reduced the effects of both ORP8 overexpression and 25OHC on the cell cycle, placing SPAG5 downstream of the two cell-cycle interfering factors. Taken together, the present results suggest that ORP8 may via SPAG5 mediate oxysterol interference of the HepG2 cell cycle. - Highlights: • The oxysterol-binding protein ORP8 was found to interact with the mitotic regulator SPAG5/Astrin. • Treatment of HepG2 cells with 25-hydroxycholesterol caused cell cycle retardation in G2/M. • ORP8 overexpression caused a similar G2/M accumulation, and ORP8 knock-down reversed the 25-hydroxycholesterol effect. • Reduction of cellular of SPAG5/Astrin reversed the cell cycle effects of both 25-hydroxycholesterol and ORP8 overexpression. • Our results suggest that ORP8 mediates via SPAG5/Astrin the oxysterol interference of HepG2 cell cycle.

  12. Correlation between cell cycle proteins and hMSH2 in actinic cheilitis and lip cancer.

    Science.gov (United States)

    Lopes, Maria Luiza Diniz de Sousa; de Oliveira, Denise Hélen Imaculada Pereira; Sarmento, Dmitry José de Santana; Queiroz, Lélia Maria Guedes; Miguel, Márcia Cristina da Costa; da Silveira, Éricka Janine Dantas

    2016-04-01

    This study aims to evaluate and verify the relationship between the immunoexpression of hMSH2, p53 and p21 in actinic cheilitis (AC) and lower lip squamous cell carcinoma (SCC) cases. Forty AC and 40 SCC cases were submitted to immunoperoxidase method and quantitatively analyzed. Expression was compared by Mann-Whitney test, Student t test or one-way ANOVA. To correlate the variables, Pearson's correlation coefficient was calculated. The expression of p53 and p21 showed no significant differences between histopathological grades of AC or lower lip SCC (p > 0.05). Immunoexpression of p53 was higher in SCC than in AC (p < 0.001), while p21 expression was more observed in AC when compared to SCC group (p = 0.006). The AC group revealed an inverse correlation between p53 and hMSH2 expression (r = -0.30, p = 0.006). Alterations in p53 and p21 expression suggest that these proteins are involved in lower lip carcinogenesis. Moreover, p53 and hMSH2 seem to be interrelated in early events of this process.

  13. Identification of Novel Targets of the Human Cell Cycle Regulatory Protein Cdc34

    Science.gov (United States)

    1997-07-01

    human Cdc34 and its interacting proteins using Southern, Northern and Western blot analysis. 11 PROPRIETARY Conclusion Knowledge gained about...expression in yeast. Task 2: Month 2-3: Excision of the library (the prey) encoding candidate interacting proteins fused to the activation domain from...Cdc34 and its interacting proteins in carcinogenesis. Task 7: Month 18-28: Study of the structure of human CDC34 and its novel partner proteins in

  14. RNA-binding motif protein 5 inhibits the proliferation of cigarette smoke-transformed BEAS-2B cells through cell cycle arrest and apoptosis.

    Science.gov (United States)

    Lv, Xue-Jiao; Du, Yan-Wei; Hao, Yu-Qiu; Su, Zhen-Zhong; Zhang, Lin; Zhao, Li-Jing; Zhang, Jie

    2016-04-01

    Cigarette smoking has been shown to be the most significant risk factor for lung cancer. Recent studies have also indicated that RNA-binding motif protein 5 (RBM5) can modulate apoptosis and suppress tumor growth. The present study focused on the role of RBM5 in the regulation of cigarette smoke extract (CSE)-induced transformation of bronchial epithelial cells into the cancerous phenotype and its mechanism of action. Herein, we exposed normal BEAS-2B cells for 8 days to varying concentrations of CSE or dimethylsulfoxide (DMSO), followed by a recovery period of 2 weeks. Next, the RBM5 protein was overexpressed in these transformed BEAS-2B cells though lentiviral infection. Later, the morphological changes, cell proliferation, cell cycle, apoptosis, invasion and migration were assessed. In addition, we analyzed the role of RBM5 in xenograft growth. The expression of RBM5 along with the genes related to cell cycle regulation, apoptosis and invasion were also examined. Finally, our results revealed that BEAS-2B cells exposed to 100 µg/ml CSE acquired phenotypic changes and formed tumors in nude mice, indicative of their cancerous transformation and had reduced RBM5 expression. Subsequent overexpression of RBM5 in these cells significantly inhibited their proliferation, induced G1/S arrest, triggered apoptosis and inhibited their invasion and migration, including xenograft growth. Thus, we established an in vitro model of CSE-induced cancerous transformation and concluded that RBM5 overexpression inhibited the growth of these transformed cells through cell cycle arrest and induction of apoptosis. Therefore, our study suggests the importance of RBM5 in the pathogenesis of smoking-related cancer.

  15. Induction of epstein-barr virus (EBV lytic cycle in vitro causes lipid peroxidation, protein oxidation and DNA damage in lymphoblastoid B cell lines

    Directory of Open Access Journals (Sweden)

    benmansour Riadh

    2011-07-01

    Full Text Available Abstract Background We investigated the oxidative modifications of lipids, proteins and DNA, potential molecular targets of oxidative stress, in two lymphoblastoid cell lines: B95-8 and Raji, after EBV lytic cycle induction. Conjugated dienes level was measured as biomarker of lipid peroxidation. Malondialdehyde adduct and protein carbonyl levels, as well as protein thiol levels were measured as biomarkers of protein oxidation. DNA fragmentation was evaluated as biomarker of DNA oxidation. Results After 48 h (peak of lytic cycle, a significant increase in conjugated dienes level was observed in B95-8 and Raji cell lines (p = 0.0001 and p = 0.019 respectively. Malondialdehyde adduct, protein carbonyl levels were increased in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls (MDA-adduct: p = 0.008 and p = 0.006 respectively; Carbonyl: p = 0.003 and p = 0.0039 respectively. Proteins thiol levels were decreased by induction in B95-8 and Raji cell lines (p = 0.046; p = 0.002 respectively. DNA fragmentation was also detected in B95-8 and Raji cell lines after EBV lytic cycle induction as compared to controls. Conclusion The results of this study demonstrate the presence of increased combined oxidative modifications in lipids, proteins in B95-8 and Raji cells lines after EBV lytic cycle induction. These results suggest that lipid peroxidation, protein oxidation and DNA fragmentation are generally induced during EBV lytic cycle induction and probably contribute to the cytopathic effect of EBV.

  16. Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-06-01

    Full Text Available The objective of the present study was to investigate the anti-cancer effects of eriodictyol in human hepatocellular carcinoma cells (Hep-G2 and normal liver hepatocyte cell line (AML12 along with evaluating its mode of action. Sulforhodamine B assay was used to evaluate the cytotoxic effect of the compound while as fluorescence microscopy was involved to demonstrate the effect of eriodictyol on cellular apoptosis. Flow cytometry was used to investigate the effect of eriodictyol on cell cycle while Western blot analysis revealed the effect on apoptosis-related protein expressions. Results indicate that eriodictyol-induced selective and concentration-dependent cytotoxic effect on Hep-G2 cancer cells while AML12 normal liver cells were very less susceptible to its effect. Eriodictyol-induced apoptosis related morphological changes including chromatin condensation and nuclear fragmentation. It also induced G2/M cell cycle arrest in these cells. Eriodictyol led to up-regulation of Bax and PARP and down-regulation of Bcl-2 protein.

  17. HIV-1 Vpr protein activates the NF-κB pathway to promote G2/M cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Zhibin Liang; Ruikang Liu; Yongquan Lin; Chen Liang; Juan Tan; Wentao Qiao

    2015-01-01

    Viral protein R(Vpr) plays an important role in the replication and pathogenesis of Human immunodeficiency virus type 1(HIV-1). Some of the various functions attributed to Vpr, including the induction of G2/M cell cycle arrest, activating the NF-κB pathway, and promoting viral reverse transcription, might be interrelated. To test this hypothesis, a panel of Vpr mutants were investigated for their ability to induce G2/M arrest and to activate the NF-κB pathway. The results showed that the Vpr mutants that failed to activate NF-κB also lost the activity to induce G2/M arrest, which suggests that inducing G2/M arrest via Vpr depends at least partially on the activation of NF-κB. This latter possibility is supported by data showing that knocking down the key factors in the NF-κB pathway – p65, Rel B, IKKα, or IKKβ– partially rescued the G2/M arrest induced by Vpr.Our results suggest that the NF-κB pathway is probably involved in Vpr-induced G2/M cell cycle arrest.

  18. Origins of the protein synthesis cycle

    Science.gov (United States)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  19. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    Science.gov (United States)

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and tumor grade (p = 0.01). Given the important role of cell cycle checkpoint

  20. Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells.

    Science.gov (United States)

    Ueki, T; Nishidate, T; Park, J H; Lin, M L; Shimo, A; Hirata, K; Nakamura, Y; Katagiri, T

    2008-09-25

    To investigate the detailed molecular mechanism of mammary carcinogenesis and discover novel therapeutic targets, we previously analysed gene expression profiles of breast cancers. We here report characterization of a significant role of DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein) in mammary carcinogenesis. Semiquantitative RT-PCR and northern blot analyses confirmed upregulation of DTL/RAMP in the majority of breast cancer cases and all of breast cancer cell lines examined. Immunocytochemical and western blot analyses using anti-DTL/RAMP polyclonal antibody revealed cell-cycle-dependent localization of endogenous DTL/RAMP protein in breast cancer cells; nuclear localization was observed in cells at interphase and the protein was concentrated at the contractile ring in cytokinesis process. The expression level of DTL/RAMP protein became highest at G(1)/S phases, whereas its phosphorylation level was enhanced during mitotic phase. Treatment of breast cancer cells, T47D and HBC4, with small-interfering RNAs against DTL/RAMP effectively suppressed its expression and caused accumulation of G(2)/M cells, resulting in growth inhibition of cancer cells. We further demonstrate the in vitro phosphorylation of DTL/RAMP through an interaction with the mitotic kinase, Aurora kinase-B (AURKB). Interestingly, depletion of AURKB expression with siRNA in breast cancer cells reduced the phosphorylation of DTL/RAMP and decreased the stability of DTL/RAMP protein. These findings imply important roles of DTL/RAMP in growth of breast cancer cells and suggest that DTL/RAMP might be a promising molecular target for treatment of breast cancer.

  1. Folding and fibril formation of the cell cycle protein Cks1.

    Science.gov (United States)

    Bader, Reto; Seeliger, Markus A; Kelly, Sadie E; Ilag, Leopold L; Meersman, Filip; Limones, Alejandra; Luisi, Ben F; Dobson, Christopher M; Itzhaki, Laura S

    2006-07-07

    The Saccharomyces cerevisiae Cks protein Cks1 has a COOH-terminal glutamine-rich sequence not present in other homologues. Cks proteins domain swap to form dimers but unique to Cks1 is the anti-parallel arrangement of protomers within the dimer. Despite the differences in Cks1 compared with other Cks proteins, we find the domain swapping properties are very similar. However, aggregation of Cks1 occurs by a route distinct from the other Cks proteins studied to date. Cks1 formed fibrillar aggregates at room temperature and neutral pH. During this process, Cks1 underwent proteolytic cleavage at a trypsin-like site into two fragments, the globular Cks domain and the glutamine-rich COOH terminus. At high protein concentrations, the rate of fibril formation was the same as the rate of proteolysis. The dominant species present within the fibrils was the glutamine-rich sequence. Consistent with this result, fibril formation was enhanced by addition of trypsin. Moreover, a truncated variant lacking the glutamine-rich sequence did not form fibrils under the same conditions. A lag phase at low protein concentrations indicates that fibril formation occurs through a nucleation and growth mechanism. The aggregates appear to resemble amyloid fibrils, in that they show the typical cross-beta x-ray diffraction pattern. Moreover, infrared spectroscopy data indicate that the glutamine side chains are hydrogen-bonded along the axis of the fibril. Our results indicate that the proteolytic reaction is the crucial step initiating aggregation and demonstrate that Cks1 is a simple, tunable model system for exploring aggregation mechanisms associated with polyglutamine deposition diseases.

  2. Identification of Novel Targets of the Human Cell Cycle Regulatory Protein Cdc34

    Science.gov (United States)

    1999-07-01

    results in a protein unable to complement a cdc34 mutation stages of spermatids and spermatozoa . In contrast, the repres- (34, 64). Comparable...described forms -> [ , i zn in Materials and Methods. Cotransfection of full-length hICERI3y (fly) or IgG heaivy pCS2MT-ICERIIy 1-33 (mini-lIy) with

  3. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle.

    Science.gov (United States)

    Zhong, Wenbin; Zhou, You; Li, Jiwei; Mysore, Raghavendra; Luo, Wei; Li, Shiqian; Chang, Mau-Sun; Olkkonen, Vesa M; Yan, Daoguang

    2014-04-01

    We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum/nuclear envelope oxysterol-binding protein implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, a yeast two-hybrid screen identified Homo sapiens sperm associated antigen 5 (SPAG5)/Astrin as interaction partner of ORP8. The putative interaction was further confirmed by pull-down and co-immunoprecipitation assays. ORP8 did not colocalize with kinetochore-associated SPAG5 in mitotic HepG2 or HuH7 cells, but overexpressed ORP8 was capable of recruiting SPAG5 onto endoplasmic reticulum membranes in interphase cells. In our experiments, 25-hydroxycholesterol (25OHC) retarded the HepG2 cell cycle, causing accumulation in G2/M phase; ORP8 overexpression resulted in the same phenotype. Importantly, ORP8 knock-down dramatically inhibited the oxysterol effect on HepG2 cell cycle, suggesting a mediating role of ORP8. Furthermore, knock-down of SPAG5 significantly reduced the effects of both ORP8 overexpression and 25OHC on the cell cycle, placing SPAG5 downstream of the two cell-cycle interfering factors. Taken together, the present results suggest that ORP8 may via SPAG5 mediate oxysterol interference of the HepG2 cell cycle.

  4. Alteration in cell cycle-related proteins in lymphoblasts from carriers of the c.709-1G>A PGRN mutation associated with FTLD-TDP dementia.

    Science.gov (United States)

    Alquezar, Carolina; Esteras, Noemí; Bartolomé, Fernando; Merino, José J; Alzualde, Ainhoa; López de Munain, Adolfo; Martín-Requero, Ángeles

    2012-02-01

    Frontotemporal lobar degeneration with neuronal inclusions containing TAR DNA binding protein 43 (TDP-43) is associated in most cases with null-mutations in the progranulin gene (PGRN). While the mechanisms by which PGRN haploinsufficiency leads to neurodegeneration remained speculative, increasing evidence support the hypothesis that cell cycle reentry of postmitotic neurons precedes many instances of neuronal death. Based in the mitogenic and neurotrophic activities of PGRN, we hypothesized that PGRN deficit may induce cell cycle disturbances and alterations in neuronal vulnerability. Because cell cycle dysfunction is not restricted to neurons, we studied the influence of PGRN haploinsufficiency, on cell cycle control in peripheral cells from patients suffering from frontotemporal dementia, bearing the PGRN mutation c.709-1G>A. Here we show that progranulin deficit increased cell cycle activity in immortalized lymphocytes. This effect was associated with increased levels of cyclin-dependent kinase 6 (CDK6) and phosphorylation of retinoblastoma protein (pRb), resulting in a G(1)/S regulatory failure. A loss of function of TDP-43 repressing CDK6 expression may result from altered subcellular TDP-43 distribution. The distinct functional features of lymphoblastoid cells from c.709-1 G>A carriers offer an invaluable, noninvasive tool to investigate the etiopathogenesis of frontotemporal lobar degeneration.

  5. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA

    DEFF Research Database (Denmark)

    Hagen, Lars; Kavli, Bodil; Sousa, Mirta M L

    2008-01-01

    Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-cataly...

  6. The Mechanism of Tetinoblastoma Protein-Mediated Terminal Cell Cycle Arrest

    Science.gov (United States)

    2005-09-01

    SantaCruz Biotech) or cyclin Dl (AB-3, Neomarker) antibody, c-Fos, c-Jun, Fra-2 and MyoD antibody ( SantaCruz Biotech Inc., USA). Figure 3. The temporal...promoter. Figure 12. Chormatin Immunoprecipitation (ChIP) assay for differentiated genuine mouse myoblast cells using MyoD antibody ( SantaCruz Biotech, SC

  7. A pulse-chase strategy combining click-EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle.

    Science.gov (United States)

    Bourge, Mickaël; Fort, Cécile; Soler, Marie-Noëlle; Satiat-Jeunemaître, Béatrice; Brown, Spencer C

    2015-01-01

    Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins. Our challenge was to reconcile these two tools. A robust protocol based on a high-resolution cytometric cell cycle analysis in tobacco (Nicotiana tabacum) BY2 cells expressing fluorescent Golgi markers has been established. This was broadly applicable to tissues, cell clusters, and other eukaryotic material, and compatible with Scale clearing. EdU was then used with the photoconvertible protein sialyl transferase (ST)-Kaede as a Golgi marker in a photoconversion pulse-chase cytometric configuration resolving, in addition, subcompartments of G1. Quantitative restoration of protein fluorescence was achieved by introducing acidic EDTA washes to strip the copper from these proteins which were then imaged at neutral pH. The rate of synthesis of this Golgi membrane marker was low during early G1, but in the second half of G1 (30% of cycle duration) much of the synthesis occurred. Marker synthesis then persisted during S and G2. These insights into Golgi biology are discussed in terms of the cell's ability to adapt exocytosis to cell growth needs.

  8. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  9. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    Science.gov (United States)

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (PFucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  10. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite.

    Science.gov (United States)

    Lin, Hsiang-Yin; Chen, Jhun-Chen; Wei, Miao-Ju; Lien, Yi-Chen; Li, Huang-Hsien; Ko, Swee-Suak; Liu, Zin-Huang; Fang, Su-Chiung

    2014-01-01

    Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.

  11. Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication.

    Science.gov (United States)

    Goodrum, F D; Ornelles, D A

    1999-09-01

    Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G(1) and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548-561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G(1) cells infected with the mutant viruses compared to that in G(1) cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G(1). However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G(1) than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G(1). Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth.

  12. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of); Jeong, Hyung Jin, E-mail: jhj@andong.ac.kr [Bioresource Sciences, Andong National University, Andong 760749 (Korea, Republic of)

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  13. 细胞周期调控蛋白与肾脏疾病%Cell cycle- regulatory proteins and kidney disease

    Institute of Scientific and Technical Information of China (English)

    秦福芳; 邵凤民

    2011-01-01

    Cell is alwayse going on cell division, proliferation, hypertrophy, necrosis, no matter what physiological reaction or pathology. And those activities are regulated by Cell cycle - regulatory proteins, the relation and relative progress of Cell cycle - regulatory proteins and kidney disease were reviewed in this paper.%无论是生理情况下或病理情况下,细胞都在进行着分裂、增殖、肥大或凋亡与坏死,而这一系列细胞分裂增殖活动受到细胞周期调控蛋白的调节.本文主要就细胞周期调控蛋白与肾脏疾病之间的关系和相关进展作一综述.

  14. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation.

    Science.gov (United States)

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G₁ phase. Sustained overexpression of DYRK1A induced G₀ cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27(Kip1) on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27(Kip1) Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.

  15. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells.

    Science.gov (United States)

    Ruiz-Ramos, Ruben; López-Carrillo, Lizbeth; Albores, Arnulfo; Hernández-Ramírez, Raúl U; Cebrian, Mariano E

    2009-12-15

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 microM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations ( or =5 microM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  16. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway.

    Science.gov (United States)

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-11-01

    Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine-suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xenograft athymic nude mice. Solanine regulates the protein levels of cell cycle proteins, including Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, and P21 in vivo and in vitro. Also, in cultured DU145 cell, solanine significantly inhibits cell growth. Moreover, the administration of NAC, an active oxygen scavenger, markedly reduces solanine-induced cell death. Blockade of P38 MAPK kinase cannot suppress reactive oxygen species (ROS), but can suppress solanine-induced cell apoptosis. Also, inhibition of ROS by NAC inactivates P38 pathway. Taken together, the data suggest that inhibition of prostate cancer growth by solanine may be through blocking the expression of cell cycle proteins and inducing apoptosis via ROS and activation of P38 pathway. These findings indicate an attractive therapeutic potential of solanine for suppression of prostate cancer.

  17. N-glycosylation at Asn residues 554 and 566 of E-cadherin affects cell cycle progression through extracellular signal-regulated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhao; Xiliang Zha; Lidong Sun; Liying Wang; Zhibin Xu; Feng Zhou; Jianmin Su; Jiawei Jin; Yong Yang; Yali Hu

    2008-01-01

    E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential N-glycosylation sites at Asn residues 554, 566, 618, and 633.We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin were N-glycosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at Asn554, Asn566 and Asn618 failed to induce cell cycle arrest in G1 phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression.Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extraceilular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These findings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.

  18. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling.

    Science.gov (United States)

    Jiang, Mingzuo; Qiu, Zhaoyan; Zhang, Song; Fan, Xing; Cai, Xiqiang; Xu, Bing; Li, Xiaowei; Zhou, Jinfeng; Zhang, Xiangyuan; Chu, Yi; Wang, Weijie; Liang, Jie; Horvath, Tamas; Yang, Xiaoyong; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2016-09-20

    O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways. In vivo xenograft assays also demonstrated that the hyper-O-GlcNAc level markedly promoted the proliferation of tumors. Moreover, compared with noncancerous tissues, the O-GlcNAcylation level was increased in cancerous tissues. GC patients with higher levels of O-GlcNAcylation exhibited large tumor sizes (≥5 cm), deep tumor invasion (T3 and T4), high AJCC stages (stage III and IV), more lymph node metastases and lower overall survival. Notably, the phosphorylation level of ERK 1/2 was increased progressively with the increase of O-GlcNAcylation in both SGC 7901 and AGS cells. Consistently, human GC tissue arrays also revealed that ERK 1/2 signaling was positively correlated to O-GlcNAcylation (r = 0.348; P = 0.015). Taken together, here we reported that hyper-O-GlcNAcylation significantly promotes GC cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling, suggesting that inhibition of OGT may be a potential novel therapeutic target of GC.

  19. Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase.

    Science.gov (United States)

    Scaffidi, C; Volkland, J; Blomberg, I; Hoffmann, I; Krammer, P H; Peter, M E

    2000-02-01

    The adapter molecule Fas-associated death domain protein (FADD)/mediator of receptor-induced toxicity-1 (MORT1) is essential for signal transduction of the apoptosis-inducing receptor CD95 (APO-1/Fas) as it connects the activated receptor with the effector caspase-8. FADD also plays a role in embryonic development and the cell cycle reentry of T cells. FADD is phosphorylated at serine residues. We now show that phosphorylation exclusively occurs at serine 194. The phosphorylation of FADD was found to correlate with the cell cycle. In cells arrested at the G2/M boundary with nocodazole, FADD was quantitatively phosphorylated, whereas only nonphosphorylated FADD was found in cells arrested in G1/S with hydroxyurea. In this context, we have identified a 70-kDa cell cycle-regulated kinase that specifically binds to the C-terminal half of FADD. Because CD95-mediated apoptosis is independent of the cell cycle, phosphorylation of FADD may regulate its apoptosis-independent functions.

  20. Human Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular Protein, EDD.

    Directory of Open Access Journals (Sweden)

    Junko Mori

    Full Text Available The human herpesvirus-6 (HHV-6 infection induces cell-cycle arrest. In this study, we found that the HHV-6-encoded U14 protein induced cell-cycle arrest at G2/M phase via an association with the cellular protein EDD, a mediator of DNA-damage signal transduction. In the early phase of HHV-6 infection, U14 colocalized with EDD dots in the nucleus, and similar colocalization was also observed in cells transfected with a U14 expression vector. When the carboxyl-terminal region of U14 was deleted, no association of U14 and EDD was observed, and the percentage of cells in G2/M decreased relative to that in cells expressing wild-type U14, indicating that the C-terminal region of U14 and the U14-EDD association are critical for the cell-cycle arrest induced by U14. These results indicate that U14 is a G2/M checkpoint regulator encoded by HHV-6.

  1. Cell cycle features of primate embryonic stem cells.

    Science.gov (United States)

    Fluckiger, Anne-Catherine; Marcy, Guillaume; Marchand, Mélanie; Négre, Didier; Cosset, François-Loïc; Mitalipov, Shoukhrat; Wolf, Don; Savatier, Pierre; Dehay, Colette

    2006-03-01

    Using flow cytometry measurements combined with quantitative analysis of cell cycle kinetics, we show that rhesus monkey embryonic stem cells (ESCs) are characterized by an extremely rapid transit through the G1 phase, which accounts for 15% of the total cell cycle duration. Monkey ESCs exhibit a non-phasic expression of cyclin E, which is detected during all phases of the cell cycle, and do not growth-arrest in G1 after gamma-irradiation, reflecting the absence of a G1 checkpoint. Serum deprivation or pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) did not result in any alteration in the cell cycle distribution, indicating that ESC growth does not rely on mitogenic signals transduced by the Ras/Raf/MEK pathway. Taken together, these data indicate that rhesus monkey ESCs, like their murine counterparts, exhibit unusual cell cycle features in which cell cycle control mechanisms operating during the G1 phase are reduced or absent.

  2. Immunohistochemical localization of inflammatory cells and cell cycle proteins in the gills of Loma salmonae infected rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Powell, M. D.; Yousaf, M. N.; Rasmussen, Karina Juhl

    2014-01-01

    Microsporidial gill diseases particularly those caused by Loma salmonae incur significant economic losses to the salmonid aquaculture industry. The gill responses to infection include the formation of xenomas and the acute hyperplastic inflammatory responses once the xenomas rupture releasing...... infective spores. The aim of this work was to characterize the inflammatory responses of the gill to both the presence of the xenomas as well as the hyperplasia associated with L salmonae infection in the rainbow trout gill following an experimental infection using immunohistochemistry. Hyperplastic lesions...... demonstrated numerous cells expressing PCNA as well as an apparent increased expression of caspase-3 and number of apoptotic cells (TUNEL positive cells). There was an expression of TNF alpha in individual cells within the gill and increased expression of a myeloid cell line antigen indicating the presence...

  3. Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts

    OpenAIRE

    Wright, Jocelyn H.; Munar, Erlynda; Jameson, Damon R; Andreassen, Paul R.; Margolis, Robert L.; Seger, Rony; Krebs, Edwin G.

    1999-01-01

    The mitogen-activated protein kinase (MAPK) cascade is required for mitogenesis in somatic mammalian cells and is activated by a wide variety of oncogenic stimuli. Specific roles for this signaling module in growth were dissected by inhibiting MAPK kinase 1 (MAPKK1) activity in highly synchronized NIH 3T3 cells. In addition to the known role of this kinase in cell-cycle entry from G0, the level of MAPKK activity was observed to affect the kinetics of progression through both the G1 and G2 pha...

  4. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  5. Uncovering SUMOylation Dynamics during Cell-Cycle Progression Reveals FoxM1 as a Key Mitotic SUMO Target Protein

    DEFF Research Database (Denmark)

    Schimmel, Joost; Eifler, Karolin; Sigurdsson, Jón Otti;

    2014-01-01

    Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-c...

  6. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Science.gov (United States)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  7. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells.

    Science.gov (United States)

    Liu, Xiang; Du, Liying; Feng, Renqing

    2013-07-01

    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells. Here, we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Western blot analysis demonstrated the down-regulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2. Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK3β). Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKT pathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression. The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity, whereas the p27 Kip1 expression was increased. In addition, knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2, AKT, and GSK3β. After c-Src depletion by siRNAs, we observed significant down-regulation of cyclin D1 and cyclin E, and up-regulation of p27 Kip1. These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  8. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Xiang Liu; Liying Du; Renqing Feng

    2013-01-01

    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells.Here,we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2).Western blot analysis demonstrated the downregulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2.Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2),protein kinase B (AKT),and glycogen synthase kinase 3 beta (GSK3β).Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKTpathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression.The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity,whereas the p27 Kip1 expression was increased.In addition,knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2,AKT,and GSK3β.After c-Src depletion by siRNAs,we observed significant down-regulation of cyclin D1 and cyclin E,and up-regulation of p27 Kip1.These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  9. Acanthamoeba induces cell-cycle arrest in host cells.

    Science.gov (United States)

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  10. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells.

    Science.gov (United States)

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2014-09-01

    Parabens are alkyl esters of p-hydroxybenzoic acid used widely as antimicrobial preservatives in consumer products, including pharmaceuticals, foods and cosmetics. We showed previously that methyl-, butyl- and propylparaben parabens, even at low doses, stimulate the proliferation of MCF-7 breast cancer cells and non-transformed MCF-10A breast epithelial cells. The present study was undertaken to determine whether this represents a direct effect on cell cycle and apoptotic gene expression. MCF-7 and MCF-10A cells were exposed to methyl, butyl- and propylparaben (20 nm) or 17β-estradiol (10 nm). Cell cycle and apoptotic gene expression were evaluated by real-time polymerase chain reaction and protein expression by Western blot. 17β-estradiol upregulated G1 /S phase genes and downregulated cell cycle progression inhibitors in both MCF-7 and MCF-10A. Upregulation of Bcl-xL and downregulation of caspase 9 was observed in MCF-7, while upregulation of Bcl-xL, BCL2L2 and caspase 9 was noted in MCF-10A. Cyclins in MCF-7 cells were not affected by any of the parabens. Methyl- and butylparaben had no effect on the expression of selected apoptotic genes in MCF-7. In MCF-10A, all parabens tested increased the expression of G1 /S phase genes, and downregulated cell cycle inhibitors. Methylparaben increased pro-survival gene. Butylparaben increased BCL2L1 gene, as did 17β-estradiol, while propylparaben upregulated both the extrinsic and intrinsic apoptotic pathways. There are differences in cell cycle and apoptosis gene expression between parabens and 17β-estradiol in MCF-7 cells. In MCF-10A cells, most of the genes activated by parabens were comparable to those activated by 17β-estradiol.

  11. Nucleosome architecture throughout the cell cycle.

    Science.gov (United States)

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  12. MadR1, a Mycobacterium tuberculosis cell cycle stress response protein that is a member of a widely conserved protein class of prokaryotic, eukaryotic and archeal origin.

    Science.gov (United States)

    Crew, Rebecca; Ramirez, Melissa V; England, Kathleen; Slayden, Richard A

    2015-05-01

    Stress-induced molecular programs designed to stall division progression are nearly ubiquitous in bacteria, with one well-known example being the participation of the SulA septum inhibiting protein in the SOS DNA damage repair response. Mycobacteria similarly demonstrate stress-altered growth kinetics, however no such regulators have been found in these organisms. We therefore set out to identify SulA-like regulatory proteins in Mycobacterium tuberculosis. A bioinformatics modeling-based approach led to the identification of rv2216 as encoding for a protein with weak similarity to SulA, further analysis distinguished this protein as belonging to a group of uncharacterized growth promoting proteins. We have named the mycobacterial protein encoded by rv2216 morphology altering division regulator protein 1, MadR1. Overexpression of madR1 modulated cell length while maintaining growth kinetics similar to wild-type, and increased the proportion of bent or V-form cells in the population. The presence of MadR1-GFP at regions of cellular elongation (poles) and morphological differentiation (V-form) suggests MadR1 involvement in phenotypic heterogeneity and longitudinal cellular growth. Global transcriptional analysis indicated that MadR1 functionality is linked to lipid editing programs required for growth and persistence. This is the first report to differentiate the larger class of these conserved proteins from SulA proteins and characterizes MadR1 effects on the mycobacterial cell.

  13. The AhR is involved in the regulation of LoVo cell proliferation through cell cycle-associated proteins.

    Science.gov (United States)

    Yin, Jiuheng; Sheng, Baifa; Han, Bin; Pu, Aimin; Yang, Kunqiu; Li, Ping; Wang, Qimeng; Xiao, Weidong; Yang, Hua

    2016-05-01

    Some ingredients in foods can activate the aryl hydrocarbon receptor (AhR) and arrest cell proliferation. In this study, we hypothesized that 6-formylindolo [3, 2-b] carbazole (FICZ) arrests the cell cycle in LoVo cells (a colon cancer line) through the AhR. The AhR agonist FICZ and the AhR antagonist CH223191 were used to treat LoVo cells. Real-time PCR and Western blot analyses were performed to detect the expression of the AhR, CYP1A1, CDK4, cyclinD1, cyclin E, CDK2, P27, and pRb. The distribution and activation of the AhR were detected with immunofluorescence. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometric analysis were performed to measure cell viability, cell cycle stage, and apoptosis. Our results show that FICZ inhibited LoVo cell proliferation by inducing G1 cell cycle arrest but had no effect on epithelial apoptosis. Further analysis found that FICZ downregulated cyclinD1 and upregulated p27 expression to arrest Rb phosphorylation. The downregulation of cyclinD1 and upregulation of p27 were abolished by co-treatment with CH223191. We conclude that the AhR, when activated by FICZ (an endogenous AhR ligand), can arrest the cell cycle and block LoVo cell proliferation.

  14. The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Xiangli Cui

    Full Text Available Protein Arginine Deiminases (PADs catalyze the post-translational conversion of peptidyl-Arginine to peptidyl-Citrulline in a calcium-dependent, irreversible reaction. Evidence is emerging that PADs play a role in carcinogenesis. To determine the cancer-associated functional implications of PADs, we designed a small molecule PAD inhibitor (called Chor-amidine or Cl-amidine, and tested the impact of this drug on the cell cycle. Data derived from experiments in colon cancer cells indicate that Cl-amidine causes a G1 arrest, and that this was p53-dependent. In a separate set of experiments, we found that Cl-amidine caused a significant increase in microRNA-16 (miRNA-16, and that this increase was also p53-dependent. Because miRNA-16 is a putative tumor suppressor miRNA, and others have found that miRNA-16 suppresses proliferation, we hypothesized that the p53-dependent G1 arrest associated with PAD inhibition was, in turn, dependent on miRNA-16 expression. Results are consistent with this hypothesis. As well, we found the G1 arrest is at least in part due to the ability of Cl-amidine-mediated expression of miRNA-16 to suppress its' G1-associated targets: cyclins D1, D2, D3, E1, and cdk6. Our study sheds light into the mechanisms by which PAD inhibition can protect against or treat colon cancer.

  15. Golgi localization and dynamics of hyaluronan binding protein 1 (HABP1/p32/C1QBP) during the cell cycle

    Institute of Scientific and Technical Information of China (English)

    Aniruddha SENGUPTA; Bhaswati BANERJEE; Rakesh K. TYAGI; Kasturi DATTA

    2005-01-01

    Hyaluronan binding protein 1 (HABP1) is a negatively charged multifunctional mammalian protein with a unique structural fold. Despite the fact that HABP1 possesses mitochondrial localization signal, it has also been localized to other cellular compartments. Using indirect immunofluorescence, we examined the sub-cellular localization of HABP1 and its dynamics during mitosis. We wanted to determine whether it distributes in any distinctive manner after mitotic nuclear envelope disassembly or is dispersed randomly throughout the cell. Our results reveal the golgi localization of HABP1 and demonstrate its complete dispersion throughout the cell during mitosis. This distinctive distribution pattern of HABP1 during mitosis resembles its ligand hyaluronan, suggesting that in concert with each other the two molecules play critical roles in this dynamic process.

  16. Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle-Controlled and Its Function in Pre-rRNA Processing Is Phosphorylation Dependent.

    Science.gov (United States)

    Zhang, Duo; Chen, Hui-Peng; Duan, Hai-Feng; Gao, Li-Hua; Shao, Yong; Chen, Ke-Yan; Wang, You-Liang; Lan, Feng-Hua; Hu, Xian-Wen

    2016-07-01

    Ribosomal protein S6 (rpS6) has long been regarded as one of the primary r-proteins that functions in the early stage of 40S subunit assembly, but its actual role is still obscure. The correct forming of 18S rRNA is a key step in the nuclear synthesis of 40S subunit. In this study, we demonstrate that rpS6 participates in the processing of 30S pre-rRNA to 18S rRNA only when its C-terminal five serines are phosphorylated, however, the process of entering the nucleus and then targeting the nucleolus does not dependent its phosphorylation. Remarkably, we also find that the aggregation of rpS6 at the nucleolus correlates to the phasing of cell cycle, beginning to concentrate in the nucleolus at later S phase and disaggregate at M phase. J. Cell. Biochem. 117: 1649-1657, 2016. © 2015 Wiley Periodicals, Inc.

  17. [An involvement of polokinases in control of progress of the cell-cycle--the mechanism of transient translocation and formation of an activated protein-protein complexes during mitosis].

    Science.gov (United States)

    Kaczanowska, Janina; Piwońska, Dominika; Kaczanowski, Andrzej

    2006-01-01

    Polokinases are a subfamily of the mitotic serine/threonine kinases involved in coordination of a run of mitosis of eukaryotic cells. The main polo-like-kinase 1p (PLK1) is a passenger protein transiently localized to centrosomes, kinetochores and central spindle during mitosis and is required for bi-orientation of the normal metaphase spindle. Its activity is regulated at the level of protein stability and by action of upstream kinases, so that it peaks in metaphase and drops as cells exit mitosis. Regulation of location and activity of Plk1p is bi-phasic: the COOH terminal polo box domain binds to an array of mitotic phosphoproteins and followed by an allosteric conformation is activated to phosphorylate many its substrates. These mode of action involves polokinases into critical transitions of the cell cycle phases, and in control at some checkpoints of this cycle.

  18. The budding yeast Cdc48(Shp1 complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7.

    Directory of Open Access Journals (Sweden)

    Stefanie Böhm

    Full Text Available The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48(Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48(Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.

  19. What cycles the cell? -Robust autonomous cell cycle models.

    Science.gov (United States)

    Lavi, Orit; Louzoun, Yoram

    2009-12-01

    The cell cycle is one of the best studied cellular mechanisms at the experimental and theoretical levels. Although most of the important biochemical components and reactions of the cell cycle are probably known, the precise way the cell cycle dynamics are driven is still under debate. This phenomenon is not atypical to many other biological systems where the knowledge of the molecular building blocks and the interactions between them does not lead to a coherent picture of the appropriate dynamics. We here propose a methodology to develop plausible models for the driving mechanisms of embryonic and cancerous cell cycles. We first define a key property of the system (a cyclic behaviour in the case of the embryonic cell cycle) and set mathematical constraints on the types of two variable simplified systems robustly reproducing such a cyclic behaviour. We then expand these robust systems to three variables and reiterate the procedure. At each step, we further limit the type of expanded systems to fit the known microbiology until a detailed description of the system is obtained. This methodology produces mathematical descriptions of the required biological systems that are more robust to changes in the precise function and rate constants. This methodology can be extended to practically any type of subcellular mechanism.

  20. Detection of HPV DNA and immunohistochemical expression of cell cycle proteins in oral carcinoma in a population of brazilian patients

    Directory of Open Access Journals (Sweden)

    Rosilene Calazans Soares

    2008-10-01

    Full Text Available This study investigated the presence of human papillomavirus (HPV DNA and viral types in 33 cases of oral squamous cells carcinoma (OSCC and compared the immunohistochemical expression of the cell-cycle markers p21 and pRb between cases of the disease with and without HPV. DNA was extracted from paraffin-embedded tissue and amplified by PCR for the detection of HPV DNA. Viral typing was performed by dot blot hybridization. Immunohistochemistry was performed by the streptavidinbiotin technique. HPV DNA was detected in 11 (33.33% of the 33 cases. The prevalent viral type was HPV 18 (81.81%. A significant association was observed between the presence of HPV and immunohistochemical expression of pRb, but not between p21 expression and the presence of the virus. The low frequency of detection of HPV DNA in OSCC suggests a possible participation of the virus in the development and progression of only a subgroup of these tumors.

  1. A gestational high protein diet affects the abundance of muscle transcripts related to cell cycle regulation throughout development in porcine progeny.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available BACKGROUND: In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS: To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP or 12% (adequate protein--AP throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi was collected at 94 days post conception (dpc, and 1, 28, and 188 days post natum (dpn for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION: Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the

  2. Autoradiography and the Cell Cycle.

    Science.gov (United States)

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  3. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM,Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by cisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM,Chk2 and p53 of HeLa cells with and without cisplatin were detected by RT-PCR and Western blot,respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin...

  4. Structures closed into cycles in globular proteins.

    Science.gov (United States)

    Efimov, A V

    2011-12-01

    Different types of structures closed into cycles are widespread at all the levels of structural organization of proteins. β-Hairpins, triple-stranded β-sheets, and βαβ-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into larger cycles by means of different superhelices, split β-hairpins, or SS-bridges results in formation of complex structural motifs such as abcd-units, φ-motifs, five- and seven-segment α/β-motifs, etc. At the level of tertiary structure many proteins and domains fold into structures closed into cylinders. Apparently, closing the motifs and domains into cycles and cylinders results in formation of more cooperative and stable structures as compared with open ones, and this may be the reason for high frequencies of occurrence of the motifs in proteins.

  5. Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A cooperate in cell cycle-associated replication of peroxisomes.

    Science.gov (United States)

    Lingard, Matthew J; Gidda, Satinder K; Bingham, Scott; Rothstein, Steven J; Mullen, Robert T; Trelease, Richard N

    2008-06-01

    Although participation of PEROXIN11 (PEX11), FISSION1 (FISl), and DYNAMIN-RELATED PROTEIN (DRP) has been well established during induced peroxisome proliferation in response to external stimuli, their roles in cell cycle-associated constitutive replication/duplication have not been fully explored. Herein, bimolecular fluorescence complementation experiments with Arabidopsis thaliana suspension cells revealed homooligomerization of all five PEX11 isoforms (PEX11a-e) and heterooligomerizations of all five PEX11 isoforms with FIS1b, but not FIS1a nor DRP3A. Intracellular protein targeting experiments demonstrated that FIS1b, but not FIS1a nor DRP3A, targeted to peroxisomes only when coexpressed with PEX11d or PEX11e. Simultaneous silencing of PEX11c-e or individual silencing of DRP3A, but not FIS1a nor FIS1b, resulted in approximately 40% reductions in peroxisome number. During G2 in synchronized cell cultures, peroxisomes sequentially enlarged, elongated, and then doubled in number, which correlated with peaks in PEX11, FIS1, and DRP3A expression. Overall, these data support a model for the replication of preexisting peroxisomes wherein PEX11c, PEX11d, and PEX11e act cooperatively during G2 to promote peroxisome elongation and recruitment of FIS1b to the peroxisome membrane, where DRP3A stimulates fission of elongated peroxisomes into daughter peroxisomes, which are then distributed between daughter cells.

  6. Expression of cell cycle regulator p57kip2, cyclinE protein and proliferating cell nuclear antigen in human pancreatic cancer: An immunohistochemical study

    Institute of Scientific and Technical Information of China (English)

    Hui Yue; Hui-Yong Jiang

    2005-01-01

    AIM: To investigate the effects of p57kip2, cyclinE protein and proliferating cell nuclear antigen (PCNA) on occurrence and progression of human pancreatic cancer.METHODS: The expression of p57kip2, cyclinE protein and PCNA in tumor tissues and adjacent tissues from 32patients with pancreatic cancer was detected by SP immunohistochemical technique.RESULTS: The positive expression rate of p57kip2 protein in tumor tissues was 46.9%, which was lower than that in adjacent pancreatic tissues (x2 = 5.317, P<0.05). P57kip2protein positive expression remarkably correlated with tumor cell differentiation (P<0.05), but not with lymph node metastasis (P>0.05). The positive expression rate of cyclinE protein in tumor tissues was 68.8%, which was higher than that in adjacent pancreatic tissues (x2 = 4.063,P<0.05). CyclinE protein positive expression significantly correlated with tumor cell differentiation and lymph node metastasis (P<0.05). The positive expression rate of PCNA in the tumor tissues was 71.9%, which was higher than that in adjacent pancreatic tissues (x2 = 5.189, P<0.05).PCNA positive expression remarkably correlated with tumor cell differentiation and lymph node metastasis (P<0.05).CONCLUSION: The decreased expression of p57kip2 and/or overexpression of cyclinE protein and PCNA may contribute to the occurrence and progression of pancreatic cancer.p57kip2, cyclinE protein, and PCNA play an important role in occurrence and progression of pancreatic cancer.

  7. The function of the chicken p34CDC2 protein kinase in fission yeast is cold sensitive for cell cycle progression through the G1 phase and temperature sensitive for traversal of mitosis.

    Science.gov (United States)

    Schmitz, N

    1999-06-01

    The protein kinase p34cdc2 is required at the onset of DNA replication and for entry into mitosis. The catalytic subunit and its regulatory proteins, notably the cyclins, are conserved from yeast to man. This suggests that the control mechanisms necessary for progression through the cell cycle in fission yeast are conserved throughout evolution. This work describes the characterization of a fission yeast strain that is dependent for cell cycle progression on the activity of the p34CDC2 protein kinase from chicken. The response of the chicken p34CDC2 protein kinase to cell cycle components of fission yeast was examined. Cells expressing the chicken p34CDC2 protein divide at reduced size at 31 degrees C. Cells are temperature sensitive at 35.5 degrees C and die as a result of mitotic catastrophe. This phenotype can be rescued by delaying cell cycle progression at the G1-S transition by adding low concentrations of hydroxyurea. Schizosaccharomyces pombe cells that are dependent on chicken p34CDC2 are cold sensitive. At 19 degrees C to 25 degrees C cells arrest in the G1 phase, while traversal of the G2-M transition is not blocked at low temperature. Expression of chicken p34CDC2 in the cold-sensitive G2-M mutant cdc2A21 suppresses the G1 arrest.

  8. Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins.

    Science.gov (United States)

    Zabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz

    2010-08-01

    Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-beta tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed.

  9. Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator.

    Science.gov (United States)

    Settlage, S B; Miller, A B; Gruissem, W; Hanley-Bowdoin, L

    2001-01-20

    Geminiviruses replicate their small, single-stranded DNA genomes through double-stranded DNA intermediates in plant nuclei using host replication machinery. Like most dicot-infecting geminiviruses, tomato golden mosaic virus encodes a protein, AL3 or C3, that greatly enhances viral DNA accumulation through an unknown mechanism. Earlier studies showed that AL3 forms oligomers and interacts with the viral replication initiator AL1. Experiments reported here established that AL3 also interacts with a plant homolog of the mammalian tumor suppressor protein, retinoblastoma (pRb). Analysis of truncated AL3 proteins indicated that pRb and AL1 bind to similar regions of AL3, whereas AL3 oligomerization is dependent on a different region of the protein. Analysis of truncated AL1 proteins located the AL3-binding domain between AL1 amino acids 101 and 180 to a region that also includes the AL1 oligomerization domain and the catalytic site for initiation of viral DNA replication. Interestingly, the AL3-binding domain was fully contiguous with the domain that mediates AL1/pRb interactions. The potential significance of AL3/pRb binding and the coincidence of the domains responsible for AL3, AL1, and pRb interactions are discussed.

  10. Expression of the cell cycle regulation proteins p53 and p21WAF1 in different types of non-dysplastic leukoplakias

    Directory of Open Access Journals (Sweden)

    Fernanda Visioli

    2012-06-01

    Full Text Available OBJECTIVES: The aim of this study was to analyze the immunolabeling of two cell cycle protein regulators, p53 and p21WAF1, in non-dysplastic leukoplakias with different epithelial alterations: acanthosis, hyperkeratosis and acanthosis combined with hyperkeratosis, and compare them with dysplastic leukoplakias. MATERIAL AND METHODS: This was a prospective cohort study involving 36 patients with oral homogeneous leukoplakias. excisional biopsies were performed and the patients remain under clinical follow-up. The leukoplakias were divided into four groups: 6 acanthosis, 9 hyperkeratosis, 10 acanthosis combined with hyperkeratosis, and 11 epithelial dysplasias. Paraffin-embebeded sections were immunostained for p53 and p21WAF1. Five hundred cells from the basal layer and 500 from the parabasal layer were counted to determine the percentage of positive cells. A qualitative analysis was also carried out to determine the presence or absence of immunohistochemical staining in the intermediate and superficial layers. Groups were compared with ANOVA (p0.05. CONCLUSIONS: Our findings failed to differentiate the non-dysplastic lesions by means of p53 and p21WAF1 immunostaining, notwithstanding similar profiles between non-dysplastic and dysplastic leukoplakias were observed.

  11. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  12. Sex and estrous cycle-dependent rapid protein kinase signaling actions of estrogen in distal colonic cells.

    LENUS (Irish Health Repository)

    O'Mahony, Fiona

    2008-10-01

    Previous studies from our laboratory demonstrated that 17beta-estradiol (E2) rapidly inhibits Cl(-) secretion in rat and human distal colonic epithelium. The inhibition has been shown to occur via targeting of a basolateral K(+) channel identified as the KCNQ1 (KvLQT1) channel. E2 indirectly modulates the channel activity via a cascade of second messengers which are rapidly phosphorylated in response to E2. The anti-secretory mechanism may be the manner by which E2 induces fluid retention in the intestine during periods of high circulating plasma E2. Here we review the sex-dependent and estrous cycle regulation of this novel rapid response to E2. The inhibition of KCNQ1 channel activity and Cl(-) secretion will be of interest in the future in the investigation of the retentive effects of estrogen in female tissue and also in the study of secretory disorders and drugable targets of the intestine.

  13. Impact of the cell division cycle on gene circuits

    Science.gov (United States)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  14. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Directory of Open Access Journals (Sweden)

    Elena Favaro

    Full Text Available BACKGROUND: Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1 and a microRNA, hsa-miR-210 (miR-210 which is associated with a poor prognosis. METHODS AND FINDINGS: In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis. CONCLUSIONS: Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  15. Tsc1 deficiency impairs mammary development in mice by suppression of AKT, nuclear ERα, and cell-cycle-driving proteins

    OpenAIRE

    Zhenqi Qin; Hang Zheng; Ling Zhou; Yanhua Ou; Bin Huang; Bo Yan; Zhenshu Qin; Cuilan Yang; Yongchun Su; Xiaochun Bai; Jiasong Guo; Jun Lin

    2016-01-01

    Loss of Tsc1/Tsc2 results in excess cell growth that eventually forms hamartoma in multiple organs. Our study using a mouse model with Tsc1 conditionally knockout in mammary epithelium showed that Tsc1 deficiency impaired mammary development. Phosphorylated S6 was up-regulated in Tsc1 −/− mammary epithelium, which could be reversed by rapamycin, suggesting that mTORC1 was hyperactivated in Tsc1 −/− mammary epithelium. The mTORC1 inhibitor rapamycin restored the development of Tsc1 −/− mammary...

  16. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    Ke-xiu Zhu; Ya-li Cao; Bin Li; Jia Wang; Xiao-bing Han

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM, Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by eisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM, Chk2 and p53 of HeLa cells with and withont cisplatin were detected by RT-PCR and Western blot, respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin inhibited the proliferation of HeLa cells in a dose- and time-dependent manner. The mRNA and protein expressions of ATM, Chk2 and p53 were increased in HeLa cells treated with cisplatin. The cell cycle was arrested in G2/M phase in HeLa cells treated with cisplatin. Conclusion Activation of ATM, Chk2 and p53 might be critical in determining whether cells survive or undergo apoptesis. Targeting ATM, Chk2 and p53 pathway might he a promising strategy for reversing chemoresistance to clsplatin in cervical cancer.

  17. Expression of Cell Cycle-associated Proteins p53, pRb, p16, p27, and Correlation With Survival: A Comparative Study on Oral Squamous Cell Carcinoma and Verrucous Carcinoma.

    Science.gov (United States)

    Vallonthaiel, Archana G; Singh, Manoj K; Dinda, Amit K; Kakkar, Aanchal; Thakar, Alok; Das, Satya N

    2016-03-01

    Verrucous carcinoma (VC) is a well-differentiated form of squamous cell carcinoma (SCC) with better prognosis. Differences in molecular pathogenesis between the 2 have not been well-characterized. We conducted this study to evaluate immunohistochemical expression of cell-cycle regulatory proteins p53, pRb, p16, and p27 in SCC and VC, compare the expression in these 2 neoplasms, and assess if these markers have any diagnostic or prognostic value. Sixty cases of SCC with and without lymph node metastasis and 31 cases of VC were studied. Immunohistochemical analysis for p53, pRb, p16, and p27 was performed and the results were analyzed. SCC was most frequent in tongue (52%), whereas VC in buccal mucosa (81%). Mean age of SCC patients was significantly lower than in VC. Majority of SCCs were in stage III and IV (63%), whereas VCs were in stage I and II (84%). p53 immunopositivity was more frequent in SCC (65%) than in VC (23%) (P≤0.001). VC had lower p53 as compared with well-differentiated SCC and SCC without lymph node metastasis. No significant difference was seen in pRb, p16, and p27 expression. Disease-free survival (DFS) at 1 year for SCC was 57% whereas it was 80% for VC (P=0.02). DFS and overall survival of SCC correlated with nodal status and stage; cell-cycle-associated protein expression had no association with DFS. To conclude, p53 immunoexpression differs in SCC and VC, suggesting different pathogenesis, and it may have some utility as an adjunct to morphology to differentiate between the 2. Expression of cell-cycle-associated proteins does not influence survival in SCC.

  18. "Constructing" the Cell Cycle in 3D

    Science.gov (United States)

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  19. The cell cycle regulated transcriptome of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Stuart K Archer

    Full Text Available Progression of the eukaryotic cell cycle requires the regulation of hundreds of genes to ensure that they are expressed at the required times. Integral to cell cycle progression in yeast and animal cells are temporally controlled, progressive waves of transcription mediated by cell cycle-regulated transcription factors. However, in the kinetoplastids, a group of early-branching eukaryotes including many important pathogens, transcriptional regulation is almost completely absent, raising questions about the extent of cell-cycle regulation in these organisms and the mechanisms whereby regulation is achieved. Here, we analyse gene expression over the Trypanosoma brucei cell cycle, measuring changes in mRNA abundance on a transcriptome-wide scale. We developed a "double-cut" elutriation procedure to select unperturbed, highly synchronous cell populations from log-phase cultures, and compared this to synchronization by starvation. Transcriptome profiling over the cell cycle revealed the regulation of at least 430 genes. While only a minority were homologous to known cell cycle regulated transcripts in yeast or human, their functions correlated with the cellular processes occurring at the time of peak expression. We searched for potential target sites of RNA-binding proteins in these transcripts, which might earmark them for selective degradation or stabilization. Over-represented sequence motifs were found in several co-regulated transcript groups and were conserved in other kinetoplastids. Furthermore, we found evidence for cell-cycle regulation of a flagellar protein regulon with a highly conserved sequence motif, bearing similarity to consensus PUF-protein binding motifs. RNA sequence motifs that are functional in cell-cycle regulation were more widespread than previously expected and conserved within kinetoplastids. These findings highlight the central importance of post-transcriptional regulation in the proliferation of parasitic kinetoplastids.

  20. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  1. A Method to Design Synthetic Cell-Cycle Networks

    Institute of Scientific and Technical Information of China (English)

    MIAO Ke-Ke

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of ce11-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network.

  2. YES, a Src family kinase, is a proximal glucose-specific activator of cell division cycle control protein 42 (Cdc42) in pancreatic islet β cells.

    Science.gov (United States)

    Yoder, Stephanie M; Dineen, Stacey L; Wang, Zhanxiang; Thurmond, Debbie C

    2014-04-18

    Second-phase insulin secretion sustains insulin release in the face of hyperglycemia associated with insulin resistance, requiring the continued mobilization of insulin secretory granules to the plasma membrane. Cdc42, the small Rho family GTPase recognized as the proximal glucose-specific trigger to elicit second-phase insulin secretion, signals downstream to activate the p21-activated kinase (PAK1), which then signals to Raf-1/MEK/ERK to induce filamentous actin (F-actin) remodeling, to ultimately mobilize insulin granules to the plasma membrane. However, the steps required to initiate Cdc42 activation in a glucose-specific manner in β cells have remained elusive. Toward this, we identified the involvement of the Src family kinases (SFKs), based upon the ability of SFK inhibitors to block glucose-stimulated Cdc42 and PAK1 activation events as well as the amplifying pathway of glucose-stimulated insulin release, in MIN6 β cells. Indeed, subsequent studies performed in human islets revealed that SFK phosphorylation was induced only by glucose and within 1 min of stimulation before the activation of Cdc42 at 3 min. Furthermore, pervanadate treatment validated the phosphorylation event to be tyrosine-specific. Although RT-PCR showed β cells to express five different SFK proteins, only two of these, YES and Fyn kinases, were found localized to the plasma membrane, and of these two, only YES kinase underwent glucose-stimulated tyrosine phosphorylation. Immunodetection and RNAi analyses further established YES kinase as a proximal glucose-specific signal in the Cdc42-signaling cascade. Identification of YES kinase provides new insight into the mechanisms underlying the sustainment of insulin secretion via granule mobilization/replenishment and F-actin remodeling.

  3. Cell cycle controls stress response and longevity in C. elegans

    Science.gov (United States)

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  4. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Lee Seung Joon

    2012-01-01

    Full Text Available Abstract Background Curcumin (diferuloylmethane, the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC, is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to

  5. A low protein diet during pregnancy provokes a lasting shift of hepatic expression of genes related to cell cycle throughout ontogenesis in a porcine model

    Directory of Open Access Journals (Sweden)

    Oster Michael

    2012-03-01

    Full Text Available Abstract Background In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. Adverse environmental conditions during fetal development provoke an intrauterine adaptive response termed 'fetal programming', which may lead to both persistently biased responsiveness to extrinsic factors and permanent consequences for the organismal phenotype. This leads to the hypothesis that the offspring's transcriptome exhibits short-term and long-term changes, depending on the maternal diet. In order to contribute to a comprehensive inventory of genes and functional networks that are targets of nutritional programming initiated during fetal life, we applied whole-genome microarrays for expression profiling in a longitudinal experimental design covering prenatal, perinatal, juvenile, and adult ontogenetic stages in a porcine model. Pregnant sows were fed either a gestational low protein diet (LP, 6% CP or an adequate protein diet (AP, 12% CP. All offspring was nursed by foster sows receiving standard diets. After weaning, all offspring was fed standard diets ad libitum. Results Analyses of the hepatic gene expression of the offspring at prenatal (94 dies post conceptionem, dpc and postnatal stages (1, 28, 188 dies post natum, dpn included comparisons between dietary groups within stages as well as comparisons between ontogenetic stages within diets to separate diet-specific transcriptional changes and maturation processes. We observed differential expression of genes related to lipid metabolism (e.g. Fatty acid metabolism, Biosynthesis of steroids, Synthesis and degradation of ketone bodies, FA elongation in mitochondria, Bile acid synthesis and cell cycle regulation (e.g. Mitotic roles of PLK, G1/S checkpoint regulation, G2/M DNA damage checkpoint regulation. Notably, at stage 1 dpn no regulation of a distinct pathway was found in LP offspring. Conclusions The transcriptomic

  6. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  7. Gomisin A enhances tumor necrosis factor-α-induced G1 cell cycle arrest via signal transducer and activator of transcription 1-mediated phosphorylation of retinoblastoma protein.

    Science.gov (United States)

    Waiwut, Pornthip; Shin, Myoung-Sook; Yokoyama, Satoru; Saiki, Ikuo; Sakurai, Hiroaki

    2012-01-01

    Gomisin A, a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra chinensis, has been reported as an anti-cancer substance. In this study, we investigated the effects of gomisin A on cancer cell proliferation and cell cycle arrest in HeLa cells. Gomisin A significantly inhibited cell proliferation in a dose-dependent manner after 72 h treatment, especially in the presence of tumor necrosis factor-α (TNF-α), due to cell cycle arrest in the G1 phase with the downregulation of cyclin D1 expression and Retinoblastoma (RB) phosphorylation. In addition, gomisin A in combination with TNF-α strongly suppressed the expression of signal transducer and activator of transcription 1 (STAT1). Inhibition of STAT1 pathways by a small-interfering RNA against STAT1 and AG490 Janus kinase (JAK) kinase inhibitor AG490 reduced the cyclin D1 expression and RB phosphorylation, indicating that JAK-mediated STAT1 activation is involved in gomisin A-induced G1 cell cycle arrest.

  8. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  9. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  10. Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

    Science.gov (United States)

    Scotti, Claudia; Sommi, Patrizia; Pasquetto, Maria Valentina; Cappelletti, Donata; Stivala, Simona; Mignosi, Paola; Savio, Monica; Chiarelli, Laurent Roberto; Valentini, Giovanna; Bolanos-Garcia, Victor M.; Merrell, Douglas Scott; Franchini, Silvia; Verona, Maria Luisa; Bolis, Cristina; Solcia, Enrico; Manca, Rachele; Franciotta, Diego; Casasco, Andrea; Filipazzi, Paola; Zardini, Elisabetta; Vannini, Vanio

    2010-01-01

    Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application. PMID:21085483

  11. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  12. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  13. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haihe [The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319 (China); Yang, Zhanchun [Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319 (China); Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli [The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319 (China); Chen, Guofu, E-mail: zhangyanjie3@aliyun.com [Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319 (China)

    2014-11-07

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.

  14. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  15. Regulation of cell cycle by the anaphase spindle midzone

    Directory of Open Access Journals (Sweden)

    Sluder Greenfield

    2004-12-01

    Full Text Available Abstract Background A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. Results We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. Conclusions We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle.

  16. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  17. Robust circadian clocks from coupled protein-modification and transcription–translation cycles

    Science.gov (United States)

    Zwicker, David; Lubensky, David K.; ten Wolde, Pieter Rein

    2010-01-01

    The cyanobacterium Synechococcus elongatus uses both a protein phosphorylation cycle and a transcription–translation cycle to generate circadian rhythms that are highly robust against biochemical noise. We use stochastic simulations to analyze how these cycles interact to generate stable rhythms in growing, dividing cells. We find that a protein phosphorylation cycle by itself is robust when protein turnover is low. For high decay or dilution rates (and compensating synthesis rates), however, the phosphorylation-based oscillator loses its integrity. Circadian rhythms thus cannot be generated with a phosphorylation cycle alone when the growth rate, and consequently the rate of protein dilution, is high enough; in practice, a purely posttranslational clock ceases to function well when the cell doubling time drops below the 24-h clock period. At higher growth rates, a transcription–translation cycle becomes essential for generating robust circadian rhythms. Interestingly, although a transcription–translation cycle is necessary to sustain a phosphorylation cycle at high growth rates, a phosphorylation cycle can dramatically enhance the robustness of a transcription–translation cycle at lower protein decay or dilution rates. In fact, the full oscillator built from these two tightly intertwined cycles far outperforms not just each of its two components individually, but also a hypothetical system in which the two parts are coupled as in textbook models of coupled phase oscillators. Our analysis thus predicts that both cycles are required to generate robust circadian rhythms over the full range of growth conditions. PMID:21149676

  18. Robust circadian clocks from coupled protein-modification and transcription-translation cycles.

    Science.gov (United States)

    Zwicker, David; Lubensky, David K; ten Wolde, Pieter Rein

    2010-12-28

    The cyanobacterium Synechococcus elongatus uses both a protein phosphorylation cycle and a transcription-translation cycle to generate circadian rhythms that are highly robust against biochemical noise. We use stochastic simulations to analyze how these cycles interact to generate stable rhythms in growing, dividing cells. We find that a protein phosphorylation cycle by itself is robust when protein turnover is low. For high decay or dilution rates (and compensating synthesis rates), however, the phosphorylation-based oscillator loses its integrity. Circadian rhythms thus cannot be generated with a phosphorylation cycle alone when the growth rate, and consequently the rate of protein dilution, is high enough; in practice, a purely posttranslational clock ceases to function well when the cell doubling time drops below the 24-h clock period. At higher growth rates, a transcription-translation cycle becomes essential for generating robust circadian rhythms. Interestingly, although a transcription-translation cycle is necessary to sustain a phosphorylation cycle at high growth rates, a phosphorylation cycle can dramatically enhance the robustness of a transcription-translation cycle at lower protein decay or dilution rates. In fact, the full oscillator built from these two tightly intertwined cycles far outperforms not just each of its two components individually, but also a hypothetical system in which the two parts are coupled as in textbook models of coupled phase oscillators. Our analysis thus predicts that both cycles are required to generate robust circadian rhythms over the full range of growth conditions.

  19. NONO couples the circadian clock to the cell cycle

    OpenAIRE

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Steven A Brown

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately n...

  20. Cell polarity proteins and spermatogenesis.

    Science.gov (United States)

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in

  1. Mouse Cajal-Retzius cells'histogenesis and expression of the cell cycle-related proteins%小鼠Cajal-Retzius细胞发生及其细胞周期相关蛋白的表达

    Institute of Scientific and Technical Information of China (English)

    金海啸; 符星; 孔维芳; 马战友; 高文静; 邓锦波

    2013-01-01

    Objective To study Cajal-Retzius (CR) cells' histogenesis and their expressions of cell cycle-related proteins in mouse. Methods Total 83 mice were used. Immunofluorescent labeling and BrdU assay were carried out at various embryonic and postnatal ages. Results 1. The birthday of CR cells was at about embryonic day 10 (E10) or 11 ( Ell ) . CR cells mainly distributed in the molecular layer of neocortex and hippocampus. Their number decreased with age increasing. 2. From E15 to adult, Cyclin A2, Cyclin El, and CDT1 were expressed continuously in CR cells, but there was no any expression of Cyclin Dl in CR cells. Conclusion CR cells are important in the brain development. The decrease of CR cells with development is correlative with the activity of the neoeortical development. CR cells in neocortex have been probably exited out cell cycle and steped in the Go phase. If the CR cells split again, they will apoptosis because of their axons can not absorb and reverse transport the neurotrophic factors.%目的 观察小鼠Cajal-Retzius (CR)细胞的发生以及多种细胞周期相关蛋白的表达情况.方法 各日龄共计83只小鼠,应用免疫荧光法、溴脱氧尿嘧啶核苷(BrdU)等技术对胚胎和出生后小鼠进行实验.结果 1.CR细胞在E10和E11发生,它们主要分布在新皮质分子层和海马分子层,其密度随日龄的增长而逐渐降低.2.从E15到成年,细胞周期蛋白(cyclin) A2、cyclin E1和CDT1在CR细胞中持续表达,但始终未发现cyclin D1阳性的CR细胞.结论 CR细胞对大脑发育有重要作用.CR细胞密度的减小趋势与新皮质发育的活跃程度相关.CR细胞已经退出了细胞周期而进入了Go期.如果CR细胞再次分裂,它们会因其轴突无法吸收并反向运输神经营养因子而凋亡.

  2. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    Science.gov (United States)

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  3. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  4. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  5. How the cell cycle impacts chromatin architecture and influences cell fate

    Directory of Open Access Journals (Sweden)

    Yiqin eMa

    2015-02-01

    Full Text Available Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate re-programming.

  6. High-Cycle-Life Lithium Cell

    Science.gov (United States)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  7. Microfluidic Cell Cycle Analysis of Spread Cells by DAPI Staining

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-01-01

    Full Text Available Single-cell cell cycle analysis is an emerging technique that requires detailed exploration of the image analysis process. In this study, we established a microfluidic single-cell cell cycle analysis method that can analyze cells in small numbers and in situ on a microfluidic chip. In addition, factors that influenced the analysis were carefully investigated. U87 or HeLa cells were seeded and attached to microfluidic channels before measurement. Cell nucleic DNA was imaged by 4′-6-diamidino-2-phenylindole (DAPI staining under a fluorescent microscope and subsequently fluorescent intensities of the cell nuclei DNA were converted to depict histograms for cell cycle phases. DAPI concentration, microscopic magnification, exposure time and cell number were examined for optimal cell cycle analysis conditions. The results showed that as few as a few hundred cells could be measured by DAPI staining in the range of 0.4–0.6 μg/mL to depict histograms with typical cell cycle phase distribution. Microscopic magnification during image acquisition, however, could distort the phase distribution. Exposure time did not significantly affect the cell cycle analysis. Furthermore, cell cycle inhibitor rapamycin treatment changed the cell cycle phase distribution as expected. In conclusion, a method for microfluidic single-cell cell cycle analysis of spread cells in situ was developed. Factors such as dye concentration and microscopic magnification had more influence on cell cycle phase distribution. Further studies will focus on detail differentiation of cell cycle phases and the application of such a method for biological meanings.

  8. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  9. Tau protein overexpression promotes cell re-enter the cell cycle%Tau蛋白过度表达促进细胞重新进入细胞周期

    Institute of Scientific and Technical Information of China (English)

    王海红; 张琳; 董为人; 刘忠英; 张磊; 李妍

    2011-01-01

    Objective To investigate the effect of tau overexpression on the cell cycle re-entry. Methods Western blot and immunohistochemistry were used to determine the expression of tau in HEK293 stably transfected with pcDNA3.1-tau plasmid and HEK293 stahly transfected with pcDNA3.1 vector ( HEK293/tau and HEK293/vec ) . HEK293/tau and HEK293/vec cells were treated with Aphidicolin. The cell cycle distribution was detected by flow cytometry at 20 h after Aphidicolin treatment and at 6 h after Aphidicolin withdrawal respectively. Results The HEK293 cells stably transfected with the pcDNA3.1-tau plasmid expressed a high level of the tau protein in the cytoplasm. Treatment with Aphidicolin for 20 h caused 69.98% of HEK293 cells stably transfected with pcDNA3.1 vector (HEK293/vec) and 62.33% of HEK293 cells stably transfected with pcDNA3.1-tau plasmid ( HEK293/tau ) arrest at G0/C1, phase. Compared with HEK293/vec , the ratio of HEK293/tau cells decreasecl at G0/C1 phase and increased at S phase after Aphidicolin withdrawal for 6 h. Conclusion Tau protein overexpression promotes cell re-enter the cell cycle .%目的 探讨tau蛋白过度表达对细胞重新进入细胞周期的影响.方法 采用免疫印迹和免疫荧光细胞化学的方法,分别检测稳定转染质粒peDNA3.1-tau和空载体pcDNA3.1的HEK293细胞(HEK293/tau和HEK293/vec)中tau的表达,用细胞周期抑制剂Aphidicolin处理细胞抑制细胞周期,在Aphidicolin处理20 h和撤药6 h时应用流式细胞术检测细胞周期.结果 tau 蛋白在HEK293/tau细胞中过度表达;Aphidieolin作用20 h使62.33%的HEK293/tau和69.98%的HEK293/vec细胞停留在G0/G1期,两者之间差异没有统计学意义;撤药6 h时,与HEK293/vec细胞相比,HEK293/tau细胞处于G0/G1期的比率显著减少,处于s期的比率显著增多.结论 Tau蛋白过度表达促进细胞重新进入细胞周期.

  10. Cell "circadian" cycle: new role for mammalian core clock genes.

    Science.gov (United States)

    Borgs, Laurence; Beukelaers, Pierre; Vandenbosch, Renaud; Belachew, Shibeshih; Nguyen, Laurent; Malgrange, Brigitte

    2009-03-15

    In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN). The core pacemakers of these clocks consist of auto-regulatory transcriptional/post-transcriptional feedback loops. Several lines of evidence suggest the existence of a crosstalk between molecules that are responsible for the generation of circadian rhythms and molecules that control the cell cycle progression. In addition, highly specialized cell cycle checkpoints involved in DNA repair after damage seem also, at least in part, mediated by clock proteins. Recent studies have also highlighted a putative connection between clock protein dysfunction and cancer progression. This review discusses the intimate relation that exists between cell cycle progression and components of the circadian machinery.

  11. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  12. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plan

  13. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    Science.gov (United States)

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  14. Computational Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors

    Directory of Open Access Journals (Sweden)

    Yifei Bao

    2010-10-01

    Full Text Available In this paper, we survey five different computational modeling methods. For comparison, we use the activation cycle of G-proteins that regulate cellular signaling events downstream of G-protein-coupled receptors (GPCRs as a driving example. Starting from an existing Ordinary Differential Equations (ODEs model, we implement the G-protein cycle in the stochastic Pi-calculus using SPiM, as Petri-nets using Cell Illustrator, in the Kappa Language using Cellucidate, and in Bio-PEPA using the Bio-PEPA eclipse plug in. We also provide a high-level notation to abstract away from communication primitives that may be unfamiliar to the average biologist, and we show how to translate high-level programs into stochastic Pi-calculus processes and chemical reactions.

  15. Induction of p21CIP1 protein and cell cycle arrest after inhibition of Aurora B kinase is attributed to aneuploidy and reactive oxygen species.

    Science.gov (United States)

    Kumari, Geeta; Ulrich, Tanja; Krause, Michael; Finkernagel, Florian; Gaubatz, Stefan

    2014-06-01

    Cell cycle progression requires a series of highly coordinated events that ultimately lead to faithful segregation of chromosomes. Aurora B is an essential mitotic kinase, which is involved in regulation of microtubule-kinetochore attachments and cytokinesis. Inhibition of Aurora B results in stabilization of p53 and induction of p53-target genes such as p21 to inhibit proliferation. We have previously demonstrated that induction of p21 by p53 after inhibition of Aurora B is dependent on the p38 MAPK, which promotes transcriptional elongation of p21 by RNA Pol II. In this study, we show that a subset of p53-target genes are induced in a p38-dependent manner upon inhibition of Aurora B. We also demonstrate that inhibition of Aurora B results in down-regulation of E2F-mediated transcription and that the cell cycle arrest after Aurora B inhibition depends on p53 and pRB tumor suppressor pathways. In addition, we report that activation of p21 after inhibition of Aurora B is correlated with increased chromosome missegregation and aneuploidy but not with binucleation or tetraploidy. We provide evidence that p21 is activated in aneuploid cells by reactive oxygen species (ROS) and p38 MAPK. Finally, we demonstrate that certain drugs that act on aneuploid cells synergize with inhibitors of Aurora B to inhibit colony formation and oncogenic transformation. These findings provide an important link between aneuploidy and the stress pathways activated by Aurora B inhibition and also support the use of Aurora B inhibitors in combination therapy for treatment of cancer.

  16. Viral infections and cell cycle G2/M regulation

    Institute of Scientific and Technical Information of China (English)

    Richard Y.ZHAO; Robert T.ELDER

    2005-01-01

    Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15(Tyr15) on Cdc2, which is phosphorylated by Wee1 kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two well-characterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.

  17. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  18. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  19. Cell cycle phase regulates glucocorticoid receptor function.

    Directory of Open Access Journals (Sweden)

    Laura Matthews

    Full Text Available The glucocorticoid receptor (GR is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1. Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G(1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase. The impact of cell cycle-driven GR trafficking on a panel of glucocorticoid actions was profiled. In G2/M-enriched cells there was marked prolongation of glucocorticoid-induced ERK activation. This was accompanied by DNA template-specific, ligand-independent GR transactivation. Using chimeric and domain-deleted receptors we demonstrate that this transactivation effect is mediated by the AF1 transactivation domain. AF-1 harbours multiple phosphorylation sites, which are consensus sequences for kinases including CDKs, whose activity changes during the cell cycle. In G2/M there was clear ligand independent induction of GR phosphorylation on residues 203 and 211, both of which are phosphorylated after ligand activation. Ligand-independent transactivation required induction of phospho-S211GR but not S203GR, thereby directly linking cell cycle driven GR modification with altered GR function. Cell cycle phase therefore regulates GR localisation and post-translational modification which selectively impacts GR activity. This suggests that cell cycle phase is an important determinant in the cellular response to Gc, and that mitotic index contributes to tissue Gc sensitivity.

  20. 当归多糖对小鼠衰老造血干细胞细胞周期蛋白的调控%Angelica sinensis polysaccharides regulate aging of mice hematopoietic stem cell through cell cycle protein

    Institute of Scientific and Technical Information of China (English)

    张先平; 王乾兴; 陈斌; 刘俊; 魏强; 王建伟; 王亚平

    2013-01-01

    目的 观察当归多糖(ASP)对小鼠造血干细胞(HSC)细胞周期调控蛋白表达的影响,探讨ASP调控HSC衰老的可能机制.方法 C57BL/6J小鼠随机分为对照组、衰老组、ASP干预对照组和ASP干预衰老组,衰老组采用X线全身均匀照射,建立小鼠HSC衰老模型;ASP干预衰老组在照射期间给予ASP灌胃;对照组和ASP干预对照组分别给予NS和ASP灌胃.免疫磁珠分离HSC,β-半乳糖苷酶(SA-β-Gal)染色和混合集落培养(CFU-Mix)观察HSC生物学特性变化;流式细胞术分析细胞周期;Western blot检测P16、P21、CDK2、CDK6、CyclinD及CyclinE表达.结果 与对照组比较,X线能显著增加衰老对照组HSC SA-β-Gal染色阳性率、G1期比例及P16、P21表达;降低CFU-Mix、S期比例及CDK6、CyclinD和CyclinE表达.与衰老组比较,ASP能显著抑制衰老HSC SA-β-Gal染色阳性率、G1期比例及P16和P21表达的增加;抑制S期比例、CFU-Mix、CDK6、CyclinD及CyclinE表达的减少;而对CDK2表达无影响.结论 ASP可能通过调节P16、P21、CDK6、CyclinD及CyclinE表达延缓小鼠HSC衰老.%Objective The effect of angelica sinensis polysaccharides (ASP) on the expression of contol cell cycle protein in mice hematopoietic stem cells (HSCs) was observed to explore the underlying mechanism that ASP delays aging of HSCs in vivo. Methods C57BL/6J mice were randomly divided into control group, ASP regulate control group, aging group, ASP regulation aging group. Mice were exposed to X-ray to develope model of aging. ASP regulation aging groups mice were treated with ASP by intragastric administration during X-ray irradiation. The control and ASP regulation control groups were treated with equal-volume NS and ASP by intragastric administration. Mouse HSCs were isolated by magnetic cell sorting and cultured in vitro. Senescence-associated β-Galactosidase (SA-β-Gal) staining was used to detect aging HSCs. Cell cycles analysis and CFU-Mix cultivation were

  1. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... or deactivated at specific stages during the cell cycle through a wide variety of mechanisms including transcriptional regulation, phosphorylation, subcellular translocation and targeted degradation. In a series of integrative analyses of different genome-scale data sets, we have studied how these different...... layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...

  2. Viral and host proteins involved in picornavirus life cycle

    Directory of Open Access Journals (Sweden)

    Weng Kuo-Feng

    2009-11-01

    Full Text Available Abstract Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.

  3. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway

    Science.gov (United States)

    Xu, Peng; Zhou, Zhe; Xiong, Min; Zou, Wei; Deng, Xuefeng; Ganaie, Safder S.; Peng, Jianxin; Liu, Kaiyu; Wang, Shengqi; Ye, Shui Qing

    2017-01-01

    Human parvovirus B19 (B19V) infection of primary human erythroid progenitor cells (EPCs) arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR) that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2) within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related) activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest. PMID:28264028

  4. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control.

    Science.gov (United States)

    Ozaki, Shogo; Schalch-Moser, Annina; Zumthor, Ludwig; Manfredi, Pablo; Ebbensgaard, Anna; Schirmer, Tilman; Jenal, Urs

    2014-11-01

    When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence that PopA originated through gene duplication from its paralogue response regulator PleD and subsequent co-option as c-di-GMP effector protein. While the C-terminal catalytic domain (GGDEF) of PleD is activated by phosphorylation of the N-terminal receiver domain, functional adaptation has reversed signal transduction in PopA with the GGDEF domain adopting input function and the receiver domain serving as regulatory output. We show that the N-terminal receiver domain of PopA specifically interacts with RcdA, a component required for CtrA degradation. In contrast, the GGDEF domain serves to target PopA to the cell pole in response to c-di-GMP binding. In agreement with the divergent activation and targeting mechanisms, distinct markers sequester PleD and PopA to the old cell pole upon S-phase entry. Together these data indicate that PopA adopted a novel role as topology specificity factor to help recruit components of the CtrA degradation pathway to the protease specific old cell pole of C. crescentus.

  5. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Science.gov (United States)

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  6. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  7. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  8. Microfluidic Cell Cycle Analysis of Spread Cells by DAPI Staining

    OpenAIRE

    Jing Sun; Jiayu Zhang; Haibo Yang; Gongzhuo Wang; Yanzhao Li; Xuxin Zhang; Qidan Chen; Ming-Fei Lang

    2017-01-01

    Single-cell cell cycle analysis is an emerging technique that requires detailed exploration of the image analysis process. In this study, we established a microfluidic single-cell cell cycle analysis method that can analyze cells in small numbers and in situ on a microfluidic chip. In addition, factors that influenced the analysis were carefully investigated. U87 or HeLa cells were seeded and attached to microfluidic channels before measurement. Cell nucleic DNA was imaged by 4′-6-diamidino-2...

  9. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  10. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    Science.gov (United States)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  11. SAFT nickel hydrogen cell cycling status

    Science.gov (United States)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  12. Revisiting the Roco G-protein cycle

    NARCIS (Netherlands)

    Terheyden, Susanne; Ho, Franz Y.; Gilsbach, Bernd K.; Wittinghofer, Alfred; Kortholt, Arjan

    2015-01-01

    Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is

  13. Regulation of the G1 phase of the mammalian cell cycle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In any multi-cellular organism, the balance between cell division and cell death maintains a constant cell num ber. Both cell division cycle and cell death are highly regulated events. Whether the cell will proceed through the cycle or not, depends upon whether the conditions re quired at the checkpoints during the cycle are filfilled. In higher eucaryotic cells, such as mammalian cells, signals that arrest the cycle usually act at a G1 checkpoint. Cells that pass this restriction point are committed to complete the cycle. Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family, cyclin dependent kinases, cyclins, and cyclin kinase inhibitors.

  14. Control of cell cycle and cell growth by molecular chaperones.

    Science.gov (United States)

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  15. Effects of Genistein on Proliferation and Cell Cycle of Salivary Adenoid Cystic Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    MA Jie; WANG Jie; ZHONG Ming; WANG Zhao-yuan

    2007-01-01

    Objective: To investigate the growth inhibiting effect of tyrosine protein kinase inhibitor, genistein, on human salivary adenoid cystic carcinoma SACC-83 cell line in vitro, and its effects on the expression of CyclinB1 protein and cell cycle. Methods: Effects of genistein on the growth of SACC-83 cells in vitro were measured with MTT assay. Cell cycle was detected with flow cytometry. The expressions of CyclinB1 and Cdk1 proteins were measured with Western blot method, and the results of protein expression were quantitatively analyzed by FluorChem V2.0 software. The results were statistically analyzed by SPSS11.5 software. Results: Genistein inhibited the cell proliferation in a dose-dependant and time-dependant manner. The genistein-treated SACC-83 cells were arrested in the G2/M phase and had lower contents of CyclinB1 and Cdk1 proteins compared with the control group. Conclusion: The growth inhibiting effect of genistein on SACC-83 cells may be associated with the regulations of genistein on the CyclinB1 and Cdk1 protein expressions and the cell cycle.

  16. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    Science.gov (United States)

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  17. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    Science.gov (United States)

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  18. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    Science.gov (United States)

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment.

  19. Differential dissolved protein expression throughout the life cycle of Giardia lamblia.

    Science.gov (United States)

    Lingdan, Li; Pengtao, Gong; Wenchao, Li; Jianhua, Li; Ju, Yang; Chengwu, Liu; He, Li; Guocai, Zhang; Wenzhi, Ren; Yujiang, Chen; Xichen, Zhang

    2012-12-01

    Giardia lamblia (G. lamblia) has a simple life cycle that alternates between a cyst and a trophozoite, and this parasite is an important human and animal pathogen. To increase our understanding of the molecular basis of the G. lamblia encystment, we have analyzed the soluble proteins expressed by trophozoites and cysts extracted from feces by quantitative proteomic analysis. A total of 63 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, and were categorized as cytoskeletal proteins, a cell-cycle-specific kinase, metabolic enzymes and stress resistance proteins. Importantly, we demonstrated that the expression of seven proteins differed significantly between trophozoites and cysts. In cysts, the expression of three proteins (one variable surface protein (VSP), ornithine carbamoyltransferase (OTC), β-tubulin) increased, whereas the expression of four proteins (14-3-3 protein, α-tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), protein disulfide isomerase 2 (PDI-2)) decreased significantly when compared with the levels of these proteins in trophozoites. The mRNA expression patterns of four of these proteins (OTC, α-tubulin, GAPDH, VSP) were similar to the expression levels of the proteins. These seven proteins appear to play an important role in the completion of the life cycle of G. lamblia.

  20. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  1. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  2. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  3. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  4. Role of Ran GTPase in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing; LU Zhigang; ZHANG Chuanmao

    2004-01-01

    Ran, a member of the Ras GTPase superfamily,is a multifunctional protein and abundant in the nucleus.Many evidences suggest that Ran and its interacting proteins are involved in multiple aspects of the cell cycle regulation.So far it has been conformed that Ran and its interacting proteins control the nucleocytoplasmic transport, the nuclear envelope (NE) assembly, the DNA replication and the spindle assembly, although many details of the mechanisms are waiting for elucidation. It has also been implicated that Ran and its interacting proteins are involved in regulating the integrity of the nuclear structure, the mRNA transcription and splicing, and the RNA transport from the nucleus to the cytoplasm. In this review we mainly discuss the mechanisms by which Ran and its interacting proteins regulate NE assembly, DNA replication and spindle assembly.

  5. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Qi-Fu Li; Gao-Liang Ouyang; Xuan-Xian Peng; Shui-Gen Hong

    2003-01-01

    AIM: To investigate the effects of tachyplesin on the cell cycle regulation in human hepatcarcinoma cells.METHODS: Effects of tachyplesin on the cell cycle in human hepatocarcinoma SMMC-7721 cells were assayed with flow cytometry. The protein levels of p53, p16, cyclin D1 and CDK4 were assayed by immunocytochemistry. The mRNA levels of p21WAF1/CIP1 and c-myc genes were examined with in situ hybridization assay.RESULTS: After tachyplesin treatment, the cell cycle arrested at G0/G1 phase, the protein levels of mutant p53, cyclin D1 and CDK4 and the mRNA level of c-myc gene were decreased, whereas the levels of p16 protein and p21wWF1/CIP1 mRNA increased.CONCLUSION: Tachyplesin might arrest the cell at G0/G1 phase by upregulating the levels of p16 protein and p21WAF1/CIP1 mRNA and downregulating the levels of mutant p53, cyclin D1 and CDK4 proteins and c-myc mRNA, and induce the differentiation of human hepatocacinoma cells.

  6. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  7. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  8. Arsenic Trioxide Inhibits Proliferation in K562 Cells by Changing Cell Cycle and Survivin Expression

    Institute of Scientific and Technical Information of China (English)

    伍晓菲; 陈智超; 刘仲萍; 周浩; 游泳; 黎纬明; 邹萍

    2004-01-01

    To study the mechanisms involved in the inhibition of chronic myeloid leukemic cells (K562) proliferation induced by arsenic trioxide (As2O3) and to explore the potential role of Survivin, an inhibitor of apoptosis protein, in the regulation of As2O3 induced cell apoptosis, K562 cells were cultured with As2O3 of different concentrations. Cells were collected for proliferation analysis by MTT assay. Cell cycle distribution and cell apoptosis were analyzed by flow cytometry.Expression of Survivin protein and mRNA were detected by flow cytometry and RT-PCR, respectively. Our results showed that As2O3 (2-10 μmol/L) inhibited K562 cells growth effectively, but it did not induce cells apoptosis significantly. The percentage of K562 cells at G2/M phase increased in proportion to As2O3 concentrations, and the expression of Survivin mRNA and content of Survivin protein was up-regulated accordingly. It is concluded that As2 O3 inhibited K562 cells growth by inducing cell cycle arrest mainly at G2/M phase. Over-expression of Survivin gene and protein might be one of the possible mechanisms contributing to K562 cells' resistance to As2O3-induced apoptosis.

  9. A thermodynamic cycle for the solar cell

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Jenkins, Alejandro

    2017-03-01

    A solar cell is a heat engine, but textbook treatments are not wholly satisfactory from a thermodynamic standpoint, since they present solar cells as directly converting the energy of light into electricity, and the current in the circuit as maintained by an electrostatic potential. We propose a thermodynamic cycle in which the gas of electrons in the p phase serves as the working substance. The interface between the p and n phases acts as a self-oscillating piston that modulates the absorption of heat from the photons so that it may perform a net positive work during a complete cycle of its motion, in accordance with the laws of thermodynamics. We draw a simple hydrodynamical analogy between this model and the ;putt-putt; engine of toy boats, in which the interface between the water's liquid and gas phases serves as the piston. We point out some testable consequences of this model.

  10. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  11. Targeting cell cycle regulators in hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Eiman eAleem

    2015-04-01

    Full Text Available Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia, and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219, pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638 as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.

  12. Effects of Trichostatin A on HDAC8 Expression, Proliferation and Cell Cycle of Molt-4 Cells

    Institute of Scientific and Technical Information of China (English)

    HE Jing; LIU Hongli; CHEN Yan

    2006-01-01

    The effects of Trichostatin A (TSA) on histone deacetylase 8 (HDAC8) expression, proliferation and cell cycle arrest in T-lymphoblastic leukemia cell line Molt-4 cells in vitro were investigated. The effect of TSA on the growth of Molt-4 cells was studied by MTT assay. Flow cytometry was used to examine the cell cycle. The expression of HDAC8 was detected by using immunocytochemistry and Western blot. The results showed that proliferation of Molt-4 cells was inhibited in TSA-treated group in a time- and dose-dependent manner. The IC50 of TSA exposures for 24 h and 36 h were 254.3236 and 199.257 μg/L respectively. The cell cycle analysis revealed that Molt-4 was mostly in G0/G1 phase, and after treatment with TSA from 50 to 400 μg/L for 24 h, the percents of G0/G1 cells were decreased and cells were arrested in G2/M phase. Treatment of TSA for 24 h could significantly inhibit the expression of HDAC8 protein in Molt-4 cells (P<0.01). It was concluded that TSA could decrease the expression of HDAC8 in Molt-4 cells, which contributed to the inhibition of proliferation and induction of cell cycle arrest in Molt-4 cells.

  13. Do cooperative cycles of hydrogen bonding exist in proteins?

    CERN Document Server

    Sharley, John N

    2016-01-01

    The closure of cooperative chains of Hydrogen Bonding, HB, to form cycles can enhance cooperativity. Cycles of charge transfer can balance charge into and out of every site, eliminating the charge build-up that limits the cooperativity of open unidirectional chains of cooperativity. If cycles of cooperative HB exist in proteins, these could be expected to be significant in protein structure and function in ways described below. We investigate whether cooperative HB cycles not traversing solvent, ligand or modified residues occur in protein by means including search of Nuclear Magnetic Resonance spectroscopy entries of the Protein Data Bank. We find no mention of an example of this kind of cycle in the literature. For amide-amide HB, for direct inter-amide interactions, when the energy associated with Natural Bond Orbital, NBO, steric exchange is deducted from that of NBO donor-acceptor interactions, the result is close to zero, so that HB is not primarily due to the sum of direct inter-amide NBO interactions....

  14. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway

    OpenAIRE

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-01-01

    Abstract Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine‐suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xen...

  15. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    Institute of Scientific and Technical Information of China (English)

    Jing-Pin Lin; Jai-Sing Yang; Jau-Hong Lee; Wen-Tsong Hsieh; Jing-Gung Chung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action.METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting.RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis.CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.

  16. Meeting at mitosis: cell cycle-specific regulation of c-Src by RPTPalpha.

    Science.gov (United States)

    Mustelin, Tomas; Hunter, Tony

    2002-01-15

    Exquisite regulation is required for cells to properly enter and exit the phases of the cell cycle. The transmembrane receptor-like protein tyrosine phosphatase RPTPalpha, an important protein that participates in the transition of the cell cycle from G2 to mitosis activates the protein tyrosine kinase c-Src in vivo. Mustelin and Hunter discuss new findings that describe the highly regulated activation of RPTPalpha and c-Src that occurs just before entry into the mitotic phase. These findings also raise several questions that pertain to redistribution of RPTPalpha in the cell, and the role of phosphorylation and dimerization in regulating RPTPalpha activity.

  17. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    Science.gov (United States)

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  18. PepGMV Rep-Protein Expression in Mammalian Cells

    Science.gov (United States)

    Chapa-Oliver, Angela María; Mejía-Teniente, Laura; García-Gasca, Teresa; Guevara-Gonzalez, Ramon Gerardo; Torres-Pacheco, Irineo

    2012-01-01

    The Geminiviruses genome is a small, single strand DNA that replicates in the plant cell nucleus. Analogous to animal DNA viruses, Geminiviruses depend on the host replication machinery to amplify their genomes and only supply the factors required to initiate their replication. Consequently, Geminiviruses remove the cell-cycle arrest and induce the host replication machinery using an endocycle process. They encode proteins, such as the conserved replication-associated proteins (Rep) that interact with retinoblastoma-like proteins in plants and alter the cell division cycle in yeasts. Therefore, the aim of this work is to analyze the impact of Pepper Golden Mosaic Virus (PepGMV) Rep protein in mammalian cells. Results indicate that the pTracer-SV40:Rep construction obtained in this work can be used to analyze the Rep protein effect in mammalian cells in order to compare the cell cycle regulation mechanisms in plants and animals. PMID:23170183

  19. SON controls cell-cycle progression by coordinated regulation of RNA splicing.

    Science.gov (United States)

    Ahn, Eun-Young; DeKelver, Russell C; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-04-22

    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.

  20. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    Science.gov (United States)

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  1. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro.

    Science.gov (United States)

    Huang, Shujuan; Wang, Juan; Xing, Lingxiao; Shen, Haitao; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2014-04-01

    Sterigmatocystin (ST) is a carcinogenic mycotoxin that is commonly found in human food, animal feed and in the indoor environment. Although the correlation between ST exposure and lung cancer has been widely reported in many studies, the cytotoxicity of ST on human pulmonary cells is not yet fully understood. In the current study, we found that ST could induce DNA double-strand breaks in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells). In addition, the effects of ST on cell cycle arrest were complex and dependent on the tested ST concentration and cell type. Low concentrations of ST arrested cells in the G2/M phase in BEAS-2B cells and in the S phase in A549 cells, while at high concentration both cells lines were arrested in S and G2/M phases. Furthermore, we observed that the modulation of cyclins and CDK expression showed concomitant changes with cell cycle arrest upon ST exposure in BEAS-2B and A549 cells. In conclusion, ST induced DNA damage and affected key proteins involved in cell cycle regulation to trigger genomic instability, which may be a potential mechanism underlying the developmental basis of lung carcinogenesis.

  2. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  3. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  4. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors

    Directory of Open Access Journals (Sweden)

    Yang Xian-Jie

    2009-08-01

    Full Text Available Abstract Background The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retinal progenitors as they progress through the neurogenic cell cycle, and determine the effects of altered Pax6 levels on retinogenesis. Results We provide evidence that during the preneurogenic to neurogenic transition, Pax6 protein levels in proliferating progenitor cells are down-regulated. Neurogenic retinal progenitors retain a relatively low level of Pax6 protein, whereas postmitotic neurons either elevate or extinguish Pax6 expression in a cell type-specific manner. Cell imaging and cell cycle analyses show that neurogenic progenitors in the S phase of the cell cycle contain low levels of Pax6 protein, whereas a subset of progenitors exhibits divergent levels of Pax6 protein upon entering the G2 phase of the cell cycle. We also show that M phase cells contain varied levels of Pax6, and some correlate with the onset of early neuronal marker expression, forecasting cell cycle exit and cell fate commitment. Furthermore, either elevating or knocking down Pax6 attenuates cell proliferation and results in increased cell death. Reducing Pax6 decreases retinal ganglion cell genesis and enhances cone photoreceptor and amacrine interneuron production, whereas elevating Pax6 suppresses cone photoreceptor and amacrine cell fates. Conclusion These studies demonstrate for the first time quantitative changes in Pax6 protein expression during the preneurogenic to neurogenic transition and during the neurogenic cell cycle. The results indicate that Pax6 protein levels are stringently controlled in proliferating progenitors. Maintaining a relatively low Pax6 protein level is necessary for S phase

  5. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  6. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  7. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  8. (p)ppGpp and the bacterial cell cycle

    Indian Academy of Sciences (India)

    Aanisa Nazir; Rajendran Harinarayanan

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  9. (p)ppGpp and the bacterial cell cycle.

    Science.gov (United States)

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  10. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control.

    Science.gov (United States)

    Grant, Gavin D; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K; Mahoney, J Matthew; Loros, Jennifer J; Dunlap, Jay C; Whitfield, Michael L

    2012-08-01

    We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle-dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.

  11. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  12. Highly pathogenic Alzheimer's disease presenilin 1 P117R mutation causes a specific increase in p53 and p21 protein levels and cell cycle dysregulation in human lymphocytes.

    Science.gov (United States)

    Bialopiotrowicz, Emilia; Szybinska, Aleksandra; Kuzniewska, Bozena; Buizza, Laura; Uberti, Daniela; Kuznicki, Jacek; Wojda, Urszula

    2012-01-01

    Cell cycle (CC) reentry in neurons precedes the formation of amyloid-β (Aβ) plaques in Alzheimer's disease (AD). CC alterations were also detected in lymphocytes from sporadic AD patients. In the present study, we investigated the influence of nine presenilin 1 (PS1) mutations (P117R, M139V, L153V, H163R, S170F, F177L, I213F, L226F, E318G) on CC and Aβ production in immortalized B-lymphocytes from familial AD (FAD) patients and in stably transfected human embryonic kidney cells. In both cell types, only the P117R mutation increased levels of key G1/S phase regulatory proteins, p53, and its effector p21, causing G1 phase prolongation with simultaneous S phase shortening, and lowering basal apoptosis. The CC changes were rescued by inhibition of p53, but not of γ-secretase. Moreover, the investigated PS1 mutants showed differences in the increased levels of secreted Aβ40 and Aβ42 and in Aβ42/Aβ40 ratios, but these differences did not correlate with CC patterns. Altogether, we found that both CC regulation and Aβ production differentiate PS1 mutations, and that CC PS1 activity is mediated by p53/p21 signaling but not by γ-secretase activity. The identified CC dysregulation linked with increased p53 and p21 protein levels distinguishes the highly pathogenic PS1 P117R mutation and may contribute to the specific severity of the clinical progression of FAD associated with the mutation in the PS1 117 site. These findings suggest that impairment in lymphocyte CC might play a pathogenic function in AD and are relevant to the development of new diagnostic approaches and personalized therapeutic strategies.

  13. The cell-cycle state of stem cells determines cell fate propensity.

    Science.gov (United States)

    Pauklin, Siim; Vallier, Ludovic

    2013-09-26

    Self-renewal and differentiation of stem cells are fundamentally associated with cell-cycle progression to enable tissue specification, organ homeostasis, and potentially tumorigenesis. However, technical challenges have impaired the study of the molecular interactions coordinating cell fate choice and cell-cycle progression. Here, we bypass these limitations by using the FUCCI reporter system in human pluripotent stem cells and show that their capacity of differentiation varies during the progression of their cell cycle. These mechanisms are governed by the cell-cycle regulators cyclin D1-3 that control differentiation signals such as the TGF-β-Smad2/3 pathway. Conversely, cell-cycle manipulation using a small molecule directs differentiation of hPSCs and provides an approach to generate cell types with a clinical interest. Our results demonstrate that cell fate decisions are tightly associated with the cell-cycle machinery and reveal insights in the mechanisms synchronizing differentiation and proliferation in developing tissues.

  14. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  15. Computational model explains high activity and rapid cycling of Rho GTPases within protein complexes.

    Directory of Open Access Journals (Sweden)

    Andrew B Goryachev

    2006-12-01

    Full Text Available Formation of multiprotein complexes on cellular membranes is critically dependent on the cyclic activation of small GTPases. FRAP-based analyses demonstrate that within protein complexes, some small GTPases cycle nearly three orders of magnitude faster than they would spontaneously cycle in vitro. At the same time, experiments report concomitant excess of the activated, GTP-bound form of GTPases over their inactive form. Intuitively, high activity and rapid turnover are contradictory requirements. How the cells manage to maximize both remains poorly understood. Here, using GTPases of the Rab and Rho families as a prototype, we introduce a computational model of the GTPase cycle. We quantitatively investigate several plausible layouts of the cycling control module that consist of GEFs, GAPs, and GTPase effectors. We explain the existing experimental data and predict how the cycling of GTPases is controlled by the regulatory proteins in vivo. Our model explains distinct and separable roles that the activating GEFs and deactivating GAPs play in the GTPase cycling control. While the activity of GTPase is mainly defined by GEF, the turnover rate is a sole function of GAP. Maximization of the GTPase activity and turnover rate places conflicting requirements on the concentration of GAP. Therefore, to achieve a high activity and turnover rate at once, cells must carefully maintain concentrations of GEFs and GAPs within the optimal range. The values of these optimal concentrations indicate that efficient cycling can be achieved only within dense protein complexes typically assembled on the membrane surfaces. We show that the concentration requirement for GEF can be dramatically reduced by a GEF-activating GTPase effector that can also significantly boost the cycling efficiency. Interestingly, we find that the cycling regimes are only weakly dependent on the concentration of GTPase itself.

  16. Structural motifs are closed into cycles in proteins.

    Science.gov (United States)

    Efimov, Alexander V

    2010-08-27

    Beta-hairpins, triple-strand beta-sheets and betaalphabeta-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into large cycles by means of different superhelices, split beta-hairpins or SS-bridges results in the formation of more complex structural motifs having unique overall folds and unique handedness such as abcd-units, phi-motifs, five- and seven-segment alpha/beta-motifs. Apparently, the complex structural motifs are more cooperative and stable and this may be one of the main reasons of high frequencies of occurrence of the motifs in proteins.

  17. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control

    DEFF Research Database (Denmark)

    Ozaki, Shogo; Schalch-Moser, Annina; Zumthor, Ludwig;

    2014-01-01

    When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence...

  18. Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part I. Cycling performance

    Science.gov (United States)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    The capacity fade of Sony 18650 Li-ion cells increases with increase in temperature. After 800 cycles, the cells cycled at RT and 45 °C showed a capacity fade of 30 and 36%, respectively. The cell cycled at 55 °C showed a capacity loss of about 70% after 490 cycles. The rate capability of the cells continues to decrease with cycling. Impedance measurements showed an overall increase in the cell resistance with cycling and temperature. Impedance studies of the electrode materials showed an increased positive electrode resistance when compared to that of the negative electrode for cells cycled at RT and 45 °C. However, cells cycled at 50 and 55 °C exhibit higher negative electrode resistance. The increased capacity fade for the cells cycled at high temperatures can be explained by taking into account the repeated film formation over the surface of anode, which results in increased rate of lithium loss and also in a drastic increase in the negative electrode resistance with cycling.

  19. AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences.We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (pppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant.The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.

  20. Late assembly of the Vibrio cholerae cell division machinery postpones septation to the last 10% of the cell cycle

    Science.gov (United States)

    Galli, Elisa; Paly, Evelyne; Barre, François-Xavier

    2017-01-01

    Bacterial cell division is a highly regulated process, which involves the formation of a complex apparatus, the divisome, by over a dozen proteins. In the few model bacteria in which the division process was detailed, divisome assembly occurs in two distinct steps: a few proteins, including the FtsZ tubulin-like protein, form a membrane associated contractile ring, the Z-ring, at ~30% of the cell cycle. The Z-ring serves as a scaffold for the recruitment of a second series of proteins, including integral membrane and periplasmic cell wall remodelling enzymes, at ~50% of the cell cycle. Actual septation occupies most of the remaining half of the cell cycle. In contrast, we present evidence suggesting that early pre-divisional Z-rings form between 40 and 50% of the cell cycle and mature into fully assembled divisome at about 80% of the cell cycle in Vibrio cholerae. Thus, actual septation is restricted to a very short amount of time. Our results further suggest that late assembly of the divisome probably helps maintain the asymmetric polar organisation of V. cholerae cells by limiting the accumulation of a cell pole marker, HubP, at the nascent cell poles. PMID:28300142

  1. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  2. Genistein sensitizes ovarian carcinoma cells to chemotherapy by switching the cell cycle progression in vitro

    Institute of Scientific and Technical Information of China (English)

    Huang Yanhong; Yuan Peng; Zhang Qinghong; Xin Xiaoyan

    2009-01-01

    Objective: To address how genistein sensitizes the chemotherapy-resistant ovarian carcinoma cells and promotes apoptosis in the respect of cell cycle and the regulation of survivin expression in the process. Methods: Ovarian SKOV-3 carcinoma cell line was treated with genistein or cisplatin either alone or in combination. Cell viability was showed by MTT method. Cell cycle and apoptosis were detected by flow cytometry. Survivin mRNA and protein were revealed by RT-PCR and immunocytochemistry, respectively. Results: Genistein could reduce the cell viability in a dose-dependent manner, while cisplatin did so at a much higher level. In contrast, if the two agents were treated in combination, half growth inhibition (IC50) value for cisplatin was reduced remarkably and the effect was synergistic as analyzed by isobologram. In particular, the reduced cell viability was exhibited by a switch in cell cycle progression, as the cells were arrested in G2/M phase and the G0/G1 phase-fraction was significantly decreased. The reduced cell viability appeared to involve apoptosis, based on our results from flow cytometry and Hoechst 33258 staining. In the meanwhile, genistein performed the inhibitory effect on cisplatin-induced survivin expression. Conclusion: Genistein can sensitize ovarian carcinoma cells to cisplatin therapy with the inhibition of survivin expression as the potential mechanism.

  3. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  4. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  5. SCYL1-BP1 affects cell cycle arrest in human hepatocellular carcinoma cells via Cyclin F and RRM2.

    Science.gov (United States)

    Wang, Yang; Zhi, Qiaoming; Ye, Qin; Zhou, Chengyuan; Zhang, Lei; Yan, Wei; Wu, Qun; Zhang, Di; Li, Pu; Huo, Keke

    2016-01-01

    The cell cycle is regulated via important biological mechanisms. Controlled expression of cell cycle regulatory proteins is crucial to maintain cell cycle progression. However, unbalanced protein expression leads to many diseases, such as cancer. Previous research suggests that SCYL1-BP1 function might be related to cell cycle progression and SCYL1-BP1 dysfunction to diseases through undefined mechanisms. In this research, an unbiased yeast two-hybrid screen was used to find protein(s) with potential biological relevance to SCYL1-BP1 function, and a novel interaction was recognized between SCYL1-BP1 and Cyclin F. This interaction was chosen as a paradigm to study SCYL1-BP1 function in cell cycle progression and its possible role in tumorigenesis. We found that SCYL1-BP1 binds to Cyclin F both in vivo and in vitro. SCYL1-BP1 overexpression promoted expression of the CCNF gene and simultaneously delayed Cyclin F protein degradation. SCYL1-BP1 knockdown reduced the expression of endogenous Cyclin F. It was also demonstrated in functional assays that SCYL1-BP1 overexpression induces G2/M arrest in cultured liver cells. Furthermore, SCYL1-BP1 sustained RRM2 protein expression by reducing its ubiquitination. Thus, we propose that SCYL1- BP1 affects the cell cycle through increasing steady state levels of Cyclin F and RRM2 proteins, thus constituting a dual regulatory circuit. This study provides a possible mechanism for SCYL1-BP1-mediated cell cycle regulation and related diseases.

  6. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition

    Institute of Scientific and Technical Information of China (English)

    Yan-min ZHAO; Qian ZHOU; Yun XU; Xiao-yu LAI; He HUANG

    2008-01-01

    Aim:To examine the ability of rapamycin to suppress growth and regulate telomerase activity in the human T-cell leukemia cell line Jurkat. Methods:Cell proliferation was assessed after exposure to rapamycin by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were determined by flow cytometry. The proteins important for cell cycle progres-sion and Akt/mammalian target of rapamycin signaling cascade were assessed by Western blotting. Telomerase activity was quantified by telomeric repeat amplication protocol assay. The human telomerase reverse transcriptase (hTERT) mRNA levels were determined by semi-quantitative RT-PCR. Results:Rapamycin inhibited the proliferation of Jurkat, induced G1 phase arrest, unregulated the pro-tein level of p21 as well as p27, and downregulated cyclinD3, phospho-p70s6k, and phospho-s6, but had no effect on apoptosis. Treatment with rapamycin reduced telomerase activity, and reduced hTERT mRNA and protein expression. Conclusion:Rapamycin displayed a potent antileukemic effect in the human T-cell leukemia cell line by inhibition of cell proliferation through G1 cell cycle arrest and also through the suppression of telomerase activity, suggesting that rapamycin may have potential clinical implications in the treatment of some leukemias.

  7. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling.

    Science.gov (United States)

    Plikus, Maksim V; Vollmers, Christopher; de la Cruz, Damon; Chaix, Amandine; Ramos, Raul; Panda, Satchidananda; Chuong, Cheng-Ming

    2013-06-04

    Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day-dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies.

  8. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    Science.gov (United States)

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.

  9. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  10. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells.

    Science.gov (United States)

    Yao, Mu; Xie, Chanlu; Kiang, Mei-Yee; Teng, Ying; Harman, David; Tiffen, Jessamy; Wang, Qian; Sved, Paul; Bao, Shisan; Witting, Paul; Holst, Jeff; Dong, Qihan

    2015-10-27

    Cell cycle re-entry of quiescent cancer cells has been proposed to be involved in cancer progression and recurrence. Cytosolic phospholipase A2α (cPLA2α) is an enzyme that hydrolyzes membrane glycerophospholipids to release arachidonic acid and lysophospholipids that are implicated in cancer cell proliferation. The aim of this study was to determine the role of cPLA2α in cell cycle re-entry of quiescent prostate cancer cells. When PC-3 and LNCaP cells were rendered to a quiescent state, the active form of cPLA2α with a phosphorylation at Ser505 was lower compared to their proliferating state. Conversely, the phospho-cPLA2α levels were resurgent during the induction of cell cycle re-entry. Pharmacological inhibition of cPLA2α with Efipladib upon induction of cell cycle re-entry inhibited the re-entry process, as manifested by refrained DNA synthesis, persistent high proportion of cells in G0/G1 and low percentage of cells in S and G2/M phases, together with a stagnant recovery of Ki-67 expression. Simultaneously, Efipladib prohibited the emergence of Skp2 while maintained p27 at a high level in the nuclear compartment during cell cycle re-entry. Inhibition of cPLA2α also prevented an accumulation of cyclin D1/CDK4, cyclin E/CDK2, phospho-pRb, pre-replicative complex proteins CDC6, MCM7, ORC6 and DNA synthesis-related protein PCNA during induction of cell cycle re-entry. Moreover, a pre-treatment of the prostate cancer cells with Efipladib during induction of cell cycle re-entry subsequently compromised their tumorigenic capacity in vivo. Hence, cPLA2α plays an important role in cell cycle re-entry by quiescent prostate cancer cells.

  11. A quantitative study of the division cycle of Caulobacter crescentus stalked cells.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2008-01-01

    Full Text Available Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three "master regulator" proteins (CtrA, GcrA, and DnaA, is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of alpha-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine.

  12. Haematopoietic stem cells require a highly regulated protein synthesis rate.

    Science.gov (United States)

    Signer, Robert A J; Magee, Jeffrey A; Salic, Adrian; Morrison, Sean J

    2014-05-01

    Many aspects of cellular physiology remain unstudied in somatic stem cells, for example, there are almost no data on protein synthesis in any somatic stem cell. Here we set out to compare protein synthesis in haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors. We found that the amount of protein synthesized per hour in HSCs in vivo was lower than in most other haematopoietic cells, even if we controlled for differences in cell cycle status or forced HSCs to undergo self-renewing divisions. Reduced ribosome function in Rpl24(Bst/+) mice further reduced protein synthesis in HSCs and impaired HSC function. Pten deletion increased protein synthesis in HSCs but also reduced HSC function. Rpl24(Bst/+) cell-autonomously rescued the effects of Pten deletion in HSCs; blocking the increase in protein synthesis, restoring HSC function, and delaying leukaemogenesis. Pten deficiency thus depletes HSCs and promotes leukaemia partly by increasing protein synthesis. Either increased or decreased protein synthesis impairs HSC function.

  13. Cell-cycle times and the tumour control probability.

    Science.gov (United States)

    Maler, Adrian; Lutscher, Frithjof

    2010-12-01

    Mechanistic dynamic cell population models for the tumour control probability (TCP) to date have used a simplistic representation of the cell cycle: either an exponential cell-cycle time distribution (Zaider & Minerbo, 2000, Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys. Med. Biol., 45, 279-293) or a two-compartment model (Dawson & Hillen, 2006, Derivation of the tumour control probability (TCP) from a cell cycle model. Comput. Math. Methods Med., 7, 121-142; Hillen, de Vries, Gong & Yurtseven, 2009, From cell population models to tumour control probability: including cell cycle effects. Acta Oncol. (submitted)). Neither of these simplifications captures realistic cell-cycle time distributions, which are rather narrowly peaked around the mean. We investigate how including such distributions affects predictions of the TCP. At first, we revisit the so-called 'active-quiescent' model that splits the cell cycle into two compartments and explore how an assumption of compartmental independence influences the predicted TCP. Then, we formulate a deterministic age-structured model and a corresponding branching process. We find that under realistic cell-cycle time distributions, lower treatment intensities are sufficient to obtain the same TCP as in the aforementioned models with simplified cell cycles, as long as the treatment is constant in time. For fractionated treatment, the situation reverses such that under realistic cell-cycle time distributions, the model requires more intense treatment to obtain the same TCP.

  14. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Seiko [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Okinaga, Toshinori; Ariyoshi, Wataru [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan); Takahashi, Osamu; Iwanaga, Kenjiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishino, Norikazu [Oral Biology Research Center, Kyushu Dental University (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan)

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  15. Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis.

    Science.gov (United States)

    Kannan, Rathi P; Hensley, Lucinda L; Evers, Lauren E; Lemon, Stanley M; McGivern, David R

    2011-08-01

    Chronic infection with the hepatitis C virus (HCV) is associated with increased risk for hepatocellular carcinoma (HCC). Chronic immune-mediated inflammation is likely to be an important factor in the development of HCV-associated HCC, but direct effects of HCV infection on the host cell cycle may also play a role. Although overexpression studies have revealed multiple interactions between HCV-encoded proteins and host cell cycle regulators and tumor suppressor proteins, the relevance of these observations to HCV-associated liver disease is not clear. We determined the net effect of these interactions on regulation of the cell cycle in the context of virus infection. Flow cytometry of HCV-infected carboxyfluorescein succinimidyl ester-labeled hepatoma cells indicated a slowdown in proliferation that correlated with abundance of viral antigen. A decrease in the proportions of infected cells in G(1) and S phases with an accumulation of cells in G(2)/M phase was observed, compared to mock-infected controls. Dramatic decreases in markers of mitosis, such as phospho-histone H3, in infected cells suggested a block to mitotic entry. In common with findings described in the published literature, we observed caspase 3 activation, suggesting that cell cycle arrest is associated with apoptosis. Differences were observed in patterns of cell cycle disturbance and levels of apoptosis with different strains of HCV. However, the data suggest that cell cycle arrest at the interface of G(2) and mitosis is a common feature of HCV infection.

  16. Host cell kinases and the hepatitis C virus life cycle.

    Science.gov (United States)

    Colpitts, Che C; Lupberger, Joachim; Doerig, Christian; Baumert, Thomas F

    2015-10-01

    Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  17. [Effects of mesenchymal stem cells on cell cycle and apoptosis of hematopoietic tissue cells in irradiated mice].

    Science.gov (United States)

    Hu, Kai-Xun; Zhao, Shi-Fu; Guo, Mei; Ai, Hui-Sheng

    2007-12-01

    The aim of this study was to investigate the effect of mesenchymal stem cells (MSCs) on cell cycle and apoptosis of thymus, spleen and bone marrow cells in mice totally irradiated with sublethal dose, and to explore its mechanisms. BALB/c mice irradiated with 5.5 Gy 60Co gamma-ray were randomly divided into control group and MSC group. Mice in MSC group were infused with 0.4 ml containing 2.5x10(7)/kg of MSCs through tail vein at 1 hour after irradiation. Mice in control group were infused with 0.4 ml normal saline. The cell apoptosis and cell cycle of thymus, spleen and bone marrow cells were detected by flow cytometry at 6, 12, 24 and 72 hours after irradiation and the P53 protein expressions in thymus and bone marrow cells were assayed by immunohistochemistry at 12 hours after irradiation. The results showed that the arrest of cells in G0/G1 and G2/M phase, and decrease of cells in S phase appeared at 6 hours after irradiation, those reached peak respectively at 12 hours in thymus cells, 6 hours in spleen and 24 hours in bone marrow, then the cell counts in G0/G1 phase decreased and the cell counts in S and G2/M phases increased. At 72 hours the cell counts in G0/G1 phase were less than the normal level and the cell counts in S phase were more than the normal level. The above changes of cell cycle in thymus and spleen were more rapid in spleen and more obvious in amplitude than that in bone marrow, the change of cell cycle in MSC group was more rapid and obvious than those in control group. After irradiation the apoptosis cells increased from 6 hours, reached the highest level at 12 hours and decreased to the normal level gradually after 24 hours in two groups; the apoptosis rates in spleen and thymus cells were higher than that in bone marrow cells. In comparison with the control group, the apoptosis rate in thymus cells at 12 hours, in spleen cells at 12 and 24 hours, and in bone marrow cells at 24 hours were fewer in MSC group. The cells expressing P53

  18. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  19. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle.

    Science.gov (United States)

    Vogan, Jacob M; Collins, Kathleen

    2015-08-28

    Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells.

  20. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  1. Negative cooperativity in the nitrogenase Fe protein electron delivery cycle

    Energy Technology Data Exchange (ETDEWEB)

    Danyal, Karamatullah; Shaw, Sudipta; Page, Taylor R.; Duval, Simon; Horitani, Masaki; Marts, Amy R.; Lukoyanov, Dmitriy; Dean, Dennis R.; Raugei, Simone; Hoffman, Brian M.; Seefeldt, Lance C.; Antony, Edwin

    2016-10-04

    Mo-dependent nitrogenase catalyzes the biological reduction of atmospheric dinitrogen (N2) to two ammonia (NH3) molecules, through the action of two component proteins, the MoFe protein and the Fe protein. The catalytic MoFe protein is a symmetric dimer of αβ units, each of which contains one active site FeMo-co (FeMo-co; [7Fe-9S-Mo-C-homocitrate]) and an electron-carrier P cluster. Each half of the nitrogenase ternary complex, in which one Fe protein with two bound ATP molecules has bound to each MoFe protein αβ unit, undergoes an electron transfer (ET) cycle with ET from a Fe protein [4Fe-4S] cluster into its αβ unit followed by the hydrolysis of the two ATP to two ADP and two Pi. The prevailing model holds that each αβ unit of the MoFe protein functions independently. We now report that the ET cycle exhibits negative cooperativity, with ET and ATP hydrolysis in one half of the ternary nitrogenase complex suppressing these processes in the other half. The observed ET, ATP hydrolysis, and Pi release behavior is captured in a global fit to a two-branch negative-cooperativity kinetic model. A possible mechanism for communication between the two halves of MoFe protein is suggested by normal mode analysis showing correlated and anti-correlated motions between the two nitrogenase αβ halves. EPR spectra furthermore show small differences between those of resting-state and singly-reduced MoFe protein that can be attributed to an intra-complex allosteric perturbation of the resting-state FeMo-co in one αβ unit by reduction of FeMo-co in the other. This work is supported as a part of the Biological and Electron Transfer and Catalysis (EFRC) program, an Energy Frontiers Research Center funded by the US Department of Energy (DOE), Office of Science (DE-SC0012518) to LCS, by National Institutes of Health (NIH) grants HL 63203 and GM 111097to BMH, and R15GM110671 to EA, and by the Division of Chemical Sciences, Geosciences, and Bio-Sciences, DOE to SR. The protein

  2. In Silico Identification of Co-transcribed Core Cell Cycle Regulators and Transcription Factors in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Regulatory networks involving transcription factors and core cell cycle regulators are expected to play crucial roles in plant growth and development. In this report, we describe the identification of two groups of co-transcribed core cell cycle regulators and transcription factors via a two-step in silico screening. The core cell cycle regulators include TARDY ASYNCHRONOUS MEIOSIS (CYCA1;2), CYCB1;1, CYCB2;1, CDKB1;2, and CDKB2;2 while the transcription factors include CURLY LEAF, AINTEGUMENTA, a MYB protein, two Forkhead-associated domain proteins, and a SCARECROW family protein. Promoter analysis revealed a potential web of cross- and self-regulations among the identified proteins. Because one criterion for screening for these genes is that they are predominantly transcribed in young organs but not in mature organs, these genes are likely to be particularly involved in Arabidopsis organ growth.

  3. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  4. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.

  5. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens

    2009-01-01

    downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate...... that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.......ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2...

  6. Effect of p27KIP1 on cell cycle and apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zheng; Wei-Zhong Wang; Kai-Zong Li; Wen-Xian Guan; Wei Yan

    2005-01-01

    AIM: To elucidate the effect of p27KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells.METHODS: The whole length of p27KIP1 cDNA was transfected into human gastric cancer cell line SCG7901by lipofectamine. Expression of p27KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting,respectively. Effect of p27KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27KIP1. Flow cytometry,TUNEL, and electron microscopy were used to assess the effect of p27KIP1 on cell cycle and apoptosis.RESULTS: Expression of p27KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13crn, P<0.01). p27KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%,P<0.01) in G1 population. Prolonged p27KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy.CONCLUSION: p27KIP1 can prolong cell cycle in G1phase and lead to apoptosis. p27KIP1 may be a good candidate for cancer gene therapy.

  7. A Triple Staining Method for Accurate Cell Cycle Analysis Using Multiparameter Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lin Qiu

    2013-12-01

    Full Text Available Cell cycle analysis is important for cancer research. We present herein a novel method for accurate cell cycle analysis. This method analyzes the cell cycle by multiparameter flow cytometry based on simultaneously labeling the cell nuclear DNA, RNA, and phosphorylated mitotic nuclei protein, using Hoechst 33342, pyronin Y, and MPM-2-Cy5, respectively, and our results demonstrated that this method could effectively divide the cell cycle into G0, G1, S, G2, and M phases. We further tested this method using the clinical anticancer agents crizotinib and taxol, and the results clearly illustrated that crizotinib and taxol arrested Jurkat cells in G0 and M phase, respectively. These results indicate that this method could be a very useful tool for cytokinetic and pharmacological research.

  8. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  9. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    Science.gov (United States)

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  10. Linking genomic reorganization to tumor initiation via the giant cell cycle

    Science.gov (United States)

    Niu, N; Zhang, J; Zhang, N; Mercado-Uribe, I; Tao, F; Han, Z; Pathak, S; Multani, A S; Kuang, J; Yao, J; Bast, R C; Sood, A K; Hung, M-C; Liu, J

    2016-01-01

    To investigate the mechanisms underlying our recent paradoxical finding that mitotically incapacitated and genomically unstable polyploid giant cancer cells (PGCCs) are capable of tumor initiation, we labeled ovarian cancer cells with α-tubulin fused to green fluorescent protein, histone-2B fused to red fluorescent protein and FUCCI (fluorescent ubiquitination cell cycle indicator), and tracked the spatial and time-dependent change in spindle and chromosomal dynamics of PGCCs using live-cell fluorescence time-lapse recording. We found that single-dose (500 nm) treatment with paclitaxel paradoxically initiated endoreplication to form PGCCs after massive cell death. The resulting PGCCs continued self-renewal via endoreplication and further divided by nuclear budding or fragmentation; the small daughter nuclei then acquired cytoplasm, split off from the giant mother cells and acquired competency in mitosis. FUCCI showed that PGCCs divided via truncated endoreplication cell cycle (endocycle or endomitosis). Confocal microscopy showed that PGCCs had pronounced nuclear fragmentation and lacked expression of key mitotic proteins. PGCC-derived daughter cells were capable of long-term proliferation and acquired numerous new genome/chromosome alterations demonstrated by spectral karyotyping. These data prompt us to conceptualize a giant cell cycle composed of four distinct but overlapping phases, initiation, self-renewal, termination and stability. The giant cell cycle may represent a fundamental cellular mechanism to initiate genomic reorganization to generate new tumor-initiating cells in response to chemotherapy-induced stress and contributes to disease relapse. PMID:27991913

  11. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  12. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  13. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Miaoxian [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Chung, Hau Yin, E-mail: anthonychung@cuhk.edu.hk [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Li, Yaolan [Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou (China); Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Guangzhou (China)

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  14. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  15. Re-thinking cell cycle regulators : the cross-talk with metabolism.

    Directory of Open Access Journals (Sweden)

    Lluis eFajas

    2013-01-01

    Full Text Available Analyses of genetically engineered mice deficient for cell cycle regulators, including E2F1, cdk4, or, pRB showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism and it has been shown how deregulation of those pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also proved that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples illustrate the growing notion that cell cycle regulatory proteins can also modulate metabolic processes. Cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative, and increased glycolytic metabolism. In summary, cell cycle regulators are essential in the control of anabolic, biosynthetic processes, and block at the same time oxidative and catabolic pathways, which are the metabolic hallmarks of cancer.

  16. miR-449b and miR-34c on inducing down-regulation of cell cycle-related proteins and cycle arrests in SKOV3-ipl cell, an ovarian cancer cell line%miR-449b和miR-34c对卵巢癌细胞SKOV3-ipl周期相关蛋白的下调及细胞周期阻滞作用

    Institute of Scientific and Technical Information of China (English)

    马丽萍; 李娜; 何湘君; 张旗

    2011-01-01

    Objective : To investigate the effects of miR-449 and miR-34 0n cell growth, cell cycle and target gene expression based on these miRNA different expressions in ovarian cancer cell lines SKOV3 and SKOV3-ipl both with mutation of p53. Methods: The expressions of miR-449a/b and miR-34b,c in SKOV3 and SKOV3-ipl were detected by RT-PCR. miR-449a,b and miR-34b,c were ectopically expressed by transfection of SKOV3-ipl. The cell growth rate was assayed by MTS method. The changes of cell cycle were measured by FCM. The changes of expression of cell cycle related proteins were detected by Western blot. Results : Ectopic expression of miR-449b and miR-34c resulted in lowered adhesion activities by 28% - 34% , and in cell cycle arrests with increased cell number of 15. 62% and 15. 71% in Gl and with decreased cell number of 15. 96% and 16. 56% in S. Cell cycle related proteins CDK6 and CDC25A were down-regulated. The decreases of CDK6 and CDC25A by miR-449b were 39% and 22% respecyively; 49% and 32% by miR-34c respectively. The more decreases were seen in co-action by miR-449b and miR-34c with decreases of 69% in CDK6, 86% in CDC25A, and 59% in CyclinA. Conclusion: miR-449b and miR-34c resulted in cell cycle arrests and down-regulation of CDK6, CDC25A and CyclinA in high malignant ovarian cancer cell line SKOV3-ipl.%目的:基于miR-449和miR-34在p53突变的卵巢癌细胞系SKOV3和SKOV3-ipl的表达差异,研究探讨这些miRNA对肿瘤细胞生长、细胞周期的影响及靶基因的表达变化.方法:通过反转录实时定量PCR方法测定mjR-449a/b和miR-34b,c在SKOV3和SKOV3-ipl的表达,通过转染使它们在极低表达的SKOV3-ipl中获得表达.用MTS方法测定细胞生长率变化、流式细胞术检测细胞周期改变、Western blot检测细胞周期相关蛋白表达.结果:miR-4496和niR-34c使SKOV3-ipl附性下降28%~34%,细胞周期阻滞:G1期细胞数量分别增加15.62%和15.71%;s期细胞数量分别减少15

  17. Pattern of distribution and cycling of SLOB, Slowpoke channel binding protein, in Drosophila

    Directory of Open Access Journals (Sweden)

    Sheldon Amanda

    2004-01-01

    Full Text Available Abstract Background SLOB binds to and modulates the activity of the Drosophila Slowpoke (dSlo calcium activated potassium channel. Recent microarray analyses demonstrated circadian cycling of slob mRNA. Results We report the mRNA and protein expression pattern of slob in Drosophila heads. slob transcript is present in the photoreceptors, optic lobe, pars intercerebralis (PI neurons and surrounding brain cortex. SLOB protein exhibits a similar distribution pattern, and we show that it cycles in Drosophila heads, in photoreceptor cells and in neurosecretory cells of the PI. The cycling of SLOB is altered in various clock gene mutants, and SLOB is expressed in ectopic locations in tim01 flies. We also demonstrate that SLOB no longer cycles in the PI neurons of Clkjrk flies, and that SLOB expression is reduced in the PI neurons of flies that lack pigment dispersing factor (PDF, a neuropeptide secreted by clock cells. Conclusions These data are consistent with the idea that SLOB may participate in one or more circadian pathways in Drosophila.

  18. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  19. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.

  20. Trichostatin A Regulates hGCN5 Expression and Cell Cycle on Daudi Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Hongli; CHEN Yan; CUI Guohui; WU Gang; WANG Tao; HU Jianli

    2006-01-01

    The expression of human general control of amino acid synthesis protein 5 (hGCN5) in human Burkitt's lymphoma Daudi cells in vitro, effects of Trichostatin A (TSA) on cell proliferation and apoptosis and the molecular mechanism of TSA inhibiting proliferation of Daudi cells were investigated. The effects of TSA on the growth of Daudi cells were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. The effect of TSA on the cell cycle of Daudi cells was assayed by a propidium iodide method. Immunochemistry and Western blot were used to detect the expression of hGCN5. The proliferation of Daudi cells was decreased in TSA-treated group with a 24 h IC50 value of 415.3979 μg/L. TSA induced apoptosis of Daudi cells in a time- and dose-dependent manner. Treatment with TSA (200 and 400 μg/L) for 24 h, the apoptosis rates of Daudi cells were (14.74±2.04) % and (17.63±1.25) %, respectively. The cell cycle was arrested in G0/G1 phase (50, 100 μtg/L) and in G2/M phase (200 μg/L) by treatment with TSA for 24 h.The expression of hGCN5 protein in Daudi cells was increased in 24 h TSA-treated group by immunochemistry and Western blot (P<0.05). It was suggested that TSA as HDACIs could increase the expression of hGCN5 in Daudi cells, and might play an important role in regulating the proliferation and apoptosis of B-NHL cell line Daudi cells.

  1. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  2. Oct4 resetting by Aurkb-PP1 cell cycle axis determines the identity of mouse embryonic stem cells.

    Science.gov (United States)

    Shin, Jihoon; Youn, Hong-Duk

    2016-10-01

    In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs. [BMB Reports 2016; 49(10): 527-528].

  3. Transcriptome changes and cAMP oscillations in an archaeal cell cycle

    Directory of Open Access Journals (Sweden)

    Soppa Jörg

    2007-06-01

    Full Text Available Abstract Background The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. Results A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 μM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. Conclusion The analysis of cell cycle-specific transcriptome changes of H. salinarum

  4. Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Prasad, Paras N

    2010-11-17

    Fundamental understanding of cellular processes at molecular level is of considerable importance in cell biology as well as in biomedical disciplines for early diagnosis of infection and cancer diseases, and for developing new molecular medicine-based therapies. Modern biophotonics offers exclusive capabilities to obtain information on molecular composition, organization, and dynamics in a cell by utilizing a combination of optical spectroscopy and optical imaging. We introduce here a combination of Raman microspectrometry, together with coherent anti-Stokes Raman scattering (CARS) and two-photon excited fluorescence (TPEF) nonlinear optical microscopy, to study macromolecular organization of the nucleus throughout the cell cycle. Site-specific concentrations of proteins, DNA, RNA, and lipids were determined in nucleoli, nucleoplasmic transcription sites, nuclear speckles, constitutive heterochromatin domains, mitotic chromosomes, and extrachromosomal regions of mitotic cells by quantitative confocal Raman microspectrometry. A surprising finding, obtained in our study, is that the local concentration of proteins does not increase during DNA compaction. We also demonstrate that postmitotic DNA decondensation is a gradual process, continuing for several hours. The quantitative Raman spectroscopic analysis was corroborated with CARS/TPEF multimodal imaging to visualize the distribution of protein, DNA, RNA, and lipid macromolecules throughout the cell cycle.

  5. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    Science.gov (United States)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  6. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hae-Jeong Park; Sung-Vin Yim; Joo-Ho Chung; Seon-Pyo Hong; Seo-Hyun Yoon; Long-Shan Han; Long-Tai Zheng; Kyung-Hee Jung; Yoon-Kyung Uhm; Je-Hyun Lee; Ji-Seon Jeong; Woo-Sang Joo

    2005-01-01

    AIM: The genes were divided into seven categories according to biological function; apoptosis-reiated, immune response-related, signal transduction-related, cell cyclerelated, cell growth-related, stress response-related and transcription-related genes.METHODS: We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL,24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR. RESULTS: Microarray showed that amygdalin downregulated especially genes belonging to cell cycle category: exonuclease 1 (EXO1), ATP-binding cassette, sub-family F, member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE114), topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1). RT-PCR analysis revealed that mRNA levels of these genes were also decreased by amygdalin treatment in SNU-C4 human colon cancer cells.CONCLUSION: These results suggest that amygdalin have an anticancer effect via downregulation of cell cycle-related genes in SNU-C4 human colon cancer cells,and might be used for therapeutic anticancer drug.

  7. Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock.

    Science.gov (United States)

    Khapre, Rohini V; Samsa, William E; Kondratov, Roman V

    2010-09-01

    The circadian clock generates oscillations in physiology and behavior, known as circadian rhythms. Links between the circadian clock genes Periods, Bmal1, and Cryptochromes and aging and cancer are emerging. Circadian clock gene expression is changed in human pathologies, and transgenic mice with mutations in clock genes develop cancer and premature aging. Control of genome integrity and cell proliferation play key roles in the development of age-associated pathologies and carcinogenesis. Here, we review recent data on the connection between the circadian clock and control of the cell cycle. The circadian clock regulates the activity and expression of several critical cell cycle and cell cycle check-point-related proteins, and in turn cell cycle-associated proteins regulate circadian clock proteins. DNA damage can reset the circadian clock, which provides a molecular mechanism for reciprocal regulation between the circadian clock and the cell cycle. This circadian clock-dependent control of cell proliferation, together with other known physiological functions of the circadian clock such as the control of metabolism, oxidative and genotoxic stress response, and DNA repair, opens new horizons for understanding the mechanisms behind aging and carcinogenesis.

  8. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  9. Characteristics and Behavior of Cycled Aged Lithium Ion Cells

    Science.gov (United States)

    2010-01-01

    service cycle and provide the cornerstone for safety analysis. 18650 Cells with representative chemistry of cells contained in current Army procured...their relevance to this effort warrants inclusion. 1-3 EXPERIMENTAL Representative 18650 cells were cycled at different rates and environmental...conditions. The 18650 chemistry used in this effort is a LiCoO2 lithium ion electrochemical cell. The bulk of this effort was conducted with 1.5 Amp-hr

  10. Mammalian cryptochromes impinge on cell cycle progression in a circadian clock-independent manner.

    Science.gov (United States)

    Destici, Eugin; Oklejewicz, Małgorzata; Saito, Shoko; van der Horst, Gijsbertus T J

    2011-11-01

    By gating cell cycle progression to specific times of the day, the intracellular circadian clock is thought to reduce the exposure of replicating cells to potentially hazardous environmental and endogenous genotoxic compounds. Although core clock gene defects that eradicate circadian rhythmicity can cause an altered in vivo genotoxic stress response and aberrant proliferation rate, it remains to be determined to what extent these cell cycle related phenotypes are due to a cell-autonomous lack of circadian oscillations. We investigated the DNA damage sensitivity and proliferative capacity of cultured primary Cry1(-/- )|Cry2(-/-) fibroblasts. Contrasting previous in vivo studies, we show that the absence of CRY proteins does not affect the cell-autonomous DNA damage response upon exposure of primary cells in vitro to genotoxic agents, but causes cells to proliferate faster. By comparing primary wild-type, Cry1(-/-) |Cry2(-/-), Cry1(+/-)|Cry2(-/-) and Cry1(-/-)|Cry2(+/-) fibroblasts, we provide evidence that CRY proteins influence cell cycle progression in a cell-autonomous, but circadian clock-independent manner and that the accelerated cell cycle progression of Cry-deficient cells is caused by global dysregulation of Bmal1-dependent gene expression. These results suggest that the inconsistency between in vivo and in vitro observations might be attributed to systemic circadian control rather than a direct cell-autonomous control.

  11. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    Science.gov (United States)

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events.

  12. Regulated proteolysis of a transcription factor complex is critical to cell cycle progression in Caulobacter crescentus.

    Science.gov (United States)

    Gora, Kasia G; Cantin, Amber; Wohlever, Matthew; Joshi, Kamal K; Perchuk, Barrett S; Chien, Peter; Laub, Michael T

    2013-03-01

    Cell cycle transitions are often triggered by the proteolysis of key regulatory proteins. In Caulobacter crescentus, the G1-S transition involves the degradation of an essential DNA-binding response regulator, CtrA, by the ClpXP protease. Here, we show that another critical cell cycle regulator, SciP, is also degraded during the G1-S transition, but by the Lon protease. SciP is a small protein that binds directly to CtrA and prevents it from activating target genes during G1. We demonstrate that SciP must be degraded during the G1-S transition so that cells can properly activate CtrA-dependent genes following DNA replication initiation and the reaccumulation of CtrA. These results indicate that like CtrA, SciP levels are tightly regulated during the Caulobacter cell cycle. In addition, we show that formation of a complex between CtrA and SciP at target promoters protects both proteins from their respective proteases. Degradation of either protein thus helps trigger the destruction of the other, facilitating a cooperative disassembly of the complex. Collectively, our results indicate that ClpXP and Lon each degrade an important cell cycle regulator, helping to trigger the onset of S phase and prepare cells for the subsequent programmes of gene expression critical to polar morphogenesis and cell division.

  13. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine;

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  14. Human papilloma virus early proteins E6 (HPV16/18-E6) and the cell cycle marker P16 (INK4a) are useful prognostic markers in uterine cervical carcinomas in Qassim Region--Saudi Arabia.

    Science.gov (United States)

    Omran, O M; AlSheeha, M

    2015-01-01

    Cervical cancer is a common and an important public health problem for adult women in developing countries. In contrast, cervical cancer incidence is low in Saudi Arabia. High-risk types of human papilloma viruses (HPV16 and HPV18) are the most significant risk factors for cervical cancer. HPV16/18-E6 oncoprotein is associated with HPV etiology, viral persistence and epithelial transformation. Cell cycle protein p16 INK4a (p16) plays an important role in the pathophysiology of cervical carcinomas. The aims of this study were to investigate the expression of HPV16/18-E6 and p16 in uterine cervical carcinomas in Qassim Region--Saudi Arabia, and to relate the results to the established clinicopathological prognostic parameters (age of the patient, educational level, birth control methods, number of pregnancy, smoking status, degree of histological differentiation, clinical stage, and lymph node metastasis) The study included 40 specimens of uterine cervical squamous cell carcinomas diagnosed and confirmed by biopsy. Histopathological classification of cervical tumors cases was performed according to the International Federation of Gynecology and Obstetrics (FIGO). Immunohistochemical analysis for HPV16/18-E6 and p16 were carried out on formalin-fixed paraffin-embedded sections of cervical tissues using avidin-biotin peroxidase method. There was a significant statistical correlation between HPV16/18-E6 expression in cervical carcinoma and nationality, smoking status and size of the tumor. HPV16/18-E6 oncoprotein expression in normal lymphocytes and endothelial cells in the tumor tissues and the adjacent normal cervical tissues suggest the possibility that HPV infection might spread to other organs through blood circulation. P16 expression has been correlated with high grade, stage of cervical SCC and HPV16/18-E6 expression. The current study supports the critical function of p16 and HPV16/18-E6 as specific markers for cervical carcinoma. However the potential for usage

  15. In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest.

    Science.gov (United States)

    Paramasivam, Arumugam; Raghunandhakumar, Subramanian; Priyadharsini, Jayaseelan Vijayashree; Jayaraman, Gopalswamy

    2015-01-01

    We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose- dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

  16. 2-Methoxyestradiol induces cell cycle arrest and apoptosis of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Ning-ning ZHOU; Xiao-feng ZHU; Jun-ming ZHOU; Man-zhi LI; Xiao-shi ZHANG; Peng HUANG; Wen-qi JIANG

    2004-01-01

    AIM: To investigate 2-methoxyestradiol induced apoptosis and its mechanism of action in CNE2 cell lines.METHODS: CNE2 cells were cultured in RPMI-1640 medium and treated with 2-methoxyestradiol in different concentrations. MTT assay was used to detect growth inhibition. Flow cytometry and DNA ladders were used to detect apoptosis. Western blotting was used to observe the expression of p53, p21WAF1, Bax, and Bcl-2 protein.RESULTS: 2-methoxyestradiol inhibited proliferation of nasopharyngeal carcinoma CNE2 cells with IC50 value of2.82 μrnol/L. The results of flow cytometry showed an accumulation of CNE2 cells in G2/M phase in response to2-methoxyestradiol. Treatment of CNE2 cells with 2-methoxyestradiol resulted in DNA fragmentation. The expression levels of protein p53 and Bcl-2 decreased following 2-methoxyestradiol treatment in CNE2 cells, whereas Bax and p21WAF1 protein expression were unaffected after treatment with 2-methoxyestradiol. CONCLUSION:These results suggest that 2-methoxyestradiol induced cell cycle arrest at G2/M phase and apoptosis of CNE2 cells which was associated to Bcl-2 down-regulation.

  17. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Wei Xiong; Yang Jiao; Weiwei Huang; Mingxing Ma; Min Yu; Qinghua Cui; Deyong Tan

    2012-01-01

    Human cervical cancer HeLa cells have functional mitochondria.Recent studies have suggested that mitochondrial metabolism plays an essential role in tumor cell proliferation.Nevertheless,how cells coordinate mitochondrial dynamics and cell cycle progression remains to be clarified.To investigate the relationship between mitochondrial function and cell cycle regulation,the mitochondrial gene expression profile and cellular ATP levels were determined by cell cycle progress analysis in the present study.HeLa cells were synchronized in the G0/G1 phase by serum starvation,and re-entered cell cycle by restoring serum culture,time course experiment was performed to analyze the expression of mitochondrial transcription regulators and mitochondrial genes,mitochondrial membrane potential (MMP),cellular ATP levels,and cell cycle progression.The results showed that when arrested G0/G1 cells were stimulated in serum-containing medium,the amount of DNA and the expression levels of both mRNA and proteins in mitochondria started to increase at 2 h time point,whereas the MMP and ATP level elevated at 4 h.Furthermore,the cyclin D1 expression began to increase at 4 h after serum triggered cell cycle.ATP synthesis inhibitor-oligomycintreatment suppressed the cyclin D1 and cyclin B1 expression levels and blocked cell cycle progression.Taken together,our results suggested that increased mitochondrial gene expression levels,oxidative phosphorylation activation,and cellular ATP content increase are important events for triggering cell cycle.Finally,we demonstrated that mitochondrial gene expression levels and cellular ATP content are tightly regulated and might play a central role in regulating cell proliferation.

  18. An Application of Invertibility of Boolean Control Networks to the Control of the Mammalian Cell Cycle.

    Science.gov (United States)

    Zhang, Kuize; Zhang, Lijun; Mou, Shaoshuai

    2017-01-01

    In Fauré et al. (2006), the dynamics of the core network regulating the mammalian cell cycle is formulated as a Boolean control network (BCN) model consisting of nine proteins as state nodes and a tenth protein (protein CycD) as the control input node. In this model, one of the state nodes, protein Cdc20, plays a central role in the separation of sister chromatids. Hence, if any Cdc20 sequence can be obtained, fully controlling the mammalian cell cycle is feasible. Motivated by this fact, we study whether any Cdc20 sequence can be obtained theoretically. We formulate the foregoing problem as the invertibility of BCNs, that is, whether one can obtain any Cdc20 sequence by designing input (i.e., protein CycD) sequences. We give an algorithm to verify the invertibility of any BCN, and find that the BCN model for the core network regulating the mammalian cell cycle is not invertible, that is, one cannot obtain any Cdc20 sequence. We further present another algorithm to test whether a finite Cdc20 sequence can be generated by the BCN model, which leads to a series of periodic infinite Cdc20 sequences with alternately active and inactive Cdc20 segments. States of these sequences are alternated between the two attractors in the proposed model, which reproduces correctly how a cell exits the cell cycle to enter the quiescent state, or the opposite.

  19. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.

  20. Computational and genetic reduction of a cell cycle to its simplest, primordial components.

    Directory of Open Access Journals (Sweden)

    Seán M Murray

    2013-12-01

    Full Text Available What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles.

  1. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes.

    Science.gov (United States)

    Santos, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene.

  2. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  3. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila;

    2009-01-01

    The eukaryotic cell cycle requires precise temporal coordination of the activities of hundreds of 'executor' proteins (EPs) involved in cell growth and division. Cyclin-dependent protein kinases (Cdks) play central roles in regulating the production, activation, inactivation and destruction......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal......-transduction properties of FFLs allow one (or a few) Cdk signal(s) to drive a host of cell cycle responses in correct temporal sequence....

  4. The unconventional G-protein cycle of LRRK2 and Roco proteins.

    Science.gov (United States)

    Terheyden, Susanne; Nederveen-Schippers, Laura M; Kortholt, Arjan

    2016-12-15

    Mutations in the human leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of hereditary Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins, which are characterized by the presence of a Ras of complex proteins domain (Roc), a C-terminal of Roc domain (COR) and a kinase domain. Despite intensive research, much remains unknown about activity and the effect of PD-associated mutations. Recent biochemical and structural studies suggest that LRRK2 and Roco proteins are noncanonical G-proteins that do not depend on guanine nucleotide exchange factors or GTPase-activating proteins for activation. In this review, we will discuss the unusual G-protein cycle of LRRK2 in the context of the complex intramolecular LRRK2 activation mechanism.

  5. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle.

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh

    Full Text Available The cell cycle is a ubiquitous, multi-step process that is essential for growth and proliferation of cells. The role of membrane lipids in cell cycle regulation is not explored well, although a large number of cytoplasmic and nuclear regulators have been identified. We focus in this work on the role of membrane cholesterol in cell cycle regulation. In particular, we have explored the stringency of the requirement of cholesterol in the regulation of cell cycle progression. For this purpose, we utilized distal and proximal inhibitors of cholesterol biosynthesis, and monitored their effect on cell cycle progression. We show that cholesterol content increases in S phase and inhibition of cholesterol biosynthesis results in cell cycle arrest in G1 phase under certain conditions. Interestingly, G1 arrest mediated by cholesterol biosynthesis inhibitors could be reversed upon metabolic replenishment of cholesterol. Importantly, our results show that the requirement of cholesterol for G1 to S transition is absolute, and even immediate biosynthetic precursors of cholesterol, differing with cholesterol merely in a double bond, could not replace cholesterol for reversing the cell cycle arrest. These results are useful in the context of diseases, such as cancer and Alzheimer's disease, that are associated with impaired cholesterol biosynthesis and homeostasis.

  6. Cell cycling and patterned cell proliferation in the wing primordium of Drosophila.

    OpenAIRE

    1996-01-01

    The pattern of cell proliferation in the Drosophila imaginal wing primordium is spatially and temporally heterogeneous. Direct visualization of cells in S, G2, and mitosis phases of the cell cycle reveals several features invariant throughout development. The fraction of cells in the disc in the different cell cycle stages is constant, the majority remaining in G1. Cells in the different phases of the cell cycle mainly appear in small synchronic clusters that are nonclonally derived but resul...

  7. Disconnected circadian and cell cycles in a tumor-driven cell line

    OpenAIRE

    Pendergast, Julie S.; Yeom, Mijung; Bryan A. Reyes; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-01-01

    Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadi...

  8. Sam68 exerts separable effects on cell cycle progression and apoptosis

    Directory of Open Access Journals (Sweden)

    Resnick Ross J

    2004-01-01

    Full Text Available Abstract Background The RNA-binding protein Sam68 has been implicated in a number of cellular processes, including transcription, RNA splicing and export, translation, signal transduction, cell cycle progression and replication of the human immunodeficiency virus and poliovirus. However, the precise impact it has on essential cellular functions remains largely obscure. Results In this report we show that conditional overexpression of Sam68 in fibroblasts results in both cell cycle arrest and apoptosis. Arrest in G1 phase of the cell cycle is associated with decreased levels of cyclins D1 and E RNA and protein, resulting in dramatically reduced Rb phosphorylation. Interestingly, cell cycle arrest does not require the specific RNA binding ability of Sam68. In marked contrast, induction of apoptosis by Sam68 absolutely requires a fully-functional RNA binding domain. Moreover, the anti-cancer agent trichostatin A potentiates Sam68-driven apoptosis. Conclusions For the first time we have shown that Sam68, an RNA binding protein with multiple apparent functions, exerts functionally separable effects on cell proliferation and survival, dependent on its ability to bind specifically to RNA. These findings shed new light on the ability of signal transducing RNA binding proteins to influence essential cell function. Moreover, the ability of a class of anti-cancer therapeutics to modulate its ability to promote apoptosis suggests that Sam68 status may impact some cancer treatments.

  9. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  10. Brucella abortus Cell Cycle and Infection Are Coordinated.

    Science.gov (United States)

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.

  11. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture.

    Science.gov (United States)

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.

  12. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    Science.gov (United States)

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-10-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.

  13. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  14. Parthenolide Induces Apoptosis and Cell Cycle Arrest of Human 5637 Bladder Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Guang Cheng

    2011-08-01

    Full Text Available Parthenolide, the principal component of sesquiterpene lactones present in medical plants such as feverfew (Tanacetum parthenium, has been reported to have anti-tumor activity. In this study, we evaluated the therapeutic potential of parthenolide against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with parthenolide resulted in a significant decrease in cell viability. Parthenolide induced apoptosis through the modulation of Bcl-2 family proteins and poly (ADP-ribose polymerase degradation. Treatment with parthenolide led to G1 phase cell cycle arrest in 5637 cells by modulation of cyclin D1 and phosphorylated cyclin-dependent kinase 2. Parthenolide also inhibited the invasive ability of bladder cancer cells. These findings suggest that parthenolide could be a novel therapeutic agent for treatment of bladder cancer.

  15. Effects of Genistein on Cell Cycle and Apoptosis of Two Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of genistein on several tumor cell lines were investigated to study the effects of genistein on cell growth, cell cycle, and apoptosis of two murine melanoma cell lines, B16 and K1735M2. These two closely related murine melanoma cell lines, however, have different responses to the genistein treatment. Genistein inhibits the growth of both the B16 and K1735M2 cell lines and arrests the growth at the G2/M phase. After treatment with 60 μmol/L genistein for 72 h, apoptosis and caspase activities were detected in B16 cells, while such effects were not found in K1735M2. Further tests showed that after genistein treatment the protein content and mRNA levels of p53 increased in B16, but remained the same in K1735M2. The protein content and mRNA levels of p21WAF1/CIP1 increased in both cell lines after treatment.The results show that genistein might induce apoptosis in B16 cells by damaging the DNA, inhibiting topoisomerase Ⅱ, increasing p53 expression, releasing cytochrome c from the mitochondria, and activating the caspases which will lead to apoptosis.

  16. Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G1 Cyclin To Trigger Cell Cycle Entry

    Science.gov (United States)

    Menoyo, S.; Ricco, N.; Bru, S.; Hernández-Ortega, S.; Escoté, X.; Aldea, M.

    2013-01-01

    G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability. PMID:23339867

  17. A hybrid model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Rajat Singhania

    Full Text Available The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available experimental data. To avoid this problem, modelers often resort to 'qualitative' modeling strategies, such as Boolean switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription factors whose activities are represented by discrete variables (0 or 1 and likewise for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively accurate, computational models of protein regulatory networks in cells.

  18. Disconnected circadian and cell cycles in a tumor-driven cell line.

    Science.gov (United States)

    Pendergast, Julie S; Yeom, Mijung; Reyes, Bryan A; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-11-01

    Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadian clocks, but the periods of their cell cycle gene expression rhythms are temperature-dependent, suggesting that their circadian and cell cycles are not connected. These data support our hypothesis that decoupling of the circadian and cell cycles may underlie aberrant cell division in tumor cells.

  19. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jennifer L Bandura

    Full Text Available The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C, suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  20. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Science.gov (United States)

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  1. Side population sorting separates subfractions of cycling and non-cycling intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Richard J. von Furstenberg

    2014-03-01

    Full Text Available We report here that side population (SP sorting allows for the simultaneous isolation of two intestinal stem cell (ISC subsets from wild-type (WT mice which are phenotypically different and represent cycling and non-cycling pools of cells. Following 5-ethynyl-2′-deoxyuridine (EdU injection, in the upper side population (USP the percentage of EdU+ was 36% showing this fraction to be highly proliferative. In the lower side population (LSP, only 0.4% of cells were EdU+, indicating this fraction to be predominantly non-cycling. Using Lgr5-EGFP mice, we show that Lgr5-EGFPhi cells, representing actively cycling ISCs, are essentially exclusive to the USP. In contrast, using histone 2B-YFP mice, SP analysis revealed YFP label retaining cells (LRCs in both the USP and the LSP. Correspondingly, evaluation of the SP fractions for mRNA markers by qRT-PCR showed that the USP was enriched in transcripts associated with both quiescent and active ISCs. In contrast, the LSP expressed mRNA markers of quiescent ISCs while being de-enriched for those of the active ISC. Both the USP and LSP are capable of generating enteroids in culture which include the four intestinal lineages. We conclude that sorting of USP and LSP fractions represents a novel isolation of cycling and non-cycling ISCs from WT mice.

  2. Structural protein alterations to resistance and endurance cycling exercise training.

    Science.gov (United States)

    Parcell, Allen C; Woolstenhulme, Mandy T; Sawyer, Robert D

    2009-03-01

    The muscle cytoskeleton is necessary for the effective transmission of forces generated by actin-myosin interactions. We have examined the impact of muscle force and exercise volume on the cytoskeleton by measuring desmin and dystrophin content in human skeletal muscle after 12 weeks of progressive resistance or endurance cycle training. Muscle biopsies of the vastus lateralis were obtained before and after training. Desmin and dystrophin content was determined using immunoblotting techniques. After resistance training, desmin content increased 82 +/- 18% (p < 0.05), whereas there was no change in desmin content with endurance cycling. Dystrophin content did not change in either group. One-repetition maximum and VO2max increased (p < 0.05) in the resistance and endurance groups, respectively. These data demonstrate that a high-tension stimulus impacts the cytoskeleton in contrast to high-volume concentric contractions. The tensile loading and eccentric components of resistance training are implicated in desmin alterations. Indeed, the functional improvements resulting from resistance training may be related in part to the mechanical integration provided by the desmin protein.

  3. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  4. Recovery from Cycling Exercise: Effects of Carbohydrate and Protein Beverages

    Directory of Open Access Journals (Sweden)

    Christopher J. Womack

    2012-06-01

    Full Text Available The effects of different carbohydrate-protein (CHO + Pro beverages were compared during recovery from cycling exercise. Twelve male cyclists (VO2peak: 65 ± 7 mL/kg/min completed ~1 h of high-intensity intervals (EX1. Immediately and 120 min following EX1, subjects consumed one of three calorically-similar beverages (285–300 kcal in a cross-over design: carbohydrate-only (CHO; 75 g per beverage, high-carbohydrate/low-protein (HCLP; 45 g CHO, 25 g Pro, 0.5 g fat, or low-carbohydrate/high-protein (LCHP; 8 g CHO, 55 g Pro, 4 g fat. After 4 h of recovery, subjects performed subsequent exercise (EX2; 20 min at 70% VO2peak + 20 km time-trial. Beverages were also consumed following EX2. Blood glucose levels (30 min after beverage ingestion differed across all treatments (CHO > HCLP > LCHP; p < 0.05, and serum insulin was higher following CHO and HCLP ingestion versus LCHP. Peak quadriceps force, serum creatine kinase, muscle soreness, and fatigue/energy ratings measured pre- and post-exercise were not different between treatments. EX2 performance was not significantly different between CHO (48.5 ± 1.5 min, HCLP (48.8 ± 2.1 min and LCHP (50.3 ± 2.7 min. Beverages containing similar caloric content but different proportions of carbohydrate/protein provided similar effects on muscle recovery and subsequent exercise performance in well-trained cyclists.

  5. Aurkb/PP1-mediated resetting of Oct4 during the cell cycle determines the identity of embryonic stem cells.

    Science.gov (United States)

    Shin, Jihoon; Kim, Tae Wan; Kim, Hyunsoo; Kim, Hye Ji; Suh, Min Young; Lee, Sangho; Lee, Han-Teo; Kwak, Sojung; Lee, Sang-Eun; Lee, Jong-Hyuk; Jang, Hyonchol; Cho, Eun-Jung; Youn, Hong-Duk

    2016-02-15

    Pluripotency transcription programs by core transcription factors (CTFs) might be reset during M/G1 transition to maintain the pluripotency of embryonic stem cells (ESCs). However, little is known about how CTFs are governed during cell cycle progression. Here, we demonstrate that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle genes in determining the identity of ESCs. Aurkb phosphorylates Oct4(S229) during G2/M phase, leading to the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Aurkb phosphor-mimetic and PP1 binding-deficient mutations in Oct4 alter the cell cycle, effect the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Our findings provide evidence that the cell cycle is linked directly to pluripotency programs in ESCs.

  6. DNA-damage response network at the crossroads of cell-cycle checkpoints,cellular senescence and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SCHMITT Estelle; PAQUET Claudie; BEAUCHEMIN Myriam; BERTRAND Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation,cellular senescence and cell death.Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities.Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms.Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death.The intimate link between the cell cycle,cellular senescence,apoptosis regulation,cancer development and tumor responses to cancer treatment has become eminently apparent.Extensive research on tumor suppressor genes,oncogenes,the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways,referred to as the DNA-damage response network,are tied to cell proliferation,cell-cycle arrest,cellular senescence and apoptosis.DNA-damage responses are complex,involving "sensor" proteins that sense the damage,and transmit signals to "transducer" proteins,which,in turn,convey the signals to numerous "effector" proteins implicated in specific cellular pathways,including DNA repair mechanisms,cell-cycle checkpoints,cellular senescence and apoptosis.The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation.In addition,several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle,DNA repair/recombination and cellular senescence,effects that are generally distinct from their function in apoptosis.In this review,we report progress in understanding the molecular networks that regulate cell-cycle checkpoints,cellular senescence and apoptosis after DNA damage,and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  7. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  8. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  9. Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture.

    Science.gov (United States)

    Matsu-Ura, Toru; Dovzhenok, Andrey; Aihara, Eitaro; Rood, Jill; Le, Hung; Ren, Yan; Rosselot, Andrew E; Zhang, Tongli; Lee, Choogon; Obrietan, Karl; Montrose, Marshall H; Lim, Sookkyung; Moore, Sean R; Hong, Christian I

    2016-12-01

    Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerge as 12-hr synchronized cell division cycles. Remarkably, we observe reduced-amplitude oscillations of circadian rhythms in intestinal stem cells and progenitor cells, indicating an intercellular signal arising from differentiated cells governing circadian clock-dependent synchronized cell division cycles. Stochastic simulations and experimental validations reveal Paneth cell-secreted WNT as the key intercellular coupling component linking the circadian clock and cell cycle in enteroids.

  10. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression

    OpenAIRE

    Homma, Miwako Kato; Wada, Ikuo; Suzuki, Toshiyuki; Yamaki, Junko; Krebs, Edwin G.; Homma, Yoshimi

    2005-01-01

    Casein kinase 2 (CK2) is a ubiquitous eukaryotic Ser/Thr protein kinase that plays an important role in cell cycle progression. Although its function in this process remains unclear, it is known to be required for the G1 and G2/M phase transitions in yeast. Here, we show that CK2 activity changes notably during cell cycle progression and is increased within 3 h of serum stimulation of quiescent cells. During the time period in which it exhibits high enzymatic activity, CK2 associates with and...

  11. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  12. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    Science.gov (United States)

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  13. The circadian clock and cell cycle: interconnected biological circuits.

    Science.gov (United States)

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-12-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the 'gating' controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping.

  14. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW....

  15. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  16. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  17. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Simona [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Ranzato, Elia, E-mail: ranzato@unipmn.it [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy); Parodi, Monica [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); DI.ME.S., Università degli Studi di Genova, Via L. Alberti 2, 16132 Genova (Italy); Vitale, Massimo [IRCCS A.O.U. S. Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Burlando, Bruno [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, viale T. Michel 11, 15121 Alessandria (Italy)

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  18. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  19. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.

    Science.gov (United States)

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan

    2015-07-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN.

  20. Cell cycle regulatory factors in juxta-tumoral renal parenchyma.

    Science.gov (United States)

    Petruşcă, Daniela Nicoleta; Petrescu, Amelia; Vrabie, Camelia; Niculescu, L; Jinga, V; Diaconu, Carmen; Braşoveanu, Lorelei

    2005-01-01

    The aim of this study was to evaluate regulatory cell cycle factors in juxta-tumoral renal parenchyma in order to obtain information regarding early primary changes occurred in normal renal cells. Specimens of juxta-tumoral renal parenchyma were harvested from the tumoral kidney in 10 patients with no history of treatment before surgery. The expression of p53, Bcl-2, Rb and PCNA was studied by immunohistochemical methods in paraffin-embedded tissues. The apoptotic status was evaluated by flow-cytometry analysis following propidium iodide incorporation. The p53 protein expression was recognized in most of the cases (80%) with different intensities. High intensity apoptotic process detected in juxta-tumoral parenchyma seemed to be p53 dependent and well correlated with the low Bcl-2 expression. 70% of cases were Rb positive. In this type of tissue Rb has only an anti-proliferative and anti-tumoral role. PCNA was present in half of the cases being low expressed due to the tissue regenerating mechanism. Our data suggest that the high intensity of programmed cell death in this type of tissue is supported by the status of cell regulatory factors that control this process. Previous studies have demonstrated that healthy renal tissue has neither apoptosis nor mitotic activity. Juxta-tumoral renal tissue is also displaying normal morphology and DNA content (diploidy) but the microenvironmental status induced by the tumor presence prompts cells to choose death rather than malignant transformation. Further studies are necessary to emphasize if these results have a clinical relevance for the outcome of therapeutical approaches in renal carcinomas.

  1. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus.

    Science.gov (United States)

    Zinser, Erik R; Lindell, Debbie; Johnson, Zackary I; Futschik, Matthias E; Steglich, Claudia; Coleman, Maureen L; Wright, Matthew A; Rector, Trent; Steen, Robert; McNulty, Nathan; Thompson, Luke R; Chisholm, Sallie W

    2009-01-01

    The marine cyanobacterium Prochlorococcus MED4 has the smallest genome and cell size of all known photosynthetic organisms. Like all phototrophs at temperate latitudes, it experiences predictable daily variation in available light energy which leads to temporal regulation and partitioning of key cellular processes. To better understand the tempo and choreography of this minimal phototroph, we studied the entire transcriptome of the cell over a simulated daily light-dark cycle, and placed it in the context of diagnostic physiological and cell cycle parameters. All cells in the culture progressed through their cell cycles in synchrony, thus ensuring that our measurements reflected the behavior of individual cells. Ninety percent of the annotated genes were expressed, and 80% had cyclic expression over the diel cycle. For most genes, expression peaked near sunrise or sunset, although more subtle phasing of gene expression was also evident. Periodicities of the transcripts of genes involved in physiological processes such as in cell cycle progression, photosynthesis, and phosphorus metabolism tracked the timing of these activities relative to the light-dark cycle. Furthermore, the transitions between photosynthesis during the day and catabolic consumption of energy reserves at night- metabolic processes that share some of the same enzymes--appear to be tightly choreographed at the level of RNA expression. In-depth investigation of these patterns identified potential regulatory proteins involved in balancing these opposing pathways. Finally, while this analysis has not helped resolve how a cell with so little regulatory capacity, and a 'deficient' circadian mechanism, aligns its cell cycle and metabolism so tightly to a light-dark cycle, it does provide us with a valuable framework upon which to build when the Prochlorococcus proteome and metabolome become available.

  2. Mitochondrial ascorbate-glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening.

    Science.gov (United States)

    López-Vidal, O; Camejo, D; Rivera-Cabrera, F; Konigsberg, M; Villa-Hernández, J M; Mendoza-Espinoza, J A; Pérez-Flores, L J; Sevilla, F; Jiménez, A; Díaz de León-Sánchez, F

    2016-03-01

    In non-photosynthetic tissues, mitochondria are the main source of energy and of reactive oxygen species. Accumulation of high levels of these species in the cell causes damage to macromolecules including several proteins and induces changes in different metabolic processes. Fruit ripening has been characterized as an oxidative phenomenon; therefore, control of reactive oxygen species levels by mitochondrial antioxidants plays a crucial role on this process. In this work, ascorbate-glutathione cycle components, hydrogen peroxide levels and the proteomic profile of carbonylated proteins were analyzed in mitochondria isolated from tomato (Solanum lycopersicum) fruit at two ripening stages. A significant increase on most ascorbate-glutathione cycle components and on carbonylated proteins was observed in mitochondria from breaker to light red stage. Enzymes and proteins involved in diverse cellular and mitochondrial metabolic pathways were identified among the carbonylated proteins. These results suggest that protein carbonylation is a post-translational modification involved in tomato fruit ripening regulation.

  3. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis.

    Science.gov (United States)

    Villeneuve, Julien; Duran, Juan; Scarpa, Margherita; Bassaganyas, Laia; Van Galen, Josse; Malhotra, Vivek

    2017-01-01

    Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi-cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor-mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain-containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.

  4. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Directory of Open Access Journals (Sweden)

    Yair Katzir

    Full Text Available The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is

  5. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  6. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes

    DEFF Research Database (Denmark)

    Santos Delgado, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNAand protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface...

  7. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors.

    Science.gov (United States)

    He, Weihai; Miao, Frederick J-P; Lin, Daniel C-H; Schwandner, Ralf T; Wang, Zhulun; Gao, Jinhai; Chen, Jin-Long; Tian, Hui; Ling, Lei

    2004-05-13

    The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism. Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations. The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/extrusion. Here we show that GPR91 (ref. 3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to alpha-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and alpha-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure.

  8. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  9. A model of yeast cell-cycle regulation based on multisite phosphorylation

    Science.gov (United States)

    Barik, Debashis; Baumann, William T; Paul, Mark R; Novak, Bela; Tyson, John J

    2010-01-01

    In order for the cell's genome to be passed intact from one generation to the next, the events of the cell cycle (DNA replication, mitosis, cell division) must be executed in the correct order, despite the considerable molecular noise inherent in any protein-based regulatory system residing in the small confines of a eukaryotic cell. To assess the effects of molecular fluctuations on cell-cycle progression in budding yeast cells, we have constructed a new model of the regulation of Cln- and Clb-dependent kinases, based on multisite phosphorylation of their target proteins and on positive and negative feedback loops involving the kinases themselves. To account for the significant role of noise in the transcription and translation steps of gene expression, the model includes mRNAs as well as proteins. The model equations are simulated deterministically and stochastically to reveal the bistable switching behavior on which proper cell-cycle progression depends and to show that this behavior is robust to the level of molecular noise expected in yeast-sized cells (∼50 fL volume). The model gives a quantitatively accurate account of the variability observed in the G1-S transition in budding yeast, which is governed by an underlying sizer+timer control system. PMID:20739927

  10. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  11. Analysis of the Trypanosoma brucei cell cycle by quantitative DAPI imaging.

    Science.gov (United States)

    Siegel, T Nicolai; Hekstra, Doeke R; Cross, George A M

    2008-08-01

    Trypanosoma brucei has two DNA compartments: the nucleus and the kinetoplast. DNA replication of these two compartments only partially coincides. Woodward and Gull [Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci 1990;95:49-57] comprehensively studied the relative timing of the replication and segregation of nuclear DNA (nDNA) and kinetoplast DNA (kDNA). Others have since assumed the consistency of morphological indicators of cell-cycle stage among strains and conditions. We report the use of quantitative DAPI imaging to determine the cell-cycle stage of individual procyclic cells. Using this approach, we found that kinetoplast elongation occurs mainly during nuclear S phase and not during G2, as previously assumed. We confirmed this finding by sorting cells by DNA content, followed by fluorescence microscopy. In addition, simultaneous quantitative imaging at two wavelengths can be used to determine the abundance of cell-cycle-regulated proteins during the cell cycle. We demonstrate this technique by co-staining for the non-acetylated state of lysine 4 of histone H4 (H4K4), which is enriched during nuclear S phase.

  12. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    Science.gov (United States)

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun

    2016-03-01

    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  13. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Wai-Yee

    2006-06-01

    Full Text Available Abstract Background TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY, the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1, involved in cell cycle regulation and replication. Methods To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. Results Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G2/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G2/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. Conclusion These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis.

  14. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-KB in human dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Dong-Wook HAN; Mi Hee LEE; Hak Hee KIM; Suong-Hyu HYON; Jong-Chul PARK

    2011-01-01

    Aim: To investigate the effects of (-)epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, on cell growth, cell cycle and phosphorylated nuclear factor-kB (pNF-KB) expression in neonatal human dermal fibroblasts (nHDFs).Methods: The proliferation and cell-cycle of nHDFs were determined using WST-8 cell growth assay and flow cytometry, respectively. The apoptosis was examined using DNA ladder and Annexin V-FITC assays. The expression levels of pNF-kB and cell cycle-related genes and proteins in nHDFs were measured using cDNA microarray analyses and Western blot. The cellular uptake of EGCG was examined using fluorescence (FITC)-Iabeled EGCG (FITC-EGCG) in combination with confocal microscopy.Results: The effect of EGCG on the growth of nHDFs depended on the concentration tested. At a low concentration (200 μmol/L), EGCG resulted in a slight decrease in the proportion of ceils in the S and G/M phases of cell cycle with a concomitant increase in the proportion of cells in G/G phase. At the higher doses (400 and 800 pmol/L), apoptosis was induced. The regulation of EGCG on the expression of pNF-kB was also concentration-dependent, whereas it did not affect the unphosphorylated NF-kB expression, cDNA microarray analysis showed that cell cycle-related genes were down-regulated by EGCG (200 μmol/L). The expression of cyclins A/B and cyclin-dependent kinase 1 was reversibly regulated by EGCG (200 μmol/L). FITC-EGCG was found to be internalized into the cyto-plasm and translocated into the nucleus of nHDFs.Conclusion: EGCG, through uptake into cytoplasm, reversibly regulated the cell growth and expression of cell cycle-related proteins and genes in normal fibroblasts.

  15. Effects of furanodiene on 95-D lung cancer cells: apoptosis, autophagy and G1 phase cell cycle arrest.

    Science.gov (United States)

    Xu, Wen-Shan; Li, Ting; Wu, Guo-Sheng; Dang, Yuan-Ye; Hao, Wen-Hui; Chen, Xiu-Ping; Lu, Jin-Jian; Wang, Yi-Tao

    2014-01-01

    Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Herein, we systematically investigated the effects of FUR on the significant processes of tumor progression with the relatively low concentrations in 95-D lung cancer cells. FUR concentration-dependently inhibited cell proliferation and blocked the cell cycle progressions in G1 phase by down-regulating the protein levels of cyclin D1 and CDK6, and up-regulating those of p21 and p27 in 95-D cells. FUR also affected the signaling molecules that regulate apoptosis in 95-D cells revealed by the down-regulation of the protein levels of full PARP, pro-caspase-7, survivin, and Bcl-2, and the up-regulation of cleaved PARP. Further studies showed that FUR enhanced the expression of light chain 3-II (LC3-II) in the protein level, indicating that autophagy is involved in this process. Besides, the adhesion ability of 95-D cells to matrigel and fibronectin was slightly inhibited after FUR treatment for 1 h in our experimental condition. FUR also slightly suppressed cell migration and invasion in 95-D cells according to the data from wound healing and Transwell assays, respectively. Taken together, FUR activated the signal molecules regulating G1 cell cycle arrest, apoptosis and autophagy, while slightly affecting the key steps of cell metastasis in 95-D lung cancer cells in the relatively low concentrations.

  16. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junqiang; Doi, Hiroshi [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Saar, Matthias; Santos, Jennifer [Department of Urology, School of Medicine, Stanford University, Stanford, California (United States); Li, Xuejun; Peehl, Donna M. [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Knox, Susan J., E-mail: sknox@stanford.edu [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States)

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  17. Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation.

    Science.gov (United States)

    Ichihara, Yoshinori; Doi, Toru; Ryu, Youngjae; Nagao, Motoshi; Sawada, Yasuhiro; Ogata, Toru

    2017-05-01

    Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC-rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU-positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate-mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α-cyano-4-hydroxy-cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986-995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  18. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes.

    Science.gov (United States)

    Teixeira, Leonardo K; Carrossini, Nina; Sécca, Cristiane; Kroll, José E; DaCunha, Déborah C; Faget, Douglas V; Carvalho, Lilian D S; de Souza, Sandro J; Viola, João P B

    2016-09-01

    The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.

  19. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  20. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4.

    Science.gov (United States)

    Bancos, Simona; Cao, Qingyu; Bowers, William J; Crispe, Ian Nicholas

    2009-01-01

    The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.

  1. Cross-talk between the circadian clock and the cell cycle in cancer.

    Science.gov (United States)

    Soták, Matúš; Sumová, Alena; Pácha, Jiří

    2014-06-01

    The circadian clock is an endogenous timekeeper system that controls the daily rhythms of a variety of physiological processes. Accumulating evidence indicates that genetic changes or unhealthy lifestyle can lead to a disruption of circadian homeostasis, which is a risk factor for severe dysfunctions and pathologies including cancer. Cell cycle, proliferation, and cell death are closely intertwined with the circadian clock, and thus disruption of circadian rhythms appears to be linked to cancer development and progression. At the molecular level, the cell cycle machinery and the circadian clocks are controlled by similar mechanisms, including feedback loops of genes and protein products that display periodic activation and repression. Here, we review the circadian rhythmicity of genes associated with the cell cycle, proliferation, and apoptosis, and we highlight the potential connection between these processes, the circadian clock, and neoplastic transformations. Understanding these interconnections might have potential implications for the prevention and therapy of malignant diseases.

  2. Reprogramming cells with synthetic proteins

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  3. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy

    Science.gov (United States)

    Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.

    2000-01-01

    Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.

  4. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    Science.gov (United States)

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  5. Circadian gating of the cell cycle revealed in single cyanobacterial cells.

    Science.gov (United States)

    Yang, Qiong; Pando, Bernardo F; Dong, Guogang; Golden, Susan S; van Oudenaarden, Alexander

    2010-03-19

    Although major progress has been made in uncovering the machinery that underlies individual biological clocks, much less is known about how multiple clocks coordinate their oscillations. We simultaneously tracked cell division events and circadian phases of individual cells of the cyanobacterium Synechococcus elongatus and fit the data to a model to determine when cell cycle progression slows as a function of circadian and cell cycle phases. We infer that cell cycle progression in cyanobacteria slows during a specific circadian interval but is uniform across cell cycle phases. Our model is applicable to the quantification of the coupling between biological oscillators in other organisms.

  6. G-proteins and the inositol cycle in Dictyostelium discoideum

    NARCIS (Netherlands)

    Bominaar, Anthony; van der Kaay, Jeroen; Kesbeke, F.; Snaarjagalska, BE.; van Haastert, Peter; MILLIGAN, G; WAKELAM, MJO; KAY, J

    1990-01-01

    The inositol cycle in Dictyostelium disocideum was studied both in vitro and in vivo. The results are compared to the inositol cycle as it is known from higher eukaryotes. Although there is a strong resemblance the cycles are different at some essential points. In comparison to higher eukaryotes, in

  7. STK16 regulates actin dynamics to control Golgi organization and cell cycle

    Science.gov (United States)

    Liu, Juanjuan; Yang, Xingxing; Li, Binhua; Wang, Junjun; Wang, Wenchao; Liu, Jing; Liu, Qingsong; Zhang, Xin

    2017-01-01

    STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression. PMID:28294156

  8. AMPK Causes Cell Cycle Arrest in LKB1-deficient Cells via Activation of CAMKK2

    Science.gov (United States)

    Fogarty, Sarah; Ross, Fiona A.; Ciruelos, Diana Vara; Gray, Alexander; Gowans, Graeme J.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca2+/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 re-expression in these cells causes cell cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca2+ ionophore A23187 caused a G1-arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, CAMKK2 mutant also caused G1-arrest similar to that caused by expression of LKB1, while expression of a dominant negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell cycle arrest can be restored by re-expressing LKB1 or a constitutively active CAMKK2, or by pharmacological agents that increase intracellular Ca2+ and thus activate endogenous CAMKK2. Implications Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. PMID:27141100

  9. Nanosecond pulsed electric fields and the cell cycle

    Science.gov (United States)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  10. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  11. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study

    Science.gov (United States)

    2014-01-01

    Background Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Methods Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The significant differences in protein expression between control and C. cicadae-treated cells were analyzed by two-dimensional gel-based proteomics coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry. Flow cytometry analysis was employed to investigate the cell cycle and cell death. The anticancer molecular mechanism was analyzed by whole proteome mapping. Results The water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) inhibited the growth of MHCC97H cells in a dose-dependent manner via G2/M phase cell cycle arrest with no evidence of apoptosis. Among the identified proteins with upregulated expression were dynactin subunit 2, N-myc downstream-regulated gene 1, heat shock protein beta-1, alpha-enolase isoform 1, phosphatidylinositol transfer protein, and WD repeat-containing protein 1. Meanwhile, the proteins with downregulated expression were 14-3-3 gamma, BUB3, microtubule-associated protein RP/EB family member 1, thioredoxin-like protein, chloride intracellular channel protein 1, ectonucleoside triphosphate diphosphohydrolase 5, xaa-Pro dipeptidase, enoyl-CoA delta isomerase 1, protein-disulfide isomerase-related chaperone Erp29, hnRNP 2H9B, peroxiredoxin 1, WD-40 repeat protein, and serine/threonine kinase receptor-associated protein. Conclusion The water extract of C. cicadae reduced the growth of human hepatocellular carcinoma MHCC97H cells via G2/M cell cycle arrest. PMID:24872842

  12. Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression.

    Science.gov (United States)

    Luo, Xue; Peng, Jian-Ming; Su, Lan-DI; Wang, Dong-Yan; Yu, You-Jiang

    2016-02-01

    Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb Stephania tetrandra S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following treatment with Fan, Cell Counting Kit-8, phase contrast imaging and Giemsa staining assays were used to detect cell viability; flow cytometry was performed to analyze the cell cycle distribution; and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to investigate changes in the expression levels of cell cycle-associated genes and proteins. In the present study, treatment with Fan markedly inhibited the proliferation of SPC-A-1 lung cancer cells and significantly increased the percentage of cells in the G0/G1 phase of the cell cycle in a dose-dependent manner (PSPC-A-1 lung cancer cells and induced cell cycle arrest at the G0/G1 phase. These effects may be mediated by the downregulation of cellular CDK4, CDK6 and cyclin D1 levels, thus leading to hypophosphorylation of Rb and subsequent suppression of E2F-1 activity. Therefore, the present results suggest that Fan may be a potential drug candidate for the prevention of lung cancer.

  13. Sophisticated framework between cell cycle arrest and apoptosis induction based on p53 dynamics.

    Science.gov (United States)

    Hamada, Hiroyuki; Tashima, Yoshihiko; Kisaka, Yu; Iwamoto, Kazunari; Hanai, Taizo; Eguchi, Yukihiro; Okamoto, Masahiro

    2009-01-01

    The tumor suppressor, p53, regulates several gene expressions that are related to the DNA repair protein, cell cycle arrest and apoptosis induction, which activates the implementation of both cell cycle arrest and induction of apoptosis. However, it is not clear how p53 specifically regulates the implementation of these functions. By applying several well-known kinetic mathematical models, we constructed a novel model that described the influence that DNA damage has on the implementation of both the G2/M phase cell cycle arrest and the intrinsic apoptosis induction via its activation of the p53 synthesis process. The model, which consisted of 32 dependent variables and 115 kinetic parameters, was used to examine interference by DNA damage in the implementation of both G2/M phase cell cycle arrest and intrinsic apoptosis induction. A low DNA damage promoted slightly the synthesis of p53, which showed a sigmoidal behavior with time. In contrast, in the case of a high DNA damage, the p53 showed an oscillation behavior with time. Regardless of the DNA damage level, there were delays in the G2/M progression. The intrinsic apoptosis was only induced in situations where grave DNA damage produced an oscillation of p53. In addition, to wreck the equilibrium between Bcl-2 and Bax the induction of apoptosis required an extreme activation of p53 produced by the oscillation dynamics, and was only implemented after the release of the G2/M phase arrest. When the p53 oscillation is observed, there is possibility that the cell implements the apoptosis induction. Moreover, in contrast to the cell cycle arrest system, the apoptosis induction system is responsible for safeguarding the system that suppresses malignant transformations. The results of these experiments will be useful in the future for elucidating of the dominant factors that determine the cell fate such as normal cell cycles, cell cycle arrest and apoptosis.

  14. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  15. Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2.

    Science.gov (United States)

    Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N.  Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells.

  16. Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; WANG Tong-shan; LI Xiao-yu; LI Nan; HUANG Ding-zhi; CHEN Qi; BA Yi

    2007-01-01

    Background Uncontrolled cell division is one of the hallmarks of tumor growth. Researches have been focused on numerous molecules involved in this process. Cyclins are critical regulatory proteins of cell cycle progression and/or transcription. The present study aimed to investigate the anti-proliferative effect of cyclin L2, and to define its growth regulatory mechanisms using human lung adenocarcinoma cell line A549.Methods Human cyclin L2 was transfected into human lung adenocarcinoma cells (A549 cell), and was expressed in a mammalian expression vector pcDNA3.1. The effects and mechanisms of the cyclin L2 in cell growth, cell cycle analysis and apoptosis were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry or Western blot, respectively.Results Overexpression of cyclin L2 inhibited the growth of A549 cells. Cell cycle analysis in cells transfected with pCCNL2 revealed an increment in proportion in G0/G1 phase ((68.07 ± 4.2)%) in contrast to (60.39 ± 2.82)% of the cells transfected with mock vector. Apoptosis occurred in (7.25 ± 0.98)% cells transfected with pCCNL2, as compared with (1.25 ± 0.21)% of the mock vector control group. Cyclin L2-induced-G0/G1 arrest and apoptosis involved upregulation of caspase-3 and downregulation of Bcl-2 and survivin.Conclusion The results indicate that overexpression of cyclin L2 protein may promote efficient growth inhibition of human lung adenocarcinoma cells by inducing G0/G1 cell cycle arrest and apoptosis.

  17. Nanog influences the proliferative ability of HepG2 cells through the modulation of the cell cycle related proteins%Nanog 调控细胞周期相关蛋白影响 HepG2细胞增殖能力

    Institute of Scientific and Technical Information of China (English)

    杨晓文; 于爱清; 杨毅

    2016-01-01

    Objective To study the effect of pluripotency factor Nanog on the expression of the cell cy-cle related proteins,and then to explore its effect on the proliferative ability of HepG 2 cells.Methods TALENs gene editing tool was employed to induce mutation and downregulation expression of Nanog .T7 endonuclease 1 and genomic sequencing was used to analyze the mutation efficiency of Nanog .RT-PCR and western blot were used to determine the expression of mRNA and protein of Nanog ,respectively .Real-time cell based assay system was used to measure the proliferative ability of wild -type HepG2 cells and monoclonal HepG 2 cells with Nanog mutation.Results TALENs successfully induced mutation of Nanog gene .The targeting efficiency of mixed cells was analyzed by T7 endonuclease 1 approached 40%after two transfection with plasmid of Nanog -TALENs.Ad-ditionally,the Nanog mRNA expression level of monoclonal HepG 2 with Nanog mutation was downregulated by 3.4 times compared to the wild type HepG 2 cells,and the Nanog protein expression level was downregulated by 3.6 times.The cell cycle related proteins CyclinD1/D3,CyclinE1 and CDK2 expression were downregulated in monoclonal HepG2 with Nanog mutation in comparison to the wild type HepG 2 cells.Conclusion Nanog plays a role in influencing the proliferative ability of HepG 2 cells through modulating the expression of the cell cycle re-lated proteins CyclinD1/D3,CyclinE1 and CDK2.The downregulation expression of Nanog can inhibit the prolif-erative capacity of HepG 2 cells via the regulation of the cell cycle related proteins .%目的:研究多能性因子Nanog 对HepG2细胞周期相关蛋白表达的影响,进而探索其对HepG2细胞增殖能力的影响。方法本研究通过基因编辑工具TALENs介导Nanog突变而下调其表达, T7E1内切核酸酶和基因测序分析Nanog突变率,Western blot 检测Nanog蛋白表达水平,RT-PCR检测Nanog mRNA表达水平,实时细胞活性检

  18. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    Science.gov (United States)

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  19. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  20. Cycle life characteristics of Li-TiS2 cells

    Science.gov (United States)

    Deligiannis, Frank; Shen, D.; Huang, C. K.; Surampudi, S.

    1991-01-01

    The development of lithium ambient temperature rechargeable cells is discussed. During the development process, we hope to gain a greater understanding of the materials and the properties of the Li-TiS2 cell and its components. The design will meet the requirements of 100 Wh/Kg and 1000 cycles, at 50 percent depth-of-discharge, by 1995.

  1. An intrinsically disordered protein, CP12: jack of all trades and master of the Calvin cycle.

    Science.gov (United States)

    Gontero, Brigitte; Maberly, Stephen C

    2012-10-01

    Many proteins contain disordered regions under physiological conditions and lack specific three-dimensional structure. These are referred to as IDPs (intrinsically disordered proteins). CP12 is a chloroplast protein of approximately 80 amino acids and has a molecular mass of approximately 8.2-8.5 kDa. It is enriched in charged amino acids and has a small number of hydrophobic residues. It has a high proportion of disorder-promoting residues, but has at least two (often four) cysteine residues forming one (or two) disulfide bridge(s) under oxidizing conditions that confers some order. However, CP12 behaves like an IDP. It appears to be universally distributed in oxygenic photosynthetic organisms and has recently been detected in a cyanophage. The best studied role of CP12 is its regulation of the Calvin cycle responsible for CO2 assimilation. Oxidized CP12 forms a supramolecular complex with two key Calvin cycle enzymes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and PRK (phosphoribulokinase), down-regulating their activity. Association-dissociation of this complex, induced by the redox state of CP12, allows the Calvin cycle to be inactive in the dark and active in the light. CP12 is promiscuous and interacts with other enzymes such as aldolase and malate dehydrogenase. It also plays other roles in plant metabolism such as protecting GAPDH from inactivation and scavenging metal ions such as copper and nickel, and it is also linked to stress responses. Thus CP12 seems to be involved in many functions in photosynthetic cells and behaves like a jack of all trades as well as being a master of the Calvin cycle.

  2. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  3. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells.

    Science.gov (United States)

    Geisen, Ulf; Zenthoefer, Marion; Peipp, Matthias; Kerber, Jannik; Plenge, Johannes; Managò, Antonella; Fuhrmann, Markus; Geyer, Roland; Hennig, Steffen; Adam, Dieter; Piker, Levent; Rimbach, Gerald; Kalthoff, Holger

    2015-07-20

    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  4. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells.

    Science.gov (United States)

    Chilampalli, Chandeshwari; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Chandrasekher, Gudiseva; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-11-01

    Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly (P Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.

  5. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis.

  6. Effects of ultraviolet irradiation on the cell cycle.

    Science.gov (United States)

    Bolognia, J L; Sodi, S A; Chakraborty, A K; Fargnoli, M C; Pawelek, J M

    1994-10-01

    Cultured mouse Cloudman melanoma cells, EMT6 breast carcinoma cells, and 3T3 fibroblasts all accumulated in the G2/M phase of the cell cycle when exposed to UVB radiation. The effects of UVB were maximal at 20-30 mJ/cm2 for all three cell lines, and could be observed by flow cytometry as early as 12 hr post irradiation. It has been known since the mid-1970s that MSH receptor binding activity is highest on Cloudman melanoma cells when they are in the G2/M phase of their cycle. Here we show that either UVB irradiation or synchronization of Cloudman cells with colchicine results in a stimulation of MSH binding within 24 hr following treatment, a time when both treatments have resulted in accumulation of cells in the G2/M phase of the cycle. Furthermore, the two treatments performed together on the melanoma cells stimulated MSH receptor activity to the same extent as either treatment performed separately, suggesting that each may be influencing MSH receptor activity solely through a G2/M accumulation of cells. Together, these results raise the possibility that an increase in the number of cells in the G2 phase of the cell cycle is a generalized cellular response to injury, such as UV irradiation. However, in the case of pigment cells this response includes a mechanism for increasing melanin formation, i.e., increased MSH receptor activity. Should this be the case, similar G2/M "injury responses" of other cell types might be expected, consistent with their differentiated phenotypes.

  7. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  8. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    Science.gov (United States)

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  9. Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells.

    Directory of Open Access Journals (Sweden)

    Sandra N Schlick

    Full Text Available Epstein-Barr virus (EBV is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III. The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15, is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.

  10. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus

    2007-01-01

    .org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles...

  11. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    Science.gov (United States)

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  12. Evaluation of genistein ability to modulate CTGF mRNA/protein expression, genes expression of TGFβ isoforms and expression of selected genes regulating cell cycle in keloid fibroblasts in vitro.

    Science.gov (United States)

    Jurzak, Magdalena; Adamczyk, Katarzyna; Antończak, Paweł; Garncarczyk, Agnieszka; Kuśmierz, Dariusz; Latocha, Małgorzata

    2014-01-01

    Keloids are characterized by overgrowth of connective tissue in the skin that arises as a consequence of abnormal wound healing. Normal wound healing is regulated by a complex set of interactions within a network of profibrotic and antifibrotic cytokines that regulate new extracellular matrix (ECM) synthesis and remodeling. These proteins include transforming growth factor β (TGFβ) isoforms and connective tissue growth factor (CTGF). TGFβ1 stimulates fibroblasts to synthesize and contract ECM and acts as a central mediator of profibrotic response. CTGF is induced by TGFβ1 and is considered a downstream mediator of TGFβ1action in fibroblasts. CTGF plays a crucial role in keloid pathogenesis by promoting prolonged collagen synthesis and deposition and as a consequence sustained fibrotic response. During keloids formation, besides imbalanced ECM synthesis and degradation, fibroblast proliferation and it's resistance to apoptosis is observed. Key genes that may play a role in keloid formation and growth involve: suppressor gene p53.,cyclin-depend- ent kinase inhibitor CDKN1A (p21) and BCL2 family genes: antiapoptotic BCL-2 and proapoptotic BAX. Genistein (4',5,7-trihydroxyisoflavone) exhibits multidirectional biological action. The concentration of genistein is relatively high in soybean. Genistein has been shown as effective antioxidant and chemopreventive agent. Genistein can bind to estrogen receptors (ERs) and modulate estrogen action due to its structure similarity to human estrogens. Genistein also inhibits transcription factors NFκB. Akt and AP-l signaling pathways, that are important for cytokines expression and cell proliferation, differentiation, survival and apoptosis. The aim of the study was to investigate genistein as a potential inhibitor of CTGF and TGFβ1, β2 and β3 isoforms expression and a potential regulator of p53. CDKN1A(p21), BAX and BCL-2 expression in normal fibroblasts and fibroblasts derived from keloids cultured in vitro. Real time

  13. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.

    Science.gov (United States)

    Hsieh, Yi-Hsien; Lee, Chien-Hsing; Chen, Hsiao-Yun; Hsieh, Shu-Ching; Lin, Chia-Liang; Tsai, Jen-Pi

    2015-09-01

    Nimbolide is a tetranortriterpenoid isolated from the leaves and flowers of Azadirachta indica which has been shown to exhibit anticancer, antioxidant, anti-inflammatory, and anti-invasive properties in a variety of cancer cells. However, the anti-tumor effect on human renal cell carcinoma (RCC) cells is unknown. In this study, we found that nimbolide treatment had a cytotoxic effect on 786-O and A-498 RCC cells in a dose-dependent manner. According to flow cytometric analysis, nimbolide treatment resulted in G2/M arrest in 786-O and A-498 cells accompanied with an increase in the phosphorylation status of p53, cdc2, cdc25c, and decreased expressions of cyclin A, cyclin B, cdc2, and cdc25c. Nimbolide also caused DNA damage in a dose-dependent manner as determined by comet assay and measurement of γ-H2AX. In addition, apoptotic cells were observed in an Annexin V-FITC/propidium iodide double-stained assay. The activities of caspase-3, -9, and poly ADP-ribose polymerase (PARP) were increased, and the expression of pro-caspase-8 was decreased in nimbolide-treated 786-O and A-498 cells. Western blot analysis revealed that the levels of intrinsic-related apoptotic proteins Bax and extrinsic-related proteins (DR5, CHOP) were significantly increased in nimbolide-treated 786-O and A-498 cells. In addition, the expressions of Bcl-2 and Mcl-1 were decreased in 786-O and A-498 cells after nimbolide treatment. We conclude that nimbolide can inhibit the growth of human RCC cells by inducing G2/M phase arrest by modulating cell cycle-related proteins and cell apoptosis by regulating intrinsic and extrinsic caspase signaling pathways. Nimbolide may be a promising therapeutic strategy for the treatment of RCC.

  14. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling.

    Science.gov (United States)

    Bae, Yong Ho; Mui, Keeley L; Hsu, Bernadette Y; Liu, Shu-Lin; Cretu, Alexandra; Razinia, Ziba; Xu, Tina; Puré, Ellen; Assoian, Richard K

    2014-06-17

    Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.

  15. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  16. Residual on column host cell protein analysis during lifetime studies of protein A chromatography.

    Science.gov (United States)

    Lintern, Katherine; Pathak, Mili; Smales, C Mark; Howland, Kevin; Rathore, Anurag; Bracewell, Daniel G

    2016-08-26

    Capacity reduction in protein A affinity chromatography with extended cycling during therapeutic antibody manufacture is well documented. Identification of which residual proteins remain from previous cycles during the lifetime of these adsorbent materials is required to understand their role in this ageing process, but represents a significant metrological challenge. Scanning electron microscopy (SEM) and liquid chromatography mass spectrometry (LC-MS/MS) are combined to detect and map this phenomenon of protein carry-over. We show that there is a morphological change at the surface of the agarose resin, revealing deposits on the polymer fibres increasing with cycle number. The amount of residual host cell proteins (HCPs) by LC-MS/MS present on the resin is shown to increase 10-fold between 50 and 100 cycles. During this same period the functional class of the predominant HCPs associated with the resin increased in diversity, with number of proteins identified increasing 5-fold. This ageing is observed in the context of the product quality of the eluate HCP and protein A leachate concentration remaining constant with cycle number.

  17. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone.

    Science.gov (United States)

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Singh, Keshav K; Soares, Paula; Videira, Arnaldo

    2011-03-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppressor p53 is involved in rotenone-induced cell death, since the drug treatment results in increased expression, phosphorylation and nuclear localization of the protein. The evaluation of the effects of rotenone on a p53-deficient cell line revealed that although not required for the promotion of mitotic catastrophe, functional p53 appears to be essential for the extensive cell death that occurs afterwards. Our results suggest that mitotic slippage also occurs subsequently to the rotenone-induced mitotic arrest and cells treated with the drug for a longer period become senescent. Treatment of mtDNA-depleted cells with rotenone induces cell death and cell cycle arrest as in cells containing wild-type mtDNA, but not formation of reactive oxygen species. This suggests that the effects of rotenone are not dependent from the production of reactive oxygen species. This work highlights the multiple effects of rotenone in cancer cells related to its action as an anti-mitotic drug.

  18. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  19. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  20. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    Science.gov (United States)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.