WorldWideScience

Sample records for cell cycle dysfunction

  1. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  2. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  3. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Sé Verine; Bourge, Mickaë l; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cé cile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles

  4. Erectile dysfunction and amatorial cycling.

    Science.gov (United States)

    Colpi, Giovanni Maria; Contalbi, Gianfranco; Ciociola, E; Mihalca, Radu

    2008-09-01

    Today cycling is considered a useful form of exercise for reducing cardiovascular risk, but it may also represent a risk factor for erectile dysfunction and perineal-genital paresthesia. These disorders are attributed to the local reduction of oxygen in the perineal-genital area, secondary to the perineal compression. Numerous studies have been carried out measuring the penile oxygen pressure or penile blood flow by echo-colour-Doppler: a reduced inflow of blood and oxygen to the cavernous tissue was demonstrated. The attention of the specialist is therefore concentrated on the compression of the perineum on the bicycle saddle and how to reduce this through the position of the cyclist on the bicycle (i.e. height and tilt of the saddle), the different shapes of saddle available (i.e. noseless, grooved, wide, etc.) and the padding materials of the saddle. In order to reduce perineal compression, the posterior part of the saddle should be as wide as the distance between the two ischiatic tuberosities. In addition, the saddle should be studied on the basis of the biotype of the cyclist: ectomorphic, mesomorphic or endomorphic. However, in the genesis of the erectile dysfunction of the cyclist, apart from the above-mentioned factors, an "individual predisposition to developing erectile dysfunction" linked to the perineal-genital anatomy (i.e. type of insertion of the perineum into the root of the penis, number of layers of the tunica albuginea of the corpus cavernosum) cannot be excluded.

  5. Multiparameter Cell Cycle Analysis.

    Science.gov (United States)

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  6. Stem Cell Therapy for Erectile Dysfunction.

    Science.gov (United States)

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  7. Kidney dysfunction after allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Kersting, S.

    2008-01-01

    Allogeneic stem cell transplantation (SCT) is a widely accepted approach for malignant and nonmalignant hematopoietic diseases. Unfortunately complications can occur because of the treatment, leading to treatment-related mortality. We studied kidney dysfunction after allogeneic SCT in 2 cohorts of

  8. Lipotoxicity, β cell dysfunction, and gestational diabetes.

    Science.gov (United States)

    Nolan, Christopher J

    2014-04-01

    Gestational diabetes (GDM) is caused by failure of islet β cells to meet the increased insulin requirements of pregnancy. Recently, Prentice et al. (2014) discovered a 7-fold elevation of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanopropanoic acid (CMPF) in plasma of women with GDM and showed that CMPF directly induces β cell dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Erectile Dysfunction in patients with Sickle Cell Anaemia | Ibidapo ...

    African Journals Online (AJOL)

    Erectile Dysfunction in patients with Sickle Cell Anaemia. ... leading to an increased haemolysis as well as vaso-occlusive complications including ... bone pain crises, blood transfusion (over a 3 year period) as well as erectile dysfunction.

  10. Cell Cycle Control by PTEN.

    Science.gov (United States)

    Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H

    2017-07-21

    Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  12. Occupational cycling is a risk factor for erectile dysfunction in east ...

    African Journals Online (AJOL)

    Logistic regression indicated that the odds of reporting Erectile Dysfunction were 9.1 (95% CI: 5.4-15.5) times higher in cyclists compared to noncyclists controls. Conclusion: In East Africa, occupational cycling is associated with lower International Index of Erectile Function scores and higher rates of Erectile Dysfunction.

  13. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte...... Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  14. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  15. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells.

    Science.gov (United States)

    Wang, Jie; Wang, Yaofeng; Shen, Lili; Qian, Yumei; Yang, Jinguang; Wang, Fenglong

    2017-04-01

    Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H 2 O 2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H 2 DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD. Copyright © 2016. Published by Elsevier Inc.

  16. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    Science.gov (United States)

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  17. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  18. Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer.

    Science.gov (United States)

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders; Lauritsen, Jakob; Gundgaard Kier, Maria Gry; Mortensen, Mette Saksø; Daugaard, Gedske

    2017-02-01

    Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. We evaluated luteinizing hormone (LH), total testosterone (TT), calculated free T (cFT), estradiol, and sex hormone-binding globulin (SHBG) preorchiectomy in 561 patients with TGCC and compared with 561 healthy controls. We calculated TT/LH and cFT/LH ratios and constructed bivariate charts of TT/LH and cFT/LH from the controls. Logistic regression analysis with an abnormal cFT/LH ratio as outcome and clinical stage, tumor size, age, histology, presence of contralateral germ cell neoplasia in situ (GCNIS), and bilateral tumors as covariates was performed. In patients who were negative for human chorionic gonadotropin (hCG) (n = 374), TT (P = .004), cFT (P < .001), TT/LH ratio (P = .003), and cFT/LH ratio (P = .002) were lower than in controls. A total of 95 (25%) and 91 (24%) of hCG-negative patients had abnormal values when using combined evaluation of TT/LH and cFT/LH, respectively. Increasing tumor size, contralateral GCNIS, and increasing age were associated with Leydig cell dysfunction. In patients positive for hCG (n = 187), all reproductive hormones except SHBG were different from controls (P < .001). Patients with TGCC are at increased risk of Leydig cell dysfunction before orchiectomy. Contralateral GCNIS, increasing age, and increasing tumor size are associated with Leydig cell dysfunction. We hypothesize that patients with preexisting Leydig cell dysfunction are at increased risk of testosterone deficiency following treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Science.gov (United States)

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  20. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  1. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  2. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    Science.gov (United States)

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-11-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.

  3. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  4. The Outward Spiral: A vicious cycle model of obesity and cognitive dysfunction.

    Science.gov (United States)

    Hargrave, Sara L; Jones, Sabrina; Davidson, Terry L

    2016-06-01

    Chronic failure to suppress intake during states of positive energy balance leads to weight gain and obesity. The ability to use context - including interoceptive satiety states - to inhibit responding to previously rewarded cues appears to depend on the functional integrity of the hippocampus. Recent evidence implicates energy dense Western diets in several types of hippocampal dysfunction, including reduced expression of neurotrophins and nutrient transporters, increased inflammation, microglial activation, and blood brain barrier permeability. The functional consequences of such insults include impairments in an animal's ability to modulate responding to a previously reinforced cues. We propose that such deficits promote overeating, which can further exacerbate hippocampal dysfunction and thus initiate a vicious cycle of both obesity and progressive cognitive decline.

  5. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  6. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery.

    Science.gov (United States)

    Angka, Leonard; Khan, Sarwat T; Kilgour, Marisa K; Xu, Rebecca; Kennedy, Michael A; Auer, Rebecca C

    2017-08-17

    The physiological changes that occur immediately following cancer surgeries initiate a chain of events that ultimately result in a short pro-, followed by a prolonged anti-, inflammatory period. Natural Killer (NK) cells are severely affected during this period in the recovering cancer patient. NK cells play a crucial role in anti-tumour immunity because of their innate ability to differentiate between malignant versus normal cells. Therefore, an opportunity arises in the aftermath of cancer surgery for residual cancer cells, including distant metastases, to gain a foothold in the absence of NK cell surveillance. Here, we describe the post-operative environment and how the release of sympathetic stress-related factors (e.g., cortisol, prostaglandins, catecholamines), anti-inflammatory cytokines (e.g., IL-6, TGF-β), and myeloid derived suppressor cells, mediate NK cell dysfunction. A snapshot of current and recently completed clinical trials specifically addressing NK cell dysfunction post-surgery is also discussed. In collecting and summarizing results from these different aspects of the surgical stress response, a comprehensive view of the NK cell suppressive effects of surgery is presented. Peri-operative therapies to mitigate NK cell suppression in the post-operative period could improve curative outcomes following cancer surgery.

  7. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  8. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death.

    Science.gov (United States)

    Landry, Greg M; Dunning, Cody L; Conrad, Taylor; Hitt, Mallory J; McMartin, Kenneth E

    2013-08-29

    Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer

    DEFF Research Database (Denmark)

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders

    2017-01-01

    BACKGROUND: Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. PATIENTS...... AND METHODS: We evaluated luteinizing hormone (LH), total testosterone (TT), calculated free T (cFT), estradiol, and sex hormone-binding globulin (SHBG) preorchiectomy in 561 patients with TGCC and compared with 561 healthy controls. We calculated TT/LH and cFT/LH ratios and constructed bivariate charts of TT...

  10. Lactobacillus Decelerates Cervical Epithelial Cell Cycle Progression

    Science.gov (United States)

    Vielfort, Katarina; Weyler, Linda; Söderholm, Niklas; Engelbrecht, Mattias; Löfmark, Sonja; Aro, Helena

    2013-01-01

    We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells. PMID:23675492

  11. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  12. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  13. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  14. Regulation of cell cycle progression by cell-cell and cell-matrix forces

    NARCIS (Netherlands)

    Uroz, Marina; Wistorf, Sabrina; Serra-Picamal, Xavier; Conte, Vito; Sales-Pardo, Marta; Roca-Cusachs, Pere; Guimerà, Roger; Trepat, Xavier

    2018-01-01

    It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces 1-12 . However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression

  15. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Hiroshi, Fujishima; Kazuo, Tsubota

    1996-01-01

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  16. Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

    Science.gov (United States)

    Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.

    2018-01-01

    The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160

  17. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Science.gov (United States)

    Kowalewski, Ashley A.; Randall, R. Lor; Lessnick, Stephen L.

    2011-01-01

    Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22)(q24;q12). This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered. PMID:21052502

  18. Cell Cycle Deregulation in Ewing's Sarcoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Ashley A. Kowalewski

    2011-01-01

    Full Text Available Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22(q24;q12. This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.

  19. Regulation of the cell cycle by irradiation

    International Nuclear Information System (INIS)

    Akashi, Makoto

    1995-01-01

    The molecular mechanism of cell proliferation is extremely complex; deregulation results in neoplastic transformation. In eukaryotes, proliferation of cells is finely regulated through the cell cycle. Studies have shown that the cell cycle is regulated by s series of enzymes known as cyclin-dependent kinases (CDKs). The activities of CDKs are controlled by their association with regulatory subunits, cyclins; the expression of cyclins and the activation of the different cyclin-CDK complexes are required for the cell to cycle. Thus, the cell cycle is regulated by activating and inhibiting phosphorylation of the CDK subunits and this program has internal check points at different stages of the cell cycle. When cells are exposed to external insults such as DNA damaging agents, negative regulation of the cell cycle occurs; arrest in either G1 or G2 stage is induced to prevent the cells from prematurely entering into the next stage before DNA is repaired. Recently, a potent inhibitor of CDKs, which inhibits the phosphorylation of retinoblastoma susceptibility (Rb) gene product by cyclin A-CDK2, cyclin E-CDK2, cyclin D1-CDK4, and cyclin D2-CDK4 complexes has been identified. This protein named WAF1, Sdi1, Cip1, or p21 (a protein of Mr 21,000) contains a p53-binding site in its promoter and studies have reported that the expression of WAF1 was directly regulated by p53; cells with loss of p53 activity due to mutational alteration were unable to induce WAF1. This chapter will be focused on the mechanisms of the cell cycle including inhibitors of CDKs, and the induction of WAF1 by irradiation through a pathway independent of p53 will be also described. (author)

  20. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells.

    Science.gov (United States)

    Jeong, Moon Hee; Kim, Jin Hwan; Seo, Kang-Sik; Kwak, Tae Hwan; Park, Woo Jin

    2014-11-21

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  2. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells.

    OpenAIRE

    Andreassen, P R; Margolis, R L

    1992-01-01

    BHK cells blocked at any of several points in the cell cycle override their drug-induced arrest and proceed in the cycle when exposed concurrently to the protein kinase inhibitor 2-aminopurine (2-AP). For cells arrested at various points in interphase, 2-AP-induced cell cycle progression is made evident by arrival of the drug-treated cell population in mitosis. Cells that have escaped from mimosine G1 arrest, from hydroxyurea or aphidicolin S-phase arrest, or from VM-26-induced G2 arrest subs...

  3. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    Science.gov (United States)

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  4. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  5. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    Science.gov (United States)

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  6. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  7. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  8. A nuclear glutathione cycle within the cell cycle.

    Science.gov (United States)

    Diaz Vivancos, Pedro; Wolff, Tonja; Markovic, Jelena; Pallardó, Federico V; Foyer, Christine H

    2010-10-15

    The complex antioxidant network of plant and animal cells has the thiol tripeptide GSH at its centre to buffer ROS (reactive oxygen species) and facilitate cellular redox signalling which controls growth, development and defence. GSH is found in nearly every compartment of the cell, including the nucleus. Transport between the different intracellular compartments is pivotal to the regulation of cell proliferation. GSH co-localizes with nuclear DNA at the early stages of proliferation in plant and animal cells. Moreover, GSH recruitment and sequestration in the nucleus during the G1- and S-phases of the cell cycle has a profound impact on cellular redox homoeostasis and on gene expression. For example, the abundance of transcripts encoding stress and defence proteins is decreased when GSH is sequestered in the nucleus. The functions of GSHn (nuclear GSH) are considered in the present review in the context of whole-cell redox homoeostasis and signalling, as well as potential mechanisms for GSH transport into the nucleus. We also discuss the possible role of GSHn as a regulator of nuclear proteins such as histones and PARP [poly(ADP-ribose) polymerase] that control genetic and epigenetic events. In this way, a high level of GSH in the nucleus may not only have an immediate effect on gene expression patterns, but also contribute to how cells retain a memory of the cellular redox environment that is transferred through generations.

  9. Foodborne cereulide causes beta-cell dysfunction and apoptosis.

    Directory of Open Access Journals (Sweden)

    Roman Vangoitsenhoven

    Full Text Available To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6 and rat (INS-1E beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1. Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS. Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05. Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05 and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein. Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05 and reactive oxygen species increased by more than twofold (P<0.05 following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.

  10. Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Benjamin Wiench

    2012-01-01

    Full Text Available Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca2+ and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.

  11. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  12. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.

    Science.gov (United States)

    Desideri, Enrico; Vegliante, Rolando; Ciriolo, Maria Rosa

    2015-01-28

    The tricarboxylic acid (TCA) cycle is a central route for oxidative metabolism. Besides being responsible for the production of NADH and FADH2, which fuel the mitochondrial electron transport chain to generate ATP, the TCA cycle is also a robust source of metabolic intermediates required for anabolic reactions. This is particularly important for highly proliferating cells, like tumour cells, which require a continuous supply of precursors for the synthesis of lipids, proteins and nucleic acids. A number of mutations among the TCA cycle enzymes have been discovered and their association with some tumour types has been established. In this review we summarise the current knowledge regarding alterations of the TCA cycle in tumours, with particular attention to the three germline mutations of the enzymes succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase, which are involved in the pathogenesis of tumours, and to the aberrant regulation of TCA cycle components that are under the control of oncogenes and tumour suppressors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Cell cycle kinetics and radiation therapy

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1975-01-01

    Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation

  15. Cell Cycle Inhibition To Treat Sleeping Sickness

    Directory of Open Access Journals (Sweden)

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  16. Cell-cycle phase specificity of chloroethylnitrosoureas

    International Nuclear Information System (INIS)

    Linfoot, P.A.

    1986-01-01

    Although the cancer chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is considered a non-cell cycle phase specific drug, it has been shown to produce differential cell killing in G 1 , S, and G 2 /M phase cells, with S phase cells appearing relatively resistant. Studies of cell cycle phase specific cell killing produced by nitrosoureas with different chemical reactivities, clearly indicated that the ability of compounds to cross-link DNA was important in determining their phase specificity. Cells that lacked guanine O 6 -alkytransferase activity showed similar patterns of BCNU phase specificity regardless of their intrinsic sensitivity to BCNU. DNA inter-strand cross-linking, as measured by alkaline elution, was similar in cells exposed to BCNU in G 1 or S phase. 3 H [1-chloroethyl-1nitrosourea] binding to DNA was the same in G 1 , S and G 2 /M phase cells indicating that phase-specific differences in drug uptake and intracellular drug dose were not responsible for phase specific cell kill. These studies suggest that cross-link lesions, other than DNA inter-strand cross-links, and/or effects on DNA repair, other than guanine O 6 -alkyltransferase, are additional important determinants of BCNU phase specific cell killing

  17. Control points within the cell cycle

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures

  18. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    International Nuclear Information System (INIS)

    Su, Miaoxian; Chung, Hau Yin; Li, Yaolan

    2011-01-01

    Highlights: → Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. → ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. → ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. → ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential (ΔΨm), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  19. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Miaoxian [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Chung, Hau Yin, E-mail: anthonychung@cuhk.edu.hk [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Li, Yaolan [Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou (China); Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Guangzhou (China)

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  20. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  1. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  2. Membrane dysfunction in Andersen-Tawil syndrome assessed by velocity recovery cycles.

    Science.gov (United States)

    Tan, S Veronica; Z'graggen, Werner J; Boërio, Delphine; Rayan, Dipa L Raja; Howard, Robin; Hanna, Michael G; Bostock, Hugh

    2012-08-01

    Andersen-Tawil syndrome (ATS) due to Kir2.1mutations typically manifests as periodic paralysis, cardiac arrhythmias and developmental abnormalities but is often difficult to diagnose clinically. This study was undertaken to determine whether sarcolemmal dysfunction could be identified with muscle velocity recovery cycles (MVRCs). Eleven genetically confirmed ATS patients and 20 normal controls were studied. MVRCs were recorded with 1, 2, and 5 conditioning stimuli and with single conditioning stimuli during intermittent repetitive stimulation at 20 Hz, in addition to the long exercise test. ATS patients had longer relative refractory periods (P < 0.0001) and less early supernormality, consistent with membrane depolarization. Patients had reduced enhancement of late supernormality with 5 conditioning stimuli (P < 0.0001), and less latency reduction during repetitive stimulation (P < 0.001). Patients were separated completely from controls by combining MVRC and repetitive stimulation. MVRCs combined with repetitive stimulation differentiated ATS patients from controls more effectively than the conventional long-exercise test. Copyright © 2012 Wiley Periodicals, Inc.

  3. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  4. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  5. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  6. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  7. Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chang-Jie

    2010-10-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC still is a big burden for China. In recent years, the third-generation platinum compounds have been proposed as potential active agents for HCC. However, more experimental and clinical data are warranted to support the proposal. In the present study, the effect of lobaplatin was assessed in five HCC cell lines and the underlying molecular mechanisms in terms of cell cycle kinetics were explored. Methods Cytotoxicity of lobaplatin to human HCC cell lines was examined using MTT cell proliferation assay. Cell cycle distribution was determined by flow cytometry. Expression of cell cycle-regulated genes was examined at both the mRNA (RT-PCR and protein (Western blot levels. The phosphorylation status of cyclin-dependent kinases (CDKs and retinoblastoma (Rb protein was also examined using Western blot analysis. Results Lobaplatin inhibited proliferation of human HCC cells in a dose-dependent manner. For the most sensitive SMMC-7721 cells, lobaplatin arrested cell cycle progression in G1 and G2/M phases time-dependently which might be associated with the down-regulation of cyclin B, CDK1, CDC25C, phosphorylated CDK1 (pCDK1, pCDK4, Rb, E2F, and pRb, and the up-regulation of p53, p21, and p27. Conclusion Cytotoxicity of lobaplatin in human HCC cells might be due to its ability to arrest cell cycle progression which would contribute to the potential use of lobaplatin for the management of HCC.

  8. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    International Nuclear Information System (INIS)

    Fraser, I.S.; McCarron, G.; Hutton, B.; Macey, D.

    1987-01-01

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates

  9. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, I.S.; McCarron, G.; Hutton, B.; Macey, D.

    1987-01-01

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates.

  10. Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis.

    Science.gov (United States)

    Kunwar, A; Jayakumar, S; Srivastava, A K; Priyadarsini, K I

    2012-04-01

    The factors responsible for the induction of cell death by dimethoxycurcumin (Dimc), a synthetic analog of curcumin, were assessed in human breast carcinoma MCF7 cells. Initial cytotoxic studies with both curcumin and Dimc using MTT assay indicated their comparable effects. Further, the mechanism of action was explored in terms of oxidative stress, mitochondrial dysfunction, and modulation in the expression of proteins involved in cell cycle regulation and apoptosis. Dimc (5-50 μM) caused generation of reactive oxygen species, reduction in glutathione level, and induction of DNA damage. The mitochondrial dysfunction induced by Dimc was evidenced by the reduction in mitochondrial membrane potential and decrease in cellular energy status (ATP/ADP) monitored by HPLC analysis. The observed decrease in ATP was also supported by the significant suppression of different (α, β, γ, and ε) subunits of ATP synthase. The cytotoxic effect of Dimc was further characterized in terms of induction of S-phase cell cycle arrest and apoptosis, and their relative contribution was found to vary with the treatment concentration of Dimc. The S-phase arrest and apoptosis could also be correlated with the changes in the expressions of cell cycle proteins like p53, p21, CDK4, and cyclin-D1 and apoptotic markers like Bax and Bcl-2. Overall, the results demonstrated that Dimc induced cell death in MCF7 cells through S-phase arrest and apoptosis.

  11. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway.

    Directory of Open Access Journals (Sweden)

    Itay Israel Shemesh

    Full Text Available Diabetic nephropathy (DN is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn't decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rpS6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.

  12. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  13. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    Science.gov (United States)

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Su, Chen-Ming; Wang, Shih-Wei; Lee, Tzong-Huei; Tzeng, Wen-Pei; Hsiao, Che-Jen; Liu, Shih-Chia; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  15. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  16. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  17. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  18. Leydig cell dysfunction, systemic inflammation and metabolic syndrome in long-term testicular cancer survivors.

    Science.gov (United States)

    Bandak, M; Jørgensen, N; Juul, A; Lauritsen, J; Oturai, P S; Mortensen, J; Hojman, P; Helge, J W; Daugaard, G

    2017-10-01

    Twenty to thirty percent of testicular cancer (TC) survivors have elevated serum levels of luteinising hormone (LH) with or without corresponding low testosterone levels (Leydig cell dysfunction) during clinical follow-up for TC. However, it remains to be clarified if this subgroup of TC survivors has an increased long-term risk of systemic inflammation and metabolic syndrome (MetS) when compared with TC survivors with normal Leydig cell function during follow-up. TC survivors with Leydig cell dysfunction and a control group of TC survivors with normal Leydig cell function during follow-up were eligible for participation in the study. Markers of systemic inflammation and prevalence of MetS were compared between TC survivors with Leydig cell dysfunction and the control group. Of 158 included TC survivors, 28 (18%) had uncompensated Leydig cell dysfunction, 59 (37%) had compensated Leydig cell dysfunction and 71 (45%) had normal Leydig cell function during follow-up. MetS and markers of systemic inflammation were evaluated at a median follow-up of 9.7 years (interquartile range 4.1-17.1) after TC treatment. The prevalence of MetS was significantly lower among patients with compensated Leydig cell dysfunction during follow-up (12% versus 27%, p = 0.04), whereas there was no difference between TC survivors with uncompensated Leydig cell dysfunction and controls (33% versus 27%, p = 0.5). Apart from high-sensitivity C-reactive protein which was higher in TC survivors with uncompensated Leydig cell dysfunction during follow-up, there was no evidence of increased systemic inflammation in patients with Leydig cell dysfunction during clinical follow-up. Total testosterone at follow-up was significantly associated with MetS, whereas there was no association between LH and MetS. We did not find evidence that TC survivors with Leydig cell dysfunction during clinical follow-up had increased long-term risk of MetS. Total testosterone at follow-up was significantly associated

  19. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  20. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  1. Interlink between cholesterol & cell cycle in prostate carcinoma

    Directory of Open Access Journals (Sweden)

    Govind Singh

    2017-01-01

    Interpretation & conclusions: The present findings along with increased expression of cell cycle protein cyclin E in the cell nucleus of the tumour tissue suggested the possibility of an intriguing role of cholesterol in the mechanism of cell cycle process of prostate cell proliferation.

  2. Preventing surgery-induced NK cell dysfunction and cancer metastases with influenza vaccination

    Science.gov (United States)

    Tai, Lee-Hwa; Zhang, Jiqing; Auer, Rebecca C

    2013-01-01

    Surgical resection is the mainstay of treatment for solid tumors, but the postoperative period is uniquely inclined to the formation of metastases, largely due to the suppression of natural killer (NK) cells. We found that preoperative influenza vaccination prevents postoperative NK-cell dysfunction, attenuating tumor dissemination in murine models and promoting the activation of NK cells in cancer patients. PMID:24404430

  3. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  4. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    Jung, T.

    2000-01-01

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.) [de

  5. Single Cell Dissection of Human Pancreatic Islet Dysfunction in Diabetes

    Science.gov (United States)

    2017-06-01

    of memory T cells , innate cells and the differentiation potential of naive T cells during ME/CFS; and 3) To determine the T cell and innate cell ...apoptosis and the innate immune response in human pancreatic β- cells . Diabetes 64: 3808–3817. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir...interactive nature of CellView aids in cell doublet identification. In the PBMC data, ‘Subcluster-analysis’ reveals a mixture of lymphoid and myeloid

  6. Cell cycle control by the thyroid hormone in neuroblastoma cells

    International Nuclear Information System (INIS)

    Garcia-Silva, Susana; Perez-Juste, German; Aranda, Ana

    2002-01-01

    The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-β cells that overexpress the β1 isoform of the T3 receptor. An element in the region responsible for premature termination of transcription mediates a rapid repression of c-myc gene expression by T3. The hormone also causes a decrease of cyclin D1 gene transcription, and is able to antagonize the activation of the cyclin D1 promoter by Ras. In addition, a strong and sustained increase of the levels of the cyclin kinase inhibitor (CKI) p27 Kip1 are found in T3-treated cells. The increased levels of p27 Kip1 lead to a marked inhibition of the kinase activity of the cyclin-CDK2 complexes. As a consequence of these changes, retinoblastoma proteins are hypophosphorylated in T3-treated N2a-β cells, and progression through the restriction point in the cell cycle is blocked

  7. Cell cycle checkpoints: reversible when possible, irreversible when needed

    NARCIS (Netherlands)

    Krenning, L.

    2015-01-01

    Cell cycle checkpoints are reversible in nature, and can prevent progression into the next cell cycle phase if needed. In the case of DNA damage, cells can prevent progression from G1 into S phase, and from G2 into mitosis in the presence of DNA double strand breaks. Following DNA repair, these

  8. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    Science.gov (United States)

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  9. Cell cycle controls: potential targets for chemical carcinogens?

    OpenAIRE

    Afshari, C A; Barrett, J C

    1993-01-01

    The progression of the cell cycle is controlled by the action of both positive and negative growth regulators. The key players in this activity include a family of cyclins and cyclin-dependent kinases, which are themselves regulated by other kinases and phosphatases. Maintenance of balanced cell cycle controls may be directly linked to genomic stability. Loss of the check-points involved in cell cycle control may result in unrepaired DNA damage during DNA synthesis or mitosis leading to genet...

  10. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  11. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    Science.gov (United States)

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Leydig cell dysfunction, systemic inflammation and metabolic syndrome in long-term testicular cancer survivors

    DEFF Research Database (Denmark)

    Bandak, M; Jørgensen, N; Juul, A

    2017-01-01

    of TC survivors has an increased long-term risk of systemic inflammation and metabolic syndrome (MetS) when compared with TC survivors with normal Leydig cell function during follow-up. PATIENTS AND METHODS: TC survivors with Leydig cell dysfunction and a control group of TC survivors with normal Leydig...

  13. A Method to Design Synthetic Cell-Cycle Networks

    International Nuclear Information System (INIS)

    Ke-Ke, Miao

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of cell-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network. (condensed matter: structure, mechanical and thermal properties)

  14. Playing with the cell cycle to build the spinal cord.

    Science.gov (United States)

    Molina, Angie; Pituello, Fabienne

    2017-12-01

    A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  16. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  17. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  18. IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Nicholas J. W. Easom

    2018-05-01

    Full Text Available NK cells have potent antitumor capacity. They are enriched in the human liver, with a large subset specialized for tissue-residence. The potential for liver-resident versus liver-infiltrating NK cells to populate, and exert antitumor functions in, human liver tumors has not been studied. We examined liver-resident and liver-infiltrating NK cells directly ex vivo from human hepatocellular carcinomas (HCCs and liver colorectal (CRC metastases, compared with matched uninvolved liver tissue. We found that NK cells were highly prevalent in both HCC and liver CRC metastases, although at lower frequencies than unaffected liver. Up to 79% of intratumoral NK cells had the CXCR6+CD69+ liver-resident phenotype. Direct ex vivo staining showed that liver-resident NK cells had increased NKG2D expression compared to their non-resident counterparts, but both subsets had NKG2D downregulation within liver tumors compared to uninvolved liver. Proliferation of intratumoral NK cells (identified by Ki67 was selectively impaired in those with the most marked NKG2D downregulation. Human liver tumor NK cells were functionally impaired, with reduced capacity for cytotoxicity and production of cytokines, even when compared to the hypo-functional tissue-resident NK cells in unaffected liver. Coculture of human liver NK cells with the human hepatoma cell line PLC/PRF/5, or with autologous HCC, recapitulated the defects observed in NK cells extracted from tumors, with downmodulation of NKG2D, cytokine production, and target cell cytotoxicity. Transwells and conditioned media confirmed a requirement for cell contact with PLC/PRF/5 to impose NK cell inhibition. IL-15 was able to recover antitumor functionality in NK cells inhibited by in vitro exposure to HCC cell lines or extracted directly from HCC. In summary, our data suggest that the impaired antitumor function of local NK cells reflects a combination of the tolerogenic features inherent to liver-resident NK cells

  19. Chromatin association of UHRF1 during the cell cycle

    KAUST Repository

    Al-Gashgari, Bothayna

    2017-05-01

    Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a nuclear protein that associates with chromatin. Regardless of the various functions of UHRF1 in the cell, one of its more important functions is its role in the maintenance of DNA methylation patterns by the recruitment of DNMT1. Studies on UHRF1 based on this function have revealed the importance of UHRF1 during the cell cycle. Moreover, based on different studies various factors were described to be involved in the regulation of UHRF1 with different functionalities that can control its binding affinity to different targets on chromatin. These factors are regulated differently in a cell cycle specific manner. In light of this, we propose that UHRF1 has different binding behaviors during the cell cycle in regard to its association with chromatin. In this project, we first analyzed the binding behavior of endogenous UHRF1 from different unsynchronized cell systems in pull-down assays with peptides and oligonucleotides. Moreover, to analyze UHRF1 binding behavior during the cell cycle, we used two different approaches. First we sorted Jurkat and HT1080 cells based on their cell cycle stage using FACS analysis. Additionally, we synchronized HeLa cells to different stages of the cell cycle by chemical treatments, and used extracts from cellsorting and cell synchronization experiments for pull-down assays. We observed that UHRF1 in different cell systems has different preferences in regard to its binding to H3 unmodified and H3K9me3. Moreover, we detected that UHRF1, in general, displays different patterns between different stages of cell cycle; however, we cannot draw a final model for UHRF1 binding pattern during cell cycle.

  20. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  1. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress. © FASEB.

  2. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  3. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  4. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    Science.gov (United States)

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  5. Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.

    Science.gov (United States)

    Bakkenist, Christopher J; Drissi, Rachid; Wu, Jing; Kastan, Michael B; Dome, Jeffrey S

    2004-06-01

    Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-gamma focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-gamma foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.

  6. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Hsun Kao

    2013-01-01

    Full Text Available Polycystic ovary syndrome (PCOS, the most common endocrine disorder affecting women ofreproductive age, is characterized by hyperandrogenism and insulin resistance. Women withPCOS have a higher risk for cardiovascular diseases (CVDs and endothelial dysfunction. Themechanisms underlying these risks are unclear. Human peripheral blood contains circulatingendothelial progenitor cells (EPCs derived from bone marrow that have the ability to proliferate anddifferentiate into mature endothelial cells, which may contribute to vessel homeostasis and repair.PCOS is associated with insulin resistance, hyperinsulinemia, and dyslipidemia, which may resultin EPC dysfunction. In this review, we summarize the potential mechanisms of EPC dysfunction inPCOS, which possibly result in a higher genesis of CVDs in PCOS-affected subjects.

  7. Distinct mechanisms act in concert to mediate cell cycle arrest.

    Science.gov (United States)

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  8. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  9. Brucella abortus Cell Cycle and Infection Are Coordinated.

    Science.gov (United States)

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Oxidative Stress-Induced Dysfunction of Muller Cells During Starvation

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Gurubaran, Iswariyaraja Sridevi; Madsen, Claus Desler

    2016-01-01

    starvation for 24 hours. Effects of starvation and H2O2 on glutamate uptake and mitochondrial function were assessed by kinetic glutamate uptake assays and Seahorse assays, respectively. Cell survival was evaluated by cell viability assays. mRNA and protein expressions were assessed by quantitative PCR...

  11. Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction.

    Science.gov (United States)

    Pleet, Michelle L; Mathiesen, Allison; DeMarino, Catherine; Akpamagbo, Yao A; Barclay, Robert A; Schwab, Angela; Iordanskiy, Sergey; Sampey, Gavin C; Lepene, Benjamin; Nekhai, Sergei; Aman, M J; Kashanchi, Fatah

    2016-01-01

    Ebola virus (EBOV) is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80-90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible for the deregulation

  12. Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Michelle L. Pleet

    2016-11-01

    Full Text Available Ebola virus (EBOV is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80–90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible

  13. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  14. Ethanol exacerbates T cell dysfunction after thermal injury.

    Science.gov (United States)

    Choudhry, M A; Messingham, K A; Namak, S; Colantoni, A; Fontanilla, C V; Duffner, L A; Sayeed, M M; Kovacs, E J

    2000-07-01

    To understand the mechanism of suppressed immunity following alcohol consumption and thermal injury, we analyzed T cell functions in a mouse model of acute alcohol exposure and burn injury. Mice with blood alcohol levels at approximately 100 mg/dl were given a 15% scald or sham injury. Mice were sacrificed 48 h after injury. Our data demonstrated a 20-25% decrease in Con A-mediated splenic T cell proliferation (p<0.01) and 45-50% decrease in interleukin-2 (IL-2) production (p<0.01) following burn injury compared to the T cells from sham animals. A further decrease in the proliferation (25-30%) and IL-2 production (40-45%) was detected in T cells derived from burned animals receiving alcohol as compared to burn alone. No significant change in the proliferation and IL-2 production was observed in splenic T cells derived from sham-injured mice regardless of alcohol exposure. Additionally, there was no demonstrable difference in splenocyte apoptosis in any treatment group. These results suggest that alcohol consumption prior to burn injury causes a greater decrease in T cell proliferation and IL-2 production compared to either burn or alcohol injury alone that may further attenuate the cell-mediated immunity and thus enhance susceptibility to infection.

  15. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    Science.gov (United States)

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  16. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Bauer, K.D.

    1989-01-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture

  17. CD16(+) monocytes with smooth muscle cell characteristics are reduced in human renal chronic transplant dysfunction

    NARCIS (Netherlands)

    Boersema, M.; van den Born, Joost; van Ark, J.; Harms, Geertruida; Seelen, M. A.; van Dijk, M. C. R. F.; van Goor, H.; Navis, G. J.; Popa, E. R.; Hillebrands, J. L.

    In chronic transplant dysfunction (CTD), persistent (allo)immune-mediated inflammation eventually leads to tissue remodeling including neointima formation in intragraft arteries. We previously showed that recipient-derived neointimal alpha-SMA(+) smooth muscle-like cells are present in human renal

  18. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease

    NARCIS (Netherlands)

    Krenning, Guido; Dankers, Patricia Y. W.; Drouven, Johannes W.; Waanders, Femke; Franssen, Casper F. M.; van Luyn, Marja J. A.; Harmsen, Martin C.; Popa, Eliane R.

    Krenning G, Dankers PY, Drouven JW, Waanders F, Franssen CF, van Luyn MJ, Harmsen MC, Popa ER. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am J Physiol Renal Physiol 296: F1314-F1322, 2009. First published April 1, 2009; doi:

  19. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus

    OpenAIRE

    El-Bacha , Tatiana; Midlej , Victor; Silva , Ana Paula Pereira Da; Costa , Leandro Silva Da; Benchimol , Marlene; Galina , Antonio; Poian , Andrea T. Da

    2007-01-01

    Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus correspondence: Corresponding author. Fax: +55 21 22708647. (El-Bacha, Tatiana) (El-Bacha, Tatiana) Laboratorio de Bioquimica de Virus, Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro - RJ-Brasil--> , Av. Bauhinia n? 400 ? CCS Bloco H 2? andar--> , sala 22. Ilha do Governador--> ...

  20. Insights into the function and dysfunction of α-synuclein in cells

    NARCIS (Netherlands)

    Raiss, C.C.

    2015-01-01

    This thesis sheds light on the function and dysfunction of the protein α-synuclein (α-S) in the test tube and in cells and ultimately its possible involvement in Parkinson’s disease (PD). Following the introduction in Chapter 1, Chapters 2 and 3 concentrate on the investigation of the interaction

  1. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  2. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  3. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    DNA synthesis is one of the landmark events in the cell cycle: G 1 cells have one copy of the genome, S phase cells are actively engaged in DNA synthesis, and G 2 cells have twice as much nuclear DNA as G 1 cells. Cellular DNA content can be measured by staining with a fluorescent dye followed by a flow-cytometric readout. This method provides a quantitative measurement of cell cycle position on a cell-by-cell basis at high speed. Using flow cytometry, tens of thousands of single-cell measurements can be generated in a few seconds. This protocol details staining of cells of the budding yeast Saccharomyces cerevisiae for flow cytometry using Sytox Green dye in a method that can be scaled widely-from one sample to many thousands and operating on inputs ranging from 1 million to more than 100 million cells. Flow cytometry is preferred over light microscopy or Coulter analyses for the analysis of the cell cycle as DNA content and cell cycle position are being directly measured. © 2017 Cold Spring Harbor Laboratory Press.

  4. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  5. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  6. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  7. Mesenchymal stem cell therapy for salivary gland dysfunction and xerostomia: a systematic review of preclinical studies

    DEFF Research Database (Denmark)

    Jensen, David Hebbelstrup; Oliveri, Roberto Stefan; Trojahn-Kølle, Stig-Frederik

    2014-01-01

    was to assess, through systematic review, the potential benefit of mesenchymal stem cell (MSC) therapy in radiation-induced and SS-related salivary gland dysfunction and xerostomia. We searched PubMed/MEDLINE, Embase, Web of Science, the Cochrane Database of Systematic Reviews, the World Health Organization......The most severe forms of xerostomia and salivary gland dysfunction, as well as a severely reduced quality of life, are seen in Sjögren syndrome (SS) and after radiotherapy for head and neck cancer. For both conditions, no effective regenerative therapies yet exist. Thus, the aim of this article...

  8. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    Science.gov (United States)

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  9. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  10. Performances of Saft Lithium-Ion Cells in LEO Cycling

    Directory of Open Access Journals (Sweden)

    Prevot D.

    2017-01-01

    The article will thus present the whole LEO cycling results available for the two cells, and will provide afterwards the correlation status of Saft Li-ion Model (SLIM with all the experimental data acquired.

  11. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  12. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    Science.gov (United States)

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  13. Keith's MAGIC: Cloning and the Cell Cycle.

    Science.gov (United States)

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  14. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.

    Science.gov (United States)

    Gaucher, Jonathan; Montellier, Emilie; Sassone-Corsi, Paolo

    2018-05-01

    The cell cycle and the circadian clock operate as biological oscillators whose timed functions are tightly regulated. Accumulating evidence illustrates the presence of molecular links between these two oscillators. This mutual interplay utilizes various coupling mechanisms, such as the use of common regulators. The connection between these two cyclic systems has unique interest in the context of aberrant cell proliferation since both of these oscillators are frequently misregulated in cancer cells. Further studies will provide deeper understanding of the detailed molecular connections between the cell cycle and the circadian clock and may also serve as a basis for the design of innovative therapeutic strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  16. [Sea urchin embryo, DNA-damaged cell cycle checkpoint and the mechanisms initiating cancer development].

    Science.gov (United States)

    Bellé, Robert; Le Bouffant, Ronan; Morales, Julia; Cosson, Bertrand; Cormier, Patrick; Mulner-Lorillon, Odile

    2007-01-01

    Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology

  17. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  18. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  19. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  20. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  1. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  2. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-08

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.

  3. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2017-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  4. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  5. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Imitola, Jaime; Ayuso-Sacido, Angel

    2011-01-01

    during EAE, we quantified the number of proliferating and differentiating progenitors, and evaluated the structure of the SVZ by electron microscopy. In vivo minocycline treatment during EAE was used to address the effect of microglia inactivation on SVZ dysfunction. RESULTS: In vivo treatment...... with minocycline, an inhibitor of microglia activation, increases stem cell proliferation in both naive and EAE animals. Minocycline treatment decreases cortical and periventricular pathology in the chronic phase of EAE, improving the proliferation of Sox2 stem cells and NG2 oligodendrocyte precursors cells...

  6. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Science.gov (United States)

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-07-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  7. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  8. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  9. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats.

    Science.gov (United States)

    Kilarkaje, Narayana; Mousa, Alyaa M; Al-Bader, Maie M; Khan, Khalid M

    2013-10-01

    To investigate the effects of an antioxidant cocktail (AC) on bleomycin, etoposide, and cisplatin (BEP)-induced testicular dysfunction. In vivo study. Research laboratory. Adult male and female Sprague-Dawley rats. The rats were treated with three cycles of 21 days each of therapeutically relevant dose levels of BEP (0.75, 7.5, and 1.5 mg/kg) with or without the AC (a mixture of α-tocopherol, L-ascorbic acid, Zn, and Se). Sperm parameters, fertility, serum hormone levels (ELISA), testicular histopathology, and expression of proliferating cell nuclear antigen (PCNA), and transferrin (Western blotting and immunohistochemistry) were evaluated at the end of treatment and a 63-day recovery period. At the end of treatment, the AC improved BEP-induced decrease in sperm motility and increase in abnormality but had no effect on reduced sperm count, fertility, and tubular atrophy, although it up-regulated germ cell proliferation. The AC normalized reduced inhibin B levels, but had no effect on decreased transferrin and testosterone and elevated LH levels. At the end of the recovery period, the AC enhanced the expression of PCNA and transferrin, repopulation of germ cells, LH-testosterone axis, and fertility, but had no effect on reduced FSH and elevated inhibin B levels. The antioxidants protect and then enhance the recovery of testicular and reproductive endocrine functions when administered concomitantly with BEP therapy. The AC may be beneficial to regain testicular functions after chemotherapy. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Neurosecretory cells of the amygdaloid complex during estrous cycle.

    Science.gov (United States)

    Akhmadeev, A V; Kalimullina, L B

    2005-02-01

    Ultrastructure of neurosecretory cells of the dorsomedial nucleus of the cerebral amygdaloid complex (one of the main zones of sexual dimorphism) was studied in different phases of the estrous cycle. The characteristics of the "light" and "dark" cells change depending on the concentrations of sex steroids during estrus and metestrus.

  11. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    Science.gov (United States)

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings.

  12. Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice

    Directory of Open Access Journals (Sweden)

    Rumi Ueha

    2018-06-01

    Full Text Available Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs, then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear.Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice.Methods: We intranasally administered a cigarette smoke solution (CSS to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE, and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests.Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction.Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction.

  13. Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity

    Science.gov (United States)

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino

    2010-01-01

    Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885

  14. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  15. Establishment of human papillomavirus infection requires cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Dohun Pyeon

    2009-02-01

    Full Text Available Human papillomaviruses (HPVs are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these

  16. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  17. Radiotherapy and chemotherapy after partial synchronization of cell cycle

    International Nuclear Information System (INIS)

    Hermann, H.J.; Ammon, J.; Nuevemann, M.; Zum Winkel, K.; Technische Hochschule Aachen

    1977-01-01

    Apart from densely ionising radiations, radiotherapy and chemotherapy after partial synchronisation of the cell cycle are, at the moment, the only way to improve the efficiency of a treatment of malignant tumours. The new principle is based on the finding that tumour cells are more sensitive to radiation or chemotherapy in a certain metabolic situation. Partial synchronisation of the cell cycle makes it possible to enrich tumour cells in a certain metabolic state. In order to show the efficiency of such a measure, several methods can be used. Recently, impulse cytophotometry has been replacing these methods, since it permits a quick, simple, and individual control of the synchronisation effect. However, there has not been any clinical experiment yet to prove that tumour cells show a maximum sensitivity to radio- and chemotherapy in the G 2 -M-phase. This is why a number of patients with malignant tumours which could not be operated or treated with the usual radiotherapy or polychemotherapy were treated according to this new therapeutic principle. The results obtained in 233 cases encourage the specialists to continue the experiments. The indication of a treatment after partial synchronisation of the cell cycle should be based on the tumour spread as documented according to the TNM-system. Only when these guidelines are followed will it be possible to explain the problems still unsolved in the principle of radiotherapy and chemotherapy after partial synchronisation of the cell cycle and to carry out radio- and chemotherapy with improved efficiency in the future. (orig./MG) [de

  18. Cell cycle related /sup 125/IUDR-induced-division delay

    International Nuclear Information System (INIS)

    Scheniderman, M.H.; Hofer, K.G.

    1987-01-01

    A series of experiments were run to determine if /sup 125/I-decays, in /sup 125/IUdR labeled DNA, specifically accumulated at 1, 3, 5, 7 and 9 hours after plating labeled mitotic cells caused a change in the rate or time of cell entry into mitosis. To accomplish this, a pool of labeled mitotic cells was selected in mitosis and plated in replicate flasks. /sup 125/I decays were accumulated in groups of cells by cooling (4 0 C) for 2 hours starting at the designated times. After rewarding, colcemid was added to arrest cells in mitosis. The rate of cell progression into mitosis for each cell cycle time of accumulation was determined by scoring the mitotic index of cells sampled as a function of time after addition of the colcemid. The results are summarized: (1) Decays from /sup 125/I in /sup 125/I(UdR) labeled DNA reduced the rate of cell progression into mitosis and delayed the time of initiation of mitosis. (2) The reduced rate of progression and the delayed time of initiation of mitosis were independent of the cell cycle time that /sup 125/I-decays were accumulated. (3) The reduced rate of progression after cell cycle accumulation of /sup 125/I decay was statistically indistinguishable from the corresponding controls. (4) The delayed initiation of mitosis after specific cell cycle accumulation of /sup 125/I- decays was greater than the corresponding control. The relationship of these data to DNA and non-DNA division delay target(s) is emphasized

  19. Cell cycle in egg cell and its progression during zygotic development in rice.

    Science.gov (United States)

    Sukawa, Yumiko; Okamoto, Takashi

    2018-03-01

    Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.

  20. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  3. Identification of a novel EGF-sensitive cell cycle checkpoint

    International Nuclear Information System (INIS)

    Walker, Francesca; Zhang Huihua; Burgess, Antony W.

    2007-01-01

    The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells

  4. Labeling of lectin receptors during the cell cycle.

    Science.gov (United States)

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  5. The Plant Decapeptide OSIP108 Can Alleviate Mitochondrial Dysfunction Induced by Cisplatin in Human Cells

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-09-01

    Full Text Available We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp, which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image form of OSIP108 with the L-stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions.

  6. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  7. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  8. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  9. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  10. CycleBase.org - a comprehensive multi-organism online database of cell-cycle experiments

    DEFF Research Database (Denmark)

    Gauthier, Nicholas Paul; Larsen, Malene Erup; Wernersson, Rasmus

    2007-01-01

    The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase...

  11. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  12. Mechanisms of pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers.

    Science.gov (United States)

    Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G

    1995-06-01

    We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.

  13. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    Science.gov (United States)

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated or deacti......Decades of research has together with the availability of whole genomes made it clear that many of the core components involved in the cell cycle are conserved across eukaryotes, both functionally and structurally. These proteins are organized in complexes and modules that are activated...... for assembling the same molecular machines just in time for action....

  15. Endothelial progenitor cells dysfunction and impaired tissue reparation: The missed link in diabetes mellitus development.

    Science.gov (United States)

    Berezin, Alexander E

    Diabetes mellitus (DM) is considered a leading cause of premature cardiovascular (CV) mortality and morbidity in general population and in individuals with known CV disease. Recent animal and clinical studies have shown that reduced number and weak function of endothelial progenitor cells (EPCs) may not only indicate to higher CV risk, but contribute to the impaired heart and vessels reparation in patients with DM. Moreover, EPCs having a protective impact on the vasculature may mediate the functioning of other organs and systems. Therefore, EPCs dysfunction is probably promising target for DM treatment strategy, while the role of restoring of EPCs number and functionality in CV risk diminish and reduce of DM-related complications is not fully clear. The aim of the review is summary of knowledge regarding EPCs dysfunction in DM patients. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  16. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  17. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  18. Cell Cycle Regulation by Alternative Polyadenylation of CCND1.

    Science.gov (United States)

    Wang, Qiong; He, Guopei; Hou, Mengmeng; Chen, Liutao; Chen, Shangwu; Xu, Anlong; Fu, Yonggui

    2018-05-01

    Global shortening of 3'UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.

  19. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  20. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: chaperones@163.com [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Guo, YuQi [Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China)

    2016-03-05

    Highlights: • B-Fe{sub 3}O{sub 4}NPs did not induce cell apoptosis or necrosis in HUVECs within 24 h. • B-Fe{sub 3}O{sub 4}NPs induced HUVEC dysfunction and inflammation. • B-Fe{sub 3}O{sub 4}NPs induced enhanced autophagic activity and blockade of autophagy flux. • Suppression of autophagy dysfunction attenuated B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. - Abstract: Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe{sub 3}O{sub 4}NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe{sub 3}O{sub 4}NPs (B-Fe{sub 3}O{sub 4}NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe{sub 3}O{sub 4}NPs did not induce cell death within 24 h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe{sub 3}O{sub 4}NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe{sub 3}O{sub 4}NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe{sub 3}O{sub 4}NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe{sub 3}O{sub 4}NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe{sub 3}O{sub 4}NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  1. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    International Nuclear Information System (INIS)

    Magno, A.C.G.; Oliveira, I.L.; Hauck, J.V.S.

    2016-01-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation (paper)

  2. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)].

    Science.gov (United States)

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles

    2012-09-01

    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. The recruitability and cell-cycle state of intestinal stem cells

    International Nuclear Information System (INIS)

    Potten, C.S.; Chadwick, C.; Ijiri, K.; Tsubouchi, S.; Hanson, W.R.

    1984-01-01

    Evidence is presented which suggests that the crypts of the small intestine contain at least two discrete but interdependent classes of stem cells, some with discrete cell kinetic properties and some with discrete radiation responses or radiosensitivities. Very low doses of X rays or gamma rays, or neutrons, kill a few cells in the stem cell regions of the crypt in a sensitive dose-dependent manner. Similar doses generate several different cell kinetic responses within either the clonogenic fraction or the cells at the stem cell position within the crypt. The cell kinetic responses range from apparent recruitment of G0 clonogenic cells into cycle, to a marked shortening of the average cell cycle of the cells at the stem cell position. It is suggested that the cell kinetic changes may be the consequence of the cell destruction

  4. Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo*

    Science.gov (United States)

    Maeda, Tadao; Lee, Mee Jee; Palczewska, Grazyna; Marsili, Stefania; Tesar, Paul J.; Palczewski, Krzysztof; Takahashi, Masayo; Maeda, Akiko

    2013-01-01

    Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases. PMID:24129572

  5. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  6. Cell cycle control by a minimal Cdk network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    2015-02-01

    Full Text Available In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk families, and the Anaphase Promoting Complex (APC. Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.

  7. The Design Space of the Embryonic Cell Cycle Oscillator.

    Science.gov (United States)

    Mattingly, Henry H; Sheintuch, Moshe; Shvartsman, Stanislav Y

    2017-08-08

    One of the main tasks in the analysis of models of biomolecular networks is to characterize the domain of the parameter space that corresponds to a specific behavior. Given the large number of parameters in most models, this is no trivial task. We use a model of the embryonic cell cycle to illustrate the approaches that can be used to characterize the domain of parameter space corresponding to limit cycle oscillations, a regime that coordinates periodic entry into and exit from mitosis. Our approach relies on geometric construction of bifurcation sets, numerical continuation, and random sampling of parameters. We delineate the multidimensional oscillatory domain and use it to quantify the robustness of periodic trajectories. Although some of our techniques explore the specific features of the chosen system, the general approach can be extended to other models of the cell cycle engine and other biomolecular networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  9. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...

  10. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response.

    Directory of Open Access Journals (Sweden)

    Doug E Brackney

    2010-10-01

    Full Text Available Mosquitoes rely on RNA interference (RNAi as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV infection in C6/36 (Aedes albopictus cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses. Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae, Sindbis virus (SINV, Togaviridae and La Crosse virus (LACV, Bunyaviridae and total RNA recovered from cell lysates. Small RNA (sRNA libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26-27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand and distribution (position along viral genome of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.

  11. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  12. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  13. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Eva Bernhart

    2018-05-01

    Full Text Available Peripheral leukocytes induce blood-brain barrier (BBB dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA. In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER and mitochondria of human BMVEC (hCMEC/D3 cell line. 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.

  14. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    Science.gov (United States)

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  15. Cerebral Mast Cells Participate In Postoperative Cognitive Dysfunction by Promoting Astrocyte Activation.

    Science.gov (United States)

    Zhang, Xiang; Yao, Hao; Qian, Qingqing; Li, Nana; Jin, Wenjie; Qian, Yanning

    2016-01-01

    Astrocytes, the major glial cell type that has been increasingly recognized as contributing to neuroinflammation, are critical in the occurrence and development of postoperative cognitive dysfunction (POCD). Although emerging evidence showed that brain mast cells (MCs) are the "first responders" in neuroinflammation, little is known about the functional communication between MCs and astrocytes. In this study, we investigated the potential regulation of astrocyte activation by MCs. Rats received an intracerebroventricular injection of Cromolyn (an MC stabilizer) or sterile saline 30 min before undergoing open tibial fracture surgery, and the levels of neuroinflammation and the degree of memory dysfunction were evaluated at 1 day and 3 days after surgery. In the in vitro study, the effect of activated MCs on astrocytes were further clarified. Surgery increased the number of MCs, the astrocyte activation and the production of inflammatory factors, and resulted in cognitive deficits. Site-directed pre-injection of Cromolyn can inhibit this effect. In the vitro study, the conditioned medium from C48/80-stimulated mast cells (P815) could induce primary astrocyte activation and subsequent production of inflammatory cytokines, which could be inhibited by Cromolyn. These findings indicate that activated MCs could trigger astrocyte activation, be involved in neuroinflammation and possibly contribute to POCD. Interactions between MCs and astrocytes could provide potential therapeutic targets for POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Cerebral Mast Cells Participate In Postoperative Cognitive Dysfunction by Promoting Astrocyte Activation

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-11-01

    Full Text Available Background: Astrocytes, the major glial cell type that has been increasingly recognized as contributing to neuroinflammation, are critical in the occurrence and development of postoperative cognitive dysfunction (POCD. Although emerging evidence showed that brain mast cells (MCs are the "first responders” in neuroinflammation, little is known about the functional communication between MCs and astrocytes. Methods: In this study, we investigated the potential regulation of astrocyte activation by MCs. Rats received an intracerebroventricular injection of Cromolyn (an MC stabilizer or sterile saline 30 min before undergoing open tibial fracture surgery, and the levels of neuroinflammation and the degree of memory dysfunction were evaluated at 1 day and 3 days after surgery. In the in vitro study, the effect of activated MCs on astrocytes were further clarified. Results: Surgery increased the number of MCs, the astrocyte activation and the production of inflammatory factors, and resulted in cognitive deficits. Site-directed pre-injection of Cromolyn can inhibit this effect. In the vitro study, the conditioned medium from C48/80-stimulated mast cells (P815 could induce primary astrocyte activation and subsequent production of inflammatory cytokines, which could be inhibited by Cromolyn. Conclusion: These findings indicate that activated MCs could trigger astrocyte activation, be involved in neuroinflammation and possibly contribute to POCD. Interactions between MCs and astrocytes could provide potential therapeutic targets for POCD.

  17. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    Science.gov (United States)

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  18. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  19. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-01-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G_1/G_0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  20. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  1. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  2. Phase resetting reveals network dynamics underlying a bacterial cell cycle.

    Science.gov (United States)

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).

  3. Pancreatic α-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block

    Directory of Open Access Journals (Sweden)

    Jun Sung Moon

    2015-02-01

    Full Text Available Type 2 diabetes (T2D has been known as 'bi-hormonal disorder' since decades ago, the role of glucagon from α-cell has languished whereas β-cell taking center stage. Recently, numerous findings indicate that the defects of glucagon secretion get involve with development and exacerbation of hyperglycemia in T2D. Aberrant α-cell responses exhibit both fasting and postprandial states: hyperglucagonemia contributes to fasting hyperglycemia caused by inappropriate hepatic glucose production, and to postprandial hyperglycemia owing to blunted α-cell suppression. During hypoglycemia, insufficient counter-regulation response is also observed in advanced T2D. Though many debates still remained for exact mechanisms behind the dysregulation of α-cell in T2D, it is clear that the blockade of glucagon receptor or suppression of glucagon secretion from α-cell would be novel therapeutic targets for control of hyperglycemia. Whereas there have not been remarkable advances in developing new class of drugs, currently available glucagon-like peptide-1 and dipeptidyl peptidase-IV inhibitors could be options for treatment of hyperglucagonemia. In this review, we focus on α-cell dysfunction and therapeutic potentials of targeting α-cell in T2D.

  4. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction

    Science.gov (United States)

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-01-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  5. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    Science.gov (United States)

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.

  6. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    Science.gov (United States)

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  8. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    Science.gov (United States)

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cell cycle analysis in patients with Fanconi anemia from Serbia

    Directory of Open Access Journals (Sweden)

    Ćirković Sanja

    2013-01-01

    Full Text Available Fanconi anemia (FA is a rare autosomal recessive disorder, characterized by progressive bone marrow failure, chromosomal instability and cell cycle blockage in the G2 phase. The hypersensitivity of FA cells can be additionally induced with specific alkylating agents such as diepoxybutane (DEB and mitomycin C, which is used in differential diagnosis of FA. Among 72 patients with clinical suspicion of FA, who were diagnosed at the Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic” and the University Children’s Hospital (2004 - 2011, in 10 patients the diagnosis of FA was confirmed on the basis of an increased chromosome sensitivity to DEB. Five out of 10 FA patients were available for further flow cytometric analysis of cell cycle. We examined cell cycle blockage in G2 phase in untreated and with DEB treated lymphocyte cultures from FA patients and from the healthy persons, as control group. All five patients affected with FA, showed an increased DEB induced G2-phase-blockage which was over two times higher than in controls. The percentage of FA cells arrested in G2 phase was between 4,41% and 10,45% with mean value (MV of 7,76%, but in the control group this range was lower: 1,56% - 4,11% (MV: 2.84%, with no overlapping. FA patients showed an increased spontaneous arrest in G2 phase, as well, comparing to healthy controls (MV: 14,63% vs. 5,82%. Cell cycle assay of G2 phase blockage could be used as an additional diagnostic tool for confirmation of FA in patients with clinical suspicion of this disease. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  10. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  11. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    2009-10-01

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  12. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  13. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  14. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    International Nuclear Information System (INIS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-01-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings. (paper)

  15. Intravenous Infusion of Bone Marrow–Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats

    OpenAIRE

    Yohei Matsuda, MD; Masanori Sasaki, MD, PhD; Yuko Kataoka-Sasaki, MD, PhD; Akio Takayanagi, MD, PhD; Ko Kobayashi, MD, PhD; Shinichi Oka, MD, PhD; Masahito Nakazaki, MD, PhD; Naoya Masumori, MD, PhD; Jeffery D. Kocsis, PhD; Osamu Honmou, MD, PhD

    2018-01-01

    Introduction: Intravenous preload (delivered before cavernous nerve [CN] injury) of bone marrow–derived mesenchymal stem cells (MSCs) can prevent or decrease postoperative erectile dysfunction (J Sex Med 2015;12:1713–1721). In the present study, the potential therapeutic effects of intravenously administered MSCs on postoperative erectile dysfunction were evaluated in a rat model of CN injury. Methods: Male Sprague-Dawley rats were randomized into 2 groups after electric CN injury. Intrave...

  16. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  17. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  18. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  19. Reduction of the CD16(-CD56bright NK cell subset precedes NK cell dysfunction in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kyo Chul Koo

    Full Text Available BACKGROUND: Natural cytotoxicity, mediated by natural killer (NK cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA was analyzed in prostate cancer (PCa patients with particular focus on NK cell subset distribution. METHODS: Prospective data of NKA and NK cell subset distribution patterns were measured from 51 patients initially diagnosed with PCa and 54 healthy controls. NKA was represented by IFN-γ levels after stimulation of the peripheral blood with Promoca®. To determine the distribution of NK cell subsets, PBMCs were stained with fluorochrome-conjugated monoclonal antibodies. Then, CD16(+CD56(dim and CD16(-CD56(bright cells gated on CD56(+CD3(- cells were analyzed using a flow-cytometer. RESULTS: NKA and the proportion of CD56(bright cells were significantly lower in PCa patients compared to controls (430.9 pg/ml vs. 975.2 pg/ml and 2.3% vs. 3.8%, respectively; p<0.001. Both tended to gradually decrease according to cancer stage progression (p for trend = 0.001. A significantly higher CD56(dim-to-CD56(bright cell ratio was observed in PCa patients (41.8 vs. 30.3; p<0.001 along with a gradual increase according to cancer stage progression (p for trend = 0.001, implying a significant reduction of CD56(bright cells in relation to the alteration of CD56(dim cells. The sensitivity and the specificity of NKA regarding PCa detection were 72% and 74%, respectively (best cut-off value at 530.9 pg/ml, AUC = 0.786. CONCLUSIONS: Reduction of CD56(bright cells may precede NK cell dysfunction, leading to impaired cytotoxicity against PCa cells. These observations may explain one of the mechanisms behind NK cell dysfunction observed in PCa microenvironment and lend support to the development of future cancer immunotherapeutic strategies.

  20. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  1. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Kayla A. Holder

    2014-01-01

    Full Text Available Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20% of those exposed to hepatitis C virus (HCV spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.

  2. Mitochondrial Dysfunction and β-Cell Failure in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhongmin Alex Ma

    2012-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.

  3. A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis.

    Science.gov (United States)

    Chatre, Laurent; Verdonk, Franck; Rocheteau, Pierre; Crochemore, Clément; Chrétien, Fabrice; Ricchetti, Miria

    2017-10-01

    Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life threatening condition associated with multiple organ failure. Survivors may display long-term disability with muscle weakness that remains poorly understood. Recent data suggest that long-term myopathy in sepsis survivors is due to failure of skeletal muscle stem cells (satellite cells) to regenerate the muscle. Satellite cells impairment in the acute phase of sepsis is linked to unusual mitochondrial dysfunctions, characterized by a dramatic reduction of the mitochondrial mass and hyperactivity of residual organelles. Survivors maintain the impairment of satellite cells, including alterations of the mitochondrial DNA (mtDNA), in the long-term. This condition can be rescued by treatment with mesenchymal stem cells (MSCs) that restore mtDNA alterations and mitochondrial function in satellite cells, and in fine their regenerative potential. Injection of MSCs in turn increases the force of isolated muscle fibers and of the whole animal, and improves the survival rate. These effects occur in the context of reduced inflammation markers that also raised during sepsis. Targeting muscle stem cells mitochondria, in a context of reduced inflammation, may represent a valuable strategy to reduce morbidity and long-term impairment of the muscle upon sepsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  5. Susceptibility of Hep3B cells in different phases of cell cycle to tBid.

    Science.gov (United States)

    Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S

    2011-01-01

    tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells.

    Science.gov (United States)

    Lin, Chia-Han; Lu, Wei-Cheng; Wang, Che-Wei; Chan, Ya-Chi; Chen, Mu-Kuan

    2013-02-25

    Capsaicin, a pungent phytochemical in a variety of red peppers of the genus Capsicum, has shown an anti-proliferative effect on various human cancer cell lines. In contrast, capsaicin has also been considered to promote the growth of cancer cells. Thus, the effects of capsaicin on various cell types need to be explored. The anti-proliferative effects of capsaicin on human KB cancer cells are still unknown. Therefore, we examined the viability, cell cycle progression, and factors associated with apoptosis in KB cells treated with capsaicin. The cell proliferation/viability and cytotoxicity of KB cells exposed to capsaicin were determined by a sulforhodamine B colorimetric assay and trypan blue exclusion. Apoptosis was detected by Hoechst staining and confirmed by western blot analysis of poly-(ADP-ribose) polymerase cleavage. Cell cycle distribution and changes of the mitochondrial membrane potential were analyzed by flow cytometry. Furthermore, the expression of caspase 3, 8 and 9 was evaluated by immunoblotting. We found that treatment of KB cells with capsaicin significantly reduced cell proliferation/viability and induced cell death in a dose-dependent manner compared with that in the untreated control. Cell cycle analysis indicated that exposure of KB cells to capsaicin resulted in cell cycle arrest at G2/M phase. Capsaicin-induced growth inhibition of KB cells appeared to be associated with induction of apoptosis. Moreover, capsaicin induced disruption of the mitochondrial membrane potential as well as activation of caspase 9, 3 and poly-(ADP-ribose) polymerase in KB cells. Our data demonstrate that capsaicin modulates cell cycle progression and induces apoptosis in human KB cancer cells through mitochondrial membrane permeabilization and caspase activation. These observations suggest an anti-cancer activity of capsaicin.

  7. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  8. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad

    2018-03-01

    Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.

  9. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C 60 OH x ), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  10. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  11. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  12. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1

    Science.gov (United States)

    Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.

    2015-01-01

    Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388

  13. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  14. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  15. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    2010-05-01

    Full Text Available The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3 in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.

  16. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  17. Alteronol induces cell cycle arrest and apoptosis via increased reactive oxygen species production in human breast cancer T47D cells.

    Science.gov (United States)

    Ren, Boxue; Li, Defang; Si, Lingling; Ding, Yangfang; Han, Jichun; Chen, Xiaoyu; Zheng, Qiusheng

    2018-04-01

    Emerging evidence showed that alteronol has a potential antitumour effect in several tumour cells. However, the antitumour effect of alteronol on breast cancer has not been reported. This study investigated the mechanisms of alteronol-induced cell proliferation inhibition in human breast cancer T47D cells. After treatment with alteronol, T47D cell proliferation was examined by MTT assay. The cell cycle distribution, cell apoptosis, reactive oxygen species level and mitochondrial membrane potential were evaluated via flow cytometry. Next, the protein levels of cyclin B1, cdc2, p21, p-cyclin B1, p-cdc2, p53, Bax, Bcl-2 and cytochrome c were analysed using Western blot analysis. Meanwhile, the mRNA levels of cyclin B1, cdc2, p21 and p53 were examined by qRT-PCR. Our data showed that alteronol inhibited the proliferation of T47D cells via inducing G2-phase arrest and cell apoptosis. Compared with control group, alteronol significantly increased ROS level and triggered mitochondrial dysfunction in alteronol-treated T47D cells. Further studies showed that the mRNA and protein levels of cdc2 and cyclin B1 were downregulated, while the mRNA and protein levels of p21, p53, p-cyclin B1, p-cdc2 and cytochrome c were upregulated. In addition, the expression level of Bax was increased, and the expression level of Bcl-2 was decreased. Alteronol induced T47D cell cycle arrest and cell apoptosis through increasing ROS production and triggering mitochondrial dysfunction, and subsequently inhibiting T47D cell proliferation. © 2018 Royal Pharmaceutical Society.

  18. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  19. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  20. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction.

    Science.gov (United States)

    Kim, Mi Hye; Min, Ju-Sik; Lee, Joon Yeop; Chae, Unbin; Yang, Eun-Ju; Song, Kyung-Sik; Lee, Hyun-Shik; Lee, Hong Jun; Lee, Sang-Rae; Lee, Dong-Seok

    2017-04-27

    Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.

  1. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  2. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  3. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  4. Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression

    Science.gov (United States)

    Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378

  5. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    Science.gov (United States)

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  6. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L.

    Science.gov (United States)

    Reshma, P L; Sainu, Neethu S; Mathew, Anil K; Raghu, K G

    2016-05-01

    The present study investigates the protective effect of partially characterized Tribulus terrestris L. fruit methanol extract against mitochondrial dysfunction in cell based (H9c2) myocardial ischemia model. To induce ischemia, the cells were maintained in an ischemic buffer (composition in mM -137 NaCl, 12 KCl, 0.5 MgCl2, 0.9 CaCl2, 20 HEPES, 20 2-deoxy-d-glucose, pH-6.2) at 37°C with 0.1% O2, 5% CO2, and 95% N2 in a hypoxia incubator for 1h. Cells were pretreated with various concentrations of T. terrestris L. fruit methanol extract (10 and 25μg/ml) and Cyclosporin A (1μM) for 24h prior to the induction of ischemia. Different parameters like lactate dehydrogenase release, total antioxidant capacity, glutathione content and antioxidant enzymes were investigated. Studies were conducted on mitochondria by analyzing alterations in mitochondrial membrane potential, integrity, and dynamics (fission and fusion proteins - Mfn1, Mfn2, OPA1, Drp1 and Fis1). Various biochemical processes in mitochondria like activity of electron transport chain (ETC) complexes, oxygen consumption and ATP production was measured. Ischemia for 1h caused a significant (p≤0.05) increase in LDH leakage, decrease in antioxidant activity and caused mitochondrial dysfunction. T. terrestris L. fruit methanol extract pretreatment was found effective in safeguarding mitochondria via its antioxidant potential, mediated through various bioactives. HPLC of T. terrestris L. fruit methanol extract revealed the presence of ferulic acid, phloridzin and diosgenin. T. terrestris L. fruit ameliorate ischemic insult in H9c2 cells by safeguarding mitochondrial function. This validates the use of T. terrestris L. against heart disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Cao, Rubo; Ding, Qian; Li, Pindong; Xue, Jun; Zou, Zhenwei; Huang, Jing; Peng, Gang

    2013-01-01

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  8. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  9. A signature-based method for indexing cell cycle phase distribution from microarray profiles

    Directory of Open Access Journals (Sweden)

    Mizuno Hideaki

    2009-03-01

    Full Text Available Abstract Background The cell cycle machinery interprets oncogenic signals and reflects the biology of cancers. To date, various methods for cell cycle phase estimation such as mitotic index, S phase fraction, and immunohistochemistry have provided valuable information on cancers (e.g. proliferation rate. However, those methods rely on one or few measurements and the scope of the information is limited. There is a need for more systematic cell cycle analysis methods. Results We developed a signature-based method for indexing cell cycle phase distribution from microarray profiles under consideration of cycling and non-cycling cells. A cell cycle signature masterset, composed of genes which express preferentially in cycling cells and in a cell cycle-regulated manner, was created to index the proportion of cycling cells in the sample. Cell cycle signature subsets, composed of genes whose expressions peak at specific stages of the cell cycle, were also created to index the proportion of cells in the corresponding stages. The method was validated using cell cycle datasets and quiescence-induced cell datasets. Analyses of a mouse tumor model dataset and human breast cancer datasets revealed variations in the proportion of cycling cells. When the influence of non-cycling cells was taken into account, "buried" cell cycle phase distributions were depicted that were oncogenic-event specific in the mouse tumor model dataset and were associated with patients' prognosis in the human breast cancer datasets. Conclusion The signature-based cell cycle analysis method presented in this report, would potentially be of value for cancer characterization and diagnostics.

  10. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1.

    Science.gov (United States)

    Bhatta, Anil; Yao, Lin; Xu, Zhimin; Toque, Haroldo A; Chen, Jijun; Atawia, Reem T; Fouda, Abdelrahman Y; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Ruth B; Caldwell, Robert W

    2017-11-01

    Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome. Published

  12. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  13. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate...

  14. Rates of incorporation of radioactive molecules during the cell cycle

    International Nuclear Information System (INIS)

    Gray, J.W.; Pallavicini, M.G.; George, Y.S.; Groppi, V.; Look, M.; Dean, P.N.

    1981-01-01

    We report measurements of the incorporation of radioactive molecules during short labeling periods, as a function of cell-cycle stage, using a cell-sorter-based technique that does not require cell synchronization. We have determined: (1) tritiated thymidine ( 3 H-TdR) incorporation throughout S-phase in Lewis lung tumor cells in vitro both before and after treatment with cytosine arabinoside; (2) 3 H-TdR incorporation throughout S-phase in KHT tumor cells in vitro and in vivo; (3) 3 H-TdR incorporation throughout S-phase in Chinese hamster ovary cells and compared it with DNA synthesis throughout S-phase; (4) a mathematical expression describing 3 H-TdR incorporation throughout S-phase in Chinese hamster M3-1 cells; and (5) the simultaneous incorporation of 3 H-TdR and 35 S-methionine as they are related to cell size and DNA content in S49 mouse lymphoma cells. In asynchronously growing cells in vitro and in vivo, 3 H-TdR incorporation was generally low in early and late S-phase and highest in mid-S-phase. However, in Lewis lung tumor cells treated with cytosine arabinoside 3 H-TdR incorporation was highest in early and late S-phase and lowest in mid-S-phase. Incorporation of 35 S-methionine increased continuously with cell size and DNA content. Incorporation of 3 H-TdR in CHO cells was proportional to DNA synthesis

  15. Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines

    Science.gov (United States)

    Rose, S; Frye, R E; Slattery, J; Wynne, R; Tippett, M; Melnyk, S; James, S J

    2014-01-01

    There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors. PMID:24690598

  16. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Signe Elisabeth Åsberg

    2015-05-01

    Full Text Available Isothiocyanates (ITCs are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

  17. Cell-cycle research with synchronous cultures: an evaluation

    Science.gov (United States)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  18. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  19. Production of interleukin-1alpha by human endometrial stromal cells is triggered during menses and dysfunctional bleeding and is induced in culture by epithelial interleukin-1alpha released upon ovarian steroids withdrawal.

    Science.gov (United States)

    Pretto, Chrystel M; Gaide Chevronnay, Héloïse P; Cornet, Patricia B; Galant, Christine; Delvaux, Denis; Courtoy, Pierre J; Marbaix, Etienne; Henriet, Patrick

    2008-10-01

    Endometrial breakdown during menstruation and dysfunctional bleeding is triggered by the abrupt expression of matrix metalloproteinases (MMPs), including interstitial collagenase (MMP-1). The paracrine induction of MMP-1 in stromal cells via epithelium-derived IL-1alpha is repressed by ovarian steroids. However, the control by estradiol (E) and progesterone (P) of endometrial IL-1alpha expression and bioactivity remains unknown. Variations of endometrial IL-1alpha mRNA and protein along the menstrual cycle and during dysfunctional bleeding were determined using RT-PCR, in situ hybridization, and immunolabeling. The mechanism of EP control was analyzed using culture of explants, laser capture microdissection, and purified cells. Data were compared with expression changes of IL-1beta and IL-1 receptor antagonist. IL-1alpha is synthesized by epithelial cells throughout the cycle but E and/or P prevents its release. In contrast, endometrial stromal cells produce IL-1alpha only at menses and during irregular bleeding in areas of tissue breakdown. Stromal expression of IL-1alpha, like that of MMP-1, is repressed by P (alone or with E) but triggered by epithelium-derived IL-1alpha released upon EP withdrawal. Our experiments in cultured endometrium suggest that IL-1alpha released by epithelial cells triggers the production of IL-1alpha by stromal cells in a paracrine amplification loop to induce MMP-1 expression during menstruation and dysfunctional bleeding. All three steps of this amplification cascade are repressed by EP.

  20. Alveolar type II epithelial cell dysfunction in rat experimental hepatopulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available The hepatopulmonary syndrome (HPS develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2 play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D which also facilitate alveolar repair following injury. However, no studies have evaluated the alveolar epithelial compartment in experimental HPS. In this study, we evaluated the alveolar epithelial compartment and particularly AT2 cells in experimental HPS induced by common bile duct ligation (CBDL. We found a significant reduction in pulmonary SP production associated with increased apoptosis in AT2 cells after CBDL relative to controls. Lung morphology showed decreased mean alveolar chord length and lung volumes in CBDL animals that were not seen in control models supporting a selective reduction of alveolar airspace. Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064 induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.

  1. Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System

    Science.gov (United States)

    Fujimaki, Shin; Kuwabara, Tomoko

    2017-01-01

    Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained. PMID:29036909

  2. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  3. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    Science.gov (United States)

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P ketamine (100 μM) decreased the ATP level (22%, P ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  4. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia

    Science.gov (United States)

    Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte

    2017-01-01

    Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956

  5. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  6. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    International Nuclear Information System (INIS)

    Bodvarsdottir, Sigridur K.; Steinarsdottir, Margret; Bjarnason, Hordur; Eyfjord, Jorunn E.

    2012-01-01

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and γ-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  7. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    Science.gov (United States)

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-03-31

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.

  8. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    Science.gov (United States)

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  9. T cell dysfunction in the diabetes-prone BB rat. A role for thymic migrants that are not T cell precursors

    International Nuclear Information System (INIS)

    Georgiou, H.M.; Lagarde, A.C.; Bellgrau, D.

    1988-01-01

    Diabetes-prone BB (BB-DP) rats express several T cell dysfunctions which include poor proliferative and cytotoxic responses to alloantigen. The goal of this study was to determine the origin of these T cell dysfunctions. When BB-DP rats were thymectomized, T cell depleted, and transplanted with neonatal thymus tissue from diabetes-resistant and otherwise normal DA/BB F1 rats, the early restoration of T cell function proceeded normally on a cell-for-cell basis; i.e., peripheral T cells functioned like those from the thymus donor. Because the thymus in these experiments was subjected to gamma irradiation before transplantation and there was no evidence of F1 chimerism in the transplanted BB-DP rats, it appeared that the BB-DP T cell precursors could mature into normally functioning T cells if the maturation process occurred in a normal thymus. If the F1 thymus tissue was treated with dGua before transplantation, the T cells of these animals functioned poorly like those from untreated BB-DP rats. dGua poisons bone marrow-derived cells, including gamma radiation-resistant cells of the macrophage/dendritic cell lineages, while sparing the thymic epithelium. Therefore, the reversal of the T cell dysfunction depends on the presence in the F1 thymus of gamma radiation-resistant, dGua-sensitive F1 cells. Conversely, thymectomized and T cell-depleted F1 rats expressed T cell dysfunction when transplanted with gamma-irradiated BB thymus grafts. T cell responses were normal in animals transplanted with dGua-treated BB thymus grafts. With increasing time after thymus transplantation, T cells from all animals gradually expressed the functional phenotype of the bone marrow donor. Taken together these results suggest that BB-DP bone marrow-derived cells that are not T cell precursors influence the maturation environment in the thymus of otherwise normal BB-DP T cell precursors

  10. Cell cycle of spermatogonial colony forming stem cells in the CBA mouse after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bootsma, A.L. (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Davids, J.A.G. (Netherlands Energy Research Foundation, Petten (Netherlands))

    1988-03-01

    In the CBA mouse testis, about 10% of the stem cell population is highly resistant to neutron irradiation (D/sub 0/, 0.75 Gy). Following a dose of 1.50 Gy these cells rapidly increase their sensitivity towards a second neutron dose and progress fairly synchronously through their first post-irradiation cell cycle. From experiments in which neutron irradiation was combined with hydroxyurea, it appeared that in this cycle the S-phase is less radiosensitive (D/sub 0/, 0.43 Gy) than the other phases of the cell cycle (D/sub 0/, 0.25 Gy). From experiments in which hydroxyurea was injected twice after irradiation, the speed of inflow of cells in S and the duration of S and the cell cycle could be calculated. Between 32 and 36 hr after irradiation cells start to enter the S-phase at a speed of 30% of the population every 12 hr. At 60 hr 50% of the population has already passed the S-phase while 30% is still in S. The data point to a cell cycle time of about 36 hr, while the S-phase lasts 12 hr at the most. (author).

  11. Cell cycle delays in synchronized cell populations following irradiation with heavy ions

    International Nuclear Information System (INIS)

    Scholz, M.

    1992-11-01

    Mammalian cells subjected to irradiation with heavy ions were investigated for cell cycle delays. The ions used for this purpose included Ne ions in the LET range of 400 keV/μm just as well as uranium ions of 16225 keV/μm. The qualitative changes in cell cycle progression seen after irradiation with Ne ions (400 keV/μm) were similar to those observed in connection with X-rays. Following irradiation with extremely heavy ions (lead, uranium) the majority of cells were even at 45 hours still found to be in the S phase or G 2 M phase of the first cycle. The delay cross section 'σ-delay' was introduced as a quantity that would permit quantitative comparisons to be carried out between the changes in cell progression and other effects of radiation. In order to evaluate the influence of the number of hits on the radiation effect observed, the size of the cell nucleus was precisely determined with reference to the cycle phase and local cell density. A model to simulate those delay effects was designed in such a way that account is taken of this probability of hit and that the results can be extrapolated from the delay effects after X-irradiation. On the basis of the various probabilities of hit for cells at different cycle stages a model was developed to ascertain the intensified effect following fractionated irradiation with heavy ions. (orig./MG) [de

  12. Experiments and Cycling at the LHC Prototype Half-Cell

    Science.gov (United States)

    Saban, R.; Casas-Cubillos, J.; Coull, L.; Cruikshank, P.; Dahlerup-Petersen, K.; Hilbert, B.; Krainz, G.; Kos, N.; Lebrun, P.; Momal, F.; Misiaen, D.; Parma, V.; Poncet, A.; Riddone, G.; Rijllart, A.; Rodriguez-Mateos, F.; Schmidt, R.; Serio, L.; Wallen, E.; van Weelderen, R.; Williams, L. R.

    1997-05-01

    The first version of the LHC prototype half-cell has been in operation since February 1995. It consists of one quadrupole and three 10-m twin aperture dipole magnets which operate at 1.8 K. This experimental set-up has been used to observe and study phenomena which appear when the systems are assembled in one unit and influence one another. The 18-month long experimental program has validated the cryogenic system and yielded a number of results on cryogenic instrumentation, magnet protection and vacuum in particular under non-standard operating conditions. The program was recently complemented by the cycling experiment: it consisted in powering the magnets following the ramp rates which will be experienced by the magnets during an LHC injection. In order to simulate 10 years of routine operation of LHC, more than 2000 1-hour cycles were performed interleaved with provoked quenches. The objective of this experiment was to reveal eventual flaws in the design of components. The prototype half-cell performed to expectations showing no sign of failure of fatigue of components for more than 2000 cycles until one of the dipoles started exhibiting an erratic quench behavior.

  13. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    Full Text Available Stem cell therapy is a novel method for the treatment of diabetic erectile dysfunction (ED. Many relative animal studies have been done to evaluate the efficacy of this therapy in rats.This meta-analysis was performed to compare the efficacy of different stem cell therapies, to evaluate the influential factors and to determine the optimal stem cell therapeutic strategy for diabetic ED.We searched the studies analyzing the efficacy of stem cell therapy for diabetic ED in rats published before September 30, 2015 in PubMed, Web of Science and EBSCO. A random effects meta-analysis was conducted to assess the outcomes of stem cell therapy. Subgroup analysis was also performed by separating these studies based on their different characteristics. Changes in the ratio of intracavernous pressure (ICP to mean arterial pressure (MAP and in the structure of the cavernous body were compared.10 studies with 302 rats were enrolled in this meta-analysis. Pooled analysis of these studies showed a beneficial effect of stem cell therapy in improving erectile function of diabetic rats (SMD 4.03, 95% CI = 3.22 to 4.84, P< 0.001. In the stem cell therapy group, both the smooth muscle and endothelium content were much more than those in control group. There was also significant increase in the expression of endothelial nitric oxide synthase (eNOS and neuronal nitric oxide synthase (nNOS, the ratio of smooth muscle to collagen, as well as the secretion of vascular endothelial growth factor (VEGF. Besides, apoptotic cells were reduced by stem cell treatment. The subgroup analysis indicated that modified stem cells were more effective than those without modification.Our results confirmed that stem cell therapy could apparently improve the erectile function of diabetic rats. Some specific modification, especially the gene modification with growth factors, could improve the efficacy of stem cell therapy. Stem cell therapy has potential to be an effective therapeutic

  14. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.

    Science.gov (United States)

    Zeng, Guofang; Liu, Jie; Chen, Hege; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2014-06-01

    Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

  15. A protocol to assess cell cycle and apoptosis in human and mouse pluripotent cells

    Directory of Open Access Journals (Sweden)

    Edel Michael J

    2011-04-01

    Full Text Available Abstract Embryonic stem cells (ESC and induced pluripotent stem cells (iPSCs present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

  16. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    Science.gov (United States)

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  17. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho.

    Science.gov (United States)

    Liu, Yihua; Zhang, Qiuli

    2016-05-01

    Recent studies have shown that periodontitis can contribute to adipose tissue inflammation and subsequent systemic insulin resistance in the obese rat model. However, the related inflammatory mechanism is not yet clear. The present study aims to investigate the effects of periodontitis on the function of pancreatic β-cells with pro-inflammatory cytokines-related immune mechanism in a mouse model. C57BL/6-db/db and inbred C57BL/6 mice were chosen here to establish a mouse model with periodontitis, which was induced by ligatures for 8 weeks. Glucose-stimulated insulin secretion was introduced to evaluate the function of pancreatic islets and β-cells. Serum levels of pro-inflammatory cytokines and Klotho were also measured, and the correlation between immunostimulation and Klotho level was deeply investigated in vitro. Pancreatic β-cell failure, with insulin resistance, was observed in db/db mice, while periodontitis could aggravate β-cell dysfunction-related features. Serum levels of interleukin (IL)-12 and Klotho showed a negatively synergistic change, whereas the expression of Klotho was also inhibited under IL-12 treatment in MIN6 β-cells or isolated islets. Furthermore, IL-12-induced immune stimulation and also decreased insulin secretion were proven to be reversed by Klotho overexpression. Periodontitis aggravated pancreatic β-cell failure in diabetic mice. Further in vitro studies showed IL-12 regulation on Klotho, while Klotho also acted as an inhibitor on IL-12, indicating the potential of Klotho for preserving pancreatic β-cell function in diabetes.

  18. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Science.gov (United States)

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  19. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  20. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  1. Cell-cycle regulatory proteins in human wound healing

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Grøn, Birgitte; Dabelsteen, Erik

    2003-01-01

    Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell......-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1......) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas...

  2. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy

    Science.gov (United States)

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-01-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325

  3. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.; Bauer, K.D.

    1988-01-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and an increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous [3H]thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro

  4. Ionizing radiation induces PI3K-dependent JNK activation for amplifying mitochondrial dysfunction in human cervical cancer cells

    International Nuclear Information System (INIS)

    Kim, Min Jung; Choi, Soon Young; Bae, Sang Woo; Kang, Chang Mo; Lee, Yun Sil; Lee, Su Jae

    2005-01-01

    Ionizing radiation is one of the most commonly used treatments for a wide variety of tumors. Exposure of cells to ionizing radiation results in the simultaneous activation or down regulation of multiple signaling pathways, which play critical role in controlling cell death and cell survival after irradiation in a cell type specific manner. The molecular mechanism by which apoptotic cell death occurs in response to ionizing radiation has been widely explored but not precisely deciphered. Therefore an improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. The aim of our investigation was to elucidate molecular mechanisms of the mitochondrial dysfunction mediated apoptotic cell death triggered by ionizing radiation in human cervical cancer cells. We demonstrated that ionizing radiation utilizes PI3K-JNK signaling pathway for amplifying mitochondrial dysfunction and susequent apoptotic cell death: We showed that PI3K-dependent JNK activation leads to transcriptional upregulation of Fas and the phosphorylation/inactivation of Bcl-2, resulting in mitochondrial dysfunction-mediated apoptotic cell death in response to ionizing radiation

  5. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...997 Jan;46(1):19-23. (.png) (.svg) (.html) (.csml) Show CSF-1 and cell cycle control in macrophages. PubmedI...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  6. Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yaping Zhu

    2017-01-01

    Full Text Available Objective. Curcumin is an active extract from turmeric. The aim of this study was to identify the underlying mechanism of curcumin on PCa cells and the role of autophagy in this process. Methods. The inhibitory effect of curcumin on the growth of PANC1 and BxPC3 cell lines was detected by CCK-8 assay. Cell cycle distribution and apoptosis were tested by flow cytometry. Autophagosomes were tested by cell immunofluorescence assay. The protein expression was detected by Western blot. The correlation between LC3II/Bax and cell viability was analyzed. Results. Curcumin inhibited the cell proliferation in a dose- and time-dependent manner. Curcumin could induce cell cycle arrest at G2/M phase and apoptosis of PCa cells. The autophagosomes were detected in the dosing groups. Protein expression of Bax and LC3II was upregulated, while Bcl2 was downregulated in the high dosing groups of curcumin. There was a significant negative correlation between LC3II/Bax and cell viability. Conclusions. Autophagy could be triggered by curcumin in the treatment of PCa. Apoptosis and cell cycle arrest also participated in this process. These findings imply that curcumin is a multitargeted agent for PCa cells. In addition, autophagic cell death may predominate in the high concentration groups of curcumin.

  7. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    Science.gov (United States)

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  8. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  9. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction.

    Science.gov (United States)

    Jin, Minfei; Chen, Ying; Zhou, Yun; Mei, Yan; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-04-05

    Pelvic floor dysfunction (PFD) is a group of clinical conditions including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). The abnormality of collagen and elastin metabolism in pelvic connective tissues is implicated in SUI and POP. To reconstitute the connective tissues with normal distribution of collagen and elastin, we transduced elastin to bone marrow-derived mesenchymal stem cells (BMSC). Elastin-expressing BMSCs were then differentiated to fibroblasts using bFGF, which produced collagen and elastin. To achieve the sustained release of bFGF, we formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). In an in vitro cell culture system of 7 days, when no additional bFGF was administrated, the initial PLGA-loaded bFGF NP induced prolonged production of collagen and elastin from elastin-expressing BMSCs. In vivo, co-injection of PLGA-loaded bFGF NP and elastin-expressing BMSCs into the PFD rats significantly improved the outcome of urodynamic tests. Together, these results provided an efficient model of connective tissue engineering using BMSC and injectable PLGA-loaded growth factors. Our results provided the first instance of a multidisciplinary approach, combining both stem cell and nanoparticle technologies, for the treatment of PFD.

  10. A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Laura Giusti

    2017-01-01

    Full Text Available Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs, bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG, on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.

  11. Analysis of X-ray induced cell-cycle perturbations in mouse osteosarcoma cells: a two-signal cell-cycle model

    International Nuclear Information System (INIS)

    Meeteren, A. van; Wijk, R. van; Stap, J.; Deys, B.F.

    1984-01-01

    The effects of X-irradiation on mouse osteosarcoma cells have been studied by time-lapse cinematography and the resulting pedigrees have been analysed statistically. It is shown that the irradiation treatment causes three types of cell kinetic lesions: cell death (disintegration), cell sterilization (failure to divide) and proliferation delay. The first two lesions are the most important with regard to survival of the irradiated cell in a clonal assay. Of these two lesions, sterilization appears to be highly correlated for sister cells, while this is not true for cell disintegration. This indicates that cell survival in a clonal assay may be a function of the ratio of the incidences of these two types of lesions. The X-ray-induced proliferation delay was studied in terms of intermitotic time distributions, mother-daughter correlation and sibling correlation in relation to the current cell-cycle phase at the time of treatment. This analysis shows that the effects of irradiation on these cell-cycle characteristics is highly cell-cycle-dependent. A qualitative model to account for the observations is presented. (author)

  12. Analysis of X-ray induced cell-cycle perturbations in mouse osteosarcoma cells: a two-signal cell-cycle model

    Energy Technology Data Exchange (ETDEWEB)

    Meeteren, A van; Wijk, R van [Rijksuniversiteit Utrecht (Netherlands); Stap, J; Deys, B F [Amsterdam Univ. (Netherlands)

    1984-03-01

    The effects of X-irradiation on mouse osteosarcoma cells have been studied by time-lapse cinematography and the resulting pedigrees have been analysed statistically. It is shown that the irradiation treatment causes three types of cell kinetic lesions: cell death (disintegration), cell sterilization (failure to divide) and proliferation delay. The first two lesions are the most important with regard to survival of the irradiated cell in a clonal assay. Of these two lesions, sterilization appears to be highly correlated for sister cells, while this is not true for cell disintegration. This indicates that cell survival in a clonal assay may be a function of the ratio of the incidences of these two types of lesions. The X-ray-induced proliferation delay was studied in terms of intermitotic time distributions, mother-daughter correlation and sibling correlation in relation to the current cell-cycle phase at the time of treatment. This analysis shows that the effects of irradiation on these cell-cycle characteristics is highly cell-cycle-dependent. A qualitative model to account for the observations is presented.

  13. Centrosome/Cell cycle uncoupling and elimination in the endoreduplicating intestinal cells of C. elegans.

    Directory of Open Access Journals (Sweden)

    Yu Lu

    Full Text Available The centrosome cycle is most often coordinated with mitotic cell division through the activity of various essential cell cycle regulators, consequently ensuring that the centriole is duplicated once, and only once, per cell cycle. However, this coupling can be altered in specific developmental contexts; for example, multi-ciliated cells generate hundreds of centrioles without any S-phase requirement for their biogenesis, while Drosophila follicle cells eliminate their centrosomes as they begin to endoreduplicate. In order to better understand how the centrosome cycle and the cell cycle are coordinated in a developmental context we use the endoreduplicating intestinal cell lineage of C. elegans to address how novel variations of the cell cycle impact this important process. In C. elegans, the larval intestinal cells undergo one nuclear division without subsequent cytokinesis, followed by four endocycles that are characterized by successive rounds of S-phase. We monitored the levels of centriolar/centrosomal markers and found that centrosomes lose their pericentriolar material following the nuclear division that occurs during the L1 stage and is thereafter never re-gained. The centrioles then become refractory to S phase regulators that would normally promote duplication during the first endocycle, after which they are eliminated during the L2 stage. Furthermore, we show that SPD-2 plays a central role in the numeral regulation of centrioles as a potential target of CDK activity. On the other hand, the phosphorylation on SPD-2 by Polo-like kinase, the transcriptional regulation of genes that affect centriole biogenesis, and the ubiquitin/proteasome degradation pathway, contribute collectively to the final elimination of the centrioles during the L2 stage.

  14. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  15. Maid (GCIP) is involved in cell cycle control of hepatocytes

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Wüstefeld, Torsten; Miehe, Michaela

    2007-01-01

    . Therefore, we studied the role of Maid during cell cycle progression after partial hepatectomy (PH). Lack of Maid expression after PH was associated with a delay in G1/S-phase progression as evidenced by delayed cyclinA expression and DNA replication in Maid-deficient mice. However, at later time points......The function of Maid (GCIP), a cyclinD-binding helix-loop-helix protein, was analyzed by targeted disruption in mice. We show that Maid function is not required for normal embryonic development. However, older Maid-deficient mice-in contrast to wild-type controls--develop hepatocellular carcinomas...

  16. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Gene Expression Profiling of Bronchoalveolar Lavage Cells Preceding a Clinical Diagnosis of Chronic Lung Allograft Dysfunction.

    Directory of Open Access Journals (Sweden)

    S Samuel Weigt

    Full Text Available Chronic Lung Allograft Dysfunction (CLAD is the main limitation to long-term survival after lung transplantation. Although CLAD is usually not responsive to treatment, earlier identification may improve treatment prospects.In a nested case control study, 1-year post transplant surveillance bronchoalveolar lavage (BAL fluid samples were obtained from incipient CLAD (n = 9 and CLAD free (n = 8 lung transplant recipients. Incipient CLAD cases were diagnosed with CLAD within 2 years, while controls were free from CLAD for at least 4 years following bronchoscopy. Transcription profiles in the BAL cell pellets were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix. Differential gene expression analysis, based on an absolute fold change (incipient CLAD vs no CLAD >2.0 and an unadjusted p-value ≤0.05, generated a candidate list containing 55 differentially expressed probe sets (51 up-regulated, 4 down-regulated.The cell pellets in incipient CLAD cases were skewed toward immune response pathways, dominated by genes related to recruitment, retention, activation and proliferation of cytotoxic lymphocytes (CD8+ T-cells and natural killer cells. Both hierarchical clustering and a supervised machine learning tool were able to correctly categorize most samples (82.3% and 94.1% respectively into incipient CLAD and CLAD-free categories.These findings suggest that a pathobiology, similar to AR, precedes a clinical diagnosis of CLAD. A larger prospective investigation of the BAL cell pellet transcriptome as a biomarker for CLAD risk stratification is warranted.

  18. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-06-01

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 3 or 2×10 4 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag + release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10 4 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag + release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bevacizumab inhibits proliferation of choroidal endothelial cells by regulation of the cell cycle.

    Science.gov (United States)

    Rusovici, Raluca; Patel, Chirag J; Chalam, Kakarla V

    2013-01-01

    The purpose of this study was to evaluate cell cycle changes in choroidal endothelial cells treated with varying doses of bevacizumab in the presence of a range of concentrations of vascular endothelial growth factor (VEGF). Bevacizumab, a drug widely used in the treatment of neovascular age-related macular degeneration, choroidal neovascularization, and proliferative diabetic retinopathy, neutralizes all isoforms of VEGF. However, the effect of intravitreal administration of bevacizumab on the choroidal endothelial cell cycle has not been established. Monkey choroidal endothelial (RF/6A) cells were treated with VEGF 50 ng/mL and escalating doses of bevacizumab 0.1-2 mg/mL for 72 hours. Cell cycle changes in response to bevacizumab were analyzed by flow cytometry and propidium iodide staining. Cell proliferation was measured using the WST-1 assay. Morphological changes were recorded by bright field cell microscopy. Bevacizumab inhibited proliferation of choroidal endothelial cells by stabilization of the cell cycle in G0/G1 phase. Cell cycle analysis of VEGF-enriched choroidal endothelial cells revealed a predominant increase in the G2/M population (21.84%, P, 0.01) and a decrease in the G0/G1 phase population (55.08%, P, 0.01). Addition of escalating doses of bevacizumab stabilized VEGF-enriched cells in the G0/G1 phase (55.08%, 54.49%, 56.3%, and 64% [P, 0.01]) and arrested proliferation by inhibiting the G2/M phase (21.84%, 21.46%, 20.59%, 20.94%, and 16.1% [P, 0.01]). The increase in G0/G1 subpopulation in VEGF-enriched and bevacizumab-treated cells compared with VEGF-enriched cells alone was dose-dependent. Bevacizumab arrests proliferation of VEGF-enriched choroidal endothelial cells by stabilizing the cell cycle in the G0/G1 phase and inhibiting the G2/M phase in a dose-dependent fashion.

  20. Decreased IL-33 Production Contributes to Trophoblast Cell Dysfunction in Pregnancies with Preeclampsia

    Directory of Open Access Journals (Sweden)

    Hong Chen

    2018-01-01

    Full Text Available Preeclampsia (PE is a life-threatening pregnancy complication which is related to aggradation of risk regarding fetal and maternal morbidity and mortality. Dysregulation of systemic inflammatory response and dysfunction of trophoblast cells have been proposed to be involved in the development and progression of PE. Some studies have demonstrated that interleukin-33 (IL-33 is an immunomodulatory cytokine that is associated with the immune regulation of tumor cells. However, little is known whether IL-33 and its receptor ST2/IL-1 R4 could regulate trophoblast cells, which are associated with the pathogenesis of PE. In this study, our target is to explore the impact of IL-33 on trophoblast cells and elucidate its underlying pathophysiological mechanisms. Placental tissues from the severe PE group (n=11 and the normotensive pregnant women’s group (n=11 were collected for the protein expression and distribution of IL-33 along with its receptor ST2/IL-1 R4 via Western blot analysis and immunohistochemistry, respectively. We discovered that the level of IL-33 was decreased in placental tissues of pregnant women with PE, while no distinction was observed in the expression of ST2/IL-1 R4. These results were further verified in villous explants which were treated with sodium nitroprusside with different concentrations, to simulate the pathological environment of PE. To investigate IL-33 effects on trophoblast cells separately, IL-33 shRNA was introduced into HTR8/SVneo cells and villi. IL-33 shRNA weakened the proliferation, migration, and invasion capacity of HTR8/SVneo cells. The migration distance of villous explants was also markedly decreased. The reduced invasion of trophoblast cells is a result of IL-33 knockdown which could be related to the decline of MMP2/9 activity and the increased utterance of TIMP1/2. Overall, our findings demonstrated that the reduction of IL-33 production was connected with the reduced functional capability of

  1. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  2. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  3. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    Science.gov (United States)

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  4. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  5. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  6. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  7. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  8. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  9. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  10. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  11. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    Directory of Open Access Journals (Sweden)

    Mami eNoda

    2015-06-01

    Full Text Available It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS. Among hormones closely related to the nervous system, thyroid hormones (THs are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of human brain, leading to various neurological dysfunctions. In adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Though hypothyroidism impairs synaptic transmission and plasticity, its effect on glial cells and cellular mechanisms are unknown. This mini-review article summarizes how THs are transported to the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, showing an example of glioendocrine system. It may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders.

  12. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  13. IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents.

    Science.gov (United States)

    Ivovic, Aleksandar; Oprescu, Andrei I; Koulajian, Khajag; Mori, Yusaku; Eversley, Judith A; Zhang, Liling; Nino-Fong, Rodolfo; Lewis, Gary F; Donath, Marc Y; Karin, Michael; Wheeler, Michael B; Ehses, Jan; Volchuk, Allen; Chan, Catherine B; Giacca, Adria

    2017-10-01

    We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase β (IKKβ), which is activated by oxidative stress, is also implicated. Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKβ inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKβ) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet -1  h -1 ) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet -1  h -1 ] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic

  14. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Zhong-Cheng Xin

    2016-01-01

    Full Text Available Transplanted stem cells (SCs, owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED. However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1 SC niche and SC biological features in vitro; (2 localization and mobilization of endogenous SCs; (3 existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED.

  15. A role of pancreatic stellate cells in islet fibrosis and β-cell dysfunction in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Lee, Esder; Ryu, Gyeong Ryul; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2017-01-01

    Objectives: To investigate whether the activation of pancreatic stellate cells (PSCs) leads to pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). Methods: The pancreases of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of T2DM, and patient with T2DM were analyzed. And the in vitro and in vivo effects of pirfenidone, an antifibrotic agent, on PSC activation, islet fibrosis, and β-cells were studied. Results: The extent of islet fibrosis and the percentage of activated PSCs, positive for α-smooth muscle actin, in the islets were significantly greater in OLETF rats compared with non-diabetic rats. Also, the extent of islet fibrosis in patients with T2DM was slightly greater compared with age- and BMI-matched non-diabetic patients. In rat PSCs cultured with high glucose for 72 h, pirfenidone produced decreases in cell proliferation, release of collagen, and the expression of fibronectin and connective tissue growth factor. Treatment of OLETF rats with pirfenidone for 16 weeks decreased the activation of PSCs and the extent of islet fibrosis, but did not enhance glucose tolerance, pancreatic insulin content, or β-cell mass. Conclusions: Activated PSCs in islets might lead to islet fibrosis in T2DM. However, PSC activation itself might not contribute significantly to progressive β-cell failure in T2DM. - Highlights: • Islet fibrosis developed progressively in OLETF rats, a model of type 2 diabetes. • PSCs in the islets became activated in OLETF rats. • Islet fibrosis was increased in patients with type 2 diabetes. • Pirfenidone attenuated the activation of PSCs and islet fibrosis in OLETF rats. • Pirfenidonet had no effects on glucose tolerance or on β-cells in OLETF rats.

  16. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    Science.gov (United States)

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    Science.gov (United States)

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients.

  18. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Alexandersen, Søren

    1997-01-01

    We examined replication of the autonomous parovirus Aleutian mink disease parovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cyc...

  19. Cell cycle delays induced by heavy ion irradiation of synchronous mammalian cells

    International Nuclear Information System (INIS)

    Scholz, M.; Kraft-Weyrather, W.; Ritter, S.; Kraft, G.

    1994-01-01

    Cell cycle delays in V79 Chinese hamster cells induced by heavy ion exposure have been investigated using flow cytometry. Synchronous cell populations in G 1 -, S- and late-S/G 2 M-phase were used. Cells were irradiated with particles from Z = 10 (neon) up to Z = 96 (uranium) in the energy range from 2.4 to 17.4 MeV/u and the LET range from 415 to 16225 keV/μm at the UNILAC at GSI, Darmstadt. For comparison, experiments with 250 kV X-rays were performed. For light particles like neon, cell cycle perturbations comparable to those after X-ray irradiation were found, and with increasing LET an increasing delay per particle traversal was observed. For the highest LET-values, extended delays in G 1 -, S- and G 2 M-phase were detected immediately after irradiation. A large fraction of the cells remained in S-phase or G 2 M-phase up to 48 h or longer after irradiation. No significant cell age dependence of cycle delays was detected for the very high LET values. In addition to cell cycle delays, two effects related to the DNA-content as determined by flow cytometry were found after irradiation with very high LET particles, which were attributed to cell fusion and to drastic morphological changes of the cells. Estimations based on the dose deposited by a single particle hit in the cell nucleus and the actual number of hits show, that the basic trend of the experimental results can be explained by the stochastic properties of particle radiation. (orig.)

  20. Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long-lived maternal T cells.

    Science.gov (United States)

    Barton, Brendan M; Xu, Rong; Wherry, E John; Porrett, Paige M

    2017-04-01

    Fetal antigen available during pregnancy induces the proliferation of maternal T cells. It is unknown, however, whether these antigen-activated T cells differentiate into long-lived memory T cells that are capable of mediating rapid-recall responses to tissue antigens. To test the hypothesis that pregnancy induces an alternative fate in fetal-specific maternal T cells, we used a murine model to track longitudinally fetal-specific T cells in pregnant and postpartum animals and test the response of these cells when challenged with the same antigen during sequential pregnancy or skin transplantation. Fetal-specific CD8 + T cells were robustly primed during pregnancy but failed to acquire robust effector functions. These primed cells persisted long term in postpartum animals, frequently maintained a programmed death 1 (PD-1) + phenotype, and failed to expand or produce cytokines robustly in response to second pregnancy or skin transplantation. However, whereas there was no impact on second pregnancy as a result of the persistence of fetal-primed memory CD8 + T cells in the mother, skin grafts bearing the same antigen were rejected more rapidly. Altogether, our data suggest that fetal antigen exposure during pregnancy induces the differentiation of long-lived maternal CD8 + T cells with context-dependent, selective effector dysfunction. This programmed effector dysfunction provides temporal and systemic restraint of maternal anti-fetal alloreactivity to promote reproductive fitness efficiently, while preserving potentially protective effector T cell responses. © Society for Leukocyte Biology.

  1. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  2. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Solhaug, A.; Vines, L.L.; Ivanova, L.; Spilsberg, B.; Holme, J.A.; Pestka, J.; Collins, A.; Eriksen, G.S.

    2012-01-01

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  3. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  4. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  5. High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma.

    Science.gov (United States)

    Gordon, Katrina E; Ireland, Hazel; Roberts, Meryl; Steeghs, Karen; McCaul, James A; MacDonald, D Gordon; Parkinson, E Kenneth

    2003-01-15

    Human epithelial cells experience multiple barriers to cellular immortality in culture (mortality mechanisms 0, 1, and 2). Mortality mechanism 2 (M2) is termed crisis and involves telomere dysfunction due to lack of telomerase. However, proliferating normal keratinocytes in vivo can express telomerase, so it is unclear whether human squamous cell carcinomas (SCCs), which usually have high telomerase levels, develop from preexisting telomerase-positive precursors or by the activation of telomerase in telomerase-deficient somatic cells. We show that 6 of 29 oral SCCs show characteristics of M2 crisis in vivo, as indicated by a high anaphase bridge index (ABI), which is a good correlate of telomere dysfunction, and that 25 of 29 tumors possess some anaphase bridges. ABIs in excess of 0.2 in the primary tumor showed a decrease in the corresponding lymph node metastases. This suggests that high levels of telomere dysfunction (>0.2) and, by inference, M2 crisis bestow a selective disadvantage on SCCs during progression stages of the disease. Supporting this, SCCs with high levels of telomere dysfunction grow poorly in culture, and the ectopic expression of telomerase corrects this, together with other features of M2 crisis. Our data suggest that a substantial proportion of oral SCCs in vivo ultimately arise from telomerase-deficient keratinocytes rather than putative telomerase-proficient cells in the undifferentiated parts of the epithelium. Furthermore, the presence of significant levels of telomere dysfunction in a high proportion of SCCs at diagnosis but not in the normal epithelium implies that the therapeutic inhibition of telomerase should selectively compromise the growth of such tumors.

  6. Single-cell analysis of transcription kinetics across the cell cycle

    Science.gov (United States)

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  7. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    Science.gov (United States)

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  8. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  9. Cell cycle phase of nondividing cells in aging human cell cultures determined by DNA content and chromosomal constitution

    International Nuclear Information System (INIS)

    Yanishevsky, R.M.

    1975-01-01

    Human diploid cell cultures, strain WI-38, have a finite proliferative capacity and have been proposed as a model of biological aging. To identify the cell cycle phase of the nondividing cells, cultures of various ages were exposed to 3 Hdt for 48 hours to label dividing cells, then the cycle phase was identified for individual cells by one of two methods, and finally, the proliferative status of the same cells was scored by autoradiographic evidence of 3 HdT uptake. The methods to identify the cycle phase were: determination of DNA strain content by Feulgen scanning cytophotometry, and determination of chromosome constitution by the technique of premature chromosome condensation (PCC). Preliminary experiments showed the effect of continuous exposure to various levels of 3 HdT on cell growth. High levels of 3 HdT inhibited cell cycle traverse: the cell number and labeling index curves reached a plateau; the cell volume increased; the cells accumulated with 4C DNA contents and it appeared that they blocked in G 2 phase. This pattern is consistent with a radiation effect. (U.S.)

  10. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  11. Constitutive luteinizing hormone receptor signaling causes sexual dysfunction and Leydig cell adenomas in male mice.

    Science.gov (United States)

    Hai, Lan; Hiremath, Deepak S; Paquet, Marilène; Narayan, Prema

    2017-05-01

    The luteinizing hormone receptor (LHCGR) is necessary for fertility, and genetic mutations cause defects in reproductive development and function. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP). We have previously characterized a mouse model (KiLHRD582G) for FMPP that exhibits the same phenotype of precocious puberty, Leydig cell hyperplasia, and elevated testosterone as boys with the disorder. We observed that KiLHRD582G male mice became infertile by 6 months of age, although sperm count and motility were normal. In this study, we sought to determine the reason for the progressive infertility and the long-term consequences of constant LHCGR signaling. Mating with superovulated females showed that infertile KiLHRD582G mice had functional sperm and normal accessory gland function. Sexual behavior studies revealed that KiLHRD582G mice mounted females, but intromission was brief and ejaculation was not achieved. Histological analysis of the reproductive tract showed unique metaplastic changes resulting in pseudostratified columnar epithelial cells with cilia in the ampulla and chondrocytes in the penile body of the KiLHRD582G mice. The infertile KiLHRD582G exhibited enlarged sinusoids and a decrease in smooth muscle content in the corpora cavernosa of the penile body. However, collagen content was unchanged. Leydig cell adenomas and degenerating seminiferous tubules were seen in 1-year-old KiLHRD582G mice. We conclude that progressive infertility in KiLHRD582G mice is due to sexual dysfunction likely due to functional defects in the penis. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  12. Cell cycle variation in x-ray survival for cells from spheroids measured by volume cell sorting

    International Nuclear Information System (INIS)

    Freyer, J.P.; Wilder, M.E.; Raju, M.R.

    1984-01-01

    Considerable work has been done studying the variation in cell survival as a function of cell cycle position for monolayers or single cells exposed to radiation. Little is known about the effects of multicellular growth on the relative radiation sensitivity of cells in different cell cycle stages. The authors have developed a new technique for measuring the response of cells, using volume cell sorting, which is rapid, non-toxic, and does not require cell synchronization. By combining this technique with selective spheroid dissociation,they have measured the age response of cells located at various depths in EMT6 and Colon 26 spheroids. Although cells in the inner region had mostly G1-phase DNA contents, 15-20% had S- and G2-phase DNA contents. Analysis of these cells using BrdU labeling and flow cytometric analysis with a monoclonal antibody to BrdU indicated that the inner region cells were not synthesizing DNA. Thus, the authors were able to measure the radiation response of cells arrested in G1, S and G2 cell cycle phases. Comparison of inner and outer spheroid regions, and monolayer cultures, indicates that it is improper to extrapolate age response data in standard culture conditions to the situation in spheroids

  13. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions.

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    Full Text Available BACKGROUND: Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES: To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS: Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS: Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs, but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS: RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.

  14. Business cycles and the financial performance of fuel cell companies

    International Nuclear Information System (INIS)

    Henriques, I.; Sadorsky, P.

    2005-01-01

    Fuel cells are expected to play a major role in a hydrogen powered world. They will provide power to homes, modes of transportation and appliances. Hydrogen is the most abundant element in nature, but it must be extracted in order to be usable. It can be produced from oil, natural gas and coal or from renewable sources such as biomass, thermal or nuclear reactions. Fuel cells running on hydrogen extracted from non renewable resources have an efficiency of 30 per cent, which is twice as efficient as an internal combustion engine. The greatest barrier to mass commercialization is the cost of making hydrogen-powered auto engines. Also, an infrastructure must be developed to refill hydrogen cars. One solution is to build a hydrogen highway using the existing natural gas grid to produce hydrogen and sell it at existing filling stations. The cost of building 12,000 refueling pumps in urban areas which will provide access to 70 per cent of America's population is estimated at $10 to $15 billion. This paper described the vector autoregression (VAR) model which empirically examines the relationship between financial performance of fuel cell companies and business cycles. It was used to measure how sensitive the financial performance of fuel cell companies are to changes in macroeconomic activity. A four variable VAR model was developed to examine the relationship between stock prices, oil prices and interest rates. It was shown that the stock prices of fuel cell companies are affected by shocks to technology stock prices and oil prices, with the former having a longer lasting impact. These results add to the growing literature that oil price movements are not as important as once thought. 15 refs., 3 tabs., 3 figs

  15. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling.

    Science.gov (United States)

    Xie, Di; Zhu, Shasha; Bai, Li

    2016-12-01

    Cellular metabolism has been shown to regulate differentiation and function of immune cells. Tumor associated immune cells undergo phenotypic and functional alterations due to the change of cellular metabolism in tumor microenvironments. NKT cells are good candidates for immunotherapies against tumors and have been used in several clinical trials. However, the influences of tumor microenvironments on NKT cell functions remain unclear. In our studies, lactic acid in tumor microenvironments inhibited IFNγ and IL4 productions from NKT cells, and more profound influence on IFNγ was observed. By adjusting the pH of culture medium we further showed that, dysfunction of NKT cells could simply be induced by low extracellular pH. Moreover, low extracellular pH inhibited NKT cell functions by inhibiting mammalian target of rapamycin (mTOR) signaling and nuclear translocation of promyelocytic leukemia zinc-finger (PLZF). Together, our results suggest that tumor acidic microenvironments could interfere with NKT cell functions through metabolic controls.

  16. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.

    Science.gov (United States)

    Zhang, Kun; Wang, Jin

    2018-05-31

    The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for

  17. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  18. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  19. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    Science.gov (United States)

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  20. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chao

    Full Text Available Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression.

  1. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Heidi Loponen

    Full Text Available Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1 and p21(Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  2. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    Science.gov (United States)

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  3. Fanconi anemia and the cell cycle: new perspectives on aneuploidy

    Science.gov (United States)

    2014-01-01

    Fanconi anemia (FA) is a complex heterogenic disorder of genomic instability, bone marrow failure, cancer predisposition, and congenital malformations. The FA signaling network orchestrates the DNA damage recognition and repair in interphase as well as proper execution of mitosis. Loss of FA signaling causes chromosome instability by weakening the spindle assembly checkpoint, disrupting centrosome maintenance, disturbing resolution of ultrafine anaphase bridges, and dysregulating cytokinesis. Thus, the FA genes function as guardians of genome stability throughout the cell cycle. This review discusses recent advances in diagnosis and clinical management of Fanconi anemia and presents the new insights into the origins of genomic instability in FA. These new discoveries may facilitate the development of rational therapeutic strategies for FA and for FA-deficient malignancies in the general population. PMID:24765528

  4. Growth versus immunity--a redirection of the cell cycle?

    Science.gov (United States)

    Eichmann, Ruth; Schäfer, Patrick

    2015-08-01

    Diseases caused by plant pathogens significantly reduce growth and yield in agricultural crop production. Raising immunity in crops is therefore a major aim in breeding programs. However, efforts to enhance immunity are challenged by the occurrence of growth inhibition triggered by immunity that can be as detrimental as diseases. In this review, we will propose molecular models to explain the inhibitory growth-immunity crosstalk. We will briefly discuss why the resource reallocation model might not represent the driving force for the observed growth-immunity trade-offs. We suggest a model in which immunity redirects and initiates hormone signalling activities that can impair plant growth by antagonising cell cycle regulation and meristem activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    International Nuclear Information System (INIS)

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1996-01-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation mediated by UV radiation. In these experiments, we investigated the effects of exposure to 254 nm radiation on cell cycle progression in the rabbit lens epithelial cell line N/N1003A. The RNA was harvested at various times following exposure to UV (254 nm) radiation and analyzed by dot-blot and northern blot hybridizations. These results revealed that during the first 6 h following exposure of the cells to UV, there was, associated with decreasing dose, a decrease in accumulation of transcripts specific for histones H3 and H4 and an increase in the mRNA encoding protein kinase C and β- and γ-actin. Using flow cytometry, we detected an accumulation of cells in G1/S phase of the cell cycle 1 h following exposure to 254 nm radiation. The observed changes in gene expression, especially the decreased accumulation of histone transcripts reported here, may play a role in UV-induced inhibition of cell cycle progression. (Author)

  6. Effects on proliferation and cell cycle of irradiated KG-1 cells stimulated by CM-CSF

    International Nuclear Information System (INIS)

    Guo Dehuang; Dong Bo; Wen Gengyun; Luo Qingliang; Mao Bingzhi

    2000-01-01

    In order to explore the variety of cell proliferation and cell cycle after exposure to ionizing radiation, the responses of irradiated KG-1 cells of the human myeloid leukemia stimulated by GM-CSF, the most common used cytokine in clinic, were investigated. The results showed that GM-CSF enhance KG-1 cells proliferation, reduce G0/G1 block, increase S phase and G2/M phase. The stimulation effects of the GM-CSF are more effective in irradiated group than in control group

  7. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  8. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    Full Text Available Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.

  9. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  10. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  11. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.

  13. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  14. The cell cycle inhibitor p27Kip¹ controls self-renewal and pluripotency of human embryonic stem cells by regulating the cell cycle, Brachyury and Twist.

    Science.gov (United States)

    Menchón, Cristina; Edel, Michael J; Izpisua Belmonte, Juan Carlos

    2011-05-01

    The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27(Kip)¹ cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27(Kip)¹ in hESC lead to a G₁phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27(Kip)¹ caused an elongated/scatter cell-like phenotype involving up-regulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27(Kip)¹ protein occupies the Twist1 gene promoter and manipulation of p27(Kip)¹ by gain and loss of function is associated with Twist gene expression changes. These results define p27(Kip)¹ expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27(Kip)¹ in controlling an epithelial to mesenchymal transition (EMT) in hESC.

  15. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Silljé, H H; Paalman, J W; ter Schure, E G; Olsthoorn, S Q; Verkleij, A J; Boonstra, Johannes; Verrips, C T

    Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation.

  16. Polyamine metabolism during the cell cycle of synchronized tobacco BY-2 cell line

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Lenka; Cvikrová, Milena; Fischerová, Lucie; Binarová, Pavla; Fischer, L.; Eder, Josef

    2009-01-01

    Roč. 47, č. 7 (2009), s. 584-591 ISSN 0981-9428 R&D Projects: GA AV ČR IAA500200719 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : ADC * Cell cycle * DAO Subject RIV: EF - Botanics Impact factor: 2.485, year: 2009

  17. Cell cycle perturbations induced by Cisplatin in normal and tumor transformed cells

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Mazzini, G.; Lisá, Věra; Ferrari, C.; Malík, Radek; Šedo, A.

    2001-01-01

    Roč. 5, - (2001), s. 23-29 ISSN 1212-3137 Grant - others:GA UK(XC) 58/1999/C; LF UK(XC) 206019-2-"Oncology" Institutional research plan: CEZ:AV0Z5011922 Keywords : cell cycle * cisplatin * DNA content Subject RIV: FD - Oncology ; Hematology

  18. Backup pathways of NHEJ in cells of higher eukaryotes: Cell cycle dependence

    International Nuclear Information System (INIS)

    Iliakis, George

    2009-01-01

    DNA double-strand breaks (DSBs) induced by ionizing radiation (IR) in cells of higher eukaryotes are predominantly repaired by a pathway of non-homologous end joining (NHEJ) utilizing Ku, DNA-PKcs, DNA ligase IV, XRCC4 and XLF/Cernunnos (D-NHEJ) as central components. Work carried out in our laboratory and elsewhere shows that when this pathway is chemically or genetically compromised, cells do not shunt DSBs to homologous recombination repair (HRR) but instead use another form of NHEJ operating as a backup (B-NHEJ). Here I review our efforts to characterize this repair pathway and discuss its dependence on the cell cycle as well as on the growth conditions. I present evidence that B-NHEJ utilizes ligase III, PARP-1 and histone H1. When B-NHEJ is examined throughout the cell cycle, significantly higher activity is observed in G2 phase that cannot be attributed to HRR. Furthermore, the activity of B-NHEJ is compromised when cells enter the plateau phase of growth. Together, these observations uncover a repair pathway with unexpected biochemical constitution and interesting cell cycle and growth factor regulation. They generate a framework for investigating the mechanistic basis of HRR contribution to DSB repair.

  19. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    NARCIS (Netherlands)

    C. Feillet (Céline); C.A. Krusche; F. Tamanini (Filippo); R. Janssens (Roel); R.A. Downey (Roger); P. Martin (Patrick); J.L. Teboul (Jean Louis); S. Saito (Seiji); F.A. Lévi (Francis); T. Bretschneider (Till); G.T.J. van der Horst (Gijsbertus); F. Delaunay (Franck); D.A. Rand (David)

    2014-01-01

    textabstractDaily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle

  20. Dynamics of the cell-cycle network under genome-rewiring perturbations

    International Nuclear Information System (INIS)

    Katzir, Yair; Elhanati, Yuval; Braun, Erez; Averbukh, Inna

    2013-01-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein–DNA and protein–protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes

  1. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  2. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens

    2009-01-01

    downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate...... that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.......ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2...

  3. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  4. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium

    OpenAIRE

    Koyama, Fernanda C.; Chakrabarti, Debopam; Garcia, Célia R.S.

    2009-01-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is co...

  5. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  6. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  7. Endocrine dysfunction in Taiwanese children with human chorionic gonadotropin-secreting germ cell tumors

    Directory of Open Access Journals (Sweden)

    Chien-Ming Lin

    2014-02-01

    Conclusion: Taiwanese children with HCG-secreting GCTs often have clinical manifestations related to endocrine dysfunction. High index of suspicion is important to avoid delayed diagnosis in these children.

  8. Epigenetics: The missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes

    OpenAIRE

    Gilbert, Elizabeth R.; Liu, Dongmin

    2012-01-01

    Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular ...

  9. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  10. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    Science.gov (United States)

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  11. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana.

    Science.gov (United States)

    de Simone, Ambra; Hubbard, Rachel; de la Torre, Natanael Viñegra; Velappan, Yazhini; Wilson, Michael; Considine, Michael J; Soppe, Wim J J; Foyer, Christine H

    2017-12-20

    The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.

  12. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.

    Science.gov (United States)

    Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G

    2018-04-01

    Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    International Nuclear Information System (INIS)

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-01-01

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16 INK4a , a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis

  14. Utility of Iron Staining in Identifying the Cause of Renal Allograft Dysfunction in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Yingchun Wang

    2015-01-01

    Full Text Available Sickle cell nephropathy (SCN is associated with iron/heme deposition in proximal renal tubules and related acute tubular injury (ATI. Here we report the utility of iron staining in differentiating causes of renal allograft dysfunction in patients with a history of sickle cell disease. Case 1: the patient developed acute allograft dysfunction two years after renal transplant. Her renal biopsy showed ATI, supported by patchy loss of brush border and positive staining of kidney injury molecule-1 in proximal tubular epithelial cells, where diffuse increase in iron staining (2+ was present. This indicated that ATI likely resulted from iron/heme toxicity to proximal tubules. Electron microscope confirmed aggregated sickle RBCs in glomeruli, indicating a recurrent SCN. Case 2: four years after renal transplant, the patient developed acute allograft dysfunction and became positive for serum donor-specific antibody. His renal biopsy revealed thrombotic microangiopathy (TMA and diffuse positive C4d stain in peritubular capillaries. Iron staining was negative in the renal tubules, implying that TMA was likely associated with acute antibody-mediated rejection (AAMR, type 2 rather than recurrent SCN. These case reports imply that iron staining is an inexpensive but effective method in distinguishing SCN-associated renal injury in allograft kidney from other etiologies.

  15. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  16. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  17. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    Science.gov (United States)

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  18. Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn.

    Science.gov (United States)

    Wang, Qiang; Du, Xia; Zhou, Bingjie; Li, Jing; Lu, Wenlong; Chen, Qiuyun; Gao, Jing

    2017-12-01

    Targeting cellular metabolism is becoming a hallmark to overcome drug resistance in breast cancer treatment. Activation of fatty acid synthase (FASN) has been shown to promote breast cancer cell growth. However, there is no concrete report underlying the mechanism associated with mitochondrial dysfunction in relation to fatty acid synthase inhibition-induced apoptosis in breast cancer cells. The current study is aimed at exploring the effect of the novel manganese (Mn) complex, labeled as PdpaMn, on lipid metabolism and mitochondrial function in breast cancer cells. Herein, we observed that PdpaMn displayed strong cytotoxicity on breast cancer cell lines and selectively targeted the tumor without affecting the normal organs or cells in vivo. We also observed that PdpaMn could bind to TE domain of FASN and decrease the activity and the level of expression of FASN, which is an indication that FASN could serve as a target of PdpaMn. In addition, we demonstrated that PdpaMn increased intrinsic apoptosis in breast cancer cells relayed by a suppressed the level of expression of FASN, followed by the release of mitochondrial cytochrome c and the activation of caspases-9. Instigated by the above observations, we hypothesized that PdpaMn-induced apoptosis events are dependent on mitochondrial dysfunction. Indeed, we found that mitochondrial membrane potential (MMP) collapse, mitochondrial oxygen consumption reduction and adenosine triphosphate (ATP) release were deeply repressed. Furthermore, our results showed that PdpaMn significantly increased the reactive oxygen species (ROS) production, and the protection conferred by the free radical scavenger N-acetyl-cysteine (NAC) indicates that PdpaMn-induced apoptosis through an oxidative stress-associated mechanism. More so, the above results have demonstrated that mitochondrial dysfunction participated in FASN inhibition-induce apoptosis in breast cancer cells by PdpaMn. Therefore, PdpaMn may be considered as a good candidate

  19. Reduced proliferation of endothelial colony-forming cells in unprovoked venous thromboembolic disease as a consequence of endothelial dysfunction

    Science.gov (United States)

    Hernandez-Lopez, Rubicel; Chavez-Gonzalez, Antonieta; Torres-Barrera, Patricia; Moreno-Lorenzana, Dafne; Lopez-DiazGuerrero, Norma; Santiago-German, David; Isordia-Salas, Irma; Smadja, David; C. Yoder, Mervin; Majluf-Cruz, Abraham

    2017-01-01

    Background Venous thromboembolic disease (VTD) is a public health problem. We recently reported that endothelial colony-forming cells (ECFCs) derived from endothelial cells (EC) (ECFC-ECs) from patients with VTD have a dysfunctional state. For this study, we proposed that a dysfunctional status of these cells generates a reduction of its proliferative ability, which is also associated with senescence and reactive oxygen species (ROS). Methods and results Human mononuclear cells (MNCs) were obtained from peripheral blood from 40 healthy human volunteers (controls) and 50 patients with VTD matched by age (20−50 years) and sex to obtain ECFCs. We assayed their proliferative ability with plasma of patients and controls and supernatants of cultures from ECFC-ECs, senescence-associated β-galactosidase (SA-β-gal), ROS, and expression of ephrin-B2/Eph-B4 receptor. Compared with cells from controls, cells from VTD patients showed an 8-fold increase of ECFCs that emerged 1 week earlier, reduced proliferation at long term (39%) and, in passages 4 and 10, a highly senescent rate (30±1.05% vs. 91.3±15.07%, respectively) with an increase of ROS and impaired expression of ephrin-B2/Eph-4 genes. Proliferation potential of cells from VTD patients was reduced in endothelial medium [1.4±0.22 doubling population (DP)], control plasma (1.18±0.31 DP), or plasma from VTD patients (1.65±0.27 DP). Conclusions As compared with controls, ECFC-ECs from individuals with VTD have higher oxidative stress, proliferation stress, cellular senescence, and low proliferative potential. These findings suggest that patients with a history of VTD are ECFC-ECs dysfunctional that could be associated to permanent risk for new thrombotic events. PMID:28910333

  20. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription

    Science.gov (United States)

    Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt

    2016-01-01

    Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731

  1. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways.

    Directory of Open Access Journals (Sweden)

    Huiping Yuan

    2010-12-01

    Full Text Available Dysfunction of β-cell is one of major characteristics in the pathogenesis of type 2 diabetes. The combination of obesity and type 2 diabetes, characterized as 'diabesity', is associated with elevated plasma free fatty acids (FFAs. Oxidative stress has been implicated in the pathogenesis of FFA-induced β-cell dysfunction. However, molecular mechanisms linking between reactive oxygen species (ROS and FFA-induced β-cell dysfunction and apoptosis are less clear. In the present study, we test the hypothesis that NOX2-derived ROS may play a critical role in dysfunction and apoptosis of β-cells induced by FFA. Our results show that palmitate and oleate (0.5 mmol/L, 48 h induced JNK activation and AKT inhibition which resulted in decreased phosphorylation of FOXO1 following nuclear localization and the nucleocytoplasmic translocation of PDX-1, leading to the reducing of insulin and ultimately dysfunction of pancreatic NIT-1 cells. We also found that palmitate and oleate stimulated apoptosis of NIT-1 cells through p38MAPK, p53 and NF-κB pathway. More interestingly, our data suggest that suppression of NOX2 may restore FFA-induced dysfunction and apoptosis of NIT-1 cells. Our findings provide a new insight of the NOX2 as a potential new therapeutic target for preservation of β-cell mass and function.

  2. KOH concentration effect on cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, Hong S.; Verzwyvelt, S. A.

    1987-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  3. Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold.

    Directory of Open Access Journals (Sweden)

    Juliana S Nakamuta

    Full Text Available BACKGROUND: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC post-myocardial infarction (MI and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. METHODOLOGY/PRINCIPAL FINDINGS: (99mTc-labeled BMC (6 x 10(6 cells were injected by 4 different routes in adult rats: intravenous (IV, left ventricular cavity (LV, left ventricular cavity with temporal aorta occlusion (LV(+ to mimic coronary injection, and intramyocardial (IM. The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (<1%. Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16% vs. 1, 2 or 3 (average of 7% days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%, even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. CONCLUSIONS/SIGNIFICANCE: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these

  4. Effects of hyaluronic acid- chitosan-gelatin complex on the apoptosis and cell cycle of L929 cells

    Institute of Scientific and Technical Information of China (English)

    MAO Jinshu; WANG Xianghui; CUI Yuanlu; YAO Kangde

    2003-01-01

    With the development in the field of tissue engineering, the interaction between biomaterials and cells has been deeply studied. Viewing the cells seeded on the surface of materials as an organic whole, cell cycle and apoptosis are analyzed to deepen the study of cell compatibility on biomaterials, while cellproliferation and differentiation are studied at the same time. In this paper, hyaluronic acid is incorporated into the chitosan-gelatin system. Propidium iodide (PI) was used in cell cycle analysis and the double-staining of cells with annexin-V and PI was applied in cell apoptosis analysis. The results show that incorporated hyaluronic acid shortens the adaptation period of cells on the material surface, and then cells enter the normal cell cycle quickly. In addition, added hyaluronic acid inhibits cell apoptosis triggered by the membranes. Therefore,hyaluronic acid improves the cell compatibility of chitosan-gelatin system and benefits the design of biomimetic materials.

  5. Agmatine Improves Cognitive Dysfunction and Prevents Cell Death in a Streptozotocin-Induced Alzheimer Rat Model

    Science.gov (United States)

    Song, Juhyun; Hur, Bo Eun; Bokara, Kiran Kumar; Yang, Wonsuk; Cho, Hyun Jin; Park, Kyung Ah; Lee, Won Taek; Lee, Kyoung Min

    2014-01-01

    Purpose Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. Materials and Methods We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 µL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. Results Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. Conclusion Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD. PMID:24719136

  6. Red blood cell distribution width: biomarker for red cell dysfunction and critical illness outcome?

    Science.gov (United States)

    Said, Ahmed S.; Spinella, Philip C.; Hartman, Mary E.; Steffen, Katherine M.; Jackups, Ronald; Holubkov, Richard; Wallendorf, Mike; Doctor, Allan

    2016-01-01

    Objective Red blood cell distribution width (RDW) is reported to be an independent predictor of outcome in adults with a variety of conditions. We sought to determine if RDW is associated with morbidity or mortality in critically ill children. Design Retrospective observational study. Setting Tertiary pediatric intensive care unit. Patients All admissions to Saint Louis Children’s Hospital Pediatric Intensive Care Unit between 1/1/2005 and 12/31/2012. Interventions We collected demographics, laboratory values, hospitalization characteristics and outcomes. We calculated the relative change in RDW (R-RDW) from admission (A-RDW) to the highest RDW during the first 7 days of hospitalization. Our primary outcome was ICU mortality or use of ECMO as a composite. Secondary outcomes were ICU- and ventilator-free days. Measurements and main results We identified 3,913 eligible subjects with an estimated mortality (by PIM2) of 2.94±9.25% and an actual ICU mortality of 2.91%. For the study cohort, A-RDW was 14.12±1.89% and R-RDW was +2.63±6.23%. On univariate analysis, both A-RDW and R-RDW correlated with mortality or use of ECMO (OR=1.19 [95% CI: 1.12–1.27] and OR=1.06 [95% CI: 1.04–1.08], respectively, p<0.001). After adjusting for confounding variables, including severity of illness, both A-RDW (OR=1.13, 95% CI 1.03–1.24) and R-RDW (OR=1.04, 95% CI 1.01–1.07) remained independently associated with ICU mortality or use of ECMO. A-RDW and R-RDW both weakly correlated with fewer ICU-free (r2=0.038) and ventilator-free days, (r2=0.05), (p<0.001). Conclusions Independent of illness severity in critically ill children, A-RDW is associated with ICU mortality and morbidity. These data suggest that RDW may be a biomarker for RBC injury that is of sufficient magnitude to influence critical illness outcome, possibly via oxygen delivery impairment. PMID:27832023

  7. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  8. Determination of cell cycle phases in live B16 melanoma cells using IRMS.

    Science.gov (United States)

    Bedolla, Diana E; Kenig, Saša; Mitri, Elisa; Ferraris, Paolo; Marcello, Alessandro; Grenci, Gianluca; Vaccari, Lisa

    2013-07-21

    The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.

  9. Biochemical effects of veterinary antibiotics on proliferation and cell cycle arrest of human HEK293 cells.

    Science.gov (United States)

    Kim, Hyeon Young; Kim, Ki-Tae; Kim, Sang Don

    2012-08-01

    The purpose of this study was to examine the effects of veterinary antibiotics, including amoxicillin (AMX), chlortetracycline (CTC) and tylosin (TYL), on the biochemical mechanism of human embryonic kidney cells (HEK293). CTC and TYL inhibited HEK293 cell proliferation, in both time- and dose-dependent manners, and changed the cell morphology; whereas, AMX showed no cytotoxic effects. The cell cycle analysis of CTC and TYL revealed G1-arrest in HEK293 cells. Western blot analysis also showed that CTC and TYL affected the activation of DNA damage responsive proteins, as well as cell cycle regulatory proteins, such as p53, p21(Waf1/Cip1) and Rb protein, which are crucial in the G1-S transition. The activation of p21(Waf1/Cip1) was significantly up-regulated over time, but there was no change in the level of CDK2 expression. The results of this study suggest that veterinary antibiotics, even at low level concentrations on continuous exposure, can potentially risk the development of human cells.

  10. Cell cycle evaluation of granulosa cells in the {gamma}-irradiated mouse ovarian follicles

    Energy Technology Data Exchange (ETDEWEB)

    KIm, Jin Kyu; Lee, Chang Joo; Lee, Young Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Song, Kang Won; Yoon, Yong Dal [Hanyang Univ., Seoul (Korea, Republic of)

    1999-03-01

    This study was carried out to evaluate the biochemical and morphological effects of ionizing radiation on mouse ovarian follicles. Immature mice (ICR, 3 week-old) were irradiated with a dose of LD{sub 80(30)} at KAERI. The ovaries were collected after 6 hours, 12 hours, 1 day, and 2 days post irradiation. With the morphological basis of the histological staining with hematoxylin-eosin, immunohistochemical preparation using in situ 3'-end labeling was evaluated. Flow cytometric evaluation of DNA extracted from the whole ovary was performed. The percentage of A{sub 0} (subpopulation of cells with degraded DNA and with lower DNA fluorescence than G{sub 0}/G{sub 1} cells), apoptotic, cells in the cell cycle was significantly higher in the irradiated group than in the control group. The number of in situ 3'-end labeled follicles increased at 6 hours post irradiation. All the analyses represented that the ionizing radiation-induced follicular atresia was taken place via an apoptotic degeneration. Such a degeneration underwent very fast and acutely. Therefore, it is concluded that the radiation-induced follicular degeneration is, like the spontaneous atresia, mediated by an acute apoptosis of follicular granulosa cells. Flow cytometric evaluation of cell cycles can make the role for quantifying the atretic follicles and understanding the mechanism of the radiation-induced cell death.

  11. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  12. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  13. Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene

    International Nuclear Information System (INIS)

    Gupta, Anu; Yang, L.-X.; Chen, L.-C.

    2002-01-01

    Purpose: Members of the cullin gene family are known to be involved in cell cycle control. One of the cullin genes, Cul-4A, is amplified and overexpressed in breast cancer cells. This study investigates the effect of Cul-4A overexpression upon G2/M cell cycle checkpoint after DNA damage induced by either ionizing or nonionizing radiation. Methods and Materials: The normal mammary epithelial cell line MCF10A was stably transfected with full-length Cul-4A cDNA. Independent clones of MCF10A cells that overexpress Cul-4A proteins were selected and treated with either 8 Gy of ionizing radiation or 7 J/M 2 of UV radiation. The profile of cell cycle progression and the accumulation of several cell cycle proteins were analyzed. Results: We found that overexpression of Cul-4A in MCF10A cells abrogated the G2/M cell cycle checkpoint in response to DNA damage induced by ionizing irradiation, but not to DNA damage induced by nonionizing radiation. Analysis of cell cycle proteins showed that after ionizing irradiation, p53 accumulated in the mock-transfected MCF10A cells, but not in the Cul-4A transfectants. Conclusion: Our results suggest a role for Cul-4A in tumorigenesis and/or tumor progression, possibly through disruption of cell cycle control

  14. Effect of hyperthermia and radiation on the cell cycle progression of HeLa cells

    International Nuclear Information System (INIS)

    Kubota, Nobuo

    1982-01-01

    The effect of hyperthermia and irradiation on cytokinetics was studied using exponentially growing HeLa cells. To determine the effect of heat and/or radiation on the cell cycle progression, the changes in the DNA distribution of the cell population after time intervals after treatment were studied. The cellular DNA content of the cell population was measured by flow cytometry. The results obtained were as follows: 1. Compared with the control, the cellular DNA content distribution of HeLa cells treated with 43 0 C for 20 min and 60 min showed cell accumulation in S and G 2 M phases 8 hours after treatment. 2. Hyperthermic treatment at 45 0 C for 20 min caused cells to accumulate in S phase in the first 4 hours and G 2 M phase after 8 to 14.5 hours, whereas heat treatment at 45 0 C for 60 min caused cells to accumulate in G 2 M phase after 24 hours. 3. Irradiation of exponentially growing cells induced a block in the progress from G 2 M to G 1 phase. 4. Dose survival curves of HeLa cells with and without postirradiation thermal treatment (43 0 C, 60 min) showed significant enhancement of radiosensitivity by hyperthermia. 5. The sequential treatment, i.e. 5 Gy irradiation followed immediately by heat treatment at 43 0 C for 60 min, caused more cells to accumulate in G 2 M phase after 24 and 48 hours, as compared with 5 Gy irradiation alone. (author)

  15. Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1

    DEFF Research Database (Denmark)

    Walmod, Peter S.; Hartmann-Petersen, Rasmus; Prag, S.

    2004-01-01

    comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner...... for calculation of three key parameters describing cell motility: speed, persistence time and rate of diffusion. All investigated cell lines demonstrated a lower cell displacement in the G2 phase than in the G1/S phases. This was caused by a decrease in speed and/or persistence time. The decrease in motility...... was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels...

  16. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress.

    Science.gov (United States)

    Su, Chen-Ming; Chen, Chien-Yu; Lu, Tingting; Sun, Yi; Li, Weimin; Huang, Yuan-Li; Tsai, Chun-Hao; Chang, Chih-Shiang; Tang, Chih-Hsin

    2016-12-13

    Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.

  17. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  18. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-01-01

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPARγ expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest

  19. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions.

    Directory of Open Access Journals (Sweden)

    Haitao Shen

    Full Text Available Severe trauma such as burn injury is often associated with a systemic inflammatory syndrome characterized by a hyperactive innate immune response and suppressed adaptive immune function. Dendritic cells (DCs, which sense pathogens via their Toll-like receptors (TLRs, play a pivotal role in protecting the host against infections. The effect of burn injury on TLR-mediated DC function is a debated topic and the mechanism controlling the purported immunosuppressive response remains to be elucidated. Here we examined the effects of burn injury on splenic conventional DC (cDC and plasmacytoid DC (pDC responses to TLR9 activation. We demonstrate that, following burn trauma, splenic cDCs' cytokine production profile in response to TLR9 activation became anti-inflammatory dominant, with high production of IL-10 (>50% increase and low production of IL-6, TNF-α and IL-12p70 (∼25-60% reduction. CD4+ T cells activated by these cDCs were defective in producing Th1 and Th17 cytokines. Furthermore, burn injury had a more accentuated effect on pDCs than on cDCs. Following TLR9 activation, pDCs displayed an immature phenotype with an impaired ability to secrete pro-inflammatory cytokines (IFN-α, IL-6 and TNF-α and to activate T cell proliferation. Moreover, cDCs and pDCs from burn-injured mice had low transcript levels of TLR9 and several key molecules of the TLR signaling pathway. Although hyperactive innate immune response has been associated with severe injury, our data show to the contrary that DCs, as a key player in the innate immune system, had impaired TLR9 reactivity, an anti-inflammatory phenotype, and a dysfunctional T cell-priming ability. We conclude that burn injury induced impairments in DC immunobiology resulting in suppression of adaptive immune response. Targeted DC immunotherapies to promote their ability in triggering T cell immunity may represent a strategy to improve immune defenses against infection following burn injury.

  20. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  1. Cyclin D1 overexpression, cell cycle progression and radiosensitivity in MBP cells

    International Nuclear Information System (INIS)

    Wu Lijun; Yu Zengliang

    2000-11-01

    Clones that exhibited a minimum of 7-8 fold cyclin D1 level above the parent cell lines or the vector control were obtained after transfected with the entire coding sequence of human 1.1 kb cyclin D1 cDNA. Studies showed that there was no significant difference in Radiosensitivity between over-expressing cyclin D1 and control cultures from either mouse or human origin. Using flow cytometry to access cell cycle distribution in the exponentially growth cultures of MCF10F-D1-21 and MCF10F-V-3, it was found that there was a 50 percent increase in the proportion of G2/M phase cells and 5.3 percent decrease in the proportion of G0/G1 phase cells in MCF10F-D1-21 comparing with MCF10F-V-3, though they were with the same proportion of cells in S phase

  2. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to (V600E)BRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS......). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that (V600E)BRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes...

  3. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably......, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that V600EBRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to V...

  4. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

    Science.gov (United States)

    Scott, RE; Ghule, PN; Stein, JL; Stein, GS

    2015-01-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367

  5. Effects of arsenite on cell cycle progression in a human bladder cancer cell line

    International Nuclear Information System (INIS)

    Hernandez-Zavala, A.; Cordova, E.; Razo, L.M. del; Cebrian, M.E.; Garrido, E.

    2005-01-01

    Bladder cancer is one of the most important diseases associated with arsenic (As) exposure in view of its high prevalence and mortality rate. Experimental studies have shown that As exposure induces cell proliferation in the bladder of sodium arsenite (iAsIII) subchronically treated mice. However, there is little available information on its effects on the cell cycle of bladder cells. Thus, our purpose was to evaluate the effects of iAsIII on cell cycle progression and the response of p53 and p21 on the human-derived epithelial bladder cell line HT1197. iAsIII treatment (1-10 μM) for 24 h induced a dose-dependent increase in the proportion of cells in S-phase, which reached 65% at the highest dose. A progressive reduction in cell proliferation was also observed. BrdU was incorporated to cellular DNA in an interrupted form, suggesting an incomplete DNA synthesis. The time-course of iAsIII effects (10 μM) showed an increase in p53 protein content and a transient increase in p21 protein levels accompanying the changes in S-phase. These effects were correlated with iAs concentrations inside the cells, which were not able to metabolize inorganic arsenic. Our findings suggest that p21 was not able to block CDK2-cyclin E complex activity and was therefore unable to arrest cells in G1 allowing their progression into the S-phase. Further studies are needed to ascertain the mechanisms underlying the effects of iAsIII on the G1 to S phase transition in bladder cells

  6. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  7. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  8. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    Directory of Open Access Journals (Sweden)

    Martin Sauer

    2017-01-01

    Full Text Available Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A were exposed to 0.01–50 ng/mL procalcitonin for 2×72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey’s test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P<0.05 and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P<0.001. Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients.

  9. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation.

    Science.gov (United States)

    Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E

    2012-12-01

    Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.

  10. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    A breakthrough in the low-earth-orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells is reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There were two failures, however, for the cells containing 31 percent KOH.

  11. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  12. A comparison of passive hindlimb cycling and active upper-limb exercise provides new insights into systolic dysfunction after spinal cord injury.

    Science.gov (United States)

    DeVeau, Kathryn M; Harman, Kathryn A; Squair, Jordan W; Krassioukov, Andrei V; Magnuson, David S K; West, Christopher R

    2017-11-01

    Active upper-limb and passive lower-limb exercise are two interventions used in the spinal cord injury (SCI) population. Although the global cardiac responses have been previously studied, it is unclear how either exercise influences contractile cardiac function. Here, the cardiac contractile and volumetric responses to upper-limb (swim) and passive lower-limb exercise were investigated in rodents with a severe high-thoracic SCI. Animals were divided into control (CON), SCI no exercise (NO-EX), SCI passive hindlimb cycling (PHLC), or SCI swim (SWIM) groups. Severe contusion SCI was administered at the T2 level. PHLC and SWIM interventions began on day 8 postinjury and lasted 25 days. Echocardiography and dobutamine stress echocardiography were performed before and after injury. Cardiac contractile indexes were assessed in vivo at study termination via a left ventricular pressure-volume conductance catheter. Stroke volume was reduced after SCI (91 µl in the NO-EX group vs. 188 µl in the CON group, P spinal cord injury. Here, we demonstrate that lower-limb exercise positively influences flow-derived cardiac indexes, whereas upper-limb exercise does not. Furthermore, neither intervention corrects the cardiac contractile dysfunction associated with spinal cord injury. Copyright © 2017 the American Physiological Society.

  13. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    Science.gov (United States)

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  14. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  15. Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification

    Directory of Open Access Journals (Sweden)

    Thomas Zerjatke

    2017-05-01

    Full Text Available Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations.

  16. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    Transcription from the embryos own ribosomal genes is initiated in most species at the same time as the maternal-embryonic transition. Recently data have indicated that a minor activation may take place during the third embryonic cell cycle in the bovine, one cell cycle before the major activation...

  17. Driving cycle characterization and generation, for design and control of fuel cell buses

    NARCIS (Netherlands)

    Tazelaar, E.; Bruinsma, J.; Veenhuizen, P.A.; Bosch, van den P.P.J.

    2009-01-01

    Optimization routines for battery, supercap and fuel cell stack in a fuel cell based propulsion system face two problems: the tendency to cycle beating and the necessity to maintain identical amounts of stored energy in battery and supercap at the start and end of the driving cycle used in the

  18. Spermatogonial multiplication in the Chinese hamster. II. Cell cycle properties of undifferentiated spermatogonia

    NARCIS (Netherlands)

    Lok, D.; Jansen, M. T.; de rooij, D. G.

    1983-01-01

    The cell cycle properties of undifferentiated spermatogonia in the Chinese hamster were analysed by the fraction of labelled mitoses technique (FLM) in whole mounted seminiferous tubules. The minimum cell cycle time (Tc) was found to be c. 90 hr for the As and 87 hr for the Apr and Aal

  19. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  20. How cells grow and divide: mathematical analysis confirms demand for the cell cycle

    International Nuclear Information System (INIS)

    Kwon, Hyun Woong; Choi, M Y

    2012-01-01

    Eukaryotes usually grow through cell growth and division. How cells grow and divide is essential to life because too small or too large cells cannot function well. In order for an organism to survive even under a condition where cell growth and division processes are independent of each other, cells must have an appropriate growth factor, growth rate and division rate. To determine them, we derive a time evolution equation for the size distribution of cells from the master equation describing changes in the cell size due to growth and in the total number of cells due to division. It is found that long-time behaviors of moments of the size distribution divide the parameter space, consisting of the growth factor and the ratio of the division rate to the growth rate, into infinitely many regions. Examining the properties of each region, we conclude that growth with a small growth factor may be disastrous; this demonstrates the demand for the cell cycle consisting of coordinated growth and division processes. (paper)

  1. MicroRNA-4443 Causes CD4+ T Cells Dysfunction by Targeting TNFR-Associated Factor 4 in Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Yicheng Qi

    2017-11-01

    Full Text Available ContextAberrant CD4+ T cell function plays a critical role in the process of Graves’ disease (GD. MicroRNAs (miRNAs are important regulators of T cell activation, proliferation, and cytokine production. However, the contribution of miRNAs to CD4+ T cell dysfunction in GD remains unclear.ObjectiveTo investigate how certain miRNA causes aberrant CD4+ T cell function in GD patients.MethodsWe compared the expression pattern of miRNAs in CD4+ T cells from untreated GD (UGD patients with those from healthy controls. The most significantly dysregulated miRNAs were selected and their correlations with clinical parameters were analyzed. The effect of miR-4443 on CD4+ T cells cytokines production and proliferation was assessed. The potential gene target was identified and validated.ResultsGD patients had unique pattern of miRNA expression profile in CD4+ T cells comparing to healthy subjects. miR-10a, miR-125b, and miR-4443 were the three most significantly dysregulated miRNAs. The elevated miR-4443 levels were strongly correlated with clinical parameters in an independent dataset of UGD patients (N = 40, while miR-4443 was normally expressed in GD patients with euthyroidism and negative TRAb level. We found that miR-4443 directly inhibited TNFR-associated factor (TRAF 4 expression to increase CD4+ T cells cytokines secretion as well as proliferation through the NF-κB pathway. Furthermore, the TRAF4 levels in GD patients were inversely correlated with miR-4443, and knocking down TRAF4 had a similar effect with miR-4443 overexpression.ConclusionThe increased expression of miR-4443 induced CD4+ T cells dysfunction by targeting TRAF4, which may cause GD.

  2. Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells - An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  3. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells. An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  4. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells - An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  5. Study of cell cycle and apoptosis after radiation with electron linear accelerator injury

    International Nuclear Information System (INIS)

    Xu Lan; Zhou Yinghui; Shi Ning; Peng Miao; Wu Shiliang

    2002-01-01

    Purpose: To determine the cell cycle and apoptosis of the injured cells after radiation with the electron linear accelerator. Methods: NIH 3T3 cells were irradiated by the radiation with the electron linear accelerator. In the experiment the condition of the cell cycle and apoptosis of the injured cells were measured. The expression of p53 was also tested. Results: After exposure to radiation, the number of apoptotic cells as well as the expression of p53 increased. Conclusion: The electron linear accelerator radiation injury can induce cell apoptosis

  6. G2 phase arrest of cell cycle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Gong Shouliang

    2002-01-01

    The exposure of mammalian cells to X rays results in the prolongation of the cell cycle, including the delay or the arrest in G 1 , S and G 2 phase. The major function of G 1 arrest may be to eliminate the cells containing DNA damage and only occurs in the cells with wild type p53 function whereas G 2 arrest following ionizing radiation has been shown to be important in protecting the cells from death and occurs in all cells regardless of p53 status. So the study on G 2 phase arrest of the cell cycle induced by ionizing radiation has currently become a focus at radiobiological fields

  7. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    International Nuclear Information System (INIS)

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-01-01

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  8. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  9. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis.

    Science.gov (United States)

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-10-18

    BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.

  10. Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.

    Science.gov (United States)

    Dong, Peng; Maddali, Manoj V; Srimani, Jaydeep K; Thélot, François; Nevins, Joseph R; Mathey-Prevot, Bernard; You, Lingchong

    2014-09-01

    A body of evidence has shown that the control of E2F transcription factor activity is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell-cycle regulatory activities, has not been clearly defined. Here, recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we model the potential roles of individual components together with the use of an integrated system to follow E2F dynamics at the single-cell level and in real time. These analyses reveal that crossing a threshold amplitude of E2F accumulation determines cell cycle commitment. Importantly, we find that Myc is critical in modulating the amplitude, whereas cyclin D/E activities have little effect on amplitude but do contribute to the modulation of duration of E2F activation, thereby affecting the pace of cell cycle progression.

  11. Relationship Between Beta Cell Dysfunction and Severity of Disease Among Critically Ill Children: A STROBE-Compliant Prospective Observational Study.

    Science.gov (United States)

    Liu, Ping-Ping; Lu, Xiu-Lan; Xiao, Zheng-Hui; Qiu, Jun; Zhu, Yi-Min

    2016-05-01

    Although beta cell dysfunction has been proved to predict prognosis among humans and animals, its prediction on severity of disease remains unclear among children. The present study was aimed to examine the relationship between beta cell dysfunction and severity of disease among critically ill children.This prospective study included 1146 critically ill children, who were admitted to Pediatric Intensive Care Unit (PICU) of Hunan Children's Hospital from November 2011 to August 2013. Information on characteristics, laboratory tests, and prognostic outcomes was collected. Homeostasis model assessment (HOMA)-β, evaluating beta cell function, was used to divide all participants into 4 groups: HOMA-β = 100% (group I, n = 339), 80% ≤ HOMA-β multiple organ dysfunction syndrome (MODS), mechanical ventilation (MV) and mortality. Logistic regression analysis was used to evaluate the risk of developing poor outcomes among patients in different HOMA-β groups, with group I as the reference group.Among 1146 children, incidence of HOMA-β decrement of HOMA-β (P < 0.01). C-reactive protein and procalcitonin levels, rather than white blood cell, were significantly different among 4 groups (P < 0.01). In addition, the worst SOFA score and the worst PRISMIII score increased with declined HOMA-β. For example, the worst SOFA score in group I, II, III, and IV was 1.55 ± 1.85, 1.71 ± 1.93, 1.92 ± 1.63, and 2.18 ± 1.77, respectively. Furthermore, patients with declined HOMA-β had higher risk of developing septic shock, MODS, MV, and mortality, even after adjusting age, gender, myocardial injury, and lung injury. For instance, compared with group I, the multivariate-adjusted odds ratio (95% confidence interval) for developing septic shock was 2.17 (0.59, 8.02), 2.94 (2.18, 6.46), and 2.76 (1.18, 6.46) among patients in group II, III, and IV, respectively.Beta cell dysfunction reflected the severity of disease among critically ill children

  12. Rising cyclin-CDK levels order cell cycle events.

    Directory of Open Access Journals (Sweden)

    Catherine Oikonomou

    Full Text Available Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the "quantitative model" of ordering.This 'quantitative model' makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism. We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe.We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we

  13. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    Directory of Open Access Journals (Sweden)

    Amanda Cinquin

    2016-04-01

    Full Text Available Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  14. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  15. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite.

    Science.gov (United States)

    Al-Eryani, Laila; Waigel, Sabine; Jala, Venkatakrishna; Jenkins, Samantha F; States, J Christopher

    2017-09-15

    Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. HaCaT cells were exposed to 0 or 100nM NaAsO 2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Certain amplified genomic-DNA fragments (AGFs) may be involved in cell cycle progression and chloroquine is found to induce the production of cell-cycle-associated AGFs (CAGFs) in Plasmodium falciparum

    OpenAIRE

    Li, Gao-De

    2015-01-01

    It is well known that cyclins are a family of proteins that control cell-cycle progression by activating cyclin-dependent kinase. Based on our experimental results, we propose here a novel hypothesis that certain amplified genomic-DNA fragments (AGFs) may also be required for the cell cycle progression of eukaryotic cells and thus can be named as cell-cycle-associated AGFs (CAGFs). Like fluctuation in cyclin levels during cell cycle progression, these CAGFs are amplified and degraded at diffe...

  17. The effect of uric acid on homocysteine-induced endothelial dysfunction in bovine aortic endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Papežíková, Ivana; Pekarová, Michaela; Lojek, Antonín; Kubala, Lukáš

    2009-01-01

    Roč. 30, č. 1 (2009), s. 112-115 ISSN 0172-780X R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * homocysteine * endothelial dysfunction Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  18. Absence of p53 in Clara cells favours multinucleation and loss of cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Clarke Alan R

    2002-11-01

    Full Text Available Abstract Background The p53 oncosuppressor protein is a critical mediator of the response to injury in mammalian cells and is mutationally inactivated in the majority of lung malignancies. In this analysis, the effects of p53-deficiency were investigated in short-term primary cultures of murine bronchiolar Clara cells. Clara cells, isolated from gene-targeted p53-deficient mice, were compared to cells derived from wild type littermates. Results p53 null cultures displayed abnormal morphology; specifically, a high incidence of multinucleation, which increased with time in culture. Multinucleated cells were proficient in S phase DNA synthesis, as determined by BrdU incorporation. However, multinucleation did not reflect altered rates of S phase synthesis, which were similar between wild type and p53-/- cultures. Nucleation defects in p53-/- Clara cells associated with increased centrosome number, as determined by confocal microscopy of pericentrin-stained cultures, and may highlight a novel role of p53 in preserving genomic integrity in lung epithelial cells. Effects of p53-deficiency were also studied following exposure to DNA damage. A p53-dependent reduction in the BrdU index was observed in Clara cells following ionizing radiation. The reduction in BrdU index in wild type cells displayed serum-dependency, and occurred only in the absence of serum. Taken together, these findings demonstrate that in murine primary Clara cell culture, cell cycle arrest is a p53-mediated response to DNA damage, and that extracellular factors, such as serum, influence this response. Conclusion These findings highlight functions of wild type p53 protein in bipolar spindle formation, centrosome regulation, and growth control in bronchiolar Clara cells.

  19. The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina.

    Science.gov (United States)

    Bilitou, Aikaterini; Ohnuma, Shin-ichi

    2010-03-01

    The mature retina is formed through multi-step developmental processes, including eye field specification, optic vesicle evagination, and cell-fate determination. Co-ordination of these developmental events with cell-proliferative activity is essential to achieve formation of proper retinal structure and function. In particular, the molecular and cellular dynamics of the final cell cycle significantly influence the identity that a cell acquires, since cell fate is largely determined at the final cell cycle for the production of postmitotic cells. This review summarizes our current understanding of the cellular mechanisms that underlie the co-ordination of cell-cycle and cell-fate determination, and also describes a molecular role of cyclin-dependent kinase inhibitors (CDKIs) as co-ordinators of cell-cycle arrest, cell-fate determination and differentiation. Copyright (c) 2010 Wiley-Liss, Inc.

  20. Exogenous lactate interferes with cell-cycle control in BALB/3T3 mouse fibroblasts

    International Nuclear Information System (INIS)

    Rutz, H. Peter; Little, John B.

    1995-01-01

    Purpose: Previous studies have shown that exogenous lactate may influence proliferation rates, radiation sensitivity, and postirradiation repair capacity of mammalian cells. In the present study, we addressed the question of potential underlying mechanisms and, therefore, examined effects of exogenous lactate on proliferation rates and cell-cycle distribution in immortal but nontumorigenic mammalian cells. Methods and Materials: Cells were grown at 37 deg. C in an incubator with 5% CO 2 and 95% air, in a culture medium supplemented or not with lactate at a 10 mM concentration. Daily, we changed the culture medium and counted cells per dish. On selected days, cell-cycle distribution was determined by flow cytometry. Balb/3T3 mouse fibroblasts were used. Results: During the exponential phase of cell proliferation, mean population doubling time was significantly increased from 17.7 to 19.9 h, due to selective prolongation of G 2 /M. However, in density-inhibited cultures, exogenous lactate stimulated entry into S and proliferation to a significantly higher saturation density. Conclusions: These findings indicate that exogenous lactate interferes with mechanisms of cell-cycle control at two different points in the cell-cycle, depending on cell density and the resulting absence or presence of inhibition of cell proliferation. Interference with cell-cycle control may underlay the modification by exogenous lactate of radiosensitivity and postirradiation repair capacity in mammalian cells