WorldWideScience

Sample records for cell cultures

  1. [Cell cultures].

    Science.gov (United States)

    Cipro, Simon; Groh, Tomáš

    2014-01-01

    Cell or tissue cultures (both terms are interchangeable) represent a complex process by which eukaryotic cells are maintained in vitro outside their natural environment. They have a broad usage covering not only scientific field but also diagnostic one since they represent the most important way of monoclonal antibodies production which are used for both diagnostic and therapeutic purposes. Cell cultures are also used as a "cultivation medium" in virology and for establishing proliferating cells in cytodiagnostics. They are well-established and easy-to-handle models in the area of research, e.g. as a precious source of nucleic acids or proteins. This paper briefly summarizes their importance and methods as well as the pitfalls of the cultivation and new trends in this field. PMID:24624984

  2. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  3. Optimizing stem cell culture.

    Science.gov (United States)

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  4. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  5. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  6. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  7. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  8. Digital Microfluidic Cell Culture.

    Science.gov (United States)

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  9. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  10. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  11. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  12. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  13. Cell culture's spider silk road.

    Science.gov (United States)

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk.

  14. Aseptic technique for cell culture.

    Science.gov (United States)

    Coté, R J

    2001-05-01

    This unit describes some of the ways that a laboratory can deal with the constant threat of microbial contamination in cell cultures. A protocol on aseptic technique is described first. This catch-all term universally appears in any set of instructions pertaining to procedures in which noncontaminating conditions must be maintained. In reality, aseptic technique encompasses all aspects of environmental control, personal hygiene, equipment and media sterilization, and associated quality control procedures needed to ensure that a procedure is, indeed, performed with aseptic, noncontaminating technique. Although cell culture can theoretically be carried out on an open bench in a low-traffic area, most cell culture work is carried out using a horizontal laminar-flow clean bench or a vertical laminar-flow biosafety cabinet. Both are described here. PMID:18228291

  15. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  16. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  17. Cell Culture, Technology: Enhancing the Culture of Diagnosing Human Diseases.

    Science.gov (United States)

    Hudu, Shuaibu Abdullahi; Alshrari, Ahmed Subeh; Syahida, Ahmad; Sekawi, Zamberi

    2016-03-01

    Cell culture involves a complex of processes of cell isolation from their natural environment (in vivo) and subsequent growth in a controlled environmental artificial condition (in vitro). Cells from specific tissues or organs are cultured as short term or established cell lines which are widely used for research and diagnosis, most specially in the aspect of viral infection, because pathogenic viral isolation depends on the availability of permissible cell cultures. Cell culture provides the required setting for the detection and identification of numerous pathogens of humans, which is achieved via virus isolation in the cell culture as the "gold standard" for virus discovery. In this review, we summarized the views of researchers on the current role of cell culture technology in the diagnosis of human diseases. The technological advancement of recent years, starting with monoclonal antibody development to molecular techniques, provides an important approach for detecting presence of viral infection. They are also used as a baseline for establishing rapid tests for newly discovered pathogens. A combination of virus isolation in cell culture and molecular methods is still critical in identifying viruses that were previously unrecognized. Therefore, cell culture should be considered as a fundamental procedure in identifying suspected infectious viral agent.

  18. Techniques for mammalian cell tissue culture.

    Science.gov (United States)

    Phelan, Mary C

    2006-05-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  19. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  20. Dynamized preparations in cell culture.

    Science.gov (United States)

    Sunila, Ellanzhiyil Surendran; Kuttan, Ramadasan; Preethi, Korengath Chandran; Kuttan, Girija

    2009-06-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties. PMID:18955237

  1. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  2. Cell Culture as an Alternative in Education.

    Science.gov (United States)

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  3. In vitro culture of human thyroid cells

    International Nuclear Information System (INIS)

    Procedures for establishing primary cultures of human thyroid tissue are described. Tissues removed surgically from patients with papillary carcinoma (PC), follicular adenoma (FA), or hyperthyroidism were grown in culture. In addition, normal cells were separated from the margins of excised tumors and were also cultured. For each gram of thyroid tissue cultured, more than 1 x 105 cells attached to culture dishes. A mixture of 2.5 % fetal bovine serum supplemented with insulin, hydrocortisone, transferrin, glycl-1-histidyl-L-lysine acetate, somatostatin and epidermal growth factor was added to nutrient media containing equal parts of Ham's F-12 and minimum essential medium (αMEM). Complete medium selectively supported epithelial cell growth while restricting fibroblast cell growth, especially during the first two weeks of the primary culture. Cells were stimulated with thyroid stimulating hormone (TSH) and produced raised levels of cAMP and thyroid hormone (T3). Culture conditions that affected the response of cells to X-rays were identified. During the culture period, first and second passage cells were compared for differences in their radiosensitivities. In all cases, cells showed differences in their responses to radiation depending on the cell passage number. However, results of replicate experiments of first passage cells that were exposed to X-rays showed good agreement between experiments. This technique makes it possible to quantitate the effects of chemical and physical cytotoxic agents on proliferating human thyroid epithelial cells. (author)

  4. Culture of Cells from Amphibian Embryos.

    Science.gov (United States)

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  5. Cell Suspension Culture of Neem Tree

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The establishment of suspension culture system for neem (Azadirachta indica A. Juss) cells and the suspension culture condition was studied. It shows that the neem cell suspension culture system was best in B5 liquid medium, 2.0~4.0mg/L NAA with direct spill method. Based on the integrated analysis of cell biomass, Azadirachtin content and productivity, the optimum culture conditions were B5 liquid medium, 2.0-4.0 mg/L NAA, 3% sucrose at 25 ℃. The optimum rotating speed of the shaker and broth content d...

  6. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    . Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  7. [Effects of beryllium chloride on cultured cells].

    Science.gov (United States)

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M

    1984-05-01

    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  8. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  9. Autofluorescence of viable cultured mammalian cells.

    Science.gov (United States)

    Aubin, J E

    1979-01-01

    The autofluorescence other than intrinsic protein emission of viable cultured mammalian cells has been investigated. The fluorescence was found to originate in discrete cytoplasmic vesicle-like regions and to be absent from the nucleus. Excitation and emission spectra of viable cells revealed at least two distinct fluorescent species. Comparison of cell spectra with spectra of known cellular metabolites suggested that most, if not all, of the fluorescence arises from intracellular nicotinamide adenine dinucleotide (NADH) and riboflavin and flavin coenzymes. Various changes in culture conditions did not affect the observed autofluorescence intensity. A multiparameter flow system (MACCS) was used to compare the fluorescence intensities of numerous cultured mammalian cells.

  10. Cell Culture for Production of Insecticidal Viruses.

    Science.gov (United States)

    Reid, Steven; Chan, Leslie C L; Matindoost, Leila; Pushparajan, Charlotte; Visnovsky, Gabriel

    2016-01-01

    While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20-500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line. PMID:27565495

  11. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long......-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures. Other protocols provide PCR...

  12. Methods for Maintaining Insect Cell Cultures

    OpenAIRE

    Lynn, Dwight E.

    2002-01-01

    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes methods that are effective for maintaining various insect cell lines. The procedures are differentiated between loosely or non-attached cell strains, attached cell strains, and strongly adherent cell strains.

  13. Culture and transfection of axolotl cells.

    Science.gov (United States)

    Denis, Jean-François; Sader, Fadi; Ferretti, Patrizia; Roy, Stéphane

    2015-01-01

    The use of cells grown in vitro has been instrumental for multiple aspects of biomedical research and especially molecular and cellular biology. The ability to grow cells from multicellular organisms like humans, squids, or salamanders is important to simplify the analyses and experimental designs to help understand the biology of these organisms. The advent of the first cell culture has allowed scientists to tease apart the cellular functions, and in many situations these experiments help understand what is happening in the whole organism. In this chapter, we describe techniques for the culture and genetic manipulation of an established cell line from axolotl, a species widely used for studying epimorphic regeneration.

  14. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  15. Cell culture models for study of differentiated adipose cells

    OpenAIRE

    Clynes, Martin

    2014-01-01

    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  16. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC12, one being increased in amount while the other was reduced to an insignificant level. In ZnC12-treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC12-treated cells. While ZnC12 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC12-treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC12-treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  17. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific productivit

  18. [CO-CULTURE OF BOAR SPERMATOGONIAL CELLS WITH SERTOLI CELLS].

    Science.gov (United States)

    Savchenkova, I P; Vasil'eva, S A

    2016-01-01

    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  19. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  20. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  1. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  2. Pinoresinol from Ipomoea cairica cell cultures.

    Science.gov (United States)

    Páska, Csilla; Innocenti, Gabbriella; Ferlin, Mariagrazia; Kunvári, Mónika; László, Miklós

    2002-10-01

    Ipomoea cairica cell cultures produced a tetrahydrofuran lignan, (+)-pinoresinol, identified by UV, IR, MS and NMR methods, not yet found in the intact plant, and new in the Convolvulaceae family. Pinoresinol was found to have antioxidant and Ca2+ antagonist properties. As it could be requested for its biological activity, we examined the possibility to raise the pinoresinol yield of I. cairica cultures, as well as we continued investigations on lignans' response to optimization.

  3. Growth regulation of cultured human nevus cells.

    Science.gov (United States)

    Mancianti, M L; Györfi, T; Shih, I M; Valyi-Nagy, I; Levengood, G; Menssen, H D; Halpern, A C; Elder, D E; Herlyn, M

    1993-03-01

    Cells isolated from congenital melanocytic nevi and cultured in vitro have growth characteristics that resemble their premalignant stage in situ. A serum-free, chemically defined medium has been developed that allows continuous growth of established nevus cultures for up to several months. Like primary melanoma cells, nevus cells in high-calcium-containing W489 medium require insulin for growth. In contrast to melanoma cells, nevus cells in serum-free medium require the presence of alpha-melanocyte-stimulating hormone, which enhanced intracellular levels of cyclic adenosine monophosphate. In contrast to the requirements of normal human melanocytes from newborn foreskin, congenital nevus cells grow with less dependency on basic fibroblast growth factor (bFGF). Nevus cultures contain bFGF-like activity, and they express bFGF mRNA. Nevic cells of compound nevi also express bFGF mRNA in situ but only in the junctional areas. These results indicate that bFGF plays an important growth regulatory role for nevus cells in vitro and in vivo. PMID:8440904

  4. General overview of neuronal cell culture.

    Science.gov (United States)

    Gordon, Jennifer; Amini, Shohreh; White, Martyn K

    2013-01-01

    In this introductory chapter, we provide a general overview of neuronal cell culture. This is a rapidly evolving area of research and we provide an outline and contextual framework for the different chapters of this book. These chapters were all contributed by scientists actively working in the field who are currently using state-of-the-art techniques to advance our understanding of the molecular and cellular biology of the central nervous system. Each chapter provides detailed descriptions and experimental protocols for a variety of techniques ranging in scope from basic neuronal cell line culturing to advanced and specialized methods.

  5. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  6. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  7. Integrated biosensors for cell culture monitoring

    OpenAIRE

    De Micheli, Giovanni; Boero, Cristina; Olivo, Jacopo; Carrara, Sandro

    2014-01-01

    Biosensors for endogenous compounds, such as glucose and lactate, are applied to monitor cell cultures. Cells can be cultivated for several purposes, such as understanding and modeling some biological mechanisms, the development of new drugs and therapies, and in the field of regenerative medicine. We have realized a self-contained monitoring system with remote readout. Metabolite detection is based on oxidases immobilized onto carbon nanotubes. We calibrate the system for glucose and lactate...

  8. Cell culture from sponges: pluripotency and immortality

    NARCIS (Netherlands)

    Caralt Bosch, de S.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a

  9. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  10. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  11. Cell culture models using rat primary alveolar type I cells.

    Science.gov (United States)

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  12. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M;

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  13. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  14. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan;

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our foc...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....... in this paper is on the optimization of how a biochemical application is performed on a biochip. In this paper, we consider cell culture biochips, where several cell colonies are exposed to soluble compounds and monitored in real-time to determine the right combination of factors that leads to the desired...

  15. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    Directory of Open Access Journals (Sweden)

    Parvaneh Farzaneh

    2012-01-01

    Full Text Available One of the main problems in cell culture is mycoplasma infection. It can extensively affectcell physiology and metabolism. As the applications of cell culture increase in research,industrial production and cell therapy, more concerns about mycoplasma contaminationand detection will arise. This review will provide valuable information about: 1. the waysin which cells are contaminated and the frequency and source of mycoplasma species incell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importanceof mycoplasma tests in cell culture; 4. different methods to identify mycoplasmacontamination; 5. the consequences of mycoplasma contamination in cell culture and 6.available methods to eliminate mycoplasma contamination. Awareness about the sourcesof mycoplasma and pursuing aseptic techniques in cell culture along with reliable detectionmethods of mycoplasma contamination can provide an appropriate situation to preventmycoplasma contamination in cell culture.

  16. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  17. Darwinian Evolution of Prions in Cell Culture*

    OpenAIRE

    Li, Jiali; Browning, Shawn; Mahal, Sukhvir P.; Oelschlegel, Anja M.; Weissmann, Charles

    2009-01-01

    Prions are infectious proteins consisting mainly of PrPSc, a β sheet-rich conformer of the normal host protein PrPC, and occur in different strains. Strain identity is thought to be encoded by PrPSc conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating “mutants”, and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, ...

  18. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    OpenAIRE

    Parvaneh Farzaneh; Laleh Nikfarjam

    2011-01-01

    One of the main problems in cell culture is mycoplasma infection. It can extensively affect cell physiology and metabolism. As the applications of cell culture increase in research, industrial production and cell therapy, more concerns about mycoplasma contamination and detection will arise. This review will provide valuable information about: 1. the ways in which cells are contaminated and the frequency and source of mycoplasma species in cell culture; 2. the ways to prevent mycoplasma conta...

  19. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  20. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  1. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation

    Directory of Open Access Journals (Sweden)

    OLESIA O. GRYGORIEVA

    2015-05-01

    Full Text Available Abstract. Grygorieva OO, Berezovsjka MA, Dacenko OI. 2015. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation. Nusantara Bioscience 7: 38-42. Two cultures of Chlamydomonas actinochloris Deason et Bold in the lag-phase were exposed to the microwave irradiation. One of them (culture 1 was not treated beforehand, whereas the other (culture 2 was irradiated by microwaves 2 years earlier. The measurement of cell quantity as well as measurement of change of intensities and spectra of cultures photoluminescence (PL in the range of chlorophyll a emission was regularly conducted during the cell cultures development. Cell concentration of culture 1 exposed to the microwave irradiation for the first time has quickly restored while cell concentration of culture 2 which was irradiated repeatedly has fallen significantly. The following increasing of cell concentration of culture 2 is negligible. Cell concentration reaches the steady-state level that is about a half of the cell concentration of control culture. Initially the PL efficiency of cells of both cultures decreases noticeable as a result of irradiation. Then there is the monotonic increase to the values which are significantly higher than the corresponding values in the control cultures. The ratio of the intensities at the maxima of the main emission bands of chlorophyll for control samples of both cultures remained approximately at the same level. At the same time effect of irradiation on the cell PL spectrum appears as a temporary reduction of this magnitude.

  2. Insect cell culture in research: Indian scenario.

    Science.gov (United States)

    Sudeep, A B; Mourya, D T; Mishra, A C

    2005-06-01

    Insect cell cultures are widely used in viral diagnosis and biotechnology, for the production of recombinant proteins, viral pesticides and vaccines as well as in basic research in genetics, molecular biology, biochemistry, endocrinology and virology. Following KRP Singh's pioneering research in 1967, a large number of cell lines from diptera, hemiptera, and lepidopteran insects were established and characterized in India. With the availability of the modern tools in molecular biology and the advancements made in biotechnology, the indigenous cell lines may prove useful in creating a future without biohazardous chemical pesticides as well as producing life saving pharmaceuticals and vaccines for many diseases. This review summarizes information gathered regarding the insect cell lines established so far in India. It also covers the familiarization of the well characterized continuous cell lines and their potential applications. Special attention is given to virus susceptibility of the cell lines, the yield of virus with a comparative analysis with other conventional systems. The potential applications of dipteran and lepidopteran cell lines in agriculture and biotechnology are also briefly discussed for prospective studies.

  3. Cytotoxicity effects of amiodarone on cultured cells.

    Science.gov (United States)

    Golli-Bennour, Emna El; Bouslimi, Amel; Zouaoui, Olfa; Nouira, Safa; Achour, Abdellatif; Bacha, Hassen

    2012-07-01

    Amiodarone is a potent anti-arrhythmic drug used for the treatment of cardiac arrhythmias. Although, the effects of amiodarone are well characterized on post-ischemic heart and cardiomyocytes, its toxicity on extra-cardiac tissues is still poorly understood. To this aim, we have monitored the cytotoxicity effects of this drug on three cultured cell lines including hepatocytes (HepG2), epithelial cells (EAhy 926) and renal cells (Vero). We have investigated the effects of amiodarone on (i) cell viabilities, (ii) heat shock protein expressions (Hsp 70) as a parameter of protective and adaptive response and (iii) oxidative damage.Our results clearly showed that amiodarone inhibits cell proliferation, induces an over-expression of Hsp 70 and generates significant amount of reactive oxygen species as measured by lipid peroxidation occurrence. However, toxicity of amiodarone was significantly higher in renal and epithelial cells than in hepatocytes. Vitamin E supplement restores the major part of cell mortalities induced by amiodarone showing that oxidative damage is the predominant toxic effect of the drug.Except its toxicity for the cardiac system, our findings demonstrated that amiodarone can target other tissues. Therefore, kidneys present a high sensibility to this drug which may limit its use with subjects suffering from renal disorders.

  4. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R;

    2003-01-01

    A streamlined, simple technique for primary cell culture from E17 rat tissue is presented. In an attempt to standardize culturing methods for all neuronal cell types in the embryo, we evaluated a commercial medium without serum and used similar times for trypsinization and tested different surfaces...... for plating. In 1 day, using one method and a single medium, it is possible to produce robust E17 cultures of dorsal root ganglia (DRG), cerebellum, and enteric plexi. Allowing the endogenous glial cells to repopulate the cultures saves time compared with existing techniques, in which glial cells are added...... to cultures first treated with antimitotic agents. It also ensures that all the cells present in vivo will be present in the culture. Myelination commences after approximately 2 weeks in culture for dissociated DRG and 3-4 weeks in cerebellar cultures. In enteric cultures, glial wrapping of the enteric...

  5. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    OpenAIRE

    Azarin, Samira M.; Palecek, Sean P.

    2010-01-01

    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and su...

  6. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    Directory of Open Access Journals (Sweden)

    KOMAR RUSLAN

    2011-01-01

    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  7. How do culture media influence in vitro perivascular cell behavior?

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries.

  8. DNA MUTAGENESIS IN PANAX GINSENG CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Kiselev K.V.

    2012-08-01

    Full Text Available At the present time, it is well documented that plant tissue culture induces a number of mutations and chromosome rearrangements termed “somaclonal variations”. However, little is known about the nature and the molecular mechanisms of the tissue culture-induced mutagenesis and the effects of long-term subculturing on the rate and specific features of the mutagenesis. The aim of the present study was to investigate and compare DNA mutagenesis in different genes of Panax ginseng callus cultures of different age. It has previously been shown that the nucleotide sequences of the Agrobacterium rhizogenes rolC locus and the selective marker nptII developed mutations during long-term cultivation of transgenic cell cultures of P. ginseng. In the present work, we analyzed nucleotide sequences of selected plant gene families in a 2-year-old and 20-year-old P. ginseng 1c cell culture and in leaves of cultivated P. ginseng plants. We analysed sequence variability between the Actin genes, which are a family of house-keeping genes; the phenylalanine ammonia-lyase (PAL and dammarenediol synthase (DDS genes, which actively participate in the biosynthesis of ginsenosides; and the somatic embryogenesis receptor kinase (SERK genes, which control plant development. The frequency of point mutations in the Actin, PAL, DDS, and SERK genes in the 2-year-old callus culture was markedly higher than that in cultivated plants but lower than that in the 20-year-old callus culture of P. ginseng. Most of the mutations in the 2- and 20-year-old P. ginseng calli were A↔G and T↔C transitions. The number of nonsynonymous mutations was higher in the 2- and 20-year-old callus cultures than the number of nonsynonymous mutations in the cultivated plants of P. ginseng. Interestingly, the total number of N→G or N→C substitutions in the analyzed genes was 1.6 times higher than the total number of N→A or N→T substitutions. Using methylation-sensitive DNA fragmentation

  9. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  10. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  11. Development of primary cell culture from Scylla serrata: Primary cell cultures from Scylla serrata

    OpenAIRE

    Sashikumar, Anu; Desai, P. V.

    2008-01-01

    This paper reports for the first time, the Primary cell culture of hepatopancreas from edible crab Scylla serrata using crab saline, L-15 (Leibovitz), 1 × L-15 + crab saline, 2 × L-15 + crab saline, 3 × L-15 and citrate buffer without any serum. We could isolate and maintain E (Embryonalzellen), F (Fibrenzellen), B (Blasenzellen), R (Restzellen) and G (Granular cells). Upon seeding the hepatopancreatic E, F, B, and R cells showed different survival pattern over time than granular cells. A mod...

  12. Metabolic flux rewiring in mammalian cell cultures.

    Science.gov (United States)

    Young, Jamey D

    2013-12-01

    Continuous cell lines (CCLs) engage in 'wasteful' glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  13. Phosphatidylinositol species of suspension cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Heim, S.; Wagner, K.G.

    Suspension cultured Nicotiana tabacum and Catharanthus roseus cells were labeled with (/sup 3/H)inositol, the phospholipid fraction extracted and separated by thin layer chromatography. Three different solvent systems and reference compounds were used to assign the different /sup 3/H-labeled species by autoradiography. The ratio of (/sup 3/H)inositol incorporation into PI, PIP and PIP/sub 2/ was found to be 95:4:1; with some preparations a lyso-PI band was obtained which incorporated about a tenth of the label of the PIP band. With Catharanthus roseus cells a very faint band between PI and lyso-PI was detected which could not be assigned to a reference compound.

  14. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  15. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  16. Three-dimensional cell culturing by magnetic levitation.

    Science.gov (United States)

    Haisler, William L; Timm, David M; Gage, Jacob A; Tseng, Hubert; Killian, T C; Souza, Glauco R

    2013-10-01

    Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d). PMID:24030442

  17. Three-Dimensional Cell Culture: A Breakthrough in Vivo

    Directory of Open Access Journals (Sweden)

    Delphine Antoni

    2015-03-01

    Full Text Available Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design.

  18. Electrospinning of microbial polyester for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Hyeong [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Lee, Ik Sang [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Ko, Young-Gwang [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Meng, Wan [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Jung, Kyung-Hye [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Kang, Inn-Kyu [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Ito, Yoshihiro [Kanagawa Academy of Science and Technology, KSP East 309, Sakado 3-2-1, Takatsu-ku, Kawasaki 213-0012 (Japan)

    2007-03-01

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture.

  19. Organ culture-cell culture system for studying multistage carcinogenesis in respiratory epithelium. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Vernon E.; Marchok, Ann C.; Nettesheim, Paul

    1977-01-01

    An organ culture-cell culture system was used to demonstrate carcinogen dose-dependent transformation of tracheal epithelial cells in vitro. Tracheal explants were exposed to MNNG (N-methyl-N/sup 1/-nitro-N-nitrosoguanidine) in organ culture. Outgrowths from these explants provided epithelial cell cultures. The numbers of long term epithelial cell cultures and cell lines that were established per explant increased as MNNG exposure concentration increased. At the present time, more cell lines derived from explants exposed to the highest MNNG concentration have produced palpable tumors than cell lines derived from explants exposed to lower MNNG concentrations. No cell lines were established from primaries derived from control explants. TPA (12-0-tetradecanoyl-phorbol-13-acetate), stimulates DNA synthesis in tracheal epithelium in organ culture in a manner simular to that described for mouse skin. Short exposures to TPA not only stimulated DNA synthesis earlier, but the stimulation was greater than that obtained with continuous exposure. At the present time, exposure of tracheal organ cultures to MNNG followed by TPA has resulted in an enhanced production of morphologically altered cells in primary epithelial cell cultures, than exposure to either agent alone.

  20. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  1. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  2. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    , these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs...

  3. THE ALKALOID CYTISINE IN THE CELL CULTURE

    Directory of Open Access Journals (Sweden)

    Gazaliev A.M.

    2012-08-01

    Full Text Available Alkaloids are vegetative establishments of complex and original structure with nitrous heterocycles in the basis. For a long time they drew researchers’ attention because of their unique and specific physiological effect on alive organisms. Not all the representatives of the globe’s flora contain these unique substances. Alkaloid cytisine is to be found mainly in the plants of the fabaceous family - Fabaceae. For the cytisine production the seeds of Thermopsis lanceolata R.Br (T. lanceolata R.Br and Cytisus laburnum (C. laburnum are used as a raw material. The object of the research is T. lanceolata cell culture. Sterile sprouts are used at the first stage of the experiment. Callus genesis is accompanied with dedifferentiation. It leads to the cellular organization simplification. Based on an important property of a plant cell, such as totipotency, there appears the formation of the “de novo” biosynthetic device. The cultivation algorithm consists of two basic stages: (i the cultivation conditions optimization of callus with a high level of the primary metabolites biosynthesis (Aspartat – lysine; (ii the research of cultivation chemical and physical factors influence on the secondary metabolite (cytisine biosynthesis and accumulation. During the cultivation the Murashige and Skoog classical recipe of nutrient medium will be used. Optimization of the cultivation conditions will concern the phytohormones, macro- and micronutrients content, as the purpose of optimization is the production of the determined high-level competence embriogenical callus. The main problem is genetic heterogeneity of a cellular population and instability of morpho-physiological processes. The correct management of higher plants cells population is possible at the synchronization of a cellular cycle phases. The references analysis has shown that it is almost impossible to synchronize cellular cycles in the culture of plant tissue. The application of chemical

  4. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  5. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  6. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  7. Induced engulfment of Neisseria gonorrhoeae by tissue culture cells.

    OpenAIRE

    Richardson, W P; Sadoff, J C

    1988-01-01

    Engulfment of gonococci by mammalian tissue culture cells was examined as a model of the penetration of host cells in gonorrhea. Engulfment required viable organisms; killing the gonococci with heat or refrigeration abolished the process. Engulfment also required tissue culture cell microtubule- and microfilament-dependent movement; treating the cells with cytochalasin B (0.5 micrograms/ml) or demecolcine (Colcemid; Ciba-Geigy AG, Basel, Switzerland) (10 micrograms/ml) also prevented his proc...

  8. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    Science.gov (United States)

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  9. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    OpenAIRE

    Akopian, Veronika; Andrews, Peter W.; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B; Ludwig, Tenneille E; Ronald D G McKay

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with pr...

  10. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  11. Biologic characteristics of fibroblast cells cultured from the knee ligaments

    Institute of Scientific and Technical Information of China (English)

    陈鸿辉; 唐毅; 李斯明; 沈雁; 刘向荣; 钟灿灿

    2002-01-01

    Objective: To culture fibroblast cells from the kneeligaments and to study the biological characteristics of thesecells.Methods: Cells of the anterior cruciate ligament(ACL) and the medial collateral ligament (MCL) fromNew Zealand white rabbit were cultured in vitro. Cellulargrowth and expression of the collagen were analyzed.Moreover, an in vitro wound closure model was establishedand the healing of the ACL and the MCL cells wascompared.Results: Maximal growth for all these cells wereobtained with Dulbecco's modified Eagle's mediumsupplemented with 10% fetal bovine serum, but RPMI 1640and Ham's F12 media were not suitable to maintain thesecells. Morphology of both ACL and MCL cells from NewZealand white rabbit was alike in vitro, but the MCL cellsgrew faster than the ACL cells. Both cell types producedsimilar amount of collagen in culture, but the ratio ofcollage type I to type III produced by ACL cells was higherthan that produced by MCL cells. Wound closure assayshowed that at 36 hours after injury, cell-free zones createdin the ACL cultures were occupied partially by the ACLcells; in contrast, the wounded zone in the MCL cultureswas almost completely covered by the cells.Conclusions: Although the ACL cells and the MCLcells from New Zealand white rabbit show similarappearance in morphology in culture, the cellular growthand the biochemical synthesis of collagen as well as thehealing in vitro were significantly different. Thesedifferences in intrinsic properties of the two types of cells invitro might contribute to the differential healing potentialsof these ligaments in vivo.

  12. LIF-free embryonic stem cell culture in simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Yumi Kawahara

    Full Text Available BACKGROUND: Leukemia inhibitory factor (LIF is an indispensable factor for maintaining mouse embryonic stem (ES cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required. METHODOLOGY/PRINCIPAL FINDINGS: We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and serum-free media without LIF. CONCLUSIONS/SIGNIFICANCE: Here we show that simulated microgravity allows novel LIF-free and animal derived material-free culture methods for mouse ES cells.

  13. Mesenchymal Progenitor Cells: Tissue Origin, Isolation and Culture.

    Science.gov (United States)

    Bourin, Philippe; Gadelorge, Mélanie; Peyrafitte, Julie-Anne; Fleury-Cappellesso, Sandrine; Gomez, Marilyn; Rage, Christine; Sensebé, Luc

    2008-01-01

    SUMMARY: Since the pioneering work of Alexander Friedenstein on multipotent mesenchymal stromal cells (MSCs), a tremendous amount of work has been done to isolate, characterize and culture such cells. Assay of colony forming unit-fibroblasts (CFU-Fs), the hallmark of MSCs, is used to estimate their frequency in tissue. MSCs are adherent cells, so they are easy to isolate, and they show contact inhibition. Thus, several parameters must be taken into account for culture: cell density, number of passages, culture medium, and growth factors used. The purity of the initial material is not a limiting parameter. Similar but not identical cell populations are found in almost all mammal or human tissues. MSCs seem to be very abundant in adipose tissue but at low frequency in blood from umbilical cord or in adult tissue. The culture conditions are very similar, whatever the source of cells. Because of their favorable properties, MSCs are very promising tools for regenerative medicine.

  14. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  15. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  16. Isolation, Culture, and Maintenance of Mouse Intestinal Stem Cells

    Science.gov (United States)

    O’Rourke, Kevin P.; Ackerman, Sarah; Dow, Lukas E; Lowe, Scott W

    2016-01-01

    In this protocol we describe our modifications to a method to isolate, culture and maintain mouse intestinal stem cells as crypt-villus forming organoids. These cells, isolated either from the small or large intestine, maintain self-renewal and multilineage differentiation potential over time. This provides investigators a tool to culture wild type or transformed intestinal epithelium, and a robust assay for stem cell tissue homeostasis in vitro.

  17. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    International Nuclear Information System (INIS)

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  18. Multizone paper platform for 3D cell cultures.

    Directory of Open Access Journals (Sweden)

    Ratmir Derda

    Full Text Available In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc. The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously ("cells-in-gels-in-paper" or CiGiP, this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, "sections" all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures.

  19. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  20. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids.

    Directory of Open Access Journals (Sweden)

    Cynthia A Batchelder

    Full Text Available Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.

  1. Mammosphere culture of cancer stem cells in a microfluidic device

    Science.gov (United States)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  2. Optimization of Buffalo (Bubalus bubalis Embryonic Stem Cell Culture System

    Directory of Open Access Journals (Sweden)

    Mohammad Zandi

    2015-07-01

    Full Text Available Objective: In order to retain an undifferentiated pluripotent state, embryonic stem (ES cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. Materials and Methods: In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2, leukemia inhibitory factor (LIF and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. Results: The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. Conclusion: We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells.

  3. [Continuous perfusion culture hybridoma cells for production of monoclonal antibody].

    Science.gov (United States)

    Mi, Li; Li, Ling; Feng, Qiang; Yu, Xiao-Ling; Chen, Zhi-Nan

    2002-05-01

    Hybridoma cells were cultured by continuous perfusion in Fibra-Cel of 5L packed-bed bioreactor for 22 days in low serum or serum-free media. The corresponded amino acids were fed and serum concentration was decreased by analyzing glucose concentration, oxygen uptake rate, secretary antibody amount and amino acids concentration in culture supernatant. Comparing with continuous perfusion culture that amino acids were not fed, antibody amount of production was increased about 2-3 times. The inoculated cell density was 2.5 x 10(5) cells/mL, while the final cell density was 8.79 x 10(8) cells/mL. Antibody production was reached 295 mg/L/d at average level, and the highest level was reached 532 mg/L/d. These results provided a primary mode of enlarge culture for monoclonal antibody industralization. PMID:12192875

  4. THE ULTRASTRUCTURE OF SEPARATED AND CULTURED CELL OF PORPHYRA YEZOENSIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  5. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  6. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  7. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota;

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  8. The effects of glucocorticoids on cultured human endothelial cells.

    Science.gov (United States)

    Maca, R D; Fry, G L; Hoak, J C

    1978-04-01

    The effects of hydrocortisone, dexamethasone and prednisone on the morphology, replication, DNA synthesis, cell protein content and protein synthesis of cultured, human endothelial cells were evaluated. After culturing the cells with these glucocorticoids for 24-48 h, the cells covered a greater portion of the culture surface area. The mean surface area of the individual endothelial cell treated with glucocorticoids was 1.53 times greater than that of the untreated control endothelial cell. When compared with controls, the endothelial cover provided by the cells treated with glucocorticoids was more extensive and in many instances covered the entire culture surface. The change in morphology was associated with an increase in protein synthesis and protein content of the cells without an increase in DNA synthesis or cellular replication. Dexamethasone was approximately 10-fold more effective than hydrocortisone, while prednisone was the least effective. Aldosterone, DOCA, testosterone, progesterone, oestradiol and oestriol were ineffective. These studies indicate that glucocorticoids can alter the morphology and biochemistry of cultured endothelial cells and may have implications for the effects of steroids in the treatment of thrombocytopenic states and vascular disorders in man. PMID:646949

  9. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya;

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...

  10. [Results of mammalian cell culture exposure on artificial earth satellites].

    Science.gov (United States)

    Sushkov, F V; Portugalov, V V; Rudneva, S V; Bobkova, N N; Iordanishvili, E K

    1976-01-01

    The paper presents the results of an exposure of cells of the Syrian hamster strain VNK-21 to space flight effects. In contrast to the cell culture kept in a thermostat at 29 degrees C, the cell culture that was maintained in thermally uncontrolled conditions developed noticeable structural and physiological changes induced by suboptimal temperatures. It was concluded that a 6-day exposure to weightlessness exerted no adverse effect on mammalian cells in vitro and produced no stable structural or physiological changes. Some changes that were detected in the cell culture--faster ageing, stable tendency to an increase of the number of cells with enlarged nuclei, an increase of the mitotic index at an early stage of cultivation--need further investigation.

  11. Culture of graft-infiltrating cells from cryopreserved endomyocardial biopsies

    NARCIS (Netherlands)

    G.A. Patijn (G.); L.M.B. Vaessen (Leonard); W. Weimar (Willem); F.H.J. Claas (Frans); N.H.P.M. Jutte (Nicolet)

    1996-01-01

    textabstractGraft-infiltrating cells can be cultured from fresh endomyocardial biopsies (EMB) taken after heart transplantation to determine their growth patterns, phenotypic composition, and functional characteristics for clinical or scientific purposes. In this study we investigated whether graft-

  12. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  13. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... normal tissue up to and including the 10th subculture. (b) Cell line. A pool of cells which are 11 or more subcultures from the tissue of origin. (c) Subculture. Each flask to flask transfer or...

  14. Convoluted cells as a marker for maternal cell contamination in CVS cultures

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P K; Therkelsen, A J

    1987-01-01

    In order to identify cells of maternal origin in CVS cultures, tissue from 1st trimester abortions were cultivated and the cultures stained in situ for X-chromatin. Convoluted cells and maternal fibroblasts were found to be positive. By chromosome analysis of cultures from 105 diagnostic placenta...... biopsies, obtained by the transabdominal route, metaphases of maternal origin were found in nine cases. In eight of these cases colonies of convoluted cells were observed. We conclude that convoluted cells are of maternal origin and are a reliable marker for maternal cell contamination in CVS cultures....

  15. Study on Cell Suspension Culture of Floribunda Rose

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun'ai; WANG Jingang; FAN Jinping; GONG Shufang; CHE Daidi

    2008-01-01

    Friable callus was induced when immature seeds of floribunda rose were inoculated on MS medium supplemented with 2,4-D 3.0 mg-L-1.When transfered onto subculture media,fi-iable callus developed into embryogenic callus,which was used to establish cell suspension lines.Cell suspensions had to be subcultured at a interval of 4-5 days at the first several culture cycles.The best subculturing cycle for the stable cell suspensions was 8-10 days.The best inoculum quantity was 1 mL PCV(Packed Cell Volume) per 40 mL culture fluid.

  16. 2D- and 3D-culture of cell

    Directory of Open Access Journals (Sweden)

    Khoruzhenko A. I.

    2011-02-01

    Full Text Available The cultivation of mammalian cells in three-dimensional conditions acquires a priority in a variety of biomedical applications. In the areas of toxicology and anticancer drug development it concerns a significant difference of responses to proapoptotic factors of the cells cultured in 2D versus 3D environment. Besides, the clear-cut differences have been found in cell polarity, cytoskeleton structure, distribution of receptors to wide range of hormones, growth factors, etc. in mammalian cells depending on culture conditions. It is resulted in different response of cultured cells to extracellular stimuli. Multicellular spheroids are regarded presently as the most convenient model of solid tumour growth in vitro. The cultivation of thyroid follicles, mammary acini and other structure units, maintaining initial tissue organization, allows studying the behavior, biochemical features and gene profile of differentiated cells. On the other hand, 3D cultures have some limitations in comparison with a well established monolayer culture. The advantages and disadvantages of each type of cultures and their application in biological and medical researches will be discussed in this review

  17. Auxin requirements of sycamore cells in suspension culture.

    Science.gov (United States)

    Moloney, M M; Hall, J F; Robinson, G M; Elliott, M C

    1983-04-01

    Sycamore (Acer pseudoplatanus L.) cell suspension cultures (strain OS) require 2,4-dichlorophenoxyacetic acid (2,4-D) in their culture medium for normal growth. If the 2,4-D is omitted, rates of cell division are dramatically reduced and cell lysis may occur. Despite this ;auxin requirement,' it has been shown by gas chromatography-mass spectrometry that the cells synthesize indol-3yl-acetic acid (IAA). Changes in free 2,4-D and IAA in the cells during a culture passage have been monitored.There is a rapid uptake of 2,4-D by the cells during the lag phase leading to a maximum concentration per cell (125 nanograms per 10(6) cells) on day 2 followed by a decline to 45 nanograms per 10(6) cells by day 9 (middle of linear phase). The initial concentration of IAA (0.08 nanograms per 10(6) cells) rises slowly to a peak of 1.4 nanograms per 10(6) cells by day 9 then decreases rapidly to 0.2 nanograms per 10(6) cells by day 15 (early declining phase) and 0.08 nanograms per 10(6) cells by day 23 (early stationary phase).

  18. Guard cell protoplasts: isolation, culture, and regeneration of plants.

    Science.gov (United States)

    Tallman, Gary

    2006-01-01

    Guard cell protoplasts have been used extensively in short-term experiments designed to elucidate the signal transduction mechanisms that regulate stomatal movements. The utility of uard cell protoplasts for other types of longer-term signal transduction experiments is just now being realized. Because highly purified, primary isolates of guard cell protoplasts are synchronous initially, they are uniform in their responses to changes in culture conditions. Such isolates have demonstrated potential to reveal mechanisms that underlie hormonal signalling for plant cell survival, cell cycle re-entry, reprogramming of genes during dedifferentiation to an embryogenic state, and plant cell thermotolerance. Plants have been regenerated from cultured guard cell protoplasts of two species: Nicotiana glauca (Graham), tree tobacco, and Beta vulgaris, sugar beet. Plants genetically engineered for herbicide tolerance have been regenerated from cultured guard cell protoplasts of B. vulgaris. The method for isolating, culturing, and regenerating plants from guard cell protoplasts of N. glauca is described here. A recently developed procedure for large-scale isolation of these cells from as many as nine leaves per experiment is described. Using this protocol, yields of 1.5-2 x 10(7) per isolate may be obtained. Such yields are sufficient for standard methods of molecular, biochemical, and proteomic analysis.

  19. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Science.gov (United States)

    Lestard, Nathalia R.

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  20. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    Science.gov (United States)

    Lestard, Nathalia R; Capella, Marcia A M

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  1. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    Suspension cultures of Datura innoxia Mill, were successfully grown on a modified Murashige and Skoog medium with 2,4–D, NAA or BAP as growth substances, provided the micronutrient levels were reduced to 1/10. Normal amounts of micronutrients were toxic. Attempts to identify the toxic elements did...... malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  2. Hypergravity signal transduction and gene expression in cultured mammalian cells

    Science.gov (United States)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  3. Qualitative study of three cell culture methods.

    Science.gov (United States)

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K

    2002-01-01

    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions. PMID:12674760

  4. [Effect evaluation of three cell culture models].

    Science.gov (United States)

    Wang, Aiguo; Xia, Tao; Yuan, Jing; Chen, Xuemin

    2003-11-01

    Primary rat hepatocytes were cultured using three kinds of models in vitro and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH in the medium decreased over time in the period of culture. However, on 5 days, LDH showed a significant increase in monolayer culture (MC) while after 8 days LDH was not detected in sandwich culture (SC). The levels of AST and ALT in the medium did not change significantly over the investigated time. The basic CYP 1A activity gradually decreased with time in MC and SC. The decline of CYP 1A in rat hepatocytes was faster in MC than that in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducers such as omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than that in SC. Basic CYP 1A activity in bioreactor was keeped over 2 weeks and the highest albumin production was observed in bioreactor, and next were SC and MC. In conclusion, our results clearly indicated that there have some advantages and disadvantages in each of models in which can address different questions in metabolism of toxicants and drugs. PMID:14963896

  5. Towards dynamic metabolic flux analysis in CHO cell cultures.

    Science.gov (United States)

    Ahn, Woo Suk; Antoniewicz, Maciek R

    2012-01-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. PMID:22102428

  6. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures

    OpenAIRE

    1989-01-01

    The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cel...

  7. Modeling of cell culture damage and recovery leads to increased antibody and biomass productivity in CHO cell cultures.

    Science.gov (United States)

    Naderi, Saeideh; Nikdel, Ali; Meshram, Mukesh; McConkey, Brendan; Ingalls, Brian; Budman, Hector; Scharer, Jeno

    2014-09-01

    The development of an efficient and productive cell-culture process requires a deep understanding of intracellular mechanisms and extracellular conditions for optimal product synthesis. Mathematical modeling provides an effective strategy to predict, control, and optimize cell performance under a range of culture conditions. In this study, a mathematical model is proposed for the investigation of cell damage of a Chinese hamster ovary cell culture secreting recombinant anti-RhD monoclonal antibody (mAb). Irreversible cell damage was found to be correlated with a reduction in pH. This irreversible damage to cellular function is described mathematically by a Tessier-based model, in which the actively growing fraction of cells is dependent on an intracellular metabolic product acting as a growth inhibitor. To further verify the model, an offline model-based optimization of mAb production in the cell culture was carried out, with the goal of minimizing cell damage and thereby enhancing productivity through intermittent refreshment of the culture medium. An experimental implementation of this model-based strategy resulted in a doubling of the yield as compared to the batch operation and the resulting biomass and productivity profiles agreed with the model predictions.

  8. Detection of multiple mycoplasma infection in cell cultures by PCR

    Directory of Open Access Journals (Sweden)

    J. Timenetsky

    2006-07-01

    Full Text Available A total of 301 cell cultures from 15 laboratories were monitored for mycoplasma (Mollicutes using PCR and culture methodology. The infection was detected in the cell culture collection of 12 laboratories. PCR for Mollicutes detected these bacteria in 93 (30.9% samples. Although the infection was confirmed by culture for 69 (22.9% samples, PCR with generic primers did not detect the infection in five (5.4%. Mycoplasma species were identified with specific primers in 91 (30.2% of the 98 samples (32.6% considered to be infected. Mycoplasma hyorhinis was detected in 63.3% of the infected samples, M. arginini in 59.2%, Acholeplasma laidlawii in 20.4%, M. fermentans in 14.3%, M. orale in 11.2%, and M. salivarium in 8.2%. Sixty (61.2% samples were co-infected with more than one mycoplasma species. M. hyorhinis and M. arginini were the microorganisms most frequently found in combination, having been detected in 30 (30.6% samples and other associations including up to four species were detected in 30 other samples. Failure of the treatments used to eliminate mycoplasmas from cell cultures might be explained by the occurrence of these multiple infections. The present results indicate that the sharing of non-certified cells among laboratories may disseminate mycoplasma in cell cultures.

  9. Metabolism Kinetics of Glucose in Anchorage-dependent Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    孙祥明; 张元兴

    2001-01-01

    The kinetic model of glucose metabolism was established and successfully applied to batchcultures of rCHO and rBHK cells. It was found that a large amount of glucose was utilized for cellmaintenance, and the overwhelming majority of maintenance energy from glucose was by its anaerobicmetabolism in both rBHK and rCHO cell cultures. The overall maintenance coefficients from aerobicmetabolism were 1.9×10-13 mmol/(cell.h) for rCHO cells and 7×10-13 mmol/(cell.h) for rBHK cells. Inaddition, all Go/T and Eo/T gradually increased with the same trend as the cell growth in the culture ofboth rCHO and rBHK cells. The overall molecule yield coefficients of lactate to glucose were 1.61 for rCHO cells and 1.38 for rBHK cells. The yield coefficients of cell to glucose were 4.5×108 cells/mmol for rCHO cells and 1.9 × 108 cells/mmol for rBHK cells, respectively.

  10. Advances in culture and manipulation of human pluripotent stem cells.

    Science.gov (United States)

    Qian, X; Villa-Diaz, L G; Krebsbach, P H

    2013-11-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.

  11. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Directory of Open Access Journals (Sweden)

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  12. Characterisation and germline transmission of cultured avian primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Joni Macdonald

    Full Text Available BACKGROUND: Avian primordial germ cells (PGCs have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. PRINCIPAL FINDINGS: We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. CONCLUSIONS: The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  13. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-...

  14. Aging and senescence of skin cells in culture

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    Studying age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. The three main cell types that have been studied extensively with respect to cellular...

  15. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...

  16. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; Kooten, TV; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  17. Cell cultures from the symbiotic soft coral Sinularia flexibilis

    NARCIS (Netherlands)

    Khalesi, M.K.; Vera-Jimenez, N.I.; Aanen, D.K.; Beeftink, H.H.; Wijffels, R.H.

    2008-01-01

    The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cu

  18. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  19. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  20. Schwann cell cultures from human fetal dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    Yaping Feng; Hui Zhu; Jiang Hao; Xinmin Wang; Shengping Wu; Li Bai; Xiangming Li; Yun Zha

    2009-01-01

    BACKGROUND:Previous studies have used many methods for in vitro Schwann cells (SCs) cul-tures and purification,such as single cell suspension and cytosine arabinoside.However,it has been difficult to obtain sufficient cellular density,and the procedures have been quite tedious.OBJECTIVE:To investigate the feasibility of culturing high-density SCs using fetal human dorsal root ganglion tissue explants.DESIGN,TIME AND SETTING:Cell culture and immunohistochemistry were performed at the Cen-tral Laboratory of Kunming General Hospital of Chinese PLA between March 2001 and October 2008.MATERIALS:Culture media containing 10% fetal bovine serum,as well as 0.2% collagenase and 0.25% trypsin were purchased from Gibco,USA;mouse anti-human S-100 monoclonal antibody and goat anti-mouse IgG labeled with horseradish peroxidase were provided by Beijing Institute of Bi-ological Products,China.METHODS:Primarily cultured SCs were dissociated from dorsal root ganglia of human aborted fe-tuses at 4-6 months pregnancy.Following removal of the dorsal root ganglion perineurium,the gan-glia were dissected into tiny pieces and digested with 0.2% collagenase and 0.25% trypsin (volume ratio 1:1),then explanted and cultured.SC purification was performed with 5 mL 10% fetal bovine serum added to the culture media,followed by differential adhesion.MAIN OUTCOME MEASURES:SCs morphology was observed under inverted phase contrast light microscopy.SC purity was evaluated according to percentage of S-100 immunostained cells.RESULTS:SCs were primarily cultured for 5-6 days and then subcultured for 4-5 passages.The highly enriched SC population reached > 95% purity and presented with normal morphology.CONCLUSION:A high purity of SCs was obtained with culture methods using human fetal dorsal root ganglion tissue explants.

  1. Hydrodynamic effects on cells in agitated tissue culture reactors

    Science.gov (United States)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  2. Culture and immortalization of pancreatic ductal epithelial cells.

    Science.gov (United States)

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael

    2005-01-01

    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  3. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  4. Radiosensitivity of cultured insect cells: I. Lepidoptera

    Energy Technology Data Exchange (ETDEWEB)

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five lepidopteran insect cell lines representing five different genera has been investigated. These lines are: (1) TN-368, Trichoplusia ni; (2) IPLB-SF-1254, Spodoptera frugiperda; (3) IPLB-1075, Heliothis zea; (4) MRRL-CHl, clone GVl, Manduca sexta; and (5) IAL-PID2, Plodia interpunctella. The cell lines grew at different rates and had population doubling times that ranged from 19 to 52 hr. All of the lines are highly heteroploid and have approximate chromosome numbers near or above 100. The chromosomes are very small. All of the lines are extremely radioresistant; cell populations are able to recover from 260 kVp X-ray exposures up to and including 400 Gy, the highest dose examined. Cell survival curves were obtainable for only the TN-368 and IPLB-SF-1254 lines. The TN-368 cells displayed a biphasic survival response with D/sub 0/, d/sub q/, and n values of 65.7 and 130.2 Gy, 9.0 and -36.1 Gy, and 1.2 and 0.8, respectively, for the steep and shallow portions of the curve. The IPLB-SF-1254 cells had a D/sub 0/ of 63.9 Gy. D/sub q/ of 19.0 Gy, and n value of 1.4. These studies provide definitive evidence of the radioresistance of lepidopteran cells, and suggest that this radioresistance is a characteristic of lepidopteran insects.

  5. Dose verification by OSLDs in the irradiation of cell cultures

    International Nuclear Information System (INIS)

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al2O3:C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm3. Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  6. Establishing a stem cell culture laboratory for clinical trials

    Directory of Open Access Journals (Sweden)

    Elíseo Joji Sekiya

    2012-01-01

    Full Text Available Adult stem/progenitor cells are found in different human tissues. An in vitro cell culture is needed for their isolation or for their expansion when they are not available in a sufficient quantity to regenerate damaged organs and tissues. The level of complexity of these new technologies requires adequate facilities, qualified personnel with experience in cell culture techniques, assessment of quality and clear protocols for cell production. The rules for the implementation of cell therapy centers involve national and international standards of good manufacturing practices. However, such standards are not uniform, reflecting the diversity of technical and scientific development. Here standards from the United States, the European Union and Brazil are analyzed. Moreover, practical solutions encountered for the implementation of a cell therapy center appropriate for the preparation and supply of cultured cells for clinical studies are described. Development stages involved the planning and preparation of the project, the construction of the facility, standardization of laboratory procedures and development of systems to prevent cross contamination. Combining the theoretical knowledge of research centers involved in the study of cells with the practical experience of blood therapy services that manage structures for cell transplantation is presented as the best potential for synergy to meet the demands to implement cell therapy centers.

  7. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized a...

  8. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types.

  9. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types. PMID:1026199

  10. Cytopathogenicity of Naegleria for cultured neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fulford, D.E.

    1985-01-01

    The cytopathic activity of live Naegleria amoebae and cell-free lysates of Naegleria for B-103 rat neuroblastoma cells was investigated using a /sup 51/Cr release assay. Live amoebae and cell-free lysates of N. fowleri, N. australiensis, N. lovaniensis, and N. gruberi all induced sufficient damage to radiolabeled B-103 cells to cause a significant release of chromium. The cytotoxic activity present in the cell-free lysates of N. fowleri can be recovered in the supernatant fluid following centrifugation at 100,000xg and precipitation of the 100,000xg supernatant fluid with ammonium sulfate. Initial characterization of the cytotoxic factor indicates that it is a heat labile, pH sensitive, soluble protein. The cytotoxic activity is abolished by either extraction, unaffected by repeated freeze-thawing, and is not sensitive to inhibitors of proteolytic enzymes. Phospholipase A activity was detected in the cytotoxic ammonium sulfate precipitable material, suggesting that this enzyme activity may have a role in the cytotoxic activity of the cell-free lysates.

  11. Continuous culture of immobilized streptomyces cells for kasugamycin production.

    Science.gov (United States)

    Kim, C J; Chang, Y K; Chun, G T; Jeong, Y H; Lee, S J

    2001-01-01

    Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed. PMID:11386865

  12. Isolation, culture and characterization of primary mouse RPE cells.

    Science.gov (United States)

    Fernandez-Godino, Rosario; Garland, Donita L; Pierce, Eric A

    2016-07-01

    Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD). PMID:27281648

  13. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  14. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  15. Polyphosphoinositides are present in plant tissue culture cells

    International Nuclear Information System (INIS)

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-[2-3H] inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate

  16. Optimization of Seeding Density in Microencapsulated Recombinant CHO Cell Culture

    OpenAIRE

    Zhang, Ying; Zhou, Jing; Zhang, Xulang; Yu, Weiting; Guo, Xin; Wang, Wei; Ma, Xiaojun

    2008-01-01

    Microencapsulation technology is an alternative large-scale mammalian cell culture method. The semi-permeable membrane of the microcapsule allows free diffusion of nutrients, oxygen and toxic metabolites to support cell growth, and the microcapsule membrane can protect the cells from the mechanical damage of shear forces associated with agitation and aeration. Many polymers have been used to make microcapsules, such as chitosan, polyacrylates, alginate, polyamino acids, and polyamides. One of...

  17. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like ...

  18. Formation and action of oxygen activated species in cell cultures

    International Nuclear Information System (INIS)

    The differences of hydrogen peroxide sensibility of mammal cell lineages (man, mouse, chinese hamster) in culture are studied. The cellular survival and the frequency of DNA induced breaks by hydrogen peroxide are analysed. The efficiency of elimination of DNA breaks by cells is determined. The possible relation between the cell capacity of repair and its survival to hydrogen peroxide action is also discussed. (M.A.)

  19. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research.

    Science.gov (United States)

    Stover, Alexander E; Herculian, Siranush; Banuelos, Maria G; Navarro, Samantha L; Jenkins, Michael P; Schwartz, Philip H

    2016-01-01

    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  20. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research

    Science.gov (United States)

    Stover, Alexander E.; Herculian, Siranush; Banuelos, Maria G.; Navarro, Samantha L.; Jenkins, Michael P.; Schwartz, Philip H.

    2016-01-01

    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  1. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael;

    2006-01-01

    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled c...

  2. Expression of CD44 in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Zhongguo Li; Hong Zhang

    2004-01-01

    Purpose:To determine whether cultured human trabecular meshwork cells express CD44 and to discuss their possible relationship with primary open angle glaucoma.Methods:Human trabecular meshwork cells were cultured in DMEM/F12 media. Total RNAs from the cells were extracted with Trizol reagent. Messenger RNA expression of CD44 in human trabecular meshwork cells was examined by using reverse transcriptasepolymerase chain reaction ( RT-PCR ) analysis. Expression of CD44 was confirmed by Western-blotting and immunofiuorescent microscopy. Effect of CD44-specific antisense oligonucleotide on adhesion of trabecular meshwork cells to hyaluronate was determined by MTT assay.Results:A single RT-PCR product whose size was 471bp was obtained.A band about 80kD was stained by Western-blot. Immunofiuorescent examination of expression of CD44 on the cell surface was positive and reactions were mainly localized in cell membranes.Adhesion of trabecular meshwork cells to hyaluronate was inhibited by CD44-specific antisense oligonucleotide.Conclusions: Cultured human trabecular meshwork cells express CD44. CD44 may play a role in pathogenesis of primary open angle glaucoma. Eye Science 2004;20:52-56.

  3. Metabolic measurements in cell culture and tissue constructs

    Science.gov (United States)

    Rolfe, P.

    2008-10-01

    This paper concerns the study and use of biological cells in which there is a need for sensors and assemblies for the measurement of a diverse range of physical and chemical variables. In this field cell culture is used for basic research and for applications such as protein and drug synthesis, and in cell, tissue and organ engineering. Metabolic processes are fundamental to cell behaviour and must therefore be monitored reliably. Basic metabolic studies measure the transport of oxygen, glucose, carbon dioxide, lactic acid to, from, or within cells, whilst more advanced research requires examination of energy storage and utilisation. Assemblies are designed to incorporate bioreactor functions for cell culture together with appropriate sensing devices. Oxygen consumption by populations of cells is achieved in a flowthrough assembly that incorporates O2 micro-sensors based on either amperometry or fluorescence. Measurements in single cell are possible with intra-cellular fluorophores acting as biosensors together with optical stimulation and detection. Near infra-red spectroscopy (NIRS) is used for analysis within culture fluid, for example for estimation of glucose levels, as well as within cell populations, for example to study the respiratory enzymes.Â#

  4. Specimen Sample Preservation for Cell and Tissue Cultures

    Science.gov (United States)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  5. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...... and in established cell lines was reduced to about the same basic level after treatment with heparin, a highly specific inhibitor of CKII activity. The activity of the cAMP-dependent protein kinase was virtually the same in fibroblasts and various human tumour cell lines investigated....

  6. Isolation, culture, and transplantation of muscle satellite cells.

    Science.gov (United States)

    Motohashi, Norio; Asakura, Yoko; Asakura, Atsushi

    2014-01-01

    Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors. However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted

  7. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    Science.gov (United States)

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered. PMID:22320435

  8. Experimental study of bioartificial liver with cultured human liver cells

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM To establish an extracorporeal bioartificial liver support system (EBLSS) using cultured human liver cells and to study its support effect for fulminant hepatic failure (FHF).METHODS The liver support experiment of EBLSS consisting of aggregates cultured human liver cells, hollow fiber bioreactor, and circulation unit was carried out in dizhepatic dogs.RESULTS The viability of isolated hepatocytes and nonparenchymal liver cells reached 96%. These cells were successfully cultured as multicellular spheroids with synthetic technique. The typical morphological appearance was retained up to the end of the artificial liver experiment. Compared with the control dogs treated with EBLSS without liver cells, the survival time of artificial liver support dogs was significantly prolonged. The changes of blood pressure, heart rate and ECG were slow. Both serum ammonia and lactate levels were significantly lowered at the 3rd h and 5th h. In addition, a good viability of human liver cells was noted after 5 h experiment.CONCLUSION EBLSS playing a metabolic role of cultured human hepatocytes, is capable of compensating the function of the liver, and could provide effective artificial liver support and therapy for patients with FHF.

  9. [In vitro cell culture technology in cosmetology research].

    Science.gov (United States)

    Gojniczek, Katarzyna; Garncarczyk, Agnieszka; Pytel, Agata

    2005-01-01

    For ages the humanity has been looking for all kind of active substances, which could be used in improving the health and the appearance of our skin. People try to find out how to protect the skin from harmful, environmental factors. Every year a lot of new natural and synthetic, chemical substances are discovered. All of them potentially could be used as a cosmetic ingredient. In cosmetology research most of new xenobiotics were tested in vivo on animals. Alternative methods to in vivo tests are in vitro tests with skin cell culture system. The aim of this work was to describe two-dimensional and tree-dimensional skin cell cultures. Additionally, in this work we wanted to prove the usefulness of in vitro skin cell cultures in cosmetology research.

  10. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  11. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell...

  12. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  13. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  14. Treatment of Mycoplasma Contamination in Cell Cultures with Plasmocin

    Directory of Open Access Journals (Sweden)

    Cord C. Uphoff

    2012-01-01

    Full Text Available A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of treatment 45 out of 58 (78% mycoplasma-positive cell lines could be cured. In a second attempt using back-up cryopreserved original cells, four additional cell lines were cured; thus, the overall cure rate was 84%. Even if the mycoplasma contamination was not eradicated by Plasmocin, the parallel treatment with several other antibiotics (Baytril, BM-Cyclin, Ciprobay, MRA, or MycoZap led to the cure of all 58 cell lines. The successful decontamination was permanent as mycoplasmas were no longer detected at day +14 posttreatment and at later time points as examined by PCR which is the most sensitive and specific mycoplasma detection method. Collectively, our results highlight certain antibiotics as effective antimycoplasma reagents and support the therapeutic rationale for their use in the eradication of this notorious cell culture contaminant.

  15. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  16. Isolated Cells of Porphyra yezoensis Cultured on Solid Medium

    Institute of Scientific and Technical Information of China (English)

    沈颂东; 戴继勋

    2001-01-01

    Vegetative cells of Porphyra yezoensis are isolated with sea snail enzyme and cultured on the solidified agar medium. The results of experiments show that the isolated cells can survive,divide and regenerate well on the medium solidified with agar. The first division on the solid medium starts after 7 days' culture, 4 days later than the liquid culture. The survival rate of isolated cells is 71.3% on the solid medium, lower than the 86.2% of that in seawater.Thalli, thalloids,conchocelis, spermatangia and multicellular masses are developed on the solid/medium in the first month, slowly but normally. Spermatangia sacs disappear within 4 weeks. Without adding nutrient liquid onto the surface of solid medium or injecting seawater under the agar layer in order to keep moisture, the thalli and cell groups release monospores to form new thalli instead of enlarging their areas after 5 weeks' culturing. Some monospores regenerate new thalli. Other monospores lose their pigments and minimize their volume and divide quickly to form light pink calli. After 16 weeks, numerous calli can be seen on the solid medium and after 24 weeks' culturing, almost only calli and conchocelis can be seen. If the calli are immersed in seawater, the monospores are released and may develop into young thallus.

  17. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions

    OpenAIRE

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M.; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C.; Alexander, Morgan R.; Langer, Robert; Anderson, Daniel G.; Jaenisch, Rudolf

    2011-01-01

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell...

  18. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  19. Metabolic flux rewiring in mammalian cell cultures

    OpenAIRE

    Young, Jamey D.

    2013-01-01

    Continuous cell lines (CCLs) engage in “wasteful” glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phe...

  20. Culture and characterization of rat hair follicle stem cells.

    Science.gov (United States)

    Quan, Renfu; Zheng, Xuan; Ni, Yueming; Xie, Shangju; Li, Changming

    2016-08-01

    The purpose of this study was to establish methods for isolation, culture, expansion, and characterization of rat hair follicle stem cells (rHFSCs). Hair follicles were harvested from 1-week-old Sprague-Dawley rats and digested with dispase and collagenase IV. The bulge of the hair follicle was dissected under a microscope and cultured in Dulbecco's modified Eagle's medium/F12 supplemented with KnockOut™ Serum Replacement serum substitute, penicillin-streptomycin, L-glutamine, non-essential amino acids, epidermal growth factor, basic fibroblast growth factor, polyhydric alcohol, and hydrocortisone. The rHFSCs were purified using adhesion to collagen IV. Cells were characterized by detecting marker genes with immunofluorescent staining and real-time polymerase chain reaction (PCR). The proliferation and vitality of rHFSCs at different passages were evaluated. The cultured rHFSCs showed typical cobblestone morphology with good adhesion and colony-forming ability. Expression of keratin 15, integrin α6, and integrin β1 were shown by immunocytochemistry staining. On day 1-2, the cells were in the latent phase. On day 5-6, the cells were in the logarithmic phase. Cell vitality gradually decreased from the 7th passage. Real-time PCR showed that the purified rHFSCs had good vitality and proliferative capacity and contained no keratinocytes. Highly purified rHFSCs can be obtained using tissue culture and adhesion to collagen IV. The cultured cells had good proliferative capacity and could therefore be a useful cell source for tissue-engineered hair follicles, vessels, and skin. PMID:25407732

  1. Polyamines in relation to growth in carrot cell cultures.

    Science.gov (United States)

    Fallon, K M; Phillips, R

    1988-09-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed.

  2. Polyamines in Relation to Growth in Carrot Cell Cultures 1

    Science.gov (United States)

    Fallon, Kevin M.; Phillips, Richard

    1988-01-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed. PMID:16666271

  3. Cell culture systems for the hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Gilles Duverlie; Czeslaw Wychowski

    2007-01-01

    Since the discovery of HCV in 1989, the lack of a cell culture system has hampered research progress on this important human pathogen. No robust system has been obtained by empiric approaches, and HCV cell culture remained hypothetical until 2005. The construction of functional molecular clones has served as a starting point to reconstitute a consensus infectious cDNA that was able to transcribe infectious HCV RNAs as shown by intrahepatic inoculation in a chimpanzee. Other consensus clones have been selected and established in a human hepatoma cell line as replicons, i.e. self-replicating subgenomic or genomic viral RNAs. However, these replicons did not support production of infectious virus. Interestingly, some full-length replicons could be established without adaptive mutations and one of them was able to replicate at very high levels and to release virus particles that are infectious in cell culture and in vivo. This new cell culture system represents a major breakthrough in the HCV field and should enable a broad range of basic and applied studies to be achieved.

  4. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.;

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding....... The human lung carcinoma cells (A549) were cultured in the microdevice for several days. The growth and proliferation of cells was monitored using an inverted fluorescence microscope. After the cells' confluence was achieved in the microchambers, the novel method of cells' passaging in the designed...... microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent...

  5. Testing of serum atherogenicity in cell cultures: questionable data published

    Directory of Open Access Journals (Sweden)

    Sergei V. Jargin

    2012-01-01

    Full Text Available In a large series of studies was reported that culturing of smooth muscle cells with serum from atherosclerosis patients caused intracellular lipid accumulation, while serum from healthy controls had no such effect. Cultures were used for evaluation of antiatherogenic drugs. Numerous substances were reported to lower serum atherogenicity: statins, trapidil, calcium antagonists, garlic derivatives etc. On the contrary, beta-blockers, phenothiazines and oral hypoglycemics were reported to be pro-atherogenic. Known antiatherogenic agents can influence lipid metabolism and cholesterol synthesis, intestinal absorption or endothelium-related mechanisms. All these targets are absent in cell monocultures. Inflammatory factors, addressed by some antiatherogenic drugs, are also not reproduced. In vivo, relationship between cholesterol uptake by cells and atherogenesis must be inverse rather than direct: in familial hypercholesterolemia, inefficient clearance of LDL-cholesterol by cells predisposes to atherosclerosis. Accordingly, if a pharmacological agent reduces cholesterol uptake by cells in vitro, it should be expected to elevate cholesterol in vivo. Validity of clinical recommendations, based on serum atherogenicity testing in cell monocultures, is therefore questionable. These considerations pertain also to the drugs developed on the basis of the cell culture experiments.

  6. Arsenic exposure induces the Warburg effect in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  7. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  8. Cell culture media impact on drug product solution stability.

    Science.gov (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J

    2016-07-01

    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016.

  9. Kinetics of meta-iodo-benzylguanidine in neuroblastoma cell cultures

    International Nuclear Information System (INIS)

    The continuously cultured human neuroblastoma cell line SK-N-SH possesses an active transport mechanism for uptake of meta-iodobenzylguanidine (MIBG). The uptake rate at an MIBG-concentration of 6,4x10-8 M was 0.35x10-12 mol/minx106 cells, corresponding to values as measured in human pheochromocytoma cell lines. MIBG is released from the cells with a biological half-life of 81,3 h in correspondence to half-life values as measured in vivo in neuroblastoma patients. (orig.)

  10. Effects of Visible Light on Cultured Bovine Trabecular Cells

    Institute of Scientific and Technical Information of China (English)

    姜发纲; 郝风芹; 魏厚仁; 许德胜

    2004-01-01

    To explore the biological effects of light on trabecular cells, cultured bovine trabecular cells were exposed to visible light of different wavelength with different energy. Cellular morphology, structure, proliferation, and phagocytosis were observed. The cells showed no remarkable changes when the energy was low. When the exposure energy reached 1. 12 mW/cm2 , the cytoplasm showed a rough appearance, and cell proliferation and phagocytosis decreased. This phototoxicity was strong with white light (compound chromatic light), moderate with violet light or yellow light, and mild with red light.

  11. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-01-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells. PMID:26938569

  12. Measurement and analysis of calcium signaling in heterogeneous cell cultures.

    Science.gov (United States)

    Richards, Gillian R; Jack, Andrew D; Platts, Amy; Simpson, Peter B

    2006-01-01

    High-content imaging platforms capable of studying kinetic responses at a single-cell level have elevated kinetic recording techniques from labor-intensive low-throughput experiments to potential high-throughput screening assays. We have applied this technology to the investigation of heterogeneous cell cultures derived from primary neural tissue. The neuronal cultures mature into a coupled network and display spontaneous oscillations in intracellular calcium, which can be modified by the addition of pharmacological agents. We have developed algorithms to perform Fourier analysis and quantify both the degree of synchronization and the effects of modulators on the oscillations. Functional and phenotypic experiments can be combined using this approach. We have used post-hoc immunolabeling to identify subpopulations of cells in cocultures and to dissect the calcium responses of these cells from the population response. The combination of these techniques represents a powerful tool for drug discovery.

  13. Hybridoma cell behaviour in continuous culture under hyperosmotic stress.

    Science.gov (United States)

    Cherlet, M; Marc, A

    1999-01-01

    In this paper, we propose an alternative strategy to the ones proposed before (Oh et al., 1993; Øyaas et al., 1994a) to get real increases of global final antibody titer and production at hyperosmotic stress, by reducing the detrimental effect of such a stress on cell growth, and conserving the stimulating effect on antibody production. It consists of cultivating the cells in continuous culture and increasing the osmolality stepwise. In this way, the cells could progressively adapt to the higher osmolality at each step and antibody titers could be nearly doubled at 370 and 400 mOsm kg-1, compared to the standard osmolality of 335 mOsm kg-1. Surprisingly, the stimulation of antibody production was not confirmed for higher osmolalities, 425 and 450 mOsm kg- 1, despite the minor negative effect on cell growth. Intracellular IgG analysis by flow cytometry revealed at these osmolalities a significant population of non-producing cells. However, even when taking into account this non-producing population, a stimulating effect on antibody production could not be shown at these highest osmolalities. It seems to us that osmolality has a significant effect on the appearance of these non-producing cells, since they were not observed in continuous cultures at standard osmolality, of comparable duration and at an even higher dilution rate. The appearance of the non-producing cells coincides furthermore with modifications of the synthesised antibody, as shown by electrophoretic techniques. It is however not really clear if these two observations reflect actually the same phenomenon. Hyperosmolality affects the cell behaviour in continuous culture in multiple ways, independently of the growth rate, counting all at least partially for the observed stimulation of antibody production: acceleration of the amino acid, and in particular the glutamine metabolism, increase of the cell volume, increase of the intracellular pH and accumulation of cells in the G1 cell cycle phase. PMID

  14. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  15. Isolation and culture of umbilical vein mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D.T. Covas

    2003-09-01

    Full Text Available Bone marrow contains a population of stem cells that can support hematopoiesis and can differentiate into different cell lines including adipocytes, osteocytes, chondrocytes, myocytes, astrocytes, and tenocytes. These cells have been denoted mesenchymal stem cells. In the present study we isolated a cell population derived from the endothelium and subendothelium of the umbilical cord vein which possesses morphological, immunophenotypical and cell differentiation characteristics similar to those of mesenchymal stem cells isolated from bone marrow. The cells were isolated from three umbilical cords after treatment of the umbilical vein lumen with collagenase. The cell population isolated consisted of adherent cells with fibroblastoid morphology which, when properly stimulated, gave origin to adipocytes and osteocytes in culture. Immunophenotypically, this cell population was found to be positive for the CD29, CD13, CD44, CD49e, CD54, CD90 and HLA-class 1 markers and negative for CD45, CD14, glycophorin A, HLA-DR, CD51/61, CD106, and CD49d. The characteristics described are the same as those presented by bone marrow mesenchymal stem cells. Taken together, these findings indicate that the umbilical cord obtained from term deliveries is an important source of mesenchymal stem cells that could be used in cell therapy protocols.

  16. A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells

    OpenAIRE

    Bernard, Abigail B.; Lin, Chien-Chi; Anseth, Kristi S.

    2012-01-01

    Cell–cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell–cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes t...

  17. Withaferin A from cell cultures of Withania somnifera

    Directory of Open Access Journals (Sweden)

    Ciddi Veeresham

    2006-01-01

    Full Text Available Suspension cultures of Withania somnifera cells were established and shown to produce withaferin A. The identification of withaferin A was done by TLC, UV absorption, HPLC and electron spray mass spectroscopy. These cultures could be strongly elicited by exposure to salacin. Addition of salacin at the concentration of 750 µM to the cultures in production medium enhanced production levels of withaferin A to 25±2.9 mg/l compared to 0.47±0.03 mg/l in unelicited controls. This report is the first to demonstrate withaferin A production in plant suspension cultures and provides prerequisites for commercial scale, controlled production of withaferin A.

  18. Culturing intestinal stem cells: applications for colorectal cancer research

    OpenAIRE

    Fujii, Masayuki; Sato, Toshiro

    2014-01-01

    Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer (CRC). The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and CRC cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture...

  19. Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering

    OpenAIRE

    Jun Kobayashi and Teruo Okano

    2010-01-01

    This article reviews the properties and characterization of an intelligent thermoresponsive surface, which is a key technology for cell sheet-based tissue engineering. Intelligent thermoresponsive surfaces grafted with poly(N-isopropylacrylamide) exhibit hydrophilic/hydrophobic alteration in response to temperature change. Cultured cells are harvested on thermoresponsive cell culture dishes by decreasing the temperature without the use of digestive enzymes or chelating agents. Our group has d...

  20. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  1. Salt tolerance in cultured cells of Spartina pectinata.

    Science.gov (United States)

    Warren, R S; Baird, L M; Thompson, A K

    1985-04-01

    Suspension cultures with cell doubling times of ca. 2 days were developed from the halophytic grass Spartina pectinata. Maximum rates of exponential growth measured by direct cell counts and by total culture packed-cell-volume were not significantly reduced by NaCl up to 200 mM but dropped beyond this point. In contrast, total cell production over a one week culture cycle, by both measures, was reduced in a roughly linear fashion between 0 and 500 mM NaCl. The pattern of growth in relation to NaCl is very similar to that of previously described cell suspensions derived from another halophyte, Distichlis spicata. In the field the latter is much more salt tolerant. The basis for the whole plant differences is not clear. They do not appear to reflect effectiveness of cell based salt tolerance or the presence of salt glands, which are reported here for the first time in S. pectinata and are found on the leaves of both species.

  2. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...

  3. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  4. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  5. Biodegradable Mg corrosion and osteoblast cell culture studies

    International Nuclear Information System (INIS)

    Magnesium (Mg) is a biodegradable metal that has significant potential advantages as an implant material. In this paper, corrosion and cell culture experiments were performed to evaluate the biocompatibility of Mg. The corrosion current and potential of a Mg disk were measured in different physiological solutions including deionized (DI) water, phosphate-buffered saline (PBS), and McCoy's 5A culture medium. The corrosion currents in the PBS and in the McCoy's 5A-5% FBS media were found to be higher than in DI water, which is expected because corrosion of Mg occurs faster in a chloride solution. Weight loss, open-circuit potential, and electrochemical impedance spectroscopy measurements were also performed. The Mg specimens were also characterized using an environmental scanning electron microscope and energy-dispersive X-ray analysis (EDAX). The X-ray analysis showed that in the cell culture media a passive interfacial layer containing oxygen, chloride, phosphate, and potassium formed on the samples. U2OS cells were then co-cultured with a Mg specimen for up to one week. Cytotoxicity results of magnesium using MTT assay and visual observation through cell staining were not significantly altered by the presence of the corroding Mg sample. Further, bone tissue formation study using von Kossa and alkaline phosphatase staining indicates that Mg may be suitable as a biodegradable implant material.

  6. Test chambers for cell culture in static magnetic field

    International Nuclear Information System (INIS)

    Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2–4% and 8 to 10% in 3D method (reaching 10% only out of the cells′ cultures margins). -- Highlights: ► We present test chamber to be used for in vitro cell culture in static magnetic field. ► The technical data of the chamber construction was presented. ► 2D versus 3D simulation of static magnetic field distribution in chamber was reported. ► We report the accuracy of 2D calculation than 3D

  7. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    Science.gov (United States)

    Diversity of arsenic metabolism in cultured human cancer cell lines. Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  8. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence. PMID:27651846

  9. Cell Stratification, Spheroid Formation and Bioscaffolds Used to Grow Cells in Three Dimensional Cultures

    Directory of Open Access Journals (Sweden)

    Hana Hrebíková

    2015-12-01

    Full Text Available The cell culture became an invaluable tool for studying cell behaviour, development, function, gene expression, toxicity of compounds and efficacy of novel drugs. Although most results were obtained from cell cultivation in two-dimensional (2D systems, in which cells are grown in a monolayer, three-dimensional (3D cultures are more promising as they correspond closely to the native arrangement of cells in living tissues. In our study, we focused on three types of 3D in vitro systems used for cultivation of one cell type. Cell morphology, their spatial distribution inside of resulting multicellular structures and changes in time were analysed with histological examination of samples harvested at different time periods. In multilayered cultures of WRL 68 hepatocytes grown on semipermeable membranes and non-passaged neurospheres generated by proliferation of neural progenitor cells, the cells were tightly apposed, showed features of cell differentiation but also cell death that was observable in short-term cultures. Biogenic scaffolds composed of extracellular matrix of the murine tibial anterior muscle were colonized with C2C12 myoblasts in vitro. The recellularized scaffolds did not reach high cell densities comparable with the former systems but supported well cell anchorage and migration without any signs of cell regression.

  10. Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Hongyan Zhang; Xiaojuan Sun; Lili Xu

    2011-01-01

    We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents,despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation,which does not represent a proper cell differentiation process.The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system.hPMSCs were isolated and purified from human full-term placenta using collagenase digestion.Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system.hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament.After 96 hours,hPMSCs expressed neuron-specific enolase,which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.

  11. The molecularly crowded cytoplasm of bacterialcCells : Dividing cells contrasted with viable but non-culturable (VBNC) bacterial cells

    NARCIS (Netherlands)

    Trevors, J. T.; van Elsas, J. D.; Bej, A. K.

    2013-01-01

    In this perspective, we discuss the cytoplasm in actively growing bacterial cells contrasted with viable but non-culturable (VBNC) cells. Actively growing bacterial cells contain a more molecularly crowded and organized cytoplasm, and are capable of completing their cell cycle resulting in cell divi

  12. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    Science.gov (United States)

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed. PMID:26548080

  13. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  14. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  15. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  16. Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells

    Science.gov (United States)

    Chatterjee, Ishita; Li, Fei; Kohler, Erin E.; Rehman, Jalees; Malik, Asrar B.; Wary, Kishore K.

    2015-01-01

    Summary The studies of stem cell behavior and differentiation in a developmental context is complex, time-consuming and expensive, and for this reason, cell culture remains a method of choice for developmental and regenerative biology and mechanistic studies. Similar to ES cells, iPS cells have the ability to differentiate into endothelial cells (ECs), and the route for differentiation appears to mimic the developmental process that occurs during the formation of an embryo. Traditional EC induction methods from embryonic stem (ES) cells rely mostly on the formation the embryoid body (EB), which employs feeder or feeder-free conditions in the presence or absence of supporting cells. Similar to ES cells, iPS cells can be cultured in feeder-layer or feeder-free conditions. Here, we describe the iPS cell culture methods and induction differentiation of these cells into ECs. We use anti-mouse Flk1 and anti-mouse VE-cadherin to isolate and characterize mouse ECs, because these antibodies are commercially available and their use has been described in the literature, including by our group. The ECs produced by this method have been used by our laboratory, and we have demonstrated their in vivo potential. We also discuss how iPS cells differ in their ability to differentiate into endothelial cells in culture. PMID:25687301

  17. Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells.

    Science.gov (United States)

    Chatterjee, Ishita; Li, Fei; Kohler, Erin E; Rehman, Jalees; Malik, Asrar B; Wary, Kishore K

    2016-01-01

    The study of stem cell behavior and differentiation in a developmental context is complex, time-consuming, and expensive, and for this reason, cell culture remains a method of choice for developmental and regenerative biology and mechanistic studies. Similar to ES cells, iPS cells have the ability to differentiate into endothelial cells (ECs), and the route for differentiation appears to mimic the developmental process that occurs during the formation of an embryo. Traditional EC induction methods from embryonic stem (ES) cells rely mostly on the formation of embryoid body (EB), which employs feeder or feeder-free conditions in the presence or absence of supporting cells. Similar to ES cells, iPS cells can be cultured in feeder layer or feeder-free conditions. Here, we describe the iPS cell culture methods and induction differentiation of these cells into ECs. We use anti-mouse Flk1 and anti-mouse VE-cadherin to isolate and characterize mouse ECs, because these antibodies are commercially available and their use has been described in the literature, including by our group. The ECs produced by this method have been used by our laboratory, and we have demonstrated their in vivo potential. We also discuss how iPS cells differ in their ability to differentiate into endothelial cells in culture.

  18. Vegetal cell cultures under the effect of low intensity microwaves

    International Nuclear Information System (INIS)

    In order to study the microwave effect on the chlorophyll biosynthesis in Papaver rhoes in vitro cultures microwave radiation characterized by a power density of 0.9 mW/cm2 in a frequency range of 9. 75 - 10.75 GHz was used. P. rhoes in vitro cultures, were obtained from explants of leaves and flowers provided by adult individuals, grown in the Botanical garden of AL. I. Cuza University from Iasi. Murashige Skoog agarized medium with a suitable hormone balance was used to conduct cell culture development before as well as after exposure to microwaves. Assimilatory pigment levels (chlorophyll a, chlorophyll b and carotene pigments) have been evaluated by standard spectrophotometric technique. Student t-test (two tailed, pair) gave significant p-values for the modification of chlorophyll a and chlorophyll b levels after microwave treatment (p0.05). Microwave treatment seems to be able to stimulate assimilatory pigment biosynthesis in the vegetal cell cultures. An inhibitory effect may be associated to the phenotypic modifications noticed in the callus growth from 2 exposed vials - probably related to a non-thermal effect of microwaves in living tissues. Further study of sub-cultures derived from exposed vials is needed to clarify if microwaves of low power density are adequate for the stimulation of assimilatory pigment from chloroplast membranes. (authors)

  19. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  20. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  1. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.

  2. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  3. Maintenance of mesenchymal stem cells culture due to the cells with reduced attachment rate

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2013-01-01

    Full Text Available Aim. The classic detachment techniques lead to changes in cells properties. We offer a simple method of cultivating the population of cells that avoided an influence on the surface structures. Methods. Mesenchymal stem cells (MSC from human umbilical cord matrix were obtained and cultivated in standard conditions. While substituting the culture media by a fresh portion, the conditioned culture medium, where the cells were maintained for three days, was transferred to other culture flacks with addition of serum and growth factors. Results. In the flacks, one day after medium transfer, we observed attached cells with typical MSC morphology. The cultures originated from these cells had the same rate of surface markers expression and clonogenic potential as those replated by standard methods. Conclusions. MSC culture, derived by preserving the cells with reduced attachment ability, actually has the properties of «parent» passage. Using this method with accepted techniques of cells reseeding would allow maintaining the cells that avoided an impact on the cell surface proteins.

  4. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures.

    Science.gov (United States)

    Jackson, Jonathan P; Li, Linhou; Chamberlain, Erica D; Wang, Hongbing; Ferguson, Stephen S

    2016-09-01

    Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.

  5. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  6. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Sawa Ito

    2015-01-01

    Full Text Available Mesenchymal stromal cells (MSCs support the growth and differentiation of normal hematopoietic stem cells (HSCs. Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6 weeks. Four samples showed CD34+CD38− predominance, and four were predominantly CD34+CD38+. CD34+ CD38− predominant leukemia cells maintained the CD34+ CD38− phenotype and were viable for 6 weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34+ CD38+ predominant leukemic cells maintained the CD34+CD38+ phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4 weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34+ blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6 weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest that MSCs provide pro-survival benefits to leukemic blasts through cell–cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs.

  7. Human neuronal cells in culture: from concepts to basic methodology.

    Science.gov (United States)

    Silani, V; Pizzuti, A; Donato, M F; Falini, A; Bassani, R; Strada, O; Causarano, R I; Mariani, D; Villani, R M; Scarlato, G

    1990-01-01

    The paper reviews some conceptual and methodological aspects of the tissue culture models which, during the past three decades, demonstrated a remarkable mimicry of many important structures and functions of the mammalian Central Nervous System (CNS) and related peripheral sensory and motor elements. Emphasis is placed on an original human neuronal tissue culture model obtained from selective CNS areas. The different cell types were identified and the neurotrophic interactions preliminary characterized. Neuropathological findings suggest hypothesis that can be fully tested using in vitro human models of affected cerebral specific areas. PMID:2102114

  8. Over-pressurized bioreactors: application to microbial cell cultures.

    Science.gov (United States)

    Lopes, Marlene; Belo, Isabel; Mota, Manuel

    2014-01-01

    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.

  9. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other importan

  10. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  11. Keratocytes Derived from Spheroid Culture of Corneal Stromal Cells Resemble Tissue Resident Keratocytes

    OpenAIRE

    Byun, Yong-Soo; Tibrewal, Sapna; Kim, Eunjae; Yco, Lisette; Sarkar, Joy; Ivanir, Yair; Liu, Chia-Yang; Sano, Cecile M.; Jain, Sandeep

    2014-01-01

    Purpose Corneal stromal cells transform to precursor cells in spheroid culture. We determined whether keratocytes derived from spheroid culture of murine corneal stromal cells resemble tissue resident keratocytes. Methods Spheroid culture was performed by seeding dissociated stromal cells onto ultra-low attachment plates containing serum-free mesenchymal stem cell culture medium. Spheroids were characterized with phenotype specific markers and stemness transcription factor genes. Spheroids an...

  12. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  13. Isolation and culture of protoplasts of Ma-phut (Garcinia dulcis derived from cell suspension culture

    Directory of Open Access Journals (Sweden)

    Sompong Te-chato

    2008-09-01

    Full Text Available Friable callus induced from young leaves of Ma-phut on Murashige and Skoog (MS medium containing 3% sucrose,1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D, 0.5 mg/l benzyladenine (BA and 500 mg/l polyvinylpyrrolidone (PVP, was cultured in liquid medium with the same components. Various ages of cell suspension at weekly intervals were then incubated in various kinds and concentrations of cell wall digestion enzymes combined with 1% macerozyme R-10 on a rotary shaker at 100 rpm under 1500 lux illumination at 26±4oC. Purified protoplasts were cultured at various densities in MS medium (adjusted osmoticum to 0.4 M by mannitol supplemented with 3% sucrose and two types of auxin, 2,4-D and NAA at four concentrations (1, 2, 3 and 4 mg/l together with 1 mg/l BA. The results revealed that a four-day old cell suspension culture incubated in 2% cellulase Onozuka R-10 (CR10 in combination with 1% macerozyme R-10 gave an optimum result in both yield and viability of protoplasts at 5.7x106/1 ml PCV and 80%, respectively. Embedding protoplasts at a density of 2.5x105/ml in 0.2% phytagel containing MS medium supplemented with 3 mg/l NAA and 1 mg/l BA promoted the most effective division of the protoplasts (20%. The first division of the protoplasts was obtained after 2 days of culture and further divisions to form micro- and macro-colonies could be observed after 7-10 days of culture. However, callusformation and plantlet regeneration was not obtained.

  14. Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Haruki Sekiguchi

    Full Text Available Numerous endothelial progenitor cell (EPC-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT cells and floating (FL cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL but not fast attached (AT BMMNCs in culture are EPC-rich population in mouse.

  15. Propagation and isolation of ranaviruses in cell culture

    DEFF Research Database (Denmark)

    Ariel, Ellen; Nicolajsen, Nicole; Christophersen, Maj-Britt;

    2009-01-01

    The optimal in vitro propagation procedure for a panel of ranavirus isolates and the best method for isolation of Epizootic haematopoietic necrosis virus (EHNV) from organ material in cell-culture were investigated. The panel of ranavirus isolates included: Frog virus 3 (FV3), Bohle iridovirus (BIV......), epithelioma papulosum cyprini (EPC), chinook salmon embryo (CHSE-214) rainbow trout gonad (RTG-2) and fathead minnow (FHM), and incubated at 10, 15, 20, 24 and 28 °C for two weeks. BF-2, EPC and CHSE-214 cells performed well and titers obtained in the three cell lines were similar, whereas FHM and RTG-2 cells...... consistently produced lower titers than the other cell lines at all temperatures. The optimal temperature for propagating the isolates collectively to high titers in vivo was 24 °C. Additionally, three established methods for re-isolation of virus from EHNV-infected organ material were compared. Challenged...

  16. Dexamethasone Modulation on Cultured Human Retinal Pigment Epithelial Cell

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Yannian; Hui Yusheng Wang; Hong Wei

    2001-01-01

    Purpose: Dexamethasone(DEX) was tested for its ability to modulate human retinal pigment epithelium (hRPE) cell proliferation in cell culture. Methods: DEX in different concentrations was added to cultured hRPE cells. The effects were measured with MTT method, 3H-thymidine(3H-TdR) incorporation and flow cytometw. Results: DEX increased survival rate and DNA synthesis from 32 mg/L to 320 mg/L under hRPE culture conditions, but paradoxically reduced them at 1 000 mg/L and 3 200 mg/L in dose and time dependent fashion by both MTT assay and 3 H-TdR incorporation. The cell numbers in S phase and G2/M phase increased 28.32 % at DEX concentration 320 mg/L, in contrast, reduced 41.84 % at 1 000 mg/L. Conclusion: DEX increased proliferation from 32 mg/L to 320 mg/L, and inhibited proliferation at concentrations greater than 320 mg/L. The inhibiting effect of DEX may happen in s phase and G2/M phase. Eye Sciernce 2001; 17:27 ~ 30.

  17. Culture and purification of human fetal olfactory bulb ensheathing cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To obtain high purity of human fetal olfactory bulb ensheathing cells (OB-hOECs) in vitro and to develop a simple and effective method for primary culture of OB-hOECs. Methods: OB-hOECs were cultured based on the differential rates of attachment of the various harvested cell types. Then the method was combined with arabinoside cytosine (Ara-C)inhibition, serum-free starvation or intermittent neurotrophin 3 (NT3) nutrition method to observe cell states in different cultural environments. The purity of OB-hOECs was assessed with immunocytochemical analysis. Results: OB-hOECs appeared bipolar and tripolar shape, with slender processes forming network. The purity of OECs reached 88% with the selective attachment method on day 6, and then fibroblast proliferated quickly and reduced the purity. When combined with the starvation method, the purity of OECs was 91% on day 6 and 86% on day 9, however, OECs were in a poor state. While combined with the NT3 method, the purity reached 95% on day 9 and 83% on day 12, respectively. The cells still remained in a good state. Conclusion: A combination of selective attachment and intermittent NT3 nutrition is an effective method to obtain OECs with higher purity and quality.

  18. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  19. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers.

    Science.gov (United States)

    Eersels, Kasper; van Grinsven, Bart; Khorshid, Mehran; Somers, Veerle; Püttmann, Christiane; Stein, Christoph; Barth, Stefan; Diliën, Hanne; Bos, Gerard M J; Germeraad, Wilfred T V; Cleij, Thomas J; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2015-02-17

    Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.

  20. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  1. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Mark Weingarten

    2015-03-01

    Full Text Available Pluripotent stem cells (PSCs have the power to revolutionize the future of cell-based therapies and regenerative medicine. However, stem/progenitor cell use in the clinical arsenal has been hampered by discrepancies resulting from stem cell engineering and expansion, as well as in their (mass differentiation in culture. Moreover, the manner in which external conditions affect PSC and induced-pluripotent stem cell lineage establishment as well as maturation remains controversial. In this review, we examine novel methods of cell engineering and the role of reprogramming transcription factors in PSC development. In addition, we explore the effect of external environmental signals on PSC cultivation and differentiation by elucidating key components of the primordial stem cell microenvironment, the blastocyst. Furthermore, we assess the effects of hypoxic conditions on DNA editing, gene expression, and protein function in PSC self-renewal and growth. Finally, we speculate on the principal use of gap junction subunit expression as relevant biomarkers of PSC fate. Improving bioreactor design and pertinent cell biomarker classification could vastly enhance manufactured stem cell yield and quality, thereby increasing the potency and safety of therapeutic cells to be used in regenerative medicine.

  2. Enhancement effect of shikonin in cell suspension culture and transfermanant culture by radiation application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Lee, Young Keun; Chung, Byung Yeoup; Lee, Young Bok; Hwang Hye Yeon

    2004-10-01

    The cell lines 679, 679-29 and 622-46 of L. erythrorhizon could be selected on LS agar medium for the production shikonin in cell suspension culture. The shikonin was increased moderately in suspension culture of cell line 622-46 in LS liquid medium containing BA 2 mg{center_dot}L{sup -1} and IAA 0.2 mg{center_dot}L{sup -1} in the dark, and was increased by adding 1 {mu}M Cu{sup 2+} and 100 {mu}M methyl jasmonate The accumulation of shikonin in the liquid medium was increased significantly by 2 Gy irradiation to callus of cell line 622-46 and culture in LS liquid medium containing BA 2 mg{center_dot}L{sup -1} and IAA 0.2 mg{center_dot}L{sup -1} in the dark and shikonin in cell debris was higher by 16 Gy irradiation. The activity of p-hydroxybenzoate geranyltransferase was increased by irradiation of 2 Gy and 16 Gy of {gamma} radiation. Seedling hypocotyles of L. erythrorhizon were infected with Agrogacterium rhizogenes strain 15834 harboring a binary vector with an intron bearing the GUS ({beta}-glucuronidase) gene driven by cauliflower mosaic virus (CaMV) 35S promotor as well as the HPT (hygromycin phosphotransferase) gene as the selection marker. Hairy roots isolated were hygromycin resistant and had integrated GUS gene in DNA. The root tip grown on M-9 medium showed normal pigment production pattern in border cells and root hairs.

  3. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    Directory of Open Access Journals (Sweden)

    Zach Hall

    2007-01-01

    Full Text Available Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment for each of 4 doses of X-rays (0, 2, 4 and 8 Gy. Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  4. Radiation response of cultured human cells is unaffected by Johrei.

    Science.gov (United States)

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment. PMID:17549235

  5. Calcium exchange, structure, and function in cultured adult myocardial cells

    International Nuclear Information System (INIS)

    Cells digested from adult rat heart and cultured for 14 days demonstrate all the structural elements, in mature form, associated with the process of excitation-contraction (EC) coupling. The transverse tubular (TT) system is well developed with an extensive junctional sarcoplasmic reticulum (JSR). In nonphosphate-containing buffer contraction of the cells is lost as rapidly as zero extracellular Ca concentration ([Ca]0) solution is applied and a negative contraction staircase is produced on increase of stimulation frequency. Structurally and functionally the cells have the characteristics of adult cells in situ. 45Ca exchange and total 45Ca measurement in N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES)-buffered perfusate define three components of cellular Ca: 1) a rapidly exchangeable component accounting for 36% of total Ca, 2) a slowly exchangeable component (t/sub 1/2/ 53 min) accounting for 7% total Ca, and 3) the remaining 57% cellular Ca is inexchangeable (demonstrates no significant exchange within 60 min). The slowly exchangeable component can be increased 10-fold within 60 min by addition of phosphate to the perfusate. The Ca distribution and exchange characteristics are little different from those of 3-day cultures of neonatal rat heart previously studied. The results suggest that the cells are representative of adult cells in situ and that both sarcolemmal-bound and sarcoplasmic reticular Ca contribute to the component of Ca that is rapidly exchangeable

  6. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    Science.gov (United States)

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.

  7. Aquaporin-1 Expressed in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Mingkai Lin; Jian Ge; Yehong Zhuo; Yuqing Lan; Keming Yu; Jianliang Zheng

    2002-01-01

    Objective:To determine if aquaporin-1 could be detected in cultures of human trabecularshwork cells. Methods: Using primers specific for aquaporin-1, reverse transcription combined withpolymerase chain reaction (RT-PCR) yielded a product and its size with total RNAprepared from the human trabecular meshwork cells. SDS-PAGE and immunoblottingwere also used in this study to detect the specific water channel.Results: The presence of this product and its size (298 base pairs) are consistent withthat of an aquaporin-1 message in these cells. A band of 28 kD in agreement with themolecular size of aquaporin-1 was showed in a film by immunoblotting.Conclusion: The presence of aquaporin-1 in human trabecular meshwork cells, thepredominant cell-type of the primary outflow region of the human eye, suggests that waterchannels may be involved in the movement of aqueous fluid out of the eye. In addition,the existence of aquaporin-1 on cultures of human trabecular meshwork cells provides anin vitro model to study the endogenous expression of aquaporin-1 and its possible role inthe regulation of aqueous outflow.

  8. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells

    OpenAIRE

    Patil, Rohan A.; Lenka, Sangram K.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2014-01-01

    Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol®) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large scale bioprocessing. Here, increased accumulation of paclitaxel in Taxus cuspidata suspension cultures with MeJA elicitation was accompanied by a concomitant decrease in cell growth, evident within the first three days post-elicitatio...

  9. A modular suite of hardware enabling spaceflight cell culture research

    Science.gov (United States)

    Hoehn, Alexander; Klaus, David M.; Stodieck, Louis S.

    2004-01-01

    BioServe Space Technologies, a NASA Research Partnership Center (RPC), has developed and operated various middeck payloads launched on 23 shuttle missions since 1991 in support of commercial space biotechnology projects. Modular cell culture systems are contained within the Commercial Generic Bioprocessing Apparatus (CGBA) suite of flight-qualified hardware, compatible with Space Shuttle, SPACEHAB, Spacelab and International Space Station (ISS) EXPRESS Rack interfaces. As part of the CGBA family, the Isothermal Containment Module (ICM) incubator provides thermal control, data acquisition and experiment manipulation capabilities, including accelerometer launch detection for automated activation and thermal profiling for culture incubation and sample preservation. The ICM can accommodate up to 8 individually controlled temperature zones. Command and telemetry capabilities allow real-time downlink of data and video permitting remote payload operation and ground control synchronization. Individual cell culture experiments can be accommodated in a variety of devices ranging from 'microgravity test tubes' or standard 100 mm Petri dishes, to complex, fed-batch bioreactors with automated culture feeding, waste removal and multiple sample draws. Up to 3 levels of containment can be achieved for chemical fixative addition, and passive gas exchange can be provided through hydrophobic membranes. Many additional options exist for designing customized hardware depending on specific science requirements.

  10. Handbook of plant cell culture. Volume 2. Crop species

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.R.; Evans, D.A.; Ammirato, P.V.; Yamada, Y. (eds.)

    1984-01-01

    In this volume the state-of-the-art plant cell culture techniques described in the first volume are applied to several agricultural and horticultural crops. In 21 chapters, they include maize, oats, wheat, beans, red clover and other forage legumes, asparagus, celery, cassava, sweet potato, banana, pawpaw, apple, grapes, conifers, date palm, rubber, sugarcane and tobacco. Each chapter contains (1) detailed protocols to serve as the foundation for current research, (2) a critical review of the literature, and (3) in-depth evaluations of the potential shown by plant cell culture for crop improvement. The history and economic importance of each crop are discussed. This volume also includes an essay, ''Oil from plants'', by M. Calvin.

  11. Gill cell culture systems as models for aquatic environmental monitoring.

    Science.gov (United States)

    Bury, Nic R; Schnell, Sabine; Hogstrand, Christer

    2014-03-01

    A vast number of chemicals require environmental safety assessments for market authorisation. To ensure acceptable water quality, effluents and natural waters are monitored for their potential harmful effects. Tests for market authorisation and environmental monitoring usually involve the use of large numbers of organisms and, for ethical, cost and logistic reasons, there is a drive to develop alternative methods that can predict toxicity to fish without the need to expose any animals. There is therefore a great interest in the potential to use cultured fish cells in chemical toxicity testing. This review summarises the advances made in the area and focuses in particular on a system of cultured fish gill cells grown into an epithelium that permits direct treatment with water samples.

  12. Gill cell culture systems as models for aquatic environmental monitoring.

    Science.gov (United States)

    Bury, Nic R; Schnell, Sabine; Hogstrand, Christer

    2014-03-01

    A vast number of chemicals require environmental safety assessments for market authorisation. To ensure acceptable water quality, effluents and natural waters are monitored for their potential harmful effects. Tests for market authorisation and environmental monitoring usually involve the use of large numbers of organisms and, for ethical, cost and logistic reasons, there is a drive to develop alternative methods that can predict toxicity to fish without the need to expose any animals. There is therefore a great interest in the potential to use cultured fish cells in chemical toxicity testing. This review summarises the advances made in the area and focuses in particular on a system of cultured fish gill cells grown into an epithelium that permits direct treatment with water samples. PMID:24574380

  13. Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

    Directory of Open Access Journals (Sweden)

    Cheng BR

    2014-05-01

    Full Text Available Boran Cheng,1,* Zhaobo He,2,* Libo Zhao,2,* Yuan Fang,1 Yuanyuan Chen,1 Rongxiang He,2 Fangfang Chen,1 Haibin Song,1 Yuliang Deng,2 Xingzhong Zhao,2 Bin Xiong1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei, People’s Republic of China; 2Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Circulating tumor cells (CTCs in the blood which have detached from both the primary tumor and any metastases may be considered as a “liquid biopsy” and are expected to replace tumor biopsies in the monitoring of treatment response and determining patient prognosis. Here, we introduce a facile and efficient CTC detection material made of hydroxyapatite/chitosan (HA/CTS, which is beneficial because of its transparency and excellent biological compatibility. Atomic force microscopy images show that the roughness of the HA/CTS nanofilm (HA/CTSNF substrates can be controlled by changing the HA:CTS ratio. Enhanced local topographic interactions between nano-components on cancer cell membranes, and the antibody coated nanostructured substrate lead to improved CTC capture and separation. This remarkable nanostructured substrate has the potential for CTC culture in situ and merits further analysis. CTCs captured from artificial blood samples were observed in culture on HA/CTSNF substrates over a period of 14 days by using conventional staining methods (hematoxylin eosin and Wright’s stain. We conclude that these substrates are multifunctional materials capable of isolating and culturing CTCs for subsequent studies. Keywords: cell capture, cell culture, nanofilms, hydroxyapatite/chitosan

  14. Ion-selective microelectrode arrays for cell culture monitoring

    OpenAIRE

    Generelli, Silvia; De Rooij, Nicolas-F.

    2008-01-01

    The design, microfabrication and characterization of a platform comprising an array of ion-selective microelectrodes (µISE) aimed at in vitro cellular physiology and toxicology is described. This study focusses on K+ and Ca2+ monitoring in cell culture environments. A potential promising application of such a platform is based on recent findings in molecular biology, revealing connections between certain diseases, as for example some types of cancer or parkinsonism, and a malfunction in cellu...

  15. Preparation of Cell Cultures and Vaccinia Virus Stocks.

    Science.gov (United States)

    Cotter, Catherine A; Earl, Patricia L; Wyatt, Linda S; Moss, Bernard

    2015-01-01

    The culturing of cell lines used with vaccinia virus, both as monolayer and in suspension, is described. The preparation of chick embryo fibroblasts (CEF) is presented for use in the production of the highly attenuated and host range-restricted modified vaccinia virus Ankara (MVA) strain of vaccinia virus. Protocols for the preparation, titration, and trypsinization of vaccinia virus stocks, as well as viral DNA preparation and virus purification methods are also included.

  16. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    Science.gov (United States)

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  17. Ethanolamine metabolism in cultured bovine aortic endothelial cells

    International Nuclear Information System (INIS)

    The role of extracellular ethanolamine in phospholipid synthesis was examined in cultured bovine aortic endothelial cells. Serine and ethanolamine were both readily accumulated by these cells and incorporated into phospholipid. Exposing cells to extracellular ethanolamine for 4-6 weeks had no effect on cell growth, yet increased the phosphatidylethanolamine content of these cells by 31% as compared to control cells. The intracellular content of ethanolamine was measured by high performance liquid chromatography, and results showed that the ethanolamine-treated cells contained a significantly greater amount of free ethanolamine compared to control cells. Ethanolamine-treated cells also had decreased accumulation and incorporation into lipid of [3H]ethanolamine throughout a 48-h incubation and increased K'm and V'max parameters of ethanolamine transport as compared to control cells. Studies were also done to examine the effect of ethanolamine on the generation of free ethanolamine from phosphatidylserine. In pulse-chase experiments with [3H]serine, a physiological concentration of ethanolamine decreased the amount of 3H-labeled phosphatidylethanolamine produced from 3H-labeled phosphatidylserine by 12 h as compared to the amount of 3H-labeled phosphatidyl-ethanolamine produced in the absence of ethanolamine in the chase incubation. Furthermore, ethanolamine-treated cells accumulated 20% less labeled ethanolamine in the aqueous pool from [3H]serine after 24 h of incubation than did control cells. These results can be explained by isotope dilution with the ethanolamine pool that accumulates in these cells with time when exposed to media supplemented with a physiological concentration of ethanolamine and by an effect of ethanolamine on ethanolamine generation from phosphatidylserine

  18. In Vitro Cell Culture Infectivity Assay for Human Noroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin A.; Orosz Coghlan, Patricia A.; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza; Nickerson, Cheryl A.

    2007-01-30

    Human noroviruses (NoV) cause severe, self-limiting gastroenteritis that typically lasts 24 - 48 hours. The true nature of NoV pathogenesis remains unknown due to the lack of suitable tissue culture or animal models. Here we show, for the first time, that NoV can infect and replicate in an organoid, three-dimensional (3-D) model of human small intestinal epithelium (INT-407). Cellular differentiation for this model was achieved by growing the cells in 3-D on porous collagen I-coated microcarrier beads under conditions of physiological fluid shear in rotating wall vessel bioreactors. Microscopy, PCR, and fluorescent in-situ hybridization were employed to provide evidence of NoV infection. CPE and norovirus RNA was detected at each of the five cell passages for both genogroup I and II viruses. Our results demonstrate that the highly differentiated 3-D cell culture model can support the natural growth of human noroviruses, whereas previous attempts using differentiated monolayer cultures failed.

  19. Somatic Embryogenesis from Cell Suspension Cultures of Aspen Clone

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Suspension cultures initiated from callus derived from petiole explants of aspen hybrid (Populus tremuloides × P.tremula) produced somatic embryos. Callus was induced on a MS medium supplemented with 5 mg·L-1 2,4-D and 0.05 mg·L-1 zeatin under light conditions. Embryogenic calli were obtained when a subsequent subculture of calli was suspended in the same basal medium with 10 mg·L-1 2,4-D. The highest number of globular embryos were induced from embryogenic calli by cell suspension culture in a MS liquid medium supplemented with 10 mg·L-1 2,4-D. Genotype and 2,4-D concentration were vital to the induction of embryogenic calli producing competent cells. Embryogenic calli for each genotype were heterogeneous. Green calli with gel-like consistency could yield more competent cells than light yellow embryogenic calli. However, some globular embryos broke into slices and some developed abnormally after one month of culture under the same or other hormonal conditions.

  20. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    Science.gov (United States)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  1. Immunoprecipitation of membrane proteins of cultured human sarcoma cells.

    Science.gov (United States)

    Grófová, M; Forchhammer, J; Lizonová, A; Popovic, M

    1981-01-01

    Human sarcoma associated antigens (HSAA) have previously been identified by indirect immune fluorescence in human sarcoma cells in culture using sera from patients bearing different types of sarcoma. To further characterize these HSAA, surface proteins of cultured cells were labeled with 125Iodine, [3H]-glucosamine and [35S]-methionine and solubilized. After immunoprecipitation labeled proteins were detected in immune complexes by SDS polyacrylamide gel electrophoresis and autoradiography, which allowed comparison with antigens described by other groups. A surface protein (Mr 96 000) was precipitated with sera from sarcoma bearing patients, and two glycoproteins (Mr 115 000 and 85 000) were preferentially precipitated with antisera from rabbits immunized with membranes from two human sarcoma cell lines. At least two of these proteins were found in each of five human sarcoma cell lines studied (U-4SS, U-3930S, U-20S, B-5GT and B-6FS). None of the proteins were precipitated with three human control sera, and only occasionally a faint band was observed in immunoprecipitates from control cells (B-25F, B-41B, B-42FC, U-2S, and U-393S with the immune sera. These proteins are probably some of the antigens responsible for the immune fluorescence observed in determination of HSAA. However, purification of the proteins and competition experiments are needed before this can be finally established.

  2. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement....... The cells have the potential of long-term culture and the ability to differentiate into neural and glial cells....

  3. Cryopreservation of primary cell cultures of marine invertebrates.

    Science.gov (United States)

    Odintsova, N; Kiselev, K; Sanina, N; Kostetsky, E

    2001-01-01

    Primary cell cultures obtained from somatic and larval tissues of bivalve molluscs and from embryos of sea urchins were frozen to -196 degrees C by two-step freezing using 10% dimethyl sulfoxide (DMSO) or/and trehalose (3-30 mg/ml) as cryoprotectants. We estimated both cell viability and the RNA synthetic activity after freeze-thaw. Total lipid extracts from the tissues of echinoderms examined as possible cryoprotective agents demonstrated a weak cryoprotective capacity. Mussel lipid extract was found to possess a considerable cryoprotective activity. Cryoprotective capacity of tested lipids correlated with their thermotropic behaviour. DMSO + trehalose combination was shown to be a favourable cryoprotectant and sea urchin blastula cells the most freezing-tolerant cells. PMID:11788872

  4. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    OpenAIRE

    Alexander Röder; Elena García-Gareta; Christina Theodoropoulos; Nikola Ristovski; Keith A. Blackwood; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface ...

  5. Benchmarking of commercially available CHO cell culture media for antibody production

    OpenAIRE

    Reinhart, David; Damjanovic, Lukas; Kaisermayer, Christian; Kunert, Renate

    2015-01-01

    In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but hi...

  6. Renal mesangial cell cultures as a model for study of erythropoietin production.

    OpenAIRE

    Kurtz, Armin; Jelkmann, W; Sinowatz, F.; Bauer, Christian

    1983-01-01

    Mesangial cells derived from isolated glomeruli of rat kidney were grown as homogeneous cell lines in culture. They released, into the culture medium, erythropoietin that had free terminal galactosyl residues and was therefore not active in vivo. The production of erythropoietin by these cells was significantly enhanced by either lowering the PO2 in the incubation atmosphere or by adding cobalt chloride to the culture medium. Therefore, mesangial cells in culture may be considered as an in vi...

  7. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  8. Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing.

    Science.gov (United States)

    Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming

    2015-10-28

    Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis.

  9. Human alveolar epithelial type II cells in primary culture.

    Science.gov (United States)

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  10. Is cell culture a risky business? Risk analysis based on scientist survey data.

    Science.gov (United States)

    Shannon, Mark; Capes-Davis, Amanda; Eggington, Elaine; Georghiou, Ronnie; Huschtscha, Lily I; Moy, Elsa; Power, Melinda; Reddel, Roger R; Arthur, Jonathan W

    2016-02-01

    Cell culture is a technique that requires vigilance from the researcher. Common cell culture problems, including contamination with microorganisms or cells from other cultures, can place the reliability and reproducibility of cell culture work at risk. Here we use survey data, contributed by research scientists based in Australia and New Zealand, to assess common cell culture risks and how these risks are managed in practice. Respondents show that sharing of cell lines between laboratories continues to be widespread. Arrangements for mycoplasma and authentication testing are increasingly in place, although scientists are often uncertain how to perform authentication testing. Additional risks are identified for preparation of frozen stocks, storage and shipping.

  11. General protocol for the culture of cells on plasma-coated electrospun scaffolds.

    Science.gov (United States)

    Guex, A Géraldine; Fortunato, Giuseppino; Hegemann, Dirk; Tevaearai, Hendrik T; Giraud, Marie-Noëlle

    2013-01-01

    As opposed to culture on standard tissue-treated plastic, cell culture on three-dimensional scaffolds impedes additional challenges with respect to substrate preparation, cell seeding, culture maintenance, and analysis. We herewith present a general route for the culture of primary cells, differentiated cells, or stem cells on plasma-coated, electrospun scaffolds. We describe a method to prepare and fix the scaffolds in culture wells and discuss a convenient method for cell seeding and subsequent analysis by scanning electron microscopy or immunohistology.

  12. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions

    Science.gov (United States)

    Rao, Nikhil; Grover, Gregory N.; Vincent, Ludovic G.; Evans, Samantha C.; Choi, Yu Suk; Vincent, Ludovic G.; Spencer, Katrina H.; Hui, Elliot E.; Engler, Adam J.; Christman, Karen L.

    2013-01-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions. PMID:24061208

  13. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  14. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  15. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  16. Dual polarization of microglia isolated from mixed glial cell cultures.

    Science.gov (United States)

    Ju, Lili; Zeng, Hui; Chen, Yun; Wu, Yanhong; Wang, Beibei; Xu, Qunyuan

    2015-09-01

    Microglia are versatile immune effector cells of the CNS and are sensitive to various stimuli. The different methods used to isolate microglia may affect some of their characteristics, such as their polarization state. The influence of cell sorting methods on the polarization state of microglia has never been studied. Mixed glial culture system (MGCS) and magnetic activated cell sorting (MACS) are two methods that are commonly used to purify microglia. This study compares the immunological states between microglia isolated by MGCS and microglia isolated by MACS. We show that microglia isolated by MGCS exhibit a stronger immune-activated state than microglia isolated by MACS. They present an elevated phagocytic ability and high levels of markers associated with classical activation (M1) and alternative activation (M2). In addition, high levels of M1-type and M2-type chemokine (C-C motif) ligand 2 and transforming growth factor-β1 were detected in the culture medium of mixed glial cells. Our results show that microglia isolated by MGCS are in an immune-activated state, whereas microglia isolated by MACS appear to be closer to their primary in vivo state. Therefore, the immune status of microglia, depending on the protocol used to purify them, should be carefully considered in neuropathology research.

  17. Digital microfluidics for automated hanging drop cell spheroid culture.

    Science.gov (United States)

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. PMID:25510471

  18. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells.

    Science.gov (United States)

    Subramanian, Kartik; Owens, Derek Jason; Raju, Ravali; Firpo, Meri; O'Brien, Timothy D; Verfaillie, Catherine M; Hu, Wei-Shou

    2014-01-15

    Stem cell-derived hepatocyte-like cells hold great potential for the treatment of liver disease and for drug toxicity screening. The success of these applications hinges on the generation of differentiated cells with high liver specific activities. Many protocols have been developed to guide human embryonic stem cells (hESCs) to differentiate to the hepatic lineage. Here we report cultivation of hESCs as three-dimensional aggregates that enhances their differentiation to hepatocyte-like cells. Differentiation was first carried out in monolayer culture for 20 days. Subsequently cells were allowed to self-aggregate into spheroids. Significantly higher expression of liver-specific transcripts and proteins, including Albumin, phosphoenolpyruvate carboxykinase, and asialoglycoprotein receptor 1 was observed. The differentiated phenotype was sustained for more than 2 weeks in the three-dimensional spheroid culture system, significantly longer than in monolayer culture. Cells in spheroids exhibit morphological and ultrastructural characteristics of primary hepatocytes by scanning and transmission electron microscopy in addition to mature functions, such as biliary excretion of metabolic products and cytochrome P450 activities. This three-dimensional spheroid culture system may be appropriate for generating high quality, functional hepatocyte-like cells from ESCs.

  19. Cultured stem cells are sensitive to gravity changes

    Science.gov (United States)

    Buravkova, L. B.; Romanov, Yu. A.; Konstantinova, N. A.; Buravkov, S. V.; Gershovich, Yu. G.; Grivennikov, I. A.

    2008-09-01

    Stem and precursor cells play an important role in development and regeneration. The state of these cells is regulated by biochemical substances, mechanical stimuli and cellular interactions. To estimate gravity effects we used two types of cultured stem cells: human mesenchymal stromal cells (hMSCs) from bone marrow and mice embryonic stem (mESC) line R1. Gravity changes were simulated by long-term (4-7 days) slow clinorotation and leaded to decreased hMSC proliferation, changes of cell morphology and modified F-actin cytoskeleton. We did not find the shifts in cell phenotype except for decreased expression of HLA 1 and CD105 but excretion of IL-6 into medium increased significantly. Remodeling of cytoskeleton started after first 4 h and was similar to preapoptotic changes. This data suggested the modification in cell adhesion and possible commitment of hMSC. It was observed that expression of alkaline phosphatase by MSC in osteogenic medium was more intensive in control. On the contrary, clinorotation did not change formation of mESC colonies and increased proliferation activity in LIF+-medium. However, the number of embryonic bodies after clinorotation was less than in static control. It is suggested that ESCs kept the viability and proliferative potential but decreased the differentiation ability after changes in gravity stimulation.

  20. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling

    OpenAIRE

    Chung, Seyung S.; Koh, Chester J.

    2013-01-01

    FGF10 is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. In this study, we investigated the role of FGF10 as a lead induction factor for stem cell differentiation toward urothelial cell. To this end, human multi-potent stem cell in vitro system was employed. Human amniotic fluid stem cells were co-cultured with immortalized bladder cancer lines to induce directed differentiation into urothelial cells. Urothe...

  1. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  2. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  3. In vitro cell culture lethal dose submitted to gamma radiation

    International Nuclear Information System (INIS)

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that 60Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  4. Comparison of polypeptides from cultured human fibroblasts and sarcoma cells.

    Science.gov (United States)

    Vartio, T; Kaelin, H; Vaheri, A

    1978-10-23

    The proteins in cell layers of cultured normal diploid human skin (ES, ER) and lung (WI-38) fibroblasts were compared to those of SV40-transformed human fibroblasts (WI-38/VA-13), human rhabdomyosarcoma (RD) and fibrosarcoma (HT-1080) cells using metabolic amino acid and sugar labeling and surface labeling with tritiated sodium borohydride after oxidation with galactose oxidase. The labeled proteins were analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography (fluorography). A transformation-associated decrease in the pericellular glycoprotein fibronectin (subunit molecular weight, 220 000) and in the synthesis of a set of polypeptides in the 130 000--180 000 dalton region was seen. Synthesis of a glycosylated 160 000 dalton polypeptide was markedly reduced. In transformed cells distinct increases of several specific polypeptides was detected in both [35S]methionine and [3H] mannose incorporation experiments but not using the surface labeling method.

  5. Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture.

    Science.gov (United States)

    Musser, Jeffrey M B; Heatley, J Jill; Koinis, Anastasia V; Suchodolski, Paulette F; Guo, Jianhua; Escandon, Paulina; Tizard, Ian R

    2015-01-01

    Parrot bornavirus 4 is an etiological agent of proventricular dilatation disease, a fatal neurologic and gastrointestinal disease of psittacines and other birds. We tested the ability of ribavirin, an antiviral nucleoside analog with antiviral activity against a range of RNA and DNA viruses, to inhibit parrot bornavirus 4 replication in duck embryonic fibroblast cells. Two analytical methods that evaluate different products of viral replication, indirect immunocytochemistry for viral specific nucleoprotein and qRT-PCR for viral specific phosphoprotein gene mRNA, were used. Ribavirin at concentrations between 2.5 and 25 μg/mL inhibited parrot bornavirus 4 replication, decreasing viral mRNA and viral protein load, in infected duck embryonic fibroblast cells. The addition of guanosine diminished the antiviral activity of ribavirin suggesting that one possible mechanism of action against parrot bornavirus 4 may likely be through inosine monophosphate dehydrogenase inhibition. This study demonstrates parrot bornavirus 4 susceptibility to ribavirin in cell culture. PMID:26222794

  6. Dissecting mitosis by RNAi in Drosophila tissue culture cells

    Directory of Open Access Journals (Sweden)

    Maiato Helder

    2003-01-01

    Full Text Available Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique.

  7. Optimization of Storage Temperature for Cultured ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Lara Pasovic

    2013-01-01

    Full Text Available Purpose. The establishment of future retinal pigment epithelium (RPE replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7%±9.8%; P<0.01 compared to 4°C, 8°C, and 24°C–37°C; P<0.05 compared to 12°C. Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature.

  8. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    Science.gov (United States)

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  9. The Biological Study of the Cultured Human Lens Epithelial Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The human lens epithelial cells (HLE) cultured in vitro was established in normal and cataractous lenses. The biological feature, histological characteristics and the ultrastructure of the cultured HLE cells were investigated. The results reveal that the proliferative capacity of the culutured HLE cells is reversely proportional to the donour age; the cultured HLE cells has the limited proliferative capacity in vitro. The relieve of the contact inhibition is the effective trigger of the HLE cell prolife...

  10. Rheological characteristics of cell suspension and cell culture of Perilla frutescens.

    Science.gov (United States)

    Zhong, J J; Seki, T; Kinoshita, S; Yoshida, T

    1992-12-01

    Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stress. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size.

  11. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    Directory of Open Access Journals (Sweden)

    Claudia González

    2013-01-01

    Full Text Available Background. Mucociliary transport (MCT is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms.

  12. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    Science.gov (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  13. Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency

    OpenAIRE

    Nii, Takenobu; Kohara, Hiroshi; Marumoto, Tomotoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Tani, Kenzaburo

    2016-01-01

    Abstract Efficient gene transfer into human pluripotent stem cells (hPSCs) holds great promise for regenerative medicine and pharmaceutical development. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a stable culture method of hPSCs at a single-cell state to reduce cell density and investigated gene transfection efficiency followed by gene editing effici...

  14. THE CHARACTERISTICS OF ENDOGENOUS OUABAIN SECRETIONFROM CULTURED BOVINE ADRENOCORTICAL CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To compare the characteristics of endogenous ouabain(EO) secretion with the other adrenocortical hormones and determine the effects of angiotensin Ⅰ (Ang Ⅰ ), and adrenocorticotrophin(ACTH) on the secretion of EO. Methods EO was measured by radioimmunoassay from primary cultured bovine adrenocotical cells (BAC). Results ①Ouabain was determined in the media of cultured BAC. Both EO and aldosterone secretion were decreased from the outer to inner layer of the cultured adrenal cortex, and the responses to Ang Ⅰ and ACTH were higher than that in the mid layer (P <0. 05) and inner layer (P <0. 01). Cortisol secretion was activated by Ang Ⅱ or ACTH was significantly higher in the mid layer and in the inner layer than that in the outer layer. ②The time-course experiment showed that the gradually rising amounts of aldosterone and cortisol could be determined dur ing the continuous incubation to 48h with or without Ang Ⅰ or ACTH. However, EO did not increase continuously af ter 24h of incubation in the basal secreting situation and after 12h of incubation in the stimulating situation by Ang Ⅱ or ACTH. ③There were obvious drops in aldosterone and cortisol secretion from 3rd day during a 21 day-period cell culture, but the peak secretion of ouabain was in 7th day. Conclusion It suggests that the secretory mechanism might be different between EO and aldosterone or cortisol. Also, Ang Ⅱ and ACTH might be involved in the regulation of EO secretion.

  15. EFFECT OF MACROLIDE ANTIBIOTICS ON VARIOUS CELL CULTURES IN VITRO: 1. CELL MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    Renáta Kováčová

    2012-08-01

    Full Text Available The aim of our study was to evaluate the cytotoxicity of macrolide antibiotics (tilmicosin, tylosin and spiramycin of various concentrations on different cell cultures in vitro. Cellular lines from animal tissues (VERO cells - kidney cells of Macacus rhesus, FE cells - feline embryonal cells, BHK 21 cellular line from young hamster kidneys were used. Tilmicosin effect: BHK cells are most sensitive, significant decrease in vital cells occurs already at the concentration of 50 μg.ml-1. VERO cells were most resistant, significant decrease of vital cells was observed only at the concentration of 300 μg.ml-1. Tylosin effect: BHK cells can be considered most sensitive, since at concentrations higher than 500 μg.ml-1, no vital cells were observed. At the concentration of 1000 μg.ml-1 were 3.13% of vital and 70.52% of subvital FE cells. In Vero cells, we observed a significant decrease at the concentration of 750 μg.ml-1. Spiramycin effect: Significant decrease of vital BHK cells was observed at the concentration of 150 μg.ml-1, at the concentration of 300 μg.ml-1, no vital cells and only 7.53% of subvital cells were observed. At the concentration of 500 μg.ml-1 reported 10.34% of vital FE cells. At the concentration of 500 μg.ml-1 22.48% of vital and 71.16% of subvital VERO cells were recorded.

  16. Sphingomonas sp. is a novel cell culture contaminant.

    Science.gov (United States)

    Asghar, Muhammad Tahir; Al-Ghanim, K; Mahboob, Shahid; Sharif, Muhammad; Nazir, Jawad; Shakoori, Abdul Rauf

    2015-06-01

    A novel contaminant was isolated from Madin Darby Bovine Kidney (MDBK) cells. The organism was unable to grow on standard microbiological media by conventional techniques, but grew well in Dulbecco's Modified Eagle's Medium (DMEM) containing high glucose concentration. The organism formed a white biofilm on the bottom without any signs of turbidity. Upon genome sequence analysis of 16 S rDNA, the contaminant was identified as Sphingomonas sp. Shah, a member of the group α-Proteobacteria. Neutral red dye uptake method confirmed clear cytotoxic potential of the bacterium on A-549 cells. The organism was capable of invading and infecting different mammalian cell lines: MDBK, ZZ-R, 293-T, A549, and HeLa cells. Infected cells showed a variety of cytopathic effects including vacuolation at perinuclear area, cytoplasmic granulation and membrane blebbing. Microscopic analysis of the infected cells revealed the presence of cytoplasmic vacuoles harboring motile organisms. Apparently local serum preparations seem to be the source of this contamination, which is imperceptibly passed on from one culture passage to the other and ultimately leading to serious cytopathic manifestations.

  17. Assessment of pancreatic carcinoma cell chemosensitivity using a three-dimensional culture system

    Institute of Scientific and Technical Information of China (English)

    LIAO Quan; HU Ya; ZHAO Yu-pei; ZHOU Tao; ZHANG Qiang

    2010-01-01

    Background Monolayer cell culture models are the traditional culture models used for in vitro research of pancreatic carcinoma chemosensitivity. However, these models neglect the interactions between tumor cells and the impact of the tumor microenvironment. Such tumor cell monolayers poorly mimic the solid tumor microenvironment. The present study aimed to investigate the chemosensitivity characteristics of pancreatic cancer cells in a three-dimensional culture system by analyzing the differences in drug sensitivity between a scattered cell culture model and a multicellular spheroid culture model.Methods Three pancreatic cancer cell lines (SW1990, ASPC-1 and PCT-3) were cultured in three-dimensional collagen gels as well as in traditional two-dimensional monolayers. The chemosensitivities of the pancreatic carcinoma cells to 5-fluorouracil (5-FU), gemcitabine, and oxaliplatin in vitro were detected by both the Cell Counting Kit-8 test and the collagen gel droplet-embedded culture drug-sensitivity test.Results In the two-dimensional culture model, differences in the chemosensitivities of the cloned pancreatic carcinoma cells and scattered cells existed for some concentrations of 5-FU, gemcitabine and oxaliplatin. In the three-dimensional culture model, there were significant differences in the chemosensitivities of the pancreatic cancer cells between the scattered cells and multicellular spheroids (P <0.05).Conclusion Pancreatic carcinoma cells exhibit multicellular resistance in three-dimensional cultures.

  18. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    International Nuclear Information System (INIS)

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45low c-Kit+ cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45low c-Kit- cells that showed a granulocyte morphology; CD45high c-Kitlow/- that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45low c-Kit+ cells from the AGM culture had the abilities to reproduce CD45low c-Kit+ cells and differentiate into CD45low c-Kit- and CD45high c-Kitlow/- cells, whereas CD45low c-Kit- and CD45high c-Kitlow/- did not produce CD45low c-Kit+ cells. Furthermore, CD45low c-Kit+ cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45low c-Kit+ cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells

  19. Manufacture of biopharmaceutical proteins by mammalian cell culture systems.

    Science.gov (United States)

    Tolbert, W R

    1990-01-01

    In the last several years, dramatic advances have been in the development of new biopharmaceuticals including monoclonal antibodies for diagnosis and treatment and such genetically engineered proteins as tPA, Factor VIIIc, erythropoietin and soluble CD4, an anti-AIDS protein. Currently, there are several hundred such candidate drugs in human clinical trials. In most cases, these protein-based drugs will require manufacture by mammalian cell culture due to the inability of lower organisms to properly glycosylate, fold, make correct disulfide bonds and secrete active biomolecular forms. The need for large scale production from cell culture will greatly increase as more of the products in clinical trials are approved for commercial production. This will require significant reduction in manufacturing costs per gram, concomitant with increased capacity to hundreds or perhaps even thousands of kilograms annually. As an example, Invitron's multi-reactor manufacturing facility has operated at greater than one-half million liters per year and has experience with more than 250 mammalian cell lines for producing protein drug products.

  20. Efficient flotation of yeast cells grown in batch culture.

    Science.gov (United States)

    Palmieri, M C; Greenhalf, W; Laluce, C

    1996-05-01

    A fast flotation assay was used to select new floating yeast strains. The flotation ability did not seem to be directly correlated to total extracellular protein concentration of the culture. However, the hydrophobicity of the cell was definitely correlated to the flotation capacity. The Saccharomyces strains (FLT strains) were highly hydrophobic and showed an excellent flotation performance in batch cultures without additives (flotation agents) and with no need for a special flotation chamber or flotation column. A stable and well-organized structure was evident in the dried foam as shown by scanning electron microscopy which revealed its unique structure showing mummified cells (dehydrated) attached to each other. The attachment among the cells and the high protein concentration of the foams indicated that proteins might be involved in the foam formation. The floating strains (strains FLT) which were not flocculent and showed no tendency to aggregate, were capable of growing and producing ethanol in a synthetic medium containing high glucose concentration as a carbon source. The phenomenon responsible for flotation seems to be quite different from the flocculation phenomenon. PMID:18626952

  1. From Three-Dimensional Cell Culture to Organs-on-Chips

    OpenAIRE

    Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.

    2011-01-01

    Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue inter...

  2. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  3. Self-Assembled Peptide Gels for 3D Cell Culture

    OpenAIRE

    Tang, Claire

    2010-01-01

    Under specific conditions short peptides modified with an N-terminal fluorenyl-9-methoxycarbonyl (Fmoc) group can self-assemble into hydrogel scaffolds similar in properties to the natural extracellular matrix. Fmoc-diphenylalanine (Fmoc-FF) for instance, has been shown to form hydrogels at physiological pH that have the ability to support 2D and 3D cell culture. The aim of this investigation is to provide further understanding of the self-assembly mechanism of such systems in order to progre...

  4. Immunologically active polysaccharides of Arnica montana cell cultures.

    Science.gov (United States)

    Puhlmann, J; Zenk, M H; Wagner, H

    1991-01-01

    From the nutrition medium of Arnica montana cell cultures two homogeneous polysaccharides, an acidic arabino-3,6-galactan-protein with mean Mr of 100,000 and a neutral fucogalactoxyloglucan with mean Mr of 22,500 have been isolated by DEAE-Sepharose CL-6B and Sephacryl S-400 column chromatography. Their structures were elucidated mainly by methylation analysis, partial acidic and enzymatic hydrolysis and 13C NMR spectroscopy. The fucogalactoxyloglucan shows a pronounced enhancement of phagocytosis in vivo. The arabino-3,6-galactan-protein displays a strong anticomplementary effect and stimulates macrophages to excrete the tumour necrosis factor (TNF alpha).

  5. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  6. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian;

    2013-01-01

    Mouse fibroblasts cultured on 7-μm-long vertical nanowires are reported on page 4006 by C. N. Prinz and co-workers. Culturing cells on this kind of substrate interferes greatly with cell function, causing the cells to develop into widely different morphologies. The cells' division is impaired...

  7. Cloned calves produced by nuclear transfer from cultured cumulus cells

    Institute of Scientific and Technical Information of China (English)

    AN; Xiaorong(安晓荣); GOU; Kemian(苟克勉); ZHU; Shien(朱士恩); GUAN; Hong(关宏); HOU; Jian(侯健); LIN; Aixing(林爱星); ZENG; Shenming(曾申明); TIAN; Jianhui(田见辉); CHEN; Yongfu(陈永福)

    2002-01-01

    Short-term cultured cumulus cell lines (1-5BCC) derived from 5 individual cows were used in nuclear transfer (NT) and 1188 enucleated bovine oocytes matured in vitro were used as nuclear recipients. A total of 931 (78.4%) cloned embryos were reconstructed, of which 763 (82%) cleaved, 627 (67.3%) developed to 8-cell stage, and 275 (29.5%) reached blastocyst stage. The average cell number of blastocysts was 124±24.5 (n=20). In this study, the effects of donor cell sources, serum starvation of donor cells, time interval from fusion to activation (IFA) were also tested on cloning efficiency. These results showed that blastocyst rates of embryos reconstructed from 5 different individuals cells were significantly different among them (14.1%, 45.2%, 27.3%, 34.3%, vs 1.5%, P0.05); and that blastocyst rate (20.3%) of the group with fusion/activation interval of 2-3 h, was significantly lower than that of the 3-6 h groups (31.0%), while not significantly different among 3-4 h (P < 0.05), 4-5 h, and 5-6 h groups (P ≥ 0.05). Sixty-three thawed NT blastocysts were transferred to 31 recipient cows, of which 4 pregnancies were established and two cloned calves were given birth. These results indicate that serum starvation of cumulus cells is not a key factor for successful bovine cloning, while IFA treatment and sources of donor cells have effects on cloning efficiency.

  8. Fibroblast and epidermal cell-type I collagen interactions: cell culture and human studies.

    Science.gov (United States)

    Doillon, C J; Silver, F H; Olson, R M; Kamath, C Y; Berg, R A

    1988-06-01

    Fibroblast and epidermal cell-type I collagen sponge interactions were studied in cell culture as well as in humans. In cell culture, fibroblasts were observed to migrate and proliferate throughout a type I collagen sponge containing either hyaluronic acid (HA) or fibronectin (FN). Fibroblasts accumulated in the center of the pores in sponges containing HA and appeared to surround themselves with newly synthesized extracellular matrix. In sponges containing FN, fibroblasts attached to and elongated along the collagen fibers of the sponge. In the absence of FN or HA protein synthesis of fibroblasts appeared to be inhibited by the presence of the type I collagen sponge. Epidermal cells grown on plastic or on type I collagen, formed sheets. Epidermal cells grown on a collagen sponge morphologically appeared different than cells grown on plastic. The type I collagen matrix studied in cell culture was applied to dermal wounds of patients with pressure ulcers in order to evaluate its effect on dermal wound healing. The areas of ulcers treated for 6 weeks with a type I collagen sponge decreased by about 40% compared with no change in the areas of untreated controls. Preliminary results suggest that a type I collagen sponge is a biocompatible substrate with fibroblasts and epidermal cells and may be effective in enhancing healing of chronic skin ulcers. PMID:3399861

  9. From cells to organisms: Can we learn about aging from cells in culture?

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, Judith

    2000-12-21

    Can studying cultured cells inform us about the biology of aging? The idea that this may be was stimulated by the first formal description of replicative senescence. Replicative senescence limits the proliferation of normal human cells in culture, causing them to irreversibly arrest growth and adopt striking changes in cell function. We now know that telomere shortening, which occurs in most somatic cells as a consequence of DNA replication, drives replicative senescence in human cells. However, rodent cells also undergo replicative senescence, despite very long telomeres, and DNA damage,the action of certain oncogenes and changes in chromatin induce a phenotype similar to that of replicatively senescent cells. Thus,replicative senescence is an example of the more general process of cellular senescence, indicating that the telomere hypothesis of aging is a misnomer. Cellular senescence appears to be a response to potentially oncogenic insults, including oxidative stress. The growth arrest almost certainly suppresses tumorigenesis, at least in young organisms, whereas the functional changes may contribute to aging,although this has yet to be critically tested. Thus, cellular senescence may be an example of antagonistic pleiotropy.Cross-species comparisons suggest there is a relationship between the senescence of cells in culture and organismal life span, but the relationship is neither quantitative nor direct.

  10. Antioxidant Capacity of Cultured Mammalian Cells Estimated by ESR Method

    Directory of Open Access Journals (Sweden)

    Tamar Kartvelishvili

    2004-01-01

    Full Text Available In the present study, the antioxidant capacity against hydrogen peroxide (H2O2, one of the stress-inducing agents, was investigated in two distinct cell lines: L-41 (human epithelial-like cells and HLF (human diploid lung fibroblasts, which differ in tissue origin, life span in culture, proliferate activity, and special enzyme system activity. The cell antioxidant capacity against H2O2 was estimated by the electron spin resonance (ESR spin-trapping technique in the Fenton reaction system via Fe+2 ion action with H2O2 resulting in hydroxyl radical generation. The effects of catalase inhibitors, such as sodium azide and 3-amino-1,2,4-triazole, on the antioxidant capacity of cells were tested. Based on our observation, it can be concluded that the defensive capacity of cells against H2O2 depends on the ratio between catalase/GPx/SOD and H2O2, especially at high-stress situations, and the intracellular balance of these enzymes are more important than the influence of the single component.

  11. A biocompatible micro cell culture chamber for culturing and on-line monitoring of Eukaryotic cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2006-01-01

    Visualisering af cellulære processer over længere tidsperioder har været besværliggjort af cellernes krav til varme, fugtighed og et fysiologisk pH balanceret medie. Fremskridt indenfor mikro teknologi har muliggjort fabrikation af miniaturiserede celle kultur anordninger der er i stand til at ho...... øgede den nye random priming metode antallet af detekterede gener på transkriptom DNA mikroarrays med 55% i Cy-3 kanalen og 72% i Cy-5 kanalen, hvilket indikerer en bedre dækning af transkriptomet....

  12. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  13. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  14. Flux characteristics of cell culture medium in rectangular microchannels.

    Science.gov (United States)

    Feng, Zhonggang; Fukuda, Shuhei; Yokoyama, Michio; Kitajima, Tatsuo; Nakamura, Takao; Umezu, Mitsuo

    2011-09-01

    Rectangular microchannels 50 μm high and 30, 40, 50, 60, or 70 μm wide were fabricated by adjusting the width of a gap cut in a polyethylene sheet 50 μm thick and sandwiching the sheet between an acrylic plate and a glass plate. Flux in the microchannels was measured under three different inner surface conditions: uncoated, albumin-coated, and confluent growth of rat fibroblasts on the bottom of the microchannels. The normalized flux in microchannels with cultured fibroblasts or albumin coating was significantly larger than that in the uncoated channels. The experimental data for all microchannels deviated from that predicted by classical hydrodynamic theory. At small aspect ratio the flux in the microchannels was larger than that predicted theoretically, whereas it became smaller at large aspect ratio. The aspect ratio rather than Reynolds number is the correct property for predicting the variation of the normalized friction factor. We postulate that two counteracting effects, rotation of large molecules and slip velocity at the corners of the microchannels, are responsible for the deviation. From these results we conclude that albumin coating should be carried out in the same way as when fabricating our integrating cell-culture system. The outcomes of this study are not only important for the design of our culture system, but also quite informative for general microfluidics.

  15. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    OpenAIRE

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cel...

  16. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  17. A proteome map of primary cultured rat Schwann cells

    Directory of Open Access Journals (Sweden)

    Shen Mi

    2012-03-01

    Full Text Available Abstract Background Schwann cells (SCs are the principal glial cells of the peripheral nervous system with a wide range of biological functions. SCs play a key role in peripheral nerve regeneration and are involved in several hereditary peripheral neuropathies. The objective of this study was to gain new insight into the whole protein composition of SCs. Results Two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D LC-MS/MS was performed to identify the protein expressions in primary cultured SCs of rats. We identified a total of 1,232 proteins, which were categorized into 20 functional classes. We also used quantitative real time RT-PCR and Western blot analysis to validate some of proteomics-identified proteins. Conclusion We showed for the first time the proteome map of SCs. Our data could serve as a reference library to provide basic information for understanding SC biology.

  18. Phase-segregated model for plant cell culture: The effect of cell volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [Univ. of Adelaide, Adelaide (Australia). Dept. of Chemical Engineering]|[Tokyo Univ. (Japan)hinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Furusaki, S. [Tokyo Univ. (Japan)] Middelberg, A. [Univ. of Adelaide, Adelaide (Australia). Dept. of Chemical Engineering

    1998-06-01

    Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases. Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus. Large errors in the simulated results were observed if the phase-segregation was not considered. 12 refs., 3 figs.

  19. Hemopoietic cell precursor responses to erythropoietin in plasma clot cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.L.

    1979-01-01

    The time dependence of the response of mouse bone marrow cells to erythropoietin (Ep) in vitro was studied. Experiments include studies on the Ep response of marrow cells from normal, plethoric, or bled mice. Results with normal marrow reveal: (1) Not all erythroid precursors (CFU-E) are alike in their response to Ep. A significant number of the precursors develop to a mature erythroid colony after very short Ep exposures, but they account for only approx. 13% of the total colonies generated when Ep is active for 48 hrs. If Ep is active more than 6 hrs, a second population of erythroid colonies emerges at a nearly constant rate until the end of the culture. Full erythroid colony production requires prolonged exposure to erythropoietin. (2) The longer erythropoietin is actively present, the larger the number of erythroid colonies that reach 17 cells or more. Two distinct populations of immediate erythroid precursors are also present in marrow from plethoric mice. In these mice, total colony numbers are equal to or below those obtained from normal mice. However, the population of fast-responding CFU-E is consistently decreased to 10 to 20% of that found in normal marrow. The remaining colonies are formed from plethoric marrow at a rate equal to normal marrow. With increasing Ep exposures, the number of large colonies produced increases. From the marrow of bled mice, total erythroid colony production is equal to or above that of normal marrow. Two populations of colony-forming cells are again evident, with the fast-responding CFU-E being below normal levels. The lack of colonies from this group was compensated in bled mice by rapid colony production in the second population. A real increase in numbers of precursors present in this pool increased the rate of colony production in culture to twice that of normal marrow. The number of large colonies obtained from bled mice was again increased as the Ep exposure was lengthened. (ERB)

  20. Comparative study on the stem cell phenotypes of C6 cells under different culture conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suo-jun; YE Fei; XIE Rui-fan; HU Feng; WANG Bao-feng; WAN Feng; GUO Dong-sheng; LEI Ting

    2011-01-01

    Background Glioma stem cell (GSC) hypothesis posits that a subpopulation of cells within gliomas have true clonogenic and tumorigenic potential. Significantly, a more controversial correlate to GSC is that cells in different culture conditions might display distinct stem cell properties. Considering these possibilities, we applied an approach comparing stem cell characteristics of C6 glioma cells under different culture conditions.Methods C6 cells were cultured under three different growth conditions, i.e., adherent growth in conventional 10% serum medium, non-adherent spheres growth in serum-free medium, as well as adherent growth on laminin-coated flask in serum-free medium. Growth characteristics were detected contrastively through neurosphere formation assay and cell cycle analysis. Markers were determined by immunofluorescence, relative-quantitative reverse transcription (RT)-PCR,Western blotting and flow cytometry. Side population cells were analyzed via flow cytometry. Tumor models were detected by magnetic resonance imaging and hematoxylin & eosin staining. Data analyses were performed with SPSS software (17.0).Results C6 cells (C6-Adh, C6-SC-Sph and C6-SC-Adh) showed distinctive growth patterns and proliferation capacity.Compared to suspending C6-SC-Sph, adherent C6-Adh and C6-SC-Adh displayed higher growth ratio. C6-SC-Sph and C6-SC-Adh showed enhanced capability of neurosphere formation and self-renewal. High side population ratio was detected in C6-SC-Sph and C6-SC-Adh. CD133 was not detected in all three kinds of cells. Conversely, Nestin and β-Ⅲ-tubulin were demonstrated positive, nonetheless with no statistical significance (P >0.05). Interestingly, lower expression of glial fibrillary acidic protein was demonstrated in C6-SC-Sph and C6-SC-Adh. C6-Adh, C6-SC-Sph and C6-SC-Adh were all displayed in situ oncogenicity, while statistical difference of survival time was not confirmed.Conclusions C6 glioma cell line is endowed with some GSC

  1. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  2. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    OpenAIRE

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system...

  3. Receptor-mediated endocytosis of diphtheria toxin by cells in culture.

    OpenAIRE

    Keen, J H; Maxfield, F R; Hardegree, M C; Habig, W H

    1982-01-01

    The binding and uptake of fluorescently labeled diphtheria toxin by cells in culture has been examined by using epifluorescence video intensification microscopy. Rhodamine-labeled diphtheria toxin retained significant toxicity on bioassay and in cell culture and was tested for uptake by human WI-38 and mouse 3T3 fibroblasts grown in culture. When added to cells at 37 degrees C, toxin was observed to become concentrated and internalized in discrete vesicles in both cell lines. The appearance o...

  4. A primary culture of guinea pig gallbladder epithelial cells that is responsive to secretagogues

    OpenAIRE

    Gunter-Smith, Pamela J.; Abdulkadir, Oluwakemi; Hammonds-Odie, Latanya; Scanlon, Mary; Terrell, Raquel

    2000-01-01

    We have developed a cell culture of guinea pig gallbladder epithelial cells with which to study ion transport. When grown on permeable supports, the cultured epithelia developed a transepithelial resistance (Rt) of ∼500 Ω·cm2. The epithelial cell origin of the cell culture was further confirmed by immunocytochemical localization of cytokeratin. Ionomycin and forskolin increased transepithelial voltage and short-circuit current (Isc) and decreased Rt. The response to ionomycin was transient, w...

  5. Efficacy of decoquinate against Sarcocystis neurona in cell cultures.

    Science.gov (United States)

    Lindsay, David S; Nazir, M Mudasser; Maqbool, Azhar; Ellison, Siobhan P; Strobl, Jeannine S

    2013-09-01

    Decoquinate is a quinolone anticoccidial approved for use in the prevention of intestinal coccidiosis in farm animals. This compound has good activity against Toxoplasma gondii and Neospora caninum in cell cultures. The drug acts on the parasites' mitochondria. The activity of decoquinate against developing merozoites of 2 isolates of Sarcocystis neurona was examined in cell culture. Merozoite production at 10 days was completely inhibited when decoquinate was used at 20 or 240 nM. The IC50 of decoquinate was 0.5 ± 0.09nM for the Sn6 isolate of S. neurona from a horse and 1.1 ± 0.6 nM for the SnOP15 isolate of S. neurona from an opossum. Levamisole was toxic at 5 μg/ml and no synergism was observed when decoquinate was combined with levamisole and tested against the Sn3YFP isolate of S. neurona. Decoquinate was cidal for developing schizonts of S. neurona at 240 nM. PMID:23523012

  6. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    Science.gov (United States)

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture. PMID:23832306

  7. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins

    OpenAIRE

    Cooke, M. J.; Phillips, S R; Shah, D. S. H.; Athey, D.; Lakey, J H; Przyborski, S A

    2008-01-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fra...

  8. Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells.

    Science.gov (United States)

    Gurel Pekozer, Gorke; Torun Kose, Gamze; Hasirci, Vasif

    2016-11-01

    Co-culture of bone forming cells and endothelial cells to induce pre-vascularization is one of the strategies used to solve the insufficient vascularization problem in bone tissue engineering attempts. In the study, primary cells isolated from 2 different tissues of the same animal, rat bone marrow stem cells (RBMSCs) and rat aortic endothelial cells (RAECs) were co-cultured to study the effects of co-culturing on both osteogenesis and angiogenesis. The formation of tube like structure in 2D culture was observed for the first time in the literature by the co-culture of primary cells from the same animal and also osteogenesis and angiogenesis were investigated at the same time by using this co-culture system. Co-cultured cells mineralized and formed microvasculature beginning from 14days of incubation. After 28days of incubation in the osteogenic medium, expression of osteogenic genes in co-cultures was significantly upregulated compared to RBMSCs cultured alone. These results suggest that the co-culture of endothelial cells with mesenchymal stem cells induces both osteogenesis and angiogenesis.

  9. Azo-polysiloxanes as new supports for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hurduc, Nicolae, E-mail: nhurduc@ch.tuiasi.ro [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Prof. Dimitrie, Mangeron Street, 73, 700050-Iasi (Romania); Macovei, Alina [Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Splaiul Independentei 296, Sector 6, 060041-Bucuresti (Romania); Paius, Cristina; Raicu, Alina [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Prof. Dimitrie, Mangeron Street, 73, 700050-Iasi (Romania); Moleavin, Ioana [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France); Branza-Nichita, Norica, E-mail: nichita@biochim.ro [Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Splaiul Independentei 296, Sector 6, 060041-Bucuresti (Romania); Hamel, Matthieu [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France); Rocha, Licinio, E-mail: Licinio.ROCHA@cea.fr [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France)

    2013-05-01

    The paper introduces a new class of materials with azo-polysiloxanic structure bearing the property to generate nano-structured surfaces by laser irradiation. The ability to modulate the optical response of the film, through a modification of the polymer chemical structure, has been investigated. The azo-materials were tested for their ability to support cell adhesion and growth, with very promising results. A future use of these materials as growth support in cell cultures is of great interest, due to an easy, one step-method to generate the surface relief grating and to the possibility to introduce a large range of chemical modifications due to the presence of the chlorobenzyl groups in the polymeric side-chain. - Graphical abstract: Cell development on a nano-structured surface obtained from an azo-polysiloxanic film. Highlights: ► New azo-polysiloxanic films for biological applications were reported. ► Nanostructured surfaces with controllable geometry are obtained by laser irradiation. ► Cells are very sensitive to the chemical and physical properties of the polymeric substrate.

  10. Azo-polysiloxanes as new supports for cell cultures

    International Nuclear Information System (INIS)

    The paper introduces a new class of materials with azo-polysiloxanic structure bearing the property to generate nano-structured surfaces by laser irradiation. The ability to modulate the optical response of the film, through a modification of the polymer chemical structure, has been investigated. The azo-materials were tested for their ability to support cell adhesion and growth, with very promising results. A future use of these materials as growth support in cell cultures is of great interest, due to an easy, one step-method to generate the surface relief grating and to the possibility to introduce a large range of chemical modifications due to the presence of the chlorobenzyl groups in the polymeric side-chain. - Graphical abstract: Cell development on a nano-structured surface obtained from an azo-polysiloxanic film. Highlights: ► New azo-polysiloxanic films for biological applications were reported. ► Nanostructured surfaces with controllable geometry are obtained by laser irradiation. ► Cells are very sensitive to the chemical and physical properties of the polymeric substrate

  11. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    Science.gov (United States)

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  12. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Directory of Open Access Journals (Sweden)

    Anthony Finoli

    2016-01-01

    Full Text Available Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  13. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  14. Technology for cell cycle research with unstressed steady-state cultures

    OpenAIRE

    Lebleu, Valerie S.; Thornton, Maureen; Gonda, Steven R.; Helmstetter, Charles E.

    2006-01-01

    A culture system for performing cell cycle analyses on cells in undisturbed steady-state populations was designed and tested. In this system, newborn cells are shed continuously from an immobilized, perfused culture rotating about the horizontal axis. As a result of this arrangement, the number of newborn cells released into the effluent medium each generation is identical to the number of cells residing in the immobilized population, indicating that one of the two new daughter cells is shed ...

  15. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    Science.gov (United States)

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  16. Simple and sensitive method for monitoring drug-induced cell injury in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirhatti, V.; Krishna, G.

    1985-06-01

    A simple, sensitive method has been developed for evaluating cell injury noninvasively in monolayer cells in culture. The cell ATP pool was radiolabeled by incubating the cells with (/sup 14/C)adenine. The uptake and incorporation of (/sup 14/C)adenine was shown to proportional to the number of cells. As determined by HPLC, about 65-70% of the incorporated /sup 14/C label was in the ATP pool, 15-20% was in the ADP pool, and the rest was in the 5'-AMP pool. When prelabeled cells were exposed to toxic drugs (acetaminophen, calcium ionophore A-23187, or daunomycin) there was a marked decrease in cell ATP with a concomitant increase in leakage of labeled nucleotides, mainly 5'-AMP and 5'IMP. The authors have shown that leakage of /sup 14/C label into the medium from the prelabeled cells may be employed for quantitation of cell injury. This new measure of toxicity was shown to correlate very well with LDH leakage from the cells, which is a well accepted measure of cell injury. The leakage of 5'-(/sup 14/C)AMP also correlated very well with the reduction of cell ATP in cardiac myocytes. This method has been used for monitoring drug-induced toxicity in liver cells, cardiac myocytes, and LB cells.

  17. Study on in vitro Cultural Behaviors of Spermatogonium Stem Cells of New Born Calves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinyou; HU Pengfei; HUANG Zhijun; LV Zhonghua; ZHANG Guixue

    2008-01-01

    Three methods were adopted in culture spermatogoniums of newly born calf in vitro, such as enzymatic digestion and percoll density gradient centrifugation(Method I ), tubular fragments culture(Method Ⅱ ) and tissue culture(Method Ⅲ), and cultural behaviors of cells were observed. The results showed that typical spermatogonium colonies appeard at 144 h of culture by enzymatic digestion-percoll density gradient centrifugation method and tubular fragments culture method, 2.5% FBS kept the characteristics of spermatogonium stem cell better than others, produced more mass clones, and FBS of more than 2.5% concentration benefited spermatogonium differentiation and the number of colonies was significantly affected by FBS concentration. After 1 week of culture in method Ⅲ, the diameter of lumens and quantity of sertoli's cells in tubal wall increased obviously, lumen of seminiferous tubules appeared. Sertoli's cells kept constant and the number of spermatogoniums decreased obviously after 2 weeks of culture.

  18. CELL SHAPE AND HEXOSE TRANSPORT IN NORMAL AND VIRUS-TRANSFORMED CELLS IN CULTURE

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, M.J.; Farson, D.; Tung, A.S.C.

    1976-07-01

    The rate of hexose transport was compared in normal and virus-transformed cells on a monolayer and in suspension. It was shown that: (1) Both trypsin-removed cells and those suspended for an additional day in methyl cellulose had decreased rates of transport and lower available water space when compared with cells on a monolayer. Thus, cell shape affects the overall rate of hexose transport, especially at higher sugar concentrations. (2) Even in suspension, the initial transport rates remained higher in transformed cells with reference to normal cells. Scanning electron micrographs of normal and transformed chick cells revealed morphological differences only in the flat state. This indicates that the increased rate of hexose transport after transformation is not due to a difference in the shape of these cells on a monolayer. The relation between the geometry of cells, transport rates, and growth regulation is undoubtedly very complex, and our knowledge of these relationships is still very elementary. In a recent review on the influence of geometry on control of cell growth, Folkman and Greenspan (1) pointed out that the permeability of cells in a flat versus a spherical state may indeed be very different. The growth properties of cells on a surface and in suspension have been compared often (1-5). However, with one exception. little is known about the changes in transport properties when cell shape is changed. Foster and Pardee (6) demonstrated that the active transport of a-aminoisobutyric acid was reduced 2.5 times in suspension cultures of Chinese hamster cells with respect to the cells grown on a coverslip. They attributed this to the smaller surface area of suspended cells. While it is not clear why active transport should be dependent on the surface area available, it is possible that once the cells assume a spherical configuration, the carrier proteins are redistributed in such a way as to make them less accessible to the substrate. What happens to

  19. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  20. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Daisuke [Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Kato, Kazunori, E-mail: kzkatou@juntendo.ac.jp [Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Department of Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Nohara, Shigeo; Iwanuma, Yoshimi; Kajiyama, Yoshiaki [Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2013-05-17

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  1. Physiological properties of vertebrate nerve cells in tissue culture.

    Science.gov (United States)

    Dichter, M A

    1975-01-01

    Vertebrate neurons in tissue culture are providing us with a new model system for studying the complex events which occur during neuronal differentiation, synaptogenesis, and neural network formation. It is already apparent that dissociated embryo neurons are capable of differentiating both morphologically and physiologically along predetermined lines in the absence of external influences. These neurons can form new connections with one another but retain some specificity in their selections. Both simple and complex neural networks can be seen. At the present time, the development of the invitro model system is just being explored. The potential value of a system of this kind at a variety of investigative levels should be appreciated. Questions of a fundamental nature in neurobiology, such as how synapses form, what rules govern such interaction, how cells recognize one another, and the nature of the basic two-, three-, or four-cell circuits that comprise the more complex neurons tissue can be approached with this system. Studies of the neurons and synapses themselves can lead to a more basic understanding of vertebrate nervous system functioning. The development of certain pathophysiological processes and the effects of neuroactive drugs on vertebrate neurons may be studied at the cellular level. Finally, the basic mechanism of some genetic abnormalities which produce abnormal nervous structure and function may be more easily determined in a simplified in vitro model than in the intact central nervous system. The value of any model is not inherent in the elegance of the model itseld, but only in its ability to suggest answers to fundamental questions about the system being modeled. Many fundamental questions about brain mechanisms in mental retardation remain unanswered. Perhaps some day the model of nerve cells in tissue culture will bring us closer to the answers to these questions. PMID:173059

  2. Serum-free culture conditions for serial subculture of undifferentiated PC12 cells.

    Science.gov (United States)

    Ohnuma, Kiyoshi; Hayashi, Yohei; Furue, Miho; Kaneko, Kunihiko; Asashima, Makoto

    2006-03-15

    PC12 cells, a widely used model neuronal cell line, are usually cultured in serum-supplemented medium. This report describes a serum-free medium for the culture of PC12 cells. PC12 cells grown in the two media types had similar growth rates and released dopamine in response to high potassium-induced calcium elevation. However, the levels of dopamine and of dopamine release in cells cultured in the serum-free medium were less than 10% of that in cells cultured in serum-supplemented medium. Dopamine levels recovered within 10 days if cells were returned to serum-supplemented medium, but dopamine release could not be recovered. Nerve growth factor (NGF) induced similar responses in PC12 cells cultured in both media, including phosphorylation of extracellular signal-regulated protein kinases and neurite extension. Transferrin was necessary for survival of neurite-bearing PC12 cells subcultured in serum-free medium and insulin promoted the cells proliferation. Ten days culture with NGF produced a similar increase in neurofilament expression and acetylcholinesterase activity in both media. These results suggest that PC12 in the hormonally defined serum-free media are qualitatively the same as those cultured in serum-supplemented media, and therefore this new culture protocol should enable more precise studies of PC12 cells culture in the absence of confounding unknown factors.

  3. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  4. Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells

    OpenAIRE

    Chih-Chin Oh-Yang; Min-Hsien Wu; Jr-Lung Lin; Shih-Siou Wang

    2011-01-01

    This study reports an integrated microfluidic perfusion cell culture system consisting of a microfluidic cell culture chip, and an indium tin oxide (ITO) glass-based microheater chip for micro-scale perfusion cell culture, and its real-time microscopic observation. The system features in maintaining both uniform, and stable chemical or thermal environments, and providing a backflow-free medium pumping, and a precise thermal control functions. In this work, the performance of the medium pumpin...

  5. Stem and Progenitor Cell Expansion in Co-culture of Mobilized CD34 + Cells and Osteopetrotic Mouse Stroma

    Institute of Scientific and Technical Information of China (English)

    Na LI; Shahin Rafii; JF Stoltz; Malcolm A.S. Moore; Pierre Feugier; Deog-Yeon JO; Jae Hung Shieh; Karen L. MacKenzie; JF Lesesve; V Latger-Cannard; D Bensoussan; Ronald G Crystal

    2005-01-01

    @@ 1 Introduction Culture systems capable of expanding and/or maintaining hematopoietic stem cells will not only facilitate our understanding of stem cell biology, but also broaden clinical applications. Among various in vitro hematopoietic culture systems, co-cultures of marrow or CD34+ cells with an adherent stromal layer that can produce cytokines and extracellular matrix components most effectively supports long-term hematopoiesis ( LTC ), mimicking the bone marrow micro-environment.

  6. Establishment and Molecular Cytogenetic Characterization of a Cell Culture Model of Head and Neck Squamous Cell Carcinoma (HNSCC)

    OpenAIRE

    Horst Zitzelsberger; Axel Walch; Johannes Weber; Herbert Braselmann; Reinhard Huber; Ludwig Hieber; Quirin Schaeffner; Bauer, Verena L.

    2010-01-01

    Cytogenetic analysis of head and neck squamous cell carcinoma (HNSCC) established several biomarkers that have been correlated to clinical parameters during the past years. Adequate cell culture model systems are required for functional studies investigating those potential prognostic markers in HNSCC. We have used a cell line, CAL 33, for the establishment of a cell culture model in order to perform functional analyses of interesting candidate genes and proteins. The cell line was cytogeneti...

  7. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap)

    International Nuclear Information System (INIS)

    We report on the impedance mapping of in vitro cellular morphology by electrical impedance spectroscopy, using microelectrodes. A micro multielectrode system was designed, fabricated, assembled, tested and demonstrated for the monitoring of anchorage-dependent cell behavior and morphology. This system allowed continuous, label-free, quantitative monitoring and visualization of cell adhesion, spreading, proliferation and detachment due to cell cycle processes as well as cell–drug interaction, with spatio-temporal resolution. OvCa429 ovarian cancer cells were monitored in vitro over a period of 70 hours by inoculating the cell suspension directly on the multielectrode device. The phase angle of impedance was observed to develop a distinctive shape as a result of cell attachment and proliferation. The shape of the phase angle curve reverted back to the pre-attachment shape upon detachment of cells from the substrate, caused by the addition of trypsin to the cell culture medium. The impedance data of the cell culture were then successfully modeled as a multi-parametric equivalent circuit. The model incorporated both interfacial and cell-layer impedance parameters. Upon addition of trypsin, the cell-layer parameters showed a marked decline and were eventually eliminated from the multi-parametric model, confirming the correlation of the model to the electrode–cell–electrolyte system. These experiments demonstrate the applicability of the impedance mapping technique in visualizing and quantifying physiological changes in the cell layer due to cellular processes as well as the effect of external chemical stimulus on cells (cell–drug interaction)

  8. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    Science.gov (United States)

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  9. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  10. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    Science.gov (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  11. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.

    Science.gov (United States)

    Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U

    2015-06-01

    A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages.

  12. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  13. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    Science.gov (United States)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  14. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  15. Differentiation of rat embryonic neural stem cells promoted by co-cultured Schwann cells

    Institute of Scientific and Technical Information of China (English)

    万虹; 安沂华; 张泽舜; 张亚卓; 王忠诚

    2003-01-01

    Objective To explore the factors which induce differentiation of embryonic neural stem cells. Methods Rat embryonic neural stem cells were co-cultured with newborn rat Schwann cells in serum-free medium. The phenotype and specific-markers including tubulin-β, glial fibrillary acidic protein (GFAP) and galactorcerebroside (GalC), were domonstrated by phase contrast microscopy and double immunofluorescence staining. Results Overall, 80%±5% of neural stem cells protruded several elongated processes and expressed tubulin-β antigen at high levels, while 20±3% of them protruded several short processes and were GalC or GFAP positive. Conclusion The factors secreted by Schwann cells could induce rat embryonic neural stem cell to differentiate.

  16. Maintenance of neural stem cell regional identity in culture.

    Science.gov (United States)

    Delgado, Ryan N; Lu, Changqing; Lim, Daniel A

    2016-01-01

    Neural stem cells (NSCs) are distributed throughout the ventricular-subventricular zone (V-SVZ) in the adult mouse brain. NSCs located in spatially distinct regions of the V-SVZ generate different types of olfactory bulb (OB) neurons, and the regional expression of specific transcription factors correlates with these differences in NSC developmental potential. In a recent article, we show that Nkx2.1-expressing embryonic precursors give rise to NKX2.1+ NSCs located in the ventral V-SVZ of adult mice. Here we characterize a V-SVZ monolayer culture system that retains regional gene expression and neurogenic potential of NSCs from the dorsal and ventral V-SVZ. In particular, we find that Nkx2.1-lineage V-SVZ NSCs maintain Nkx2.1 expression through serial passage and can generate new neurons in vitro. Thus, V-SVZ NSCs retain key aspects of their in vivo regional identity in culture, providing new experimental opportunities for understanding how such developmental patterns are established and maintained during development. PMID:27606338

  17. Spatial distribution of niche and stem cells in ex vivo human limbal cultures.

    Science.gov (United States)

    Mariappan, Indumathi; Kacham, Santhosh; Purushotham, Jyothi; Maddileti, Savitri; Siamwala, Jamila; Sangwan, Virender Singh

    2014-11-01

    Stem cells at the limbus mediate corneal epithelial regeneration and regulate normal tissue homeostasis. Ex vivo cultured limbal epithelial transplantations are being widely practiced in the treatment of limbal stem cell deficiency. In this report, we examined whether the limbal niche cells that nurture and regulate epithelial stem cells coexist in ex vivo limbal cultures. We also compared the inherent differences between explant and suspension culture systems in terms of spatial distribution of niche cells and their effect on epithelial stem cell proliferation, migration, and differentiation in vitro. We report that the stem cell content of both culture systems was similar, explaining the comparable clinical outcomes reported using these two methods. We also showed that the niche cells get expanded in culture and the nestin-positive cells migrate at the leading edges to direct epithelial cell migration in suspension cultures, whereas they are limited to the intact niche in explant cultures. We provide evidence that C/EBPδ-positive, p15-positive, and quiescent, label-retaining, early activated stem cells migrate at the leading edges to regulate epithelial cell proliferation in explant cultures, and this position effect is lost in early suspension cultures. However, in confluent suspension cultures, the stem cells and niche cells interact with each another, migrate in spiraling patterns, and self-organize to form three-dimensional niche-like compartments resembling the limbal crypts and thereby reestablish the position effect. These 3D-sphere clusters are enriched with nestin-, vimentin-, S100-, and p27-positive niche cells and p15-, p21-, p63α-, C/EBPδ-, ABCG2-, and Pax6-positive quiescent epithelial stem cells.

  18. Hsp90 inhibitors reduce influenza virus replication in cell culture

    International Nuclear Information System (INIS)

    The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses

  19. Stem cells from human exfoliated deciduous teeth differentiate toward neural cells in a medium dynamically cultured with Schwann cells in a series of polydimethylsiloxanes scaffolds

    Science.gov (United States)

    Su, Wen-Ta; Pan, Yu-Jing

    2016-08-01

    Objective. Schwann cells (SCs) are primary structural and functional cells in the peripheral nervous system. These cells play a crucial role in peripheral nerve regeneration by releasing neurotrophic factors. This study evaluated the neural differentiation potential effects of stem cells from human exfoliated deciduous teeth (SHEDs) in a rat Schwann cell (RSC) culture medium. Approach. SHEDs and RSCs were individually cultured on a polydimethylsiloxane (PDMS) scaffold, and the effects of the RSC medium on the SHEDs differentiation between static and dynamic cultures were compared. Main results. Results demonstrated that the SHED cells differentiated by the RSC cultured medium in the static culture formed neurospheres after 7 days at the earliest, and SHED cells formed neurospheres within 3 days in the dynamic culture. These results confirm that the RSC culture medium can induce neurospheres formation, the speed of formation and the number of neurospheres (19.16 folds high) in a dynamic culture was superior to the static culture for 3 days culture. The SHED-derived spheres were further incubated in the RSCs culture medium, these neurospheres continuously differentiated into neurons and neuroglial cells. Immunofluorescent staining and RT-PCR revealed nestin, β-III tubulin, GFAP, and γ-enolase of neural markers on the differentiated cells. Significance. These results indicated that the RSC culture medium can induce the neural differentiation of SHED cells, and can be used as a new therapeutic tool to repair nerve damage.

  20. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering

    OpenAIRE

    Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L.; Weichselbaum, Ralph R.; Ervin, Natalia; Cankova, Zdravka; Eric M Brey

    2008-01-01

    Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately refle...

  1. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice

    OpenAIRE

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-01-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA a...

  2. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yan [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Li, Yuan [Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Chen, Chao; Stoelzel, Katharina [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Kaufmann, Andreas M. [Clinic for Gynecology CCM/CBF, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Albers, Andreas E., E-mail: andreas.albers@charite.de [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany)

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  3. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    OpenAIRE

    Akpe Victor; Rydholm Susanna; Liebmann Thomas; Brismar Hjalmar

    2007-01-01

    Abstract Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derive...

  4. Derivation of Myogenic Progenitors Directly From Human Pluripotent Stem Cells Using a Sphere-Based Culture

    OpenAIRE

    Hosoyama, Tohru; McGivern, Jered V.; Van Dyke, Jonathan M.; Allison D Ebert; Suzuki, Masatoshi

    2014-01-01

    The authors present a novel protocol for deriving myogenic progenitors from human embryonic stem cells and induced pluripotent stem cells using free-floating spherical culture. Results show that sphere-based cultures of human pluripotent stem cells, expanded in medium containing high concentrations of fibroblast growth factor and epidermal growth factor, can propagate myogenic progenitors from human embryonic stem cells and healthy and disease-specific induced pluripotent stem cells.

  5. Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber.

    Science.gov (United States)

    Lei, Kin Fong; Huang, Chia-Hao; Tsang, Ngan-Ming

    2016-01-15

    Recently, 3D cell culture technique was proposed to provide a more physiologically-meaningful environment for cell-based assays. With the development of microfluidics technology, cellular response can be quantified by impedance measurement technique in a real-time and non-invasive manner. However, handling of these microfluidic systems requires a trained engineering personnel and the operation is not compatible to traditional biological research laboratories. In this work, we incorporated the impedance measurement technique to paper-based 3D cell culture model and demonstrated non-invasive quantification of cells encapsulated in hydrogel during the culture course. A cellulose filter paper was patterned with an array of circular microchambers. Cells were encapsulated in hydrogel and loaded to the microchambers for culturing cells in 3D environment. At the preset schedule during the culture course, the paper was placed on a glass substrate with measurement electrodes for the impedance measurement. Cells in each microchamber was represented by impedance magnitude and cell proliferation could be studied over time. Also, conventional bio-assay was performed to further confirm the feasibility of the impedimetric quantification of cells encapsulated in hydrogel cultured in the paper-based microchamber. This technique provides a convenient, fast, and non-invasive approach to monitor cells cultured in 3D environment. It has potential to be developed for routine 3D cell culture protocol in biological research laboratories. PMID:26592655

  6. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture.

    Science.gov (United States)

    Liu, Liyuan; Wang, Jinhuan; Duan, Shengchang; Chen, Lei; Xiang, Hui; Dong, Yang; Wang, Wen

    2016-01-01

    Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium. PMID:27531556

  7. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    Directory of Open Access Journals (Sweden)

    Bentolhoda Fereydouni

    2016-01-01

    Full Text Available We use the common marmoset monkey (Callithrix jacchus as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia expressing pluripotent stem cell markers including OCT4A (POU5F1. This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs. OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes.

  8. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency

    DEFF Research Database (Denmark)

    Martin Gonzalez, Javier; Morgani, Sophie M; Bone, Robert A;

    2016-01-01

    Embryonic stem cells (ESCs) are cell lines derived from the mammalian pre-implantation embryo. Here we assess the impact of derivation and culture conditions on both functional potency and ESC transcriptional identity. Individual ESCs cultured in either two small-molecule inhibitors (2i....... Conversely, the transcriptome of serum-cultured ESCs correlated with later stages of development (E4.5), at which point embryonic cells are more restricted in their developmental potential. Thus, ESC culture systems are not equivalent, but support cell types that resemble distinct developmental stages. Cells......) or with knockout serum replacement (KOSR), but not serum, can generate high-level chimeras regardless of how these cells were derived. ESCs cultured in these conditions showed a transcriptional correlation with early pre-implantation embryos (E1.5-E3.5) and contributed to development from the 2-cell stage...

  9. Modification of Isolation and Culture of Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    ZhengJL; GuoY

    1999-01-01

    Purpose:To modify the isolation of human retinal pigment pithelial(RPE)cells and to increase the purification and production of cultured RPE cells.Methods:The human eyecups were fixed on a fubber holder.After digestion by trypsin,RPE cells were collected,then cultured and identified by morphology,immunohistochemistry and electron microscopy.Results:The cultured RPE cells grew actively in the early stage with transparent nucleus and abundant melanin particles in cytoplasm.These cells were positive in DOPA oxidase reaction and in anti-pancytokeratin antibody staining.Cellular microvilli and tight junctions could be seen through transmission electrom microscopy.Conclusion:We developed a rubber holder to fix the eyecup.Using this holder,more and purer cultured RPE cells can be obtained.These cultured REP cells are similar to those in vivo in morphology and immunohistochemical staining.

  10. Inhibitory effect of mycoplasma-released arginase. Activity in mixed-lymphocyte and tumour cell cultures

    DEFF Research Database (Denmark)

    Claesson, M H; Tscherning, T; Nissen, Mogens Holst;

    1990-01-01

    Non-fermenting mycoplasma species deplete culture media for arginine through arginase activity linked to their arginine deiminase pathway, resulting in proliferation arrest and cell death in mycoplasma-contaminated cell cultures. The presence of only 2-3 Mycoplasma (M.) arginini-contaminated T...... assayed in MLC and cell proliferation culture. SDS-PAGE followed by western blotting and reaction with antisera raised against non-fermenting mycoplasma species demonstrated a band at 43 kDa common for these micro-organisms....... cells in a one-way allogeneic mixed-lymphocyte culture (MLC) significantly inhibits development of cytotoxic T-cell activity. Likewise, strong degrees of inhibition are observed after addition of nanogram doses of M. arginini extracts (MAE) to MLC or cell proliferation cultures. M. arginini-induced cell...

  11. Inhibition of mast cell-dependent conversion of cultured macrophages into foam cells with antiallergic drugs.

    Science.gov (United States)

    Ma, H; Kovanen, P T

    2000-12-01

    Degranulation of isolated, rat peritoneal mast cells in the presence of low density lipoprotein (LDL) induces cholesteryl ester accumulation in cocultured macrophages with ensuing foam cell formation. This event occurs when the macrophages phagocytose LDL particles that have been bound to the heparin proteoglycans of exocytosed granules. In an attempt to inhibit such foam cell formation pharmacologically, rat peritoneal mast cells that had been passively sensitized with anti-ovalbumin-IgE were treated with 2 mast cell-stabilizing antianaphylactic drugs, MY-1250 or disodium cromoglycate (DSCG). Both drugs were found to inhibit antigen (ovalbumin)-triggered release of histamine from the mast cells, revealing mast cell stabilization. In cocultures of rat peritoneal macrophages and passively sensitized mast cells, addition of MY-1250 before addition of the antigen resulted in parallel reductions in histamine release from mast cells, uptake of [(14)C]sucrose-LDL, and accumulation of LDL-derived cholesteryl esters in the cocultured macrophages. Similarly, when passively sensitized mast cells were stimulated with antigen in the presence of DSCG and the preconditioned media containing all substances released from the drug-treated mast cells were collected and added to macrophages cultured in LDL-containing medium, uptake and esterification of LDL cholesterol by the macrophages were inhibited. The inhibitory effects of both drugs were mast cell-specific because neither drug inhibited the ability of macrophages to take up and esterify LDL cholesterol. Analysis of heparin proteoglycan contents of the incubation media revealed that both drugs had inhibited mast cells from expelling their granule remnants. Thus, both MY-1250 and DSCG prevent mast cells from releasing the heparin proteoglycan-containing vehicles that bind LDL and carry it into macrophages. This study suggests that antiallergic pharmacological agents could be used in animal models to prevent mast cell

  12. [Experimental models in oncology: contribution of cell culture on understanding the biology of cancer].

    Science.gov (United States)

    Cruz, Mariana; Enes, Margarida; Pereira, Marta; Dourado, Marília; Sarmento Ribeiro, Ana Bela

    2009-01-01

    In the beginning of the 20th century, tissue culture was started with the aim of studying the behaviour of animal cells in normal and stress conditions. The cell study at molecular level depends on their capacity of growing and how they can be manipulated in laboratory. In vitro cell culture allows us the possibility of studying biological key processes, such as growth, differentiation and cell death, and also to do genetic manipulations essential to the knowledge of structure and genes function. Human stem cells culture provides strategies to circumvent other models' deficiencies. It seems that cancer stem cells remain quiescent until activation by appropriated micro-environmental stimulation. Several studies reveal that different cancer types could be due to stem cell malignant transformations. Removal of these cells is essential to the development of more effective cancer therapies for advanced disease. On the other hand, dendritic cells modified in culture may be used as a therapeutic vaccine in order to induce tumour withdraw.

  13. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    Science.gov (United States)

    Ker, Dai Fei Elmer; Weiss, Lee E; Junkers, Silvina N; Chen, Mei; Yin, Zhaozheng; Sandbothe, Michael F; Huh, Seung-il; Eom, Sungeun; Bise, Ryoma; Osuna-Highley, Elvira; Kanade, Takeo; Campbell, Phil G

    2011-01-01

    Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and developing robotic cell

  14. Preparation and Primary Culture of Liver Cells Isolated from Adult Rats by Dispase Perfusion

    Directory of Open Access Journals (Sweden)

    Wahid,Syarifuddin

    1984-06-01

    Full Text Available The dispase perfusion technique was used to isolate liver cells from adult rats. The optimum conditions for obtaining many isolated liver cells with high viability were an enzyme concentration of 2000 U/ml, a pH of 7.5 and a perfusion time of 20 min. The population of isolated liver cells prepared with dispase consisted of 43.6% cells with diameters less than 20 micron and 56.4% cells with diameters above 20 micron. The isolated liver cells were cultured in basal culture medium either supplemented with or without dexamethasone (1 X 10(-5M and insulin (10 micrograms/ml. The addition of hormones to the culture medium improved the attachment efficiency of the isolated liver cells and delayed the disappearance of mature hepatocytes. Epithelial-like clear cells proliferated early in primary culture even in the presence of hormones. Therefore, functioning mature hepatocytes and proliferating epithelial-like clear cells coexisted well in the hormone-containing medium. Furthermore, the number of cultured cells reached a maximal level earlier in the presence of hormones than in the absence of hormones. The level of TAT activity in primary cultured cells was higher up to 3 days after inoculation in the presence of hormones than in their absence. No difference between G6Pase activity in primary cultured cells in the presence of hormones and that in the absence of hormones was found.

  15. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  16. Somaclonal variation: a morphogenetic and biochemical analysis of Mandevilla velutina cultured cells

    Directory of Open Access Journals (Sweden)

    M. Maraschin

    2002-06-01

    Full Text Available Cell cultures of Mandevilla velutina have proved to be an interesting production system for biomass and secondary metabolites able to inhibit the hypotensive activity of bradykinin, a nonapeptide generated in plasma during tissue trauma. The crude ethyl acetate extract of cultured cells contains about 31- to 79-fold more potent anti-bradykinin compounds (e.g., velutinol A than that obtained with equivalent extracts of tubers. Somaclonal variation may be an explanation for the wide range of inhibitor activity found in the cell cultures. The heterogeneity concerning morphology, differentiation, carbon dissimilation, and velutinol A production in M. velutina cell cultures is reported. Cell cultures showed an asynchronous growth and cells in distinct developmental stages. Meristematic cells were found as the major type, with several morphological variations. Cell aggregates consisting only of meristematic cells, differentiated cells containing specialized cell structures such as functional chloroplasts (cytodifferentiation and cells with embryogenetic characteristics were observed. The time course for sucrose metabolism indicated cell populations with significant differences in growth and metabolic rates, with the highest biomass-producing cell line showing a cell cycle 60% shorter and a metabolic rate 33.6% higher than the control (F2 cell population. MALDI-TOF mass spectrometric analysis of velutinol A in selected cell lines demonstrated the existence of velutinol A producing and nonproducing somaclones. These results point to a high genetic heterogeneity in general and also in terms of secondary metabolite content.

  17. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Yuan Xie

    2015-10-01

    Full Text Available Glioblastoma (GBM is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs. To meet the present shortage of relevant GBM cell (GC lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  18. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes.

    Science.gov (United States)

    Xie, Yuan; Bergström, Tobias; Jiang, Yiwen; Johansson, Patrik; Marinescu, Voichita Dana; Lindberg, Nanna; Segerman, Anna; Wicher, Grzegorz; Niklasson, Mia; Baskaran, Sathishkumar; Sreedharan, Smitha; Everlien, Isabelle; Kastemar, Marianne; Hermansson, Annika; Elfineh, Lioudmila; Libard, Sylwia; Holland, Eric Charles; Hesselager, Göran; Alafuzoff, Irina; Westermark, Bengt; Nelander, Sven; Forsberg-Nilsson, Karin; Uhrbom, Lene

    2015-10-01

    Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research. PMID:26629530

  19. Silver nanoparticle protein corona composition in cell culture media.

    Directory of Open Access Journals (Sweden)

    Jonathan H Shannahan

    Full Text Available The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP colloidal silver (20 or 110 nm diameter. To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively, suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index, the PC on 20 nm AgNPs (PVP and citrate consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of

  20. An integrated system for synchronous culture of animal cells under controlled conditions.

    Science.gov (United States)

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture. PMID:27625207

  1. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Science.gov (United States)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  2. Voltage effects on cells cultured on metallic biomedical implants

    Science.gov (United States)

    Haerihosseini, Seyed Morteza

    Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. Surface potential of biomedical implants and excursions from resting open circuit potential (OCP), which is the voltage they attain while in contact with an electrolyte, can significantly change the interfacial properties of the metallic surfaces and alter the behavior of the surrounding cells, compromising the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. To date, the details of the physico-chemical phenomena and the role of different biomaterial parameters involved in the interaction between cells and metallic surfaces under cathodic bias have not been fully elucidated. In this work, changes in the interfacial properties of a CoCrMo biomedical alloy (ASTM F-1537) in phosphate-buffered saline (PBS) (pH 7.4) at different voltages was studied. Step polarization impedance spectroscopy technique was used to apply 50 mV voltage steps to samples, and the time-based current transients were recorded. A new equation was derived based on capacitive discharge through a Tafel element and generalized to deal with non-ideal impedance behavior. The new function compared to the KWW-Randles function, better matched the time-transient response. The results also showed a voltage dependent oxide resistance and capacitance behavior. Additionally, the in-vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from -1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each

  3. Dorsomorphin promotes survival and germline competence of zebrafish spermatogonial stem cells in culture.

    Directory of Open Access Journals (Sweden)

    Ten-Tsao Wong

    Full Text Available Zebrafish spermatogonial cell cultures were established from Tg(piwil1:neo;Tg(piwil1:DsRed transgenic fish using a zebrafish ovarian feeder cell line (OFC3 that was engineered to express zebrafish Lif, Fgf2 and Gdnf. Primary cultures, initiated from testes, were treated with G418 to eliminate the somatic cells and select for the piwil1:neo expressing spermatogonia. Addition of dorsomorphin, a Bmp type I receptor inhibitor, prolonged spermatogonial stem cell (SSC survival in culture and enhanced germline transmission of the SSCs following transplantation into recipient larvae. In contrast, dorsomorphin inhibited the growth and survival of zebrafish female germline stem cells (FGSCs in culture. In the presence of dorsomorphin, the spermatogonia continued to express the germ-cell markers dazl, dnd, nanos3, vasa and piwil1 and the spermatogonial markers plzf and sox17 for at least six weeks in culture. Transplantation experiments revealed that 6 week-old spermatogonial cell cultures maintained in the presence of dorsomorphin were able to successfully colonize the gonad in 18% of recipient larvae and produce functional gametes in the resulting adult chimeric fish. Germline transmission was not successful when the spermatogonia were cultured 6 weeks in the absence of dorsomorphin before transplantation. The results indicate that Bmp signaling is detrimental to SSCs but required for the survival of zebrafish FGSCs in culture. Manipulation of Bmp signaling could provide a strategy to optimize culture conditions of germline stem cells from other species.

  4. Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams.

    Science.gov (United States)

    Wongsamuth, R; Doran, P M

    1994-08-01

    Foam development and stability in Atropa belladonna suspensions were investigated as a function of culture conditions. Foaming was due mainly to properties of the cell-free broth and was correlated with protein content; effects due to presence of cells increased towards the end of batch culture. Highest foam levels were measured 11 days after inoculation. Air flow rate was of major importance in determining foam volume; foam volume and stability were also strongly dependent on pH. Foam flotation of plant cells was very effective. After 30 min foaming, ca. 55% of cells were found in the foam; this increased to ca. 75% after 90 min. Polypropylene glycol 1025 and 2025, Pluronic PE 6100, and Antifoam-C emulsion were tested as chemical antifoams. Polypropylene glycol 1025 and Antifoam C at concentrations up to 600 ppm had no adverse effect on growth in shake flasks; Pluronic PE 6100 has an inhibitory effect at all levels tested. Concentrations of polypropylene glycol 2025 and Pluronic PE 6100 as low as 20 ppm reduced foam volumes by a factor of ca. 10. Addition of antifoam reduced k(L)a values in bubble-column and stirred-tank bioreactors. After operation of a stirred reactor for 2 days using Antifoam C for foam control, cell production was limited by oxygen due to the effect of antifoam on mass transfer. Theoretical analysis showed that maximum cell concentrations and biomass levels decline with increasing reactors working volume due to greater consumption of antifoam to prevent foam overflow. The results indicate that when chemical foam control is used in plant cell cultures, head-space volume and tolerable foam levels must be considered to optimize biomass production. (c) 1994 John Wiley & Sons, Inc.

  5. Effect of adrenotensin on cell proliferation is mediated by angiotensin Ⅱ in cultured rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    Hong XUE; Ping YUAN; Li ZHOU; Tai YAO; Yu HUANG; Li-min LU

    2009-01-01

    Aim: Both adrenomedullin (ADM) and adrenotensin (ADT) are derived from the same propeptide precursor, and both act as circulat- ing hormones and local paracrine mediators with multiple biological activities. Compared with ADM, little is known about how ADT achieves its functions. In the present study, we investigated the effect of ADT on cell proliferation and transforming growth factor-β (TGF-β) secretion in cultured renal mesangial cells (MCs) and determined whether angiotensin Ⅱ (Ang Ⅱ) was involved in mediating this process.Methods: Cell proliferation was measured by bromodeoxyuridine (BrdU) incorporation assay, Ang Ⅱ levels were assayed using an enzyme immunoassay, and real time PCR was used to measure Ang Ⅱ type 1 (AT1) receptor, Ang Ⅱ type 2 (AT2) receptor, angiotensino-gen (AGT), renin, angiotensin converting enzyme (ACE) and TGF-β1 mRNA levels. TGF-β1 and collagen type IV protein levels in cellmedia were measured using enzyme-linked immunoassays. Results: ADT treatment induced cell proliferation in a concentration-dependent manner; it also increased the levels of TGF-β1 mRNA and protein as well as collagen type Ⅳ excretion by cultured MCs. ADT treatment increased renin and AGT mRNAs as well as Ang Ⅱ protein, but did not affect the ACE mRNA level. ADT up-regulated angiotensin AT1 receptor mRNA, but not that of the AT2 receptor. The angiotensin AT1 receptor antagonist Iosartan blocked the effects of ADT-induced cell proliferation, TGF-β1 and collagen type Ⅳ synthe-sis and secretion.Conclusion: ADT has a stimulating role in cell proliferation in cultured MCs. Increases in the levels of Ang II and the AT1 receptor after ADT treatment mediate the stimulating effects of ADT on cell proliferation and extracellular matrix synthesis and secretion.

  6. Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams.

    Science.gov (United States)

    Wongsamuth, R; Doran, P M

    1994-08-01

    Foam development and stability in Atropa belladonna suspensions were investigated as a function of culture conditions. Foaming was due mainly to properties of the cell-free broth and was correlated with protein content; effects due to presence of cells increased towards the end of batch culture. Highest foam levels were measured 11 days after inoculation. Air flow rate was of major importance in determining foam volume; foam volume and stability were also strongly dependent on pH. Foam flotation of plant cells was very effective. After 30 min foaming, ca. 55% of cells were found in the foam; this increased to ca. 75% after 90 min. Polypropylene glycol 1025 and 2025, Pluronic PE 6100, and Antifoam-C emulsion were tested as chemical antifoams. Polypropylene glycol 1025 and Antifoam C at concentrations up to 600 ppm had no adverse effect on growth in shake flasks; Pluronic PE 6100 has an inhibitory effect at all levels tested. Concentrations of polypropylene glycol 2025 and Pluronic PE 6100 as low as 20 ppm reduced foam volumes by a factor of ca. 10. Addition of antifoam reduced k(L)a values in bubble-column and stirred-tank bioreactors. After operation of a stirred reactor for 2 days using Antifoam C for foam control, cell production was limited by oxygen due to the effect of antifoam on mass transfer. Theoretical analysis showed that maximum cell concentrations and biomass levels decline with increasing reactors working volume due to greater consumption of antifoam to prevent foam overflow. The results indicate that when chemical foam control is used in plant cell cultures, head-space volume and tolerable foam levels must be considered to optimize biomass production. (c) 1994 John Wiley & Sons, Inc. PMID:18618782

  7. Commercially Available Gas-Permeable Cell Culture Bags May Not Prevent Anoxia in Cultured or Shipped Islets

    OpenAIRE

    Avgoustiniatos, E.S.; Hering, B.J.; Rozak, P.R.; Wilson, J.R.; Tempelman, L.A.; Balamurugan, A.N.; Welch, D.P.; Weegman, B. P.; Suszynski, T.M.; Papas, K.K.

    2008-01-01

    Prolonged anoxia has deleterious effects on islets. Gas-permeable cell culture devices can be used to minimize anoxia during islet culture and especially during shipment when elimination of gas-liquid interfaces is required to prevent the formation of damaging gas bubbles. Gas-permeable bags may have several drawbacks, such as propensity for puncture and contamination, difficult islet retrieval, and significantly lower oxygen permeability than silicone rubber membranes (SRM). We hypothesized ...

  8. Differences in the primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta

    Institute of Scientific and Technical Information of China (English)

    Shaobo Hu; Zifang Song; Qichang Zheng; Jun Nie

    2009-01-01

    Objective: To investigate the differences of primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta. Methods: Endothelial cells were obtained using the vascular ring adherence, collagenase digestion method and an improved vascular ring adherence method, while smooth muscle cells were separated from tissue sections of rat aorta. Clones of endothelial cells were selected by limiting dilution assay. Both cell types were identified using specific cell immunofluorescent markers,and phase contrast microscopy was used to observe the morphological disparity between endothelial cells and smooth muscle cells at the single cell and colony level. Cell proliferation was determined by the cell counting kit-8. Differences between endothelial cells and smooth muscle cells were evaluated in trypsin digestion 6me, attachment time and recovery after cryopreservation. Results: Endothelial cells were obtained by all three methods. The improved vascular ring method provided the most reproducible results. Cells were in good condition, and of high purity. Smooth muscle cells were cultured successfully by the tissue fragment culture method. Clonal expansion of singleendothelial cells was attained. The two cell types expressed their respective specific markers, and the rate of proliferation of smooth muscle cells exceeded that of endothelial cells. Endothelial cells were more sensitive to trypsin digestion than smooth muscle cells. In addition, they had a shorter adherence time and better recovery following cryopreservation than smooth muscle cells. Conclusion: The improved vascular ring method was optimal for yielding endothelial cells. Limiting dilution is a novel and valid method for purifying primary endothelial cells from rat aorta. Primary rat endothelial cell and vascular smooth muscle cell cultures exhibited different morphological characteristics, proliferation rate, adherence time, susceptibility to trypsin

  9. METHYLCELLULOSE CELL-CULTURE AS A NEW CYTOTOXICITY TEST SYSTEM FOR BIOMATERIALS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    1991-01-01

    The cytotoxicity of biomaterials can be tested in vitro using various culture systems. Liquid culture systems may detect cytotoxicity of a material either by culture of cells with extracts or with the material itself. In the latter instance, renewing the medium will remove possible released cytotoxi

  10. Statistical prediction of nanoparticle delivery: from culture media to cell.

    Science.gov (United States)

    Brown, M Rowan; Hondow, Nicole; Brydson, Rik; Rees, Paul; Brown, Andrew P; Summers, Huw D

    2015-04-17

    The application of nanoparticles (NPs) within medicine is of great interest; their innate physicochemical characteristics provide the potential to enhance current technology, diagnostics and therapeutics. Recently a number of NP-based diagnostic and therapeutic agents have been developed for treatment of various diseases, where judicious surface functionalization is exploited to increase efficacy of administered therapeutic dose. However, quantification of heterogeneity associated with absolute dose of a nanotherapeutic (NP number), how this is trafficked across biological barriers has proven difficult to achieve. The main issue being the quantitative assessment of NP number at the spatial scale of the individual NP, data which is essential for the continued growth and development of the next generation of nanotherapeutics. Recent advances in sample preparation and the imaging fidelity of transmission electron microscopy (TEM) platforms provide information at the required spatial scale, where individual NPs can be individually identified. High spatial resolution however reduces the sample frequency and as a result dynamic biological features or processes become opaque. However, the combination of TEM data with appropriate probabilistic models provide a means to extract biophysical information that imaging alone cannot. Previously, we demonstrated that limited cell sampling via TEM can be statistically coupled to large population flow cytometry measurements to quantify exact NP dose. Here we extended this concept to link TEM measurements of NP agglomerates in cell culture media to that encapsulated within vesicles in human osteosarcoma cells. By construction and validation of a data-driven transfer function, we are able to investigate the dynamic properties of NP agglomeration through endocytosis. In particular, we statistically predict how NP agglomerates may traverse a biological barrier, detailing inter-agglomerate merging events providing the basis for

  11. Growth factor regulation of sugar uptake in cultured cells

    International Nuclear Information System (INIS)

    Mouse EGF stimulates the uptake of 2-deoxygluclose (dGIc), a non-metabolized glucose analogue, into cultured mouse 3T3 fibroblasts (Clone 1) 2 to 4 fold, and EGF dependent Balb/MK-1 epidermal kerotinocytes, 5 to 8 fold. Initial stimulation is detected at 15 minutes. Maximal effects are seen at 2 hours with 10 ng/ml EGF. Binding of 125I-labeled EGF to cells is rapid and complete by 2 hours at 370C. Antibodies which specifically inhibit 125I-labeled EGF binding to cells inhibit EGF stimulation as much as 85%. Human platelet derived TGF-β stimulates dGlc uptake up to 5 fold. Maximum effects are seen with 1 ng/ml TGF-β within 2 hours and stimulation is detected 30 minutes after exposure to 0.1 ng/ml, the minimum effective concentration. TGF-β, like EGF, stimulates sugar transport into Balb/MK-1 cells without additional factors. However, neither stimulates uptake in a 3T3 variant, NR-6, which is EGF-receptor negative. The co-addition of EGF and/or PDGF enhances TGF-β stimulation. Binding of 125I-labeled TGF-β is nearly complete by 1 hour at 370C, but continues to increase for as long as 4 hours after addition. Antibodies which inhibit EGF binding have no effect on TGF-β binding, but they block TGF-β stimulation of hexose uptake. It is concluded from these results that the TGF-β receptor is distinct from the EGF receptor, and that although TGF-β stimulation of dGLc uptake does not require exogenously added EGF, it does require an active or available EGF receptor kinase system

  12. Statistical prediction of nanoparticle delivery: from culture media to cell

    Science.gov (United States)

    Rowan Brown, M.; Hondow, Nicole; Brydson, Rik; Rees, Paul; Brown, Andrew P.; Summers, Huw D.

    2015-04-01

    The application of nanoparticles (NPs) within medicine is of great interest; their innate physicochemical characteristics provide the potential to enhance current technology, diagnostics and therapeutics. Recently a number of NP-based diagnostic and therapeutic agents have been developed for treatment of various diseases, where judicious surface functionalization is exploited to increase efficacy of administered therapeutic dose. However, quantification of heterogeneity associated with absolute dose of a nanotherapeutic (NP number), how this is trafficked across biological barriers has proven difficult to achieve. The main issue being the quantitative assessment of NP number at the spatial scale of the individual NP, data which is essential for the continued growth and development of the next generation of nanotherapeutics. Recent advances in sample preparation and the imaging fidelity of transmission electron microscopy (TEM) platforms provide information at the required spatial scale, where individual NPs can be individually identified. High spatial resolution however reduces the sample frequency and as a result dynamic biological features or processes become opaque. However, the combination of TEM data with appropriate probabilistic models provide a means to extract biophysical information that imaging alone cannot. Previously, we demonstrated that limited cell sampling via TEM can be statistically coupled to large population flow cytometry measurements to quantify exact NP dose. Here we extended this concept to link TEM measurements of NP agglomerates in cell culture media to that encapsulated within vesicles in human osteosarcoma cells. By construction and validation of a data-driven transfer function, we are able to investigate the dynamic properties of NP agglomeration through endocytosis. In particular, we statistically predict how NP agglomerates may traverse a biological barrier, detailing inter-agglomerate merging events providing the basis for

  13. The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells.

    Science.gov (United States)

    Bettendorff, L

    1994-05-26

    Thiamine transport in cultured neuroblastoma cells is mediated by a high-affinity carrier (KM = 40 nM). In contrast, the uptake of the more hydrophobic sulbutiamine (isobutyrylthiamine disulfide) is unsaturable and its initial transport rate is 20-times faster than for thiamine. In the cytoplasm, sulbutiamine is rapidly hydrolyzed and reduced to free thiamine, the overall process resulting in a rapid and concentrative thiamine accumulation. Incorporation of radioactivity from [14C]thiamine or [14C]sulbutiamine into intracellular thiamine diphosphate is slow in both cases. Despite the fact that the diphosphate is probably the direct precursor for both thiamine monophosphate and triphosphate, the specific radioactivity increased much faster for the latter two compounds than for thiamine diphosphate. This suggests the existence of two pools of thiamine diphosphate, the larger one having a very slow turnover (about 17 h); a much smaller, rapidly turning over pool would be the precursor of thiamine mono- and triphosphate. The turnover time for thiamine triphosphate could be estimated to be 1-2 h. When preloading the cells with [14C]sulbutiamine was followed by a chase with the same concentration of the unlabeled compound, the specific radioactivities of thiamine and thiamine monophosphate decreased exponentially as expected, but labeling of the diphosphate continued to increase slowly. Specific radioactivity of thiamine triphosphate increased first, but after 30 min it began to slowly decrease. These results show for the first time the existence of distinct thiamine diphosphate pools in the same homogeneous cell population. They also suggest a complex compartmentation of thiamine metabolism. PMID:8186267

  14. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation.

  15. A Microfluidic Platform for High-throughput Single-cell Isolation and Culture.

    Science.gov (United States)

    Lin, Ching-Hui; Chang, Hao-Chen; Hsu, Chia-Hsien

    2016-01-01

    Studying the heterogeneity of single cells is crucial for many biological questions, but is technically difficult. Thus, there is a need for a simple, yet high-throughput, method to perform single-cell culture experiments. Here, we report a microfluidic chip-based strategy for high-efficiency single-cell isolation (~77%) and demonstrate its capability of performing long-term single-cell culture (up to 7 d) and cellular heterogeneity analysis using clonogenic assay. These applications were demonstrated with KT98 mouse neural stem cells, and A549 and MDA-MB-435 human cancer cells. High single-cell isolation efficiency and long-term culture capability are achieved by using different sizes of microwells on the top and bottom of the microfluidic channel. The small microwell array is designed for precisely isolating single-cells, and the large microwell array is used for single-cell clonal culture in the microfluidic chip. This microfluidic platform constitutes an attractive approach for single-cell culture applications, due to its flexibility of adjustable cell culture spaces for different culture strategies, without decreasing isolation efficiency. PMID:27341146

  16. Regulation of Cytoplasmic and Vacuolar Volumes by Plant Cells in Suspension Culture

    DEFF Research Database (Denmark)

    Owens, Trevor; Poole, Ronald J

    1979-01-01

    Quantitative microscopical measurements have been made of the proportion of cell volume occupied by cytoplasm in a cell suspension culture derived from cotyledons of bush bean (cv. Contender). On a 7-day culture cycle, the content of cytoplasm varies from 25% at the time of transfer to 45% at the...... start of the phase of rapid cell division. If the culture is continued beyond 7 days, the vacuole volume reaches 90% of cell volume by day 12.Attempts to measure relative cytoplasmic volumes by compartmental analysis of nonelectrolyte efflux were unsuccessful. The proportion of cell volume occupied by...... cytoplasm is roughly correlated with protein content, but shows no correlation with cell size or with intracellular concentrations of K or Na. The most striking observation is that the growth of cytoplasmic volume for the culture as a whole appears to be constant throughout the culture cycle, despite...

  17. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    DEFF Research Database (Denmark)

    2015-01-01

    , such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast......We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets....... Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen...

  18. Induction of chromosome aberrations in two lines of cultured cells using different types of radiation

    International Nuclear Information System (INIS)

    The induction of chromosome aberrations has been investigated in two lines of cultured cells for different types of radiation. The obtained results are compared with information on induction of cell reproductive death and malignant transformation. (Auth.)

  19. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    Science.gov (United States)

    Kim, Youn-Kyu; Park, Seul-Hyun; Lee, Joo-Hee; Choi, Gi-Hyuk

    2015-03-01

    In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  20. Design of 3D printed insert for hanging culture of Caco-2 cells

    International Nuclear Information System (INIS)

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30–100% higher brush border enzyme activity and ∼2–7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R2 = 0.92) to the human oral adsorption than that of the Transwell culture (R2 = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption. (paper)

  1. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells

    Institute of Scientific and Technical Information of China (English)

    YiZhanga; ChangdongLi; XiaoxiaJiang; ShuangxiZhang; YingWu; BingLiu; PeihsienTang; NingMao

    2005-01-01

    Objective. Allogeneic transplantation with umbilical cord blood (UCB) in adult recipients is limited mainly by a low CD34+ cell dose. To overcome this shortcoming, human placenta as a novel source of human mesenchymal progenitor cell (MPC) was incorporated in an attempt to expand CD34+ ceils from UCB in vitro.Materials and Methods. Human placenta MPC was isolated and characterized by morphologic,immunophenotypical, and functional analysis. UCB CD34+ cells were expanded by coculturewith placeutal MPC. Suitable aliquots of cells were used to monitor cell production, elonogenie activity, and tong-term culture-initiating culture (LTC-IC) output. Finally, the immunoregulatory effect of placental MPC was evaluated by T-cell proliferation assay.Results. In its undifferentiated state, placental MPC displayed fibroblastoid morphology; was CD73, CD105, CD29, CD44, HLA-ABC, and CD166 positive; produced fibronectin, laminin,and vimentin; but was negative for CD14, CD31, CD34, CD45, HLA-DR, and α-smooth muscle actin. Functionally, it could be induced into adipocytes, osteocytes, and chondrocytes.In vitro expansion of UCB hematopoietic cells, when cocultured with placental MPC in the presence of eytokines, was significantly enhanced: CD34+ cells by 14.89±2.32 fold; colonyforming cell (CFC) by 36.73±5.79 told; and LTC-IC by 7.43±2.66 fold. Moreover, placental MPC could suppress T-cell proliferation induced by cellular stimuli.Conclusion. These results strongly suggest that human placental MPC may be a suitable feeder layer for expansion of hematopoietic progenitors from UCB in vitro.

  2. Isolation and Culture of a kind of Derived Cells from Differentiation Group Of Murine ESC-like Cell and Their Traits in Culture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1IntroductionInthe process of culturing ESC-like cell from murine blastula ,we find that even if no inducing factor was added, ESC-like cellmasses can differentinto many kinds of cell groups .Study onthe bi-ological traits ,culturing and change of functional genetics of thosecell groups will be of great meaningtofind outthe mechanismof dif-ferentiation and possible value of ESC-like cells . UPto now,thereare not many references and reports on this aspect .This article in-troduces a kind of derived cells iso...

  3. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  4. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.

  5. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  6. Nerve Growth Factor Modulate Proliferation of Cultured Rabbit Corneal Endothelial Cells and Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF.MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner.50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did.Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  7. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  8. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds.

    Science.gov (United States)

    Palomeras, Sònia; Rabionet, Marc; Ferrer, Inés; Sarrats, Ariadna; Garcia-Romeu, Maria Luisa; Puig, Teresa; Ciurana, Joaquim

    2016-01-01

    The cancer stem cell (CSC) population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs' phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone) (PCL), a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI) was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control). Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population. PMID:27120585

  9. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone Scaffolds

    Directory of Open Access Journals (Sweden)

    Sònia Palomeras

    2016-04-01

    Full Text Available The cancer stem cell (CSC population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs’ phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone (PCL, a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control. Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population.

  10. AUDITORY HAIR CELL EXPLANT CO-CULTURES PROMOTE THE DIFFERENTIATION OF STEM CELLS INTO BIPOLAR NEURONS

    OpenAIRE

    Coleman, B.; Fallon, J. B.; Gillespie, L.N.; Silva, M.G.; Shepherd, R.K.

    2006-01-01

    Auditory neurons, the target neurons of the cochlear implant, degenerate following a sensorineural hearing loss. The goal of this research is to direct the differentiation of embryonic stem cells (SCs) into bipolar auditory neurons that can be used to replace degenerating neurons in the deafened mammalian cochlea. Successful replacement of auditory neurons is likely to result in improved clinical outcomes for cochlear implant recipients. We examined two post-natal auditory co-culture models w...

  11. Biosynthesis and biotransformation of lipids in plant cell cultures and algae

    International Nuclear Information System (INIS)

    The biosynthesis and metabolism of lipids in plant cell cultures grown photoautotrophically, has been studied since 1970. The most prominently occuring lipids in cell cultures and whole plants are phospholipids, glycolipids, triglycerides and glycosides. Radioactively labelled lipids have been produced from soybean cell cultures incubated with 14C-linoleic acid, and the fate of the phospholipid formed was investigated. Freshwater and marine algae cultured under different conditions of light, temperature and nutrient media have also been investigated for their lipid and fatty acid content. The exploitation of biotechnological processes for producing valuable lipids is encouraged. (U.K.)

  12. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha;

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  13. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day...... of gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...

  14. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  15. Effects of Electromagnetic Stimulation on Cell Density and Neural Markers in Murine Enteric Cell Cultures

    Science.gov (United States)

    Carreón-Rodríguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Cañedo-Dorantes, L.

    2008-08-01

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.

  16. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and equipment. 864.2240 Section 864.2240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture...

  17. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    Science.gov (United States)

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  18. Production and excretion of secondary metabolites by plant cell cultures of Tagetes.

    NARCIS (Netherlands)

    Buitelaar, R.M.

    1991-01-01

    In this thesis, the results are presented of several approaches to improve the production and excretion of thiophenes by cell cultures or hairy roots of Tagetes spp.In chapter one, most of the techniques to improve the production and/or excretion of secondary metabolites with plant cell cultures are

  19. Miniaturized Mass-Spectrometry-Based Analysis System for Fully Automated Examination of Conditioned Cell Culture Media

    NARCIS (Netherlands)

    Weber, E.; Pinkse, M.W.H.; Bener-Aksam, E.; Vellekoop, M.J.; Verhaert, P.D.E.M.

    2012-01-01

    We present a fully automated setup for performing in-line mass spectrometry (MS) analysis of conditioned media in cell cultures, in particular focusing on the peptides therein. The goal is to assess peptides secreted by cells in different culture conditions. The developed system is compatible with M

  20. Induction of Apoptosis in Protoplasts and Suspension Cultures of Plant Cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many studies have showed that apoptosis exists in plants. Our study shows that (1) menadione(VK3) induces apoptosis in suspension cultures of carrot cells; (2) heat shock induces apoptosis in suspension cultures of tobacco cells; and (3) ethrel induces apoptosis in carrot protoplasts. Some important indications of apoptosis were observed, including DNA laddering, TUNEL-positive reaction, condensation and degradation of nuclei.

  1. Agronomic traits and RAPD analysis of two mutants derived from rice somatic cell culturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic variation, including agronomic trait variation, often occurs in somatic cell culturing. In this study, we compared the main agronomic traits of two rice mutants, M3 and M14, which were derived from Shenxiangjing 5 somatic cell culturing. Significant differences were found between the two mutants and the wild rice Shenxiangjing 5 (Table 1). Results were as follows:

  2. An Application of Microcapsules Having Enzyme-degradable Gel Membrane to Cell Culture

    Science.gov (United States)

    Dobashi, Toshiaki; Koike, Michiru; Kobayashi, Kentaro; Maki, Yasuyuki; Yamamoto, Takao; Tanaka, Susumu

    Newly developed microcapsules having gelatin wall membrane was applied as a scaffold for suspension cell culture. The optimum preparation condition was determined, and the stability of the cultured human fibroblast cells using the microcapsules was examined at both protein and gene levels.

  3. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    Science.gov (United States)

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  4. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  5. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    International Nuclear Information System (INIS)

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time

  6. Data in support of the mutagenic potential of the isoflavone irilone in cultured V79 cells

    OpenAIRE

    Anne Scheffler; Annette E. Albrecht; Esch, Harald L.; Leane Lehmann

    2015-01-01

    The isoflavone irilone is found in human plasma after ingestion of red clover-based dietary supplements, but information allowing safety assessment is rare. Here, data in support of the mutagenic potential of irilone in cultured V79 cells [1] are presented. These data include (i) a quantitative assessment of irilone in the culture medium during the cell culture experiments, (ii) changes in the mutation spectrum in cDNA of the hypoxanthine-guanine phosphoribosyltransferase locus of irilone-tre...

  7. Comparison of Different Culture Mode for Long-term Expansion of Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction The mammalian central nervous system(CNS) is incredibly complex and possesses only a limited ability to recover from damage~([1]). Fortunately, the discovery of self-renewing stem cell populations within the fetal and adult CNS has opened promising lines of inquiry. Neural stem cells (NSCs) can be cultured in two modes in vitro, suspension and monolayer. Reynolds~([2]) and other groups culture NSCs as neurospheres in suspension. Alternatively Gage cultured NSCs in monolayer. There is little s...

  8. [Development of three-dimensional breast cancer cell culture drug resistance model].

    Science.gov (United States)

    Xu, Hong; Liu, Wei; Zhang, Xiu-Zhen; Hou, Liang; Lu, Ying-Jin; Chen, Pei-Pei; Zhang, Can; Feng, Di; Kong, Li; Wang, Xiu-Li

    2016-04-25

    The aim of the present study was to develop three-dimensional (3D) culture model, a more pathologically relevant model, of human breast cancer for drug resistance study. MCF-7 cells were embedded within collagen gel to establish 3D culture model. Cellular morphology was observed using Carmine and HE staining. Cell proliferation was evaluated by CCK-8 assay, and cell activity was detected by Live/Dead staining kit. Drug sensitivities of the 3D culture to doxorubicin, carboplatin, 5-fluorouracil were assayed and compared with those of monolayer (2D) culture. In addition, the levels of drug resistance-related genes P-glycoprotein (P-gp), mrp2 mRNA expressions were detected by real time RT-PCR. Expression level of P-gp protein was detected by Western blot. The results showed that MCF-7 cells in 3D culture formed a number of cell aggregates, and most of them displayed good cell viability. The IC50 values of doxorubicin, carboplatin, 5-fluorouracil were all increased significantly in 3D culture compared with those in 2D culture. Moreover, compared with MCF-7 cells in 2D culture, the cells in 3D culture showed increased mRNA levels of P-gp and mrp2, as well as up-regulated protein expression of P-gp. These results suggest that in vitro collagen-embedded culture system of human breast cancer cells represents an improved pathologically relevant 3D microenvironment for breast cancer cells, providing a robust tool to explore the mechanism of drug resistance of cancer cells. PMID:27108905

  9. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Marisa Ojala

    Full Text Available Human pluripotent stem cells (hPSCs, including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs, are capable of differentiating into any cell type in the human body and thus can be used in studies of early human development, as cell models for different diseases and eventually also in regenerative medicine applications. Since the first derivation of hESCs in 1998, a variety of culture conditions have been described for the undifferentiated growth of hPSCs. In this study, we cultured both hESCs and hiPSCs in three different culture conditions: on mouse embryonic fibroblast (MEF and SNL feeder cell layers together with conventional stem cell culture medium containing knockout serum replacement and basic fibroblast growth factor (bFGF, as well as on a Matrigel matrix in mTeSR1 medium. hPSC lines were subjected to cardiac differentiation in mouse visceral endodermal-like (END-2 co-cultures and the cardiac differentiation efficiency was determined by counting both the beating areas and Troponin T positive cells, as well as studying the expression of OCT-3/4, mesodermal Brachyury T and NKX2.5 and endodermal SOX-17 at various time points during END-2 differentiation by q-RT-PCR analysis. The most efficient cardiac differentiation was observed with hPSCs cultured on MEF or SNL feeder cell layers in stem cell culture medium and the least efficient cardiac differentiation was observed on a Matrigel matrix in mTeSR1 medium. Further, hPSCs cultured on a Matrigel matrix in mTeSR1 medium were found to be more committed to neural lineage than hPSCs cultured on MEF or SNL feeder cell layers. In conclusion, culture conditions have a major impact on the propensity of the hPSCs to differentiate into a cardiac lineage.

  10. Observations on the migratory behaviour of Schwann cells from adult peripheral nerve explant cultures.

    Science.gov (United States)

    Crang, A J; Blakemore, W F

    1987-06-01

    The migration of Schwann cells from adult sciatic nerve explant cultures has been examined by time-lapse photomicrography. Analysis of Schwann cell migratory behaviour indicates that the initial outwandering by individual Schwann cells was random. Although chance cell-cell contacts resulted in temporary immobilization of pairs of cells, stable multicellular structures did not form during this initial phase. As local cell densities increased, Schwann cells assembled networks within which Schwann cell movement continued to be observed. A second form of Schwann cell outgrowth was observed from degenerating fibres in which arrays of highly oriented Schwann cells migrated away from their basal lamina tubes onto the culture dish. These observations of Schwann cell random migration, network self-assembly and coordinated extratubal migration are considered to highlight aspects of Schwann cell behaviour, independent of axonal influences, which may have relevance to their role in peripheral nerve repair following nerve section. PMID:3612187

  11. An Important Method in the Investigation of Vascular Pathologies: Endothelial Cell Culture

    Directory of Open Access Journals (Sweden)

    Yusufhan Yazır

    2012-12-01

    Full Text Available Endothelial cells line the interior surface of blood vessels and form an interface between circulating blood in the lumen and the rest of the vessel wall. Endothelial cells are involved in many aspects of vascular biology, including barrier function, vasoconstriction, coagulation and inflamation. The endothelial cells in different organs have different functions and surface phenotype. These cells express prostoglandin-I2, platelet activating factor, collagen, endothelin-1, laminin, fibronectin and growth factors including platelet derived growth factor, fibroblast growth factor. İn the cell culture, cells can be isolated, maintened and proliferate in the laboratory conditions. The techniques of the cell culture have allowed scientists to use the cells in vitro for experimental studies, such as the production of vaccine, antibody and enzime, drug research, cell-cell interactions. Human umbilical vein endothelial cell is a good source for endothelial cell, because it is cheaper, easy to find and has the basic features of the normal endothelial cells.

  12. Enhanced growth medium and method for culturing human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R. (7290 Sayre Dr., Oakland, CA 94611); Smith, Helene S. (5693 Cabot Dr., Oakland, CA 94611); Hackett, Adeline J. (82 Evergreen Dr., Orinda, CA 94563)

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  13. Measuring NO Production by Plant Tissues and Suspension Cultured Cells

    Institute of Scientific and Technical Information of China (English)

    Jan Vitecek; Vilem Reinohl; Russell L.Jones

    2008-01-01

    We describe an inexpensive and reliable detector for measuring NO emitted in the gas phase from plants.The method relies on the use of a strong oxidizer to convert NO to NO2 and subsequent capture of NO2 by a Griess reagent trap.The set-up approaches the sensitivity for NO comparable to that of instruments based on chemiluminescence and photoacoustic detectors.We demonstrate the utility of our set-up by measuring NO produced by a variety of well established plant sources.NO produced by nitrate reductase (NR) in tobacco leaves and barley aleurone was readily detected,as was the production of NO from nitrite by the incubation medium of barley aleurone.Arabidopsis mutants that overproduce NO or lack NO-synthase (AtNOS1) also displayed the expected NO synthesis phenotype when assayed by our set-up.We could also measure NO production from elicitor-treated suspension cultured cells using this set-up.Further,we have focused on the detection of NO by a widely used fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM).Our work points to the pitfalls that must be avoided when using DAF-FM to detect the production of NO by plant tissues.In addition to the dramatic effects that pH can have on fluorescence from DAF-FM,the widely used NO scavengers 2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (PTIO) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) can produce anomalous and unexpected results.Perhaps the most serious drawback of DAF-FM is its ability to bind to dead cells and remain NO-sensitive.

  14. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    Science.gov (United States)

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  15. An Easy-to-Use Polystyrene Microchip-based Cell Culture System.

    Science.gov (United States)

    Tazawa, Hidekatsu; Sunaoshi, Shohei; Tokeshi, Manabu; Kitamori, Takehiko; Ohtani-Kaneko, Ritsuko

    2016-01-01

    In this study, we developed an integrated, low-cost microfluidic cell culture system that is easy to use. This system consists of a disposable polystyrene microchip, a polytetrafluoroethylene valve, an air bubble trap, and an indium tin oxide temperature controller. Valve pressure resistance was validated with a manometer to be 3 MPa. The trap protected against bubble contamination. The temperature controller enabled the culture of Macaca mulatta RF/6A 135 vascular endothelial cells, which are difficult to culture in glass microchips, without a CO2 incubator. We determined the optimal coating conditions for these cells and were able to achieve stable, confluent culture within 1 week. This practical system is suitable for low-cost screening and has potential applications as circulatory cell culture systems and research platforms in cell biology. PMID:26960617

  16. Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells

    Directory of Open Access Journals (Sweden)

    Chih-Chin Oh-Yang

    2011-08-01

    Full Text Available This study reports an integrated microfluidic perfusion cell culture system consisting of a microfluidic cell culture chip, and an indium tin oxide (ITO glass-based microheater chip for micro-scale perfusion cell culture, and its real-time microscopic observation. The system features in maintaining both uniform, and stable chemical or thermal environments, and providing a backflow-free medium pumping, and a precise thermal control functions. In this work, the performance of the medium pumping scheme, and the ITO glass microheater were experimentally evaluated. Results show that the medium delivery mechanism was able to provide pumping rates ranging from 15.4 to 120.0 μL·min−1. In addition, numerical simulation and experimental evaluation were conducted to verify that the ITO glass microheater was capable of providing a spatially uniform thermal environment, and precise temperature control with a mild variation of ±0.3 °C. Furthermore, a perfusion cell culture was successfully demonstrated, showing the cultured cells were kept at high cell viability of 95 ± 2%. In the process, the cultured chondrocytes can be clearly visualized microscopically. As a whole, the proposed cell culture system has paved an alternative route to carry out real-time microscopic observation of biological cells in a simple, user-friendly, and low cost manner.

  17. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  18. Development and application of a high-throughput platform for perfusion-based cell culture processes.

    Science.gov (United States)

    Villiger-Oberbek, Agata; Yang, Yang; Zhou, Weichang; Yang, Jianguo

    2015-10-20

    A high-throughput (HT) cell culture model has been established for the support of perfusion-based cell culture processes operating at high cell densities. To mimic perfusion, the developed platform takes advantage of shake tubes and operates them in a batch-refeed mode with daily medium exchange to supply the cultures with nutrients and remove toxic byproducts. By adjusting the shaking parameters, such as the speed and setting angle, we have adapted the shake tubes to a semi-continuous production of a recombinant enzyme in a perfusion-like mode. We have demonstrated that the developed model can be used to select clones and cell culture media ahead of process optimization studies in bioreactors and confirmed the applicability of shake tubes to a perfusion-like cell culture reaching ∼50E6 viable cells/mL. Furthermore, through regular cell mass removal and periodic medium exchange we have successfully maintained satellite cultures of bench-top perfusion bioreactors, achieving a sustainable cell culture performance at ≥30E6 viable cells/mL and viabilities >80% for over 58 days. The established HT model is a unique and powerful tool that can be used for the development and screening of media formulations, or for testing selected process parameters during both process optimization and manufacturing support campaigns.

  19. Static three-dimensional culture of human hepatocarcinoma cell with microcarriers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional monolayer culture is still the common method used in hepatocarcinoma cell culture in vitro.For lack of the structure similar to that in vivo, it is disadvantageous in the research of the relation between structure and function. We established a three-dimensional (3-D) culture model of human hepatocarcinoma cell (BEL-7402) in vitro by using microcarrier cytodex-3 in static condition. The results of SEM, TEM, enzyme activity and flow cytometry indicated that the cells were polygonal-shaped and arranged in multilayers. Intercellular space was 0.5-2.0 μm wide where lots of microvilli could be seen. Adjacent cells were connected with desmosomes and localized membrane projects. More than 90% of the cells were viable and maintained the consumption of glucose and the expression of EGF receptor. The intracellular ALT, AST and LDH-L activities were higher in 3-D culture than those of monolayer culture.Compared with monolayer culture, this 3-D culture with the structure similar to trabecular hepatocarcinoma in vivo is much more suitable for the research of the interactions of cell-cell and cell-microenvironment, and might be useful in the investigation of the mechanisms of invasion, metastasis,and multicellular drug resistance of tumor cells.

  20. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  1. Development and application of a high-throughput platform for perfusion-based cell culture processes.

    Science.gov (United States)

    Villiger-Oberbek, Agata; Yang, Yang; Zhou, Weichang; Yang, Jianguo

    2015-10-20

    A high-throughput (HT) cell culture model has been established for the support of perfusion-based cell culture processes operating at high cell densities. To mimic perfusion, the developed platform takes advantage of shake tubes and operates them in a batch-refeed mode with daily medium exchange to supply the cultures with nutrients and remove toxic byproducts. By adjusting the shaking parameters, such as the speed and setting angle, we have adapted the shake tubes to a semi-continuous production of a recombinant enzyme in a perfusion-like mode. We have demonstrated that the developed model can be used to select clones and cell culture media ahead of process optimization studies in bioreactors and confirmed the applicability of shake tubes to a perfusion-like cell culture reaching ∼50E6 viable cells/mL. Furthermore, through regular cell mass removal and periodic medium exchange we have successfully maintained satellite cultures of bench-top perfusion bioreactors, achieving a sustainable cell culture performance at ≥30E6 viable cells/mL and viabilities >80% for over 58 days. The established HT model is a unique and powerful tool that can be used for the development and screening of media formulations, or for testing selected process parameters during both process optimization and manufacturing support campaigns. PMID:26197419

  2. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    Science.gov (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  3. Therapy of Chronic Cardiosclerosis in WAG Rats Using Cultures of Cardiovascular Cells Enriched with Cardiac Stem Cell.

    Science.gov (United States)

    Chepeleva, E V; Pavlova, S V; Malakhova, A A; Milevskaya, E A; Rusakova, Ya L; Podkhvatilina, N A; Sergeevichev, D S; Pokushalov, E A; Karaskov, A M; Sukhikh, G T; Zakiyan, S M

    2015-11-01

    We developed a protocol for preparing cardiac cell culture from rat heart enriched with regional stem cells based on clonogenic properties and proliferation in culture in a medium with low serum content. Experiments on WAG rats with experimental ischemic myocardial damage showed that implantation of autologous regional stem cells into the left ventricle reduced the volume of cicatricial tissue, promoted angiogenesis in the damaged zone, and prevented the risk of heart failure development.

  4. Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Ruttachuk Rungsiwiwut

    2016-01-01

    Full Text Available Although human pluripotent stem cells (hPSCs can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.

  5. Cells and Culture Systems Used to Model the Small Airway Epithelium.

    Science.gov (United States)

    Bhowmick, Rudra; Gappa-Fahlenkamp, Heather

    2016-06-01

    The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems. PMID:27071933

  6. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.

  7. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  8. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  9. Induction of growth in kidney epithelial cells in culture by Na+.

    OpenAIRE

    Toback, F G

    1980-01-01

    The role of Na+ in the regulation of cell growth was examined in quiescent, high-density cultures of kidney epithelial cells of the BSC-1 line. The addition of NaCl to the medium increased the number of cells initiating DNA synthesis in a concentration-dependent manner after serum stimulation. In the presence of added NaCl, cells in confluent cultures grew to high density at an increased rate, whereas growth in sparse cultures was retarded. These results suggest that, in the presence of serum...

  10. IN VITRO CELL CULTURE AND HORMONE RADIOIMMUNOASSAY OF HUAMAN PITUITARY ADENOMAS

    Institute of Scientific and Technical Information of China (English)

    陆汉魁; 林祥通; 等

    1994-01-01

    Tissues from 30 human pituitary adenomas are monolayer-cell-cultured in vitro.Hormone secretion of GH,PRL,TSH,LH and FSH by cells into medium is detected by radioimmunoassay .The pattern and amount of hormone(s0 in the medium are used to determine the nature of the cells and thus to establish functional classification of pituitary adenomas.The results show that cell culture technique provides and easy and suitable mode for investigating the nature of pituitary adenomas.Hormone radioimmunoassay of culture medium is precise and reliable and represents the whole adenoma tissue.Further studies can lead to clearer understandngs of the pathology of pituitary adenomas.

  11. Effect of quinidine on cation exchange in cultured cells.

    Science.gov (United States)

    McCall, D

    1976-06-01

    The effects of quinidine on membrane ion exchange were examined using monolayer cultures of mammalian cells. Quinidine, in concentrations from 10(-6) to 10(-3) M, produced a prompt inhibition of the passive Na influx, dose-dependent along a sigmoid log dose-response curve. This effect was at a maximum for each concentration of the drug within 30 seconds of application. Passive Na influx (pmol/cm2/sec) decreased from 18.8 to 17.6 (P less than .05) and 10.5 (P less than .001) in the presence of 10(-6) and 10(-3) M quinidine, respectively. In the continued presence of quinidine, there was no further time-dependent effect on the Na influx, nor was there any tendency for the influx to recover. Washing the cells free of quinidine, however, resulted in a return of Na influx to control levels within 1 to 3 minutes. After 1 to 2 minute of quinidine treatment, coupled active Na efflux/K influx rapidly declined, reaching minimum values for each concentration between 2 to 4 minutes of drug treatment. Beyond that time, active Na/K fluxes again increased, but to values which remained significantly less than control, for up to 4 hours. Ten minutes of exposure to quinidine were required before any demonstrable effect on the passive K efflux could be recorded. In the presence of quinidine, there was reduced membrane turnover of both Na and K, but such that after a brief initial period (10 minutes or less) both ions were in flux equilibrium, explaining the absence of change in [Nai] and [Ki] in the presence of quinidine. Calculations of Ec1 indicated that, when present for 4 hours, quinidine did not change the Em in these cells although significant (P less than .001) reductions in apparent PNa and Pk values were recorded. The effect on PNa was much greater than that on Pk. The quinidine-induced flux changes occurred in a definite temporal sequence suggesting that they could all be explained on the basis of one direct initial action. This initial direct action, namely the prompt

  12. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

    Science.gov (United States)

    Martin, G R

    1981-12-01

    This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

  13. In vitro cell cultures obtained from different explants of Corylus avellana produce Taxol and taxanes

    Directory of Open Access Journals (Sweden)

    Cavalli Francesca

    2006-12-01

    Full Text Available Abstract Background Taxol is an effective antineoplastic agent, originally extracted from the bark of Taxus brevifolia with a low yield. Many attempts have been made to produce Taxol by chemical synthesis, semi-synthesis and plant tissue cultures. However, to date, the availability of this compound is not sufficient to satisfy the commercial requirements. The aim of the present work was to produce suspension cell cultures from plants not belonging to Taxus genus and to verify whether they produced Taxol and taxanes. For this purpose different explants of hazel (Corylus avellana species were used to optimize the protocol for inducing in vitro callus, an undifferentiated tissue from which suspension cell cultures were established. Results Calli were successfully induced from stems, leaves and seeds grown in various hormone concentrations and combinations. The most suitable callus to establish suspension cell cultures was obtained from seeds. Media recovered from suspension cell cultures contained taxanes, and showed antiproliferative activity on human tumour cells. Taxol, 10-deacetyltaxol and 10-deacetylbaccatin III were the main taxanes identified. The level of Taxol recovered from the media of hazel cultures was similar to that found in yew cultures. Moreover, the production of taxanes in hazel cell cultures increased when elicitors were used. Conclusion Here we show that hazel cell cultures produce Taxol and taxanes under controlled conditions. This result suggests that hazel possesses the enzymes for Taxol production, which until now was considered to be a pathway particular to Taxus genus. The main benefit of producing taxanes through hazel cell cultures is that hazel is widely available, grows at a much faster rate in vivo, and is easier to cultivate in vitro than yew. In addition, the production of callus directly from hazel seeds shortens the culture time and minimizes the probability of contamination. Therefore, hazel could become a

  14. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ji Yeun Kim; Myeong Soo Park; Geun Eog Ji

    2012-01-01

    AIM:TO investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS:Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or inverted systems and were stimulated with heat-killed probiotic bacteria,Bifidobacteriumlactis AD011 (BL),Bifidobacterium bifidum BGN4 (BB),Lactobacillus casei IBS041 (LC),and Lactobacillus acidophilus AD031 (LA),for 12 h.Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent assay and phenotypic analysis of DC was investigated by flow cytometry.RESULTS:BB and LC in single-cultured DC increased the expression of I-Ad,CD86 and CD40 (I-Ad,18.51 vs 30.88,46.11; CD86,62.74 vs 92.7,104.12; CD40,0.67vs 6.39,3.37,P < 0.05).All of the experimental probiotics increased the production of inflammatory cytokines,interleukin (IL)-6 and tumor necrosis factor (TNF)-α.However,in the normal co-culture systems,LC and LA decreased the expression of I-Ad (39.46 vs 30.32,33.26,P < 0.05),and none of the experimental probiotics increased the levels of IL-6 or TNF-α.In the inverted coculture systems,LC decreased the expression of CD40 (1.36 vs-2.27,P < 0.05),and all of the experimental probiotics decreased the levels of IL-6.In addition,BL increased the production of IL-10 (103.8 vs 166.0,P< 0.05) and LC and LA increased transforming growth factor-3 secretion (235.9 vs 618.9,607.6,P < 0.05).CONCLUSION:These results suggest that specific probiotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.

  15. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Katja Karjalainen; Carlos E Bueso-Ramos; Hagop M Kantarjian

    2014-01-01

    Objective:To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC). Methods: The prepared cells were randomly divided into SCG group, SCG+0%FBS group, SCG+0%FBS group and CCG+0%FBS group. Cell counting kit-8 (CCK-8) analytic approach was adopted to detect the optical density (OD) of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM) was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI) lfuorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results:After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM) detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0~1 (G0~G1) went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2~M was on the rise. K562 cell apoptosis in CCG+0%FBS group was more than in SCG+10%FBS group, and less than in SCG+0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0~G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  16. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Katja Karjalainen

    2014-06-01

    Full Text Available Objective: To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC. Methods: The prepared cells were randomly divided into SCG group, SCG + 0%FBS group, SCG + 0%FBS group and CCG + 0%FBS group. Cell counting kit-8 (CCK-8 analytic approach was adopted to detect the optical density (OD of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI fluorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results: After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0 - 1 (G0 - G1 went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2 - M was on the rise. K562 cell apoptosis in CCG + 0%FBS group was more than in SCG + 10%FBS group, and less than in SCG + 0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0 - G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  17. Photosensitizer Adhered to Cell Culture Microplates Induces Phototoxicity in Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Verena Ziegler

    2013-01-01

    Full Text Available In vitro experiments in plastic receptacles are the basis of characterization of new photosensitizers (PSs for the photodynamic therapy. We recently reported that lipophilic PSs adhere to cell culture microplates in a kinetic-like manner (Engelhardt et al., 2011. In the current study, we examined the interaction and phototoxic effects of the microplate-adhered PS in cancer cells. Therefore, we preloaded microplates with hypericin, Foscan, PVP-hypericin, or aluminum (III phthalocyanine tetrasulfonate chloride (AlPCS4 for 24 hours and measured the PS distribution after addition of A431 human carcinoma cells: following another 24 hours up to 68% of hypericin were detected in the cell fraction. The hydrophilic PVP-hypericin and AlPCS4 also diffused into the cells, but the quantities of PS adherence were considerably lower. Microplate-adhered Foscan appeared not to be redistributed. In contrast to the hydrophilic PSs, the cellular phototoxicity of microplate-adhered lipophilic PS was high, independent of whether the PS (i was pre-loaded onto microplates or (ii added simultaneously with the cells or (iii one day after cell seeding. Based on these results, we suggest testing lipophilic PS dyes for their adherence to microplates. Furthermore, the ability of plastic materials to (reversibly store PSs might represent a new approach for the PS delivery or the development of antimicrobial coatings.

  18. Tick cell culture isolation and growth of Rickettsia raoultii from Dutch Dermacentor reticulatus ticks.

    Science.gov (United States)

    Alberdi, M Pilar; Nijhof, Ard M; Jongejan, Frans; Bell-Sakyi, Lesley

    2012-12-01

    Tick cell lines play an important role in research on ticks and tick-borne pathogenic and symbiotic microorganisms. In an attempt to derive continuous Dermacentor reticulatus cell lines, embryo-derived primary cell cultures were set up from eggs laid by field ticks originally collected as unfed adults in The Netherlands and maintained for up to 16 months. After several months, it became evident that cells in the primary cultures were infected with a Rickettsia-like intracellular organism. Supernatant medium containing some D. reticulatus cells was inoculated into cultures of 2 Rhipicephalus (Boophilus) microplus cell lines, BME/CTVM2 and BME/CTVM23, where abundant growth of the bacteria occurred intracellularly on transfer to both cell lines. Bacterial growth was monitored by light (live, inverted microscope, Giemsa-stained cytocentrifuge smears) and transmission electron microscopy revealing heavy infection with typical intracytoplasmic Rickettsia-like bacteria, not present in uninfected cultures. DNA was extracted from bacteria-infected and uninfected control cultures, and primers specific for Rickettsia 16S rRNA, ompB, and sca4 genes were used to generate PCR products that were subsequently sequenced. D. reticulatus primary cultures and both infected tick cell lines were positive for all 3 Rickettsia genes. Sequencing of PCR products revealed 99-100% identity with published Rickettsia raoultii sequences. The R. raoultii also grew abundantly in the D. nitens cell line ANE58, poorly in the D. albipictus cell line DALBE3, and not at all in the D. andersoni cell line DAE15. In conclusion, primary tick cell cultures and cell lines are useful systems for isolation and propagation of fastidious tick-borne microorganisms. In vitro isolation of R. raoultii from Dutch D. reticulatus confirms previous PCR-based detection in field ticks, and presence of the bacteria in the tick eggs used to initiate the primary cultures confirms that transovarial transmission of this

  19. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    Science.gov (United States)

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. PMID:26358782

  20. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  1. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    Science.gov (United States)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  2. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use.

  3. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1-14C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1-14C] acetic acid plus [2-14C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  4. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  5. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    Science.gov (United States)

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations.

  6. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    Science.gov (United States)

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. PMID:21420837

  7. Assessment of cell death studies by monitoring hydrogen peroxide in cell culture.

    Science.gov (United States)

    Hirsch, Irina; Prell, Erik; Weiwad, Matthias

    2014-07-01

    Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. PMID:24747006

  8. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A549 and H1299 cells, and the effects of CAF on the radiosensitivity of A549 and H1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF2) of A549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF2 of H1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A549 cells and H1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  9. A simple and efficient method for the long-term preservation of plant cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Boisson Anne-Marie

    2012-01-01

    Full Text Available Abstract Background The repeated weekly subculture of plant cell suspension is labour intensive and increases the risk of variation from parental cells lines. Most of the procedures to preserve cultures are based on controlled freezing/thawing and storage in liquid nitrogen. However, cells viability after unfreezing is uncertain. The long-term storage and regeneration of plant cell cultures remains a priority. Results Sycamore (Acer pseudoplatanus and Arabidopsis cell were preserved over six months as suspensions cultures in a phosphate-free nutrient medium at 5°C. The cell recovery monitored via gas exchange measurements and metabolic profiling using in vitro and in vivo 13C- and 31P-NMR took a couple of hours, and cell growth restarted without appreciable delay. No measurable cell death was observed. Conclusion We provide a simple method to preserve physiologically homogenous plant cell cultures without subculture over several months. The protocol based on the blockage of cell growth and low culture temperature is robust for heterotrophic and semi-autotrophic cells and should be adjustable to cell lines other than those utilised in this study. It requires no specialized equipment and is suitable for routine laboratory use.

  10. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety. PMID:25944665

  11. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  12. Optimization of flavonoid production in cell cultures of Astragalus missouriensis Nutt. (Fabaceae)

    OpenAIRE

    Iliana Ionkova

    2009-01-01

    The use of flavonoids for prevention and cure of human diseases is already widespread. Quercetin shows anti-proliferative effects against various cancer cell lines. These aspects made flavonoids an interesting object for industrial production. This paper describes a plant-cell-culture production approach that provides increased yields of flavonoids. Cell culture of Astragalus missouriensis was established, and flavonoid production was determined and optimized. The chemical investigation of ce...

  13. Glycosylation of Vanillin and 8-Nordihydrocapsaicin by Cultured Eucalyptus perriniana Cells

    OpenAIRE

    Naoji Kubota; Kei Shimoda; Hiroki Hamada; Hisashi Katsuragi; Daisuke Sato; Yuki Eshita

    2012-01-01

    Glycosylation of vanilloids such as vanillin and 8-nordihydrocapsaicin by cultured plant cells of Eucalyptus perriniana was studied. Vanillin was converted into vanillin 4-O-b-D-glucopyranoside, vanillyl alcohol, and 4-O-b-D-glucopyranosylvanillyl alcohol by E. perriniana cells. Incubation of cultured E. perriniana cells with 8-nor- dihydrocapsaicin gave 8-nordihydrocapsaicin 4-O...

  14. A simple method for the measurement of labelled compound incorporation into cells in culture.

    Science.gov (United States)

    Suplisson, A; Boissel, J P

    1976-02-10

    A simple method for the measurement of labelled compound incorporation into cells in layer culture was developed. Compared to other methods it proves to spare time and to be more sensitive owing to the fact that cells are not detached from the culture vials until the end of the manipulation as these are dissolved in the scintillation medium together with the cells just before counting.

  15. Propagation of human germ stem cells in long-term culture

    Directory of Open Access Journals (Sweden)

    Abbas Khodadadi

    2013-01-01

    Full Text Available Background: Spermatogonial stem cells (SSCs, a subset of undifferentiated type A spermatogonia, are the foundation of complex process of spermatogenesis and could be propagated in vitro culture conditions for long time for germ cell transplantation and fertility preservation. Objective: The aim of this study was in vitro propagation of human spermatogonial stem cells (SSCs and improvement of presence of human Germ Stem Cells (hGSCs were assessed by specific markers POU domain, class 5, transcription factor 1 (POU5F1, also known as Octamer-binding transcription factor 4 (Oct-4 and PLZF (Promyelocytic leukaemia zinc finger protein. Materials and Methods: Human testicular cells were isolated by enzymatic digestion (Collagenase IV and Trypsin. Germ cells were cultured in Stem-Pro 34 media supplemented by growth factors such as glial cell line-derived neurotrophic factor, basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor to support self-renewal divisions. Germline stem cell clusters were passaged and expanded every week. Immunofluorecent study was accomplished by Anti-Oct4 antibody through the culture. The spermatogonial stem cells genes expression, PLZF, was studied in testis tissue and germ stem cells entire the culture. Results: hGSCs clusters from a brain dead patient developed in testicular cell culture and then cultured and propagated up to 6 weeks. During the culture Oct4 were a specific marker for identification of hGSCs in testis tissue. Expression of PLZF was applied on RNA level in germ stem cells. Conclusion: hGSCs indicated by SSCs specific marker can be cultured and propagated for long-term in vitro conditions.

  16. Characterization and Classification of Adherent Cells in Monolayer Culture using Automated Tracking and Evolutionary Algorithms

    OpenAIRE

    Zhang, Z.; Bedder, M; Smith, S L; Walker, D; Shabir, S.; Southgate, J

    2016-01-01

    This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24hour period. Subsequent analysis following feature extraction demonstrated the ability of the technique t...

  17. A Sealed Preparation for Long-Term Observations of Cultured Cells

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Greenfield Sluder, Joshua J. Nordberg, Frederick J. Miller and Edward H. Hinchcliffe This protocol was adapted from “A Sealed Preparation for Long-Term Observations of Cultured Cells,” Chapter 18, in *Live Cell Imaging* (eds. Goldman and Spector). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2005. ### INTRODUCTION The continuous long-term observation of cultured cells on the microscope has always been a technically demanding undertaking. This protocol...

  18. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues.

    Science.gov (United States)

    van der Merwe, Mathilde; Auzoux-Bordenave, Stéphanie; Niesler, Carola; Roodt-Wilding, Rouvay

    2010-07-01

    The abalone, Haliotis midae, is the most valuable commodity in South African aquaculture. The increasing demand for marine shellfish has stimulated research on the biology and physiology of target species in order to improve knowledge on growth, nutritional requirements and pathogen identification. The slow growth rate and long generation time of abalone restrict efficient design of in vivo experiments. Therefore, in vitro systems present an attractive alternative for short term experimentation. The use of marine invertebrate cell cultures as a standardised and controlled system to study growth, endocrinology and disease contributes to the understanding of the biology of economically important molluscs. This paper investigates the suitability of two different H. midae tissues, larval and haemocyte, for establishing primary cell cultures. Cell cultures are assessed in terms of culture initiation, cell yield, longevity and susceptibility to contamination. Haliotis midae haemocytes are shown to be a more feasible tissue for primary cell culture as it could be maintained without contamination more readily than larval cell cultures. The usefulness of short term primary haemocyte cultures is demonstrated here with a growth factor trial. Haemocyte cultures can furthermore be used to relate phenotypic changes at the cellular level to changes in gene expression at the molecular level.

  19. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24170301

  20. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Changes of Respiration Activities in Cells of Winter Wheat and Sugar Cane Suspension Cultures During Programmed Cell Death Process

    OpenAIRE

    I.V. Lyubushkina; A.V. Fedyaeva; Stepanov, A.V.; T.P. Pobezhimova

    2015-01-01

    Process of cell death in suspension cultures of winter wheat and sugar cane under high (50 °С) and negative (-8 °С) temperature treatment has been studied. It has been shown, that programmed cell death (PCD) process caused by the negative temperature in the culture of winter wheat was noted for slow rate of realization and it was carried out for 10 days. It has been state that rate of cell respiration was significantly higher than in the control culture. At the same time PCD processes induced...

  2. Effects of medium nutrition on cell growth and isocamptothecin A and B production by suspension cell culture of Camptotheca acuminata

    Institute of Scientific and Technical Information of China (English)

    Zhang Dongyan; Yu Fang; Bai Fengwu; An Lijia

    2006-01-01

    The effects of initial sucrose concentration, nitrate to ammonium ratio, total N concentration and phosphate concentration in medium on cell growth and isocamptothecin A and B synthesis by suspension cell culture of Camptotheca acuminata were investigated in 250 mL shake flasks. 30 g L-1 sucrose concentration was beneficial to secondary metabolites synthesis. The cell growth and metabolites synthesis were also affected by the ratio of NO-3/NH+4, and nitrate was favourable for cell growth. The maximum dry weight was achieved when nitrate was used as the sole N source. The effect of total initial N on the cell cultures was also investigated with NO-3/NH+4 ratio of 1∶2. The final dry cell weight was similar throughout culture period and 50 mM initial N was favourable for secondary metabolite synthesis. 50 mM initial phosphate concentration facilitated both cell growth and secondary metabolites synthesis.

  3. Characterization of Caco-2 and HT29-MTX co-cultures in an in vitro digestion/cell culture model used to predict iron bioavailability

    Science.gov (United States)

    Co-cultures of two human cell lines, Caco-2 and HT29-MTX mucus producing cells, have been incorporated into an in vitro digestion/cell culture model used to predict iron bioavailability. A range of different foods were subjected to in vitro digestion and iron bioavailability from digests was assesse...

  4. In vitro Culture of Bone Marrow Mesenchymal Stem Cells in Rats and Differentiation into Retinal Neural-like Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Xufang; JIANG Huanrong; YANG Hong

    2007-01-01

    In order to study the in vitro culture and expansion of bone marrow mesenchymal stem cells in rats (rMSCs) and the possibility of rMSCs differentiation into retinal neural cells, the bone marrow-derived cells in SD rats were isolated and cultured in vitro. The retinal neural cells in SD rats were cultured and the supernatants were collected to prepare conditioned medium. The cultured rMSCs were induced to differentiate by two steps. Imrnunofluorescence method and anti-nestin, anti-NeuN, anti-GFAP and anti-Thy1.1 antibodies were used to identify the cells derived from the rMSCs. The results showed that the in vitro cultured rMSCs grew well and expanded quickly. After induction with two conditioned media, rMSCs was induced to differentiate into neural progenitor cells, then into retinal neural-like cells which were positive for nestin, NeuN, GFAP and Thy1.1 de-tected by fluorescence method. The findings suggested that rMSCs could be culture and expanded in vitro, and induced to differentiate into retinal neural-like cells.

  5. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  6. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  7. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  8. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    Science.gov (United States)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  9. Programmed cell death features in apple suspension cells under low oxygen culture

    Institute of Scientific and Technical Information of China (English)

    XU Chang-jie(徐昌杰); CHEN Kun-song(陈昆松); FERGUSON Ian B.

    2004-01-01

    Suspension-cultured apple fruit cells (Malus pumila Mill. cv. Braeburn) were exposed to a low oxygen atmosphere to test whether programmed cell death (PCD) has a role in cell dysfunction and death under hypoxic conditions. Protoplasts were prepared at various times after low oxygen conditions were established, and viability tested by triple staining with fluorescein diacetate (FDA), propidium iodide (PI) and Hoechst33342 (HO342). DNA breakdown and phosphatidylserine exposure on the plasma membrane were observed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and annexin V binding. About 30% of protoplasts from cells after 48 h under low oxygen showed an increased accumulation of HO342, indicating increased membrane permeability. Positive TUNEL and annexin V results were also only obtained with protoplasts from cells under low oxygen. The results suggest that apple cell death under low oxygen is at least partially PCD mediated, and may explain tissue breakdown under controlled atmosphere (low oxygen) conditions in apple fruit.

  10. Fabrication and Characterization of Thermoresponsive Polystyrene Nanofibrous Mats for Cultured Cell Recovery

    Science.gov (United States)

    Oh, Hwan Hee; Uyama, Hiroshi; Park, Won Ho; Cho, Donghwan; Kwon, Oh Hyeong

    2014-01-01

    Rapid cell growth and rapid recovery of intact cultured cells are an invaluable technique to maintain the biological functions and viability of cells. To achieve this goal, thermoresponsive polystyrene (PS) nanofibrous mat was fabricated by electrospinning of PS solution, followed by the graft polymerization of thermoresponsive poly(N-isopropylacrylamide)(PIPAAm) on PS nanofibrous mats. Image analysis of the PS nanofiber revealed a unimodal distribution pattern with 400 nm average fiber diameter. Graft polymerization of PIPAAm on PS nanofibrous mats was confirmed by spectroscopic methods such as ATR-FTIR, ESCA, and AFM. Human fibroblasts were cultured on four different surfaces, PIPAAm-grafted and ungrafted PS dishes and PIPAAm-grafted and ungrafted PS nanofibrous mats, respectively. Cells on PIPAAm-grafted PS nanofibrous mats were well attached, spread, and proliferated significantly much more than those on other surfaces. Cultured cells were easily detached from the PIPAAm-grafted surfaces by decreasing culture temperature to 20°C, while negligible cells were detached from ungrafted surfaces. Moreover, cells on PIPAAm-grafted PS nanofibrous mats were detached more rapidly than those on PIPAAm-grafted PS dishes. These results suggest that thermoresponsive nanofibrous mats are attractive cell culture substrates which enable rapid cell growth and recovery from the culture surface for application to tissue engineering and regenerative medicine. PMID:24696851

  11. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    Science.gov (United States)

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-08-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004 +H P = 0.049 56Fe P culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure.

  12. Three-dimensional cultures of human endometrial cells on Matrigel mimic in vivo morphology

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-yan; WANG Jun-xia; TONG Xiao-mei; XU Wei-hai; JIANG Ling-ying; JING Xiao-ying; YANG Ling-yun; ZHOU Feng; ZHANG Song-ying

    2012-01-01

    Background The regulation of endometrial physiology and morphogenesis by the paracrine effectors has been well established using in vivo studies.A more complete understanding of the endometrial function has been delayed due,in part,to a lack of appropriate culture models.In this study,we aimed to simulate the in vivo three-dimensional (3-D) growth pattern of endometrial cells using a 3-D in vitro culture system.Methods Isolated endometrial epithelial cells,stromal cells and RL95-2 cells were seeded into culture chambers coated with the extracellular matrix Matrigel and observed using light microscopy.Fluorescence staining and immunohistochemistry were used to assess the morphology.Results Depending on the culture conditions,epithelial cells and RL95-2 cells formed multicellular structures on Matrigel; stromal cells remained individually distinguishable or grew together to form 3-D lattice-like structures.Conclusions Matrigel provided a good microenvironment for culturing endometrial cells.The cells cultured in the Matrigel-coated chambers closely resembled those seen in vivo.

  13. Experimental Study of Rat Beta Islet Cells Cultured under Simulated Microgravity Conditions

    Institute of Scientific and Technical Information of China (English)

    ChunSONG; Xiu-QingDUAN; XiLI; Li-OuHAN; PingXU; Chun-FangSONG:; Lian-HongJIN

    2004-01-01

    To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3,7 and 14. The morphology of the cells was observed by electron microscopy.Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured underthe microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient transport tubules. The microgravity cultured group also has higher insulin levels in the media as compared with the control group (P<0.01). Our results indicate that microgravity cultivation of islet cells has advantages over the routine culture methods.

  14. IGF-1 mRNA expression of adult rat thyroid cell cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    HE Feng-ping(何凤屏); YIN Rui-xing(尹瑞兴); XUAN Su(冼苏); JEAN Joss

    2003-01-01

    Objective:To investigate the law of age-related changes of insulin-like growth factor-1(IGF-1)expression of rat thyroid cells cultured in vitro.Methods:Rat thyroid of different age(10,45,65,100,150 weeks)was isolated and thyrocytes cultured.Total RNA was extracted in different rat age group when thyroid cells had been cultured for two weeks,mRNA IGF-1 expression was measured with reverse-transcription polymerase chain reaction(RT-PCR)in each group and compared.Results:Quantity of total RNA in thyroid cells decreased with ageing when the rat thyroid cells had been cultured for 2 weeks.There is significant difference among groups(P < 0.05).Expression of IGF-1 mRNA could be detected in thyroid cells of different age cultured in vitro.Quantity of IGF-1 mRNA expression by RTPCR analysis increased from 10 to 45 weeks old,and then decreased with ageing.Conclusion:Rat thyroid cells from different age cultured in vitro can express IGF-1 mRNA.Quantity of total RNA in thyroid cells cultured in vitro decreased with aging.IGF-1 mRNA expression was correlated to age(r =0.401,P <0.05).

  15. Lethal graft-versus-host disease: modification with allogeneic cultured donor cells

    International Nuclear Information System (INIS)

    The use of the bone marrow culture technique was studied as a means to prepare donor marrow for bone marrow transplantation to avoid lethal graft-versus-host disease (GVHD). Preliminary experiments demonstrated the rapid loss of theta-positive cells in such cultures, so that theta-positive cells were not detected after 6 days. Initial experiments in C3H/HeJ (H-2k, Hbbd) recipients prepared with 900 rad demonstrated improved survival when 3-day cultured C57BL/6 (H-2b, Hbbs) donor cells were used in place of hind limb marrow for transplantation. However, hemoglobin typing of recipient animals revealed only short-term donor engraftment, with competitive repopulation of recipient marrow occurring. Subsequent experiments were done in 1,200-rad prepared recipients, with long-term donor engraftment demonstrated. The majority of 1,200-rad prepared animals receiving cultured allogeneic cells died of GVHD, but animals receiving 28-day cultured cells had an improved 90-day survival and a delay in GVHD development over animals receiving hind limb marrow or marrow from shorter times in culture. In addition, animals receiving anti-theta-treated, 3-day nonadherent cells had an