WorldWideScience

Sample records for cell culture techniques

  1. Cell culture techniques in honey bee research

    Science.gov (United States)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  2. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Science.gov (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  3. [Application of cell co-culture techniques in medical studies].

    Science.gov (United States)

    Luo, Yun; Sun, Gui-Bo; Qin, Meng; Yao, Fan; Sun, Xiao-Bo

    2012-11-01

    As the cell co-culture techniques can better imitate an in vivo environment, it is helpful in observing the interactions among cells and between cells and the culture environment, exploring the effect mechanisms of drugs and their possible targets and filling the gaps between the mono-layer cell culture and the whole animal experiments. In recently years, they has attracted much more attention from the medical sector, and thus becoming one of research hotspots in drug research and development and bio-pharmaceutical fields. The cell co-culture techniques, including direct and indirect methods, are mainly used for studying pathological basis, new-type treatment methods and drug activity screening. Existing cell co-culture techniques are used for more pharmacological studies on single drug and less studies on interaction of combined drugs, such as collaborative compatibility and attenuation and synergistic effect among traditional Chinese medicines (TCMs). In line with the action characteristics of multi-component and multi-target, the cell co-culture techniques provide certain reference value for future studies on the effect and mechanism of combined TCMs on organisms as well as new methods for studies on TCMs and their compounds. This essay summarizes cell co-culture methods and their application and look into the future of their application in studies on TCMs and compounds.

  4. Plant tissue culture techniques

    OpenAIRE

    Rolf Dieter Illg

    1991-01-01

    Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus) or organized tissues or organs put in culture, under controlled sterile conditions.

  5. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  6. "Humanized" stem cell culture techniques: the animal serum controversy.

    Science.gov (United States)

    Tekkatte, Chandana; Gunasingh, Gency Ponrose; Cherian, K M; Sankaranarayanan, Kavitha

    2011-01-01

    Cellular therapy is reaching a pinnacle with an understanding of the potential of human mesenchymal stem cells (hMSCs) to regenerate damaged tissue in the body. The limited numbers of these hMSCs in currently identified sources, like bone marrow, adipose tissue, and so forth, bring forth the need for their in vitro culture/expansion. However, the extensive usage of supplements containing xenogeneic components in the expansion-media might pose a risk to the post-transplantation safety of patients. This warrants the necessity to identify and develop chemically defined or "humanized" supplements which would make in vitro cultured/processed cells relatively safer for transplantation in regenerative medicine. In this paper, we outline the various caveats associated with conventionally used supplements of xenogenic origin and also portray the possible alternatives/additives which could one day herald the dawn of a new era in the translation of in vitro cultured cells to therapeutic interventions.

  7. Chikungunya virus isolation using simplified cell culture technique in Mauritius.

    Science.gov (United States)

    Pyndiah, M N; Pursem, V; Meetoo, G; Daby, S; Ramuth, V; Bhinkah, P; Chuttoo, R; Paratian, U

    2012-03-01

    During the chikungunya outbreak of 2005 - 2006, the only laboratory facilities available in Mauritius were virus isolation in cell culture tubes and serology. The laboratory was submerged with large numbers of blood samples. Comparative isolation was made in human embryonic lung (HEL) and VERO cells grown in 96-well plate. Culture on HEL cells was found to be more sensitive and presence of cytopathic effect (CPE) was observed earlier than in VERO cells. Out of the 18 300 blood samples inoculated on HEL, 11 165 were positive. This virus isolation method was of great help for the surveillance and control of the vectors. In cases of an outbreak a cheap, rapid and simple method of isolating chikungunya virus is described.

  8. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    Science.gov (United States)

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  9. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells.

    Science.gov (United States)

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-12-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.

  10. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  11. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  12. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  13. 3D cell culture: a review of current approaches and techniques.

    Science.gov (United States)

    Haycock, John W

    2011-01-01

    Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely - and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.

  14. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells

    OpenAIRE

    He, Yanan; Chen, Xiaoli; Zhu, Huabin; Wang, Dong

    2015-01-01

    The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studie...

  15. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  16. NucleoCounter—An efficient technique for the determination of cell number and viability in animal cell culture processes

    OpenAIRE

    Shah, Dimpalkumar; Naciri, Mariam; Clee, Paul; Al-Rubeai, Mohamed

    2006-01-01

    The NucleoCounter is a novel, portable cell counting device based on the principle of fluorescence microscopy. The present work establishes its use with animal cells and checks its reliability, consistency and accuracy in comparison with other cytometric techniques. The main advantages of this technique are its ability to handle a large number of samples with a high degree of precision and its simplicity and specificity in detecting viable cells quantitatively in a heterogeneous culture. The ...

  17. Assessing Adipogenic Potential of Mesenchymal Stem Cells: A Rapid Three-Dimensional Culture Screening Technique

    Directory of Open Access Journals (Sweden)

    Jean F. Welter

    2013-01-01

    Full Text Available Bone-marrow-derived mesenchymal stem cells (MSCs have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion.

  18. Confirmation of Chlamydophila abortus in infected cell culture using Indirect Immunofluorescence technique

    Directory of Open Access Journals (Sweden)

    Krishnan Nair G

    Full Text Available Chlamydophila abortus (C. abortus is an important abortifacient agent in bovines and ovines. Clinical diagnosis of the disease is often difficult. An early diagnosis can be achieved based on direct demonstration of the organism in clinical material and through the cultural recovery of the organism in embryonated chicken egg. For confirmatory diagnosis antigen detection methods or serological techniques can be adopted. The present study is aimed at the confirmatory diagnosis of C. abortus infection by indirect immunofluorescence technique following the isolation of the organism in cell culture. Specific apple green fluorescing inclusions of C. abortus in McCoy cell lines was detected from 72 h to 96 h post infection employing anti-chlamydial group specific monoclonal antibodies. Thus, a confirmatory diagnosis of the infection was possible with this study. [Vet. World 2011; 4(10.000: 473-474

  19. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  20. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan); Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Tsusu, K.; Minami, K. [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Nakanishi, Y. [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan)

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  1. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B;

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...... of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations...... to be performed. Quantification of the labeling intensity revealed a higher concentration of GABAA-receptors per microns plasma membrane in the cell bodies than in the processes. In discrete areas an extremely high density of the GABAA-receptors was observed. No specific labeling of GABAA-receptors was observed...

  2. Ex Vivo Produced Oral Mucosa Equivalent by Using the Direct Explant Cell Culture Technique

    Directory of Open Access Journals (Sweden)

    Kamile Öztürk

    2012-09-01

    Full Text Available Objective: The aim of this study is the histological and immunohistochemical evaluation of ex vivo produced oral mucosal equivalents using keratinocytes cultured by direct explant technique.Material and Methods: Oral mucosa tissue samples were obtained from the keratinized gingival tissues of 14 healthy human subjects. Human oral mucosa keratinocytes from an oral mucosa biopsy specimen were dissociated by the explant technique. Once a sufficient population of keratinocytes was reached, they were seeded onto the type IV collagen coated “AlloDerm” and taken for histological and immunohistochemical examinations at 11 days postseeding of the keratinocytes on the cadaveric human dermal matrix.Results: Histopathologically and immunohistochemically, 12 out of 14 successful ex vivo produced oral mucosa equivalents (EVPOME that consisted of a stratified epidermis on a dermal matrix have been developed with keratinocytes cultured by the explant technique.Conclusion: The technical handling involved in the direct explant method at the beginning of the process has fewer steps than the enzymatic method and use of the direct explant technique protocol for culturing of human oral mucosa keratinocyte may be more adequate for EVPOME production.

  3. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures

    Science.gov (United States)

    Wissenwasser, J.; Vellekoop, M. J.; Kapferer, W.; Lepperdinger, G.; Heer, R.

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  4. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures.

    Science.gov (United States)

    Wissenwasser, J; Vellekoop, M J; Kapferer, W; Lepperdinger, G; Heer, R

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  5. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  6. “Humanized” Stem Cell Culture Techniques: The Animal Serum Controversy

    OpenAIRE

    Chandana Tekkatte; Gency Ponrose Gunasingh; Cherian, K M; Kavitha Sankaranarayanan

    2011-01-01

    Cellular therapy is reaching a pinnacle with an understanding of the potential of human mesenchymal stem cells (hMSCs) to regenerate damaged tissue in the body. The limited numbers of these hMSCs in currently identified sources, like bone marrow, adipose tissue, and so forth, bring forth the need for their in vitro culture/expansion. However, the extensive usage of supplements containing xenogeneic components in the expansion-media might pose a risk to the post-transplantation safety of ...

  7. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization.

    Science.gov (United States)

    Hoffman, Ashley N; Bamba, Ravinder; Pollins, Alonda C; Thayer, Wesley P

    2017-02-01

    Polyethylene glycol (PEG) has long been used as a membrane fusogen, but recently it has been adopted as a technique for peripheral nerve repair. Vertebrate models using PEG fusion have shown improved outcomes when PEG is applied during repair of severed peripheral nerves. The cellular mechanism of PEG fusion in the peripheral nerve repair model has not previously been assessed via flow cytometry. PEG fusion was assessed in this experiment by dying B35 rat neuroblastoma cells with different color fluorescent labels. The different color cells were combined and PEG was applied in concentrations of 50%, 75% and 100%. The amount of cell fusion was assessed via flow cytometry as the percentage of double positive cells. Results showed increasing fusion and decreasing viability with increasing concentrations of PEG.

  8. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue.

    Science.gov (United States)

    Sorg, D; Potzel, A; Beck, M; Meyer, H H D; Viturro, E; Kliem, H

    2012-10-01

    Primary bovine mammary epithelial cells (pbMEC) are often used in cell culture to study metabolic and inflammatory processes in the udder of dairy cows. The most common source is udder tissue from biopsy or after slaughter. However, it is also possible to culture them from milk, which is non-invasive, repeatable and yields less contamination with fibroblasts. Generally, not much is known about the influence of cell origin and cell culture techniques such as cryopreservation on pbMEC functionality. Cells were extracted from milk and udder tissue to evaluate if milk-derived pbMEC are a suitable alternative to tissue-derived pbMEC and to test what influence cryopreservation has. The cells were cultivated for three passages and stored in liquid nitrogen. The relative gene expression of the five target genes kappa-casein, lingual antimicrobial peptide (LAP), lactoferrin, lysozyme (LYZ1) and the prolactin receptor normalised with keratin 8 showed a tendency to decrease in the tissue cultures, but not in the milk-derived cultures, suggesting a greater influence of the cultivation process on tissue-derived cells, freezing lowered expression levels in both cultures. Overall expression of LAP and LYZ1 tended to be higher in milk cells. Cholesterol efflux was measured to compare passages one to seven in milk-derived cells. Passage number did not alter the efflux rate (p ≤ 0.05). We showed for the first time that the extraction of pbMEC from milk can be a suitable alternative to tissue extraction.

  9. Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells

    Directory of Open Access Journals (Sweden)

    Davide Ricci

    2017-01-01

    Full Text Available Stem-cell-based therapies require a high number (106–109 of cells, therefore in vitro expansion is needed because of the initially low amount of stem cells obtainable from human tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization technique enables three-dimensional micro-structures to be fabricated, which we named synthetic nichoids. Here we review our activity on the technological improvements in manufacturing biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction to increase the patterned area and the percentage of cell culture surface covered by such synthetic nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time. These results establish two-photon laser polymerization as a promising tool to fabricate substrates for stem cell expansion, without any chemical supplement and in feeder-free conditions for potential therapeutic uses.

  10. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, G H; Hösli, E; Belhage, B;

    1991-01-01

    GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the beta-subunit of the GABAA/benzodiazepine/chloride channel complex. At the...

  11. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  12. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  13. Analysis of maturation states of rat bone marrow-derived dendritic cells using an improved culture technique.

    Science.gov (United States)

    Grauer, Oliver; Wohlleben, Gisela; Seubert, Silvia; Weishaupt, Andreas; Kämpgen, Eckhart; Gold, Ralf

    2002-04-01

    In this study, we examined in more detail the development of rat bone marrow-derived dendritic cells (BMDC). A two-stage culture system was used to propagate BMDC from rat bone marrow precursors. BMDC developed within clusters of proliferating cells after repetitive addition of rat granulocyte/macrophage colony-stimulating factor and rat interleukin (IL)-4 at a concentration of 5 ng/ml to the cultures. Fluorescence-activated cell sorter analysis performed at an early stage of development (day 6) revealed an immature phenotype with intermediate levels of major histocompatibility complex (MHC) class II expression and low levels of the costimulator molecules CD80 and CD86. Upon further culture, a strong upregulation of MHC class II, costimulatory and adhesion molecules could be observed, whereas macrophage marker antigens were downregulated. Late-stage BMDC (day 10) showed a high expression of MHC class I and II, ICAM-1, Ox62 and CD11c, and revealed a split pattern of B7-1 and B7-2. The cell yield was about 40% of the initially plated bone marrow cells with 80% MHC class II-high and less than 20% MHC class II-low positive cells. Full maturation of rat BMDC (day 12) with an almost uniform expression of B7 was achieved by subsequent subculture and further stimulation with rat tumour necrosis factor alpha (TNF-alpha), lipopolysaccharide (LPS) or soluble CD40 ligand (CD40L). Analysis of the cell supernatant revealed a strong IL-12 production after LPS or CD40L, and to a lesser extent after TNF-alpha stimulation. Additionally, LPS-treated, but not CD40L-treated BMDC secreted TNF-alpha into the supernatant. Early-stage BMDC sufficiently triggered a T cell receptor (TCR) downregulation, but did not stimulate naive T cells in an allogeneic mixed leukocyte reaction (MLR) and revealed a low stimulatory capacity in an antigen-specific T cell assay. In contrast, late-stage BMDC and especially fully mature BMDC strongly induced TCR internalisation, elicited high T cell responses

  14. Molluscan cells in culture: primary cell cultures and cell lines

    OpenAIRE

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as bi...

  15. Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate.

    Science.gov (United States)

    Priya, Nancy; Sarcar, Shilpita; Majumdar, Anish Sen; SundarRaj, Swathi

    2014-09-01

    Adipose tissue has emerged as a preferred source of mesenchymal stem/stromal cells (MSC), due to its easy accessibility and high MSC content. The conventional method of isolation of adipose tissue-derived stromal cells (ASC) involves enzymatic digestion and centrifugation, which is a costly and time-consuming process. Mechanical stress during isolation, use of bacterial-derived products and potential contamination with endotoxins and xenoantigens are other disadvantages of this method. In this study, we propose explant culture as a simple and efficient process to isolate ASC from human adipose tissue. This technique can be used to reproducibly isolate ASC from fat tissue obtained by liposuction as well as surgical resection, and yields an enriched ASC population free from contaminating haematopoietic cells. We show that explanting adipose tissue results in a substantially higher yield of ASC at P0 per gram of initial fat tissue processed, as compared to that obtained by enzymatic digestion. We demonstrate that ASC isolated by explant culture are phenotypically and functionally equivalent to those obtained by enzymatic digestion. Further, the explant-derived ASC share the immune privileged status and immunosuppressive properties implicit to MSC, suggesting that they are competent to be tested and applied in allogeneic clinical settings. As explant culture is a simple, inexpensive and gentle method, it may be preferred over the enzymatic technique for obtaining adipose tissue-derived stem/stromal cells for tissue engineering and regenerative medicine, especially in cases of limited starting material.

  16. Evaluation of culture techniques and bacterial cultures from uroliths.

    Science.gov (United States)

    Perry, Leigh A; Kass, Philip H; Johnson, Dee L; Ruby, Annette L; Shiraki, Ryoji; Westropp, Jodi L

    2013-03-01

    The association between urolithiasis and growth of bacteria in the urine or urolith has not been recently evaluated in the past 15 years, and the effects of antimicrobial administration on urolith cultures have not been reported. As well, laboratory techniques for urolith cultures have not been critically evaluated. The objectives of the current study were to 1) report bacterial isolates from uroliths and their association with signalment, urolith composition, antimicrobial use, and urine cultures and 2) evaluate laboratory techniques for urolith cultures. For the first objective, a retrospective search of bacterial isolates cultured from uroliths submitted to the laboratory as well as the signalment, urine culture results, and antimicrobial use were recorded. For the second objective, 50 urolith pairs were cultured by washing each urolith either 1or 4 times and culturing the core. Five hundred twenty canine and 168 feline uroliths were reviewed. Struvite-containing uroliths had an increased prevalence of a positive culture compared to nonstruvite-containing uroliths (P culture results and previous antimicrobial administration was found (P = 0.41). Eighteen percent of cases with negative urine cultures had positive urolith cultures. There was no significant difference in core culture results whether the urolith was washed 1 or 4 times (P = 0.07). Urolith culture outcome was not always influenced by previous antimicrobial administration, and bacterial culture of a urolith may not yield the same results as those obtained from the urine. The modified protocol, which requires less time and expense for urolith cultures, may be an acceptable alternative.

  17. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  18. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  19. 细胞共培养技术在医药研究中的应用%Application of cell co-culture techniques in medical studies

    Institute of Scientific and Technical Information of China (English)

    罗云; 孙桂波; 秦蒙; 姚帆; 孙晓波

    2012-01-01

    细胞共培养由于能更好地模拟体内环境,便于更好的观察细胞与细胞、细胞与培养环境之间的相互作用以及探讨药物的作用机制和可能的作用靶点,填补了单层细胞培养与整体动物实验研究的鸿沟,近年来倍受医药领域的关注,成为药物研发、生物制药领域的研究热点.细胞共培养方法包括直接共培养和间接共培养,主要用于疾病病理基础、新型治疗手段以及药物活性筛选的研究.现有的细胞共培养技术主要用于单一药物的药效学研究,用于联合药物相互作用的研究甚少.中药复方之间协同配伍,减毒增效.细胞共培养技术符合中药多成分、多靶点的作用特点,这对于未来探讨中药联合用药对机体的作用及机制的研究具有一定参考价值,为中药及复方研究提供了一种新的手段.该文就细胞共培养技术的方法与运用进行了概述,并对该技术运用于中药及复方的研究进行了展望.%As the cell co-culture techniques can better imitate an in vivo environment, it is helpful in observing the interactions among cells and between cells and the culture environment, exploring the effect mechanisms of drugs and their possible targets and filling the gaps between the mono-layer cell culture and the whole animal experiments. In recently years, they has attracted much more attention from the medical sector, and thus becoming one of research hotspots in drug research and development and bio-pharmaceutical fields. The cell co-culture techniques, including direct and indirect methods, are mainly used for studying pathological basis, new-type treatment methods and drug activity screening. Existing cell co-culture techniques are used for more pharmacological studies on single drug and less studies on interaction of combined drugs, such as collaborative compatibility and attenuation and synergistic effect among traditional Chinese medicines (TCMs). In line with the action

  20. The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells.

    Science.gov (United States)

    Wenner, Maria I; Maker, Garth L; Dawson, Linda F; Drummond, Peter D; Mullaney, Ian

    2016-08-01

    Several studies of neuropathic pain have linked abnormal adrenergic signalling to the development and maintenance of pain, although the mechanisms underlying this are not yet fully understood. Metabolomic analysis is a technique that can be used to give a snapshot of biochemical status, and can aid in the identification of the mechanisms behind pathological changes identified in cells, tissues and biological fluids. This study aimed to use gas chromatography-mass spectrometry-based metabolomic profiling in combination with reverse transcriptase-polymerase chain reaction and immunocytochemistry to identify functional α1-adrenergic receptors on cultured N1E-115 mouse neuroblastoma cells. The study was able to confirm the presence of mRNA for the α1D subtype, as well as protein expression of the α1-adrenergic receptor. Furthermore, metabolomic data revealed changes to the metabolite profile of cells when exposed to adrenergic pharmacological intervention. Agonist treatment with phenylephrine hydrochloride (10 µM) resulted in altered levels of several metabolites including myo-inositol, glucose, fructose, alanine, leucine, phenylalanine, valine, and n-acetylglutamic acid. Many of the changes observed in N1E-115 cells by agonist treatment were modulated by additional antagonist treatment (prazosin hydrochloride, 100 µM). A number of these changes reflected what is known about the biochemistry of α1-adrenergic receptor activation. This preliminary study therefore demonstrates the potential of metabolomic profiling to confirm the presence of functional receptors on cultured cells.

  1. Culture of Cells from Amphibian Embryos.

    Science.gov (United States)

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  2. Molluscan cells in culture: primary cell cultures and cell lines.

    Science.gov (United States)

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.

  3. Whole cell entrapment techniques.

    Science.gov (United States)

    Trelles, Jorge A; Rivero, Cintia W

    2013-01-01

    Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).

  4. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  5. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  6. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  7. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  8. Influencing factors of animal cell culture techniques in vitro and strategies of prevention and control in sterile cell laboratory%影响细胞体外培养的因素及无菌环境防控策略

    Institute of Scientific and Technical Information of China (English)

    胡沈荣; 蓝贤勇; 陈宏; 雷初朝

    2012-01-01

    The technology of animal cell culture has a rapid development in the modern biological science. In recent years, this technique from a simple experimental operation has extended to the life sciences, bio-medicine and other research disciplines and production areas, and it has become a widely used technical means. Currently, many biotechnology researches are inseparable from the technology of cell culture. This paper introduces the basic operation of cell culture methods, then mainly introduces the main influencing factors of animal cells culture in vitro, and the strategies of prevention and control in the sterile cell laboratory.%动物细胞培养是现代生物科学中发展十分迅速的一种实验技术.近年来,动物细胞培养技术已从单纯的实验操作扩展到生命科学、生物医药学等多个学科的研究和生产领域,成为广泛采用的技术手段,许多生物技术科学研究都离不开细胞培养.从细胞培养的基本操作方法人手,介绍了影响动物细胞体外培养的主要因素,以及对细胞实验室无菌环境的防控策略.

  9. Diamond Anvil Cell Techniques

    Science.gov (United States)

    Piermarini, Gasper J.

    It has often been said that scientific advances are made either in a dramatic and revolutionary way, or, as in the case of the diamond anvil cell (DAC), in a slow and evolutionary manner over a period of several years. For more than 2 decades, commencing in 1958, the DAC developed stepwise from a rather crude qualitative instrument to the sophisticated quantitative research tool it is today, capable of routinely producing sustained static pressures in the multi-megabar range and readily adaptable to numerous scientific measurement techniques because of its optical accessibility, miniature size, and portability.

  10. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  11. Cell culture's spider silk road.

    Science.gov (United States)

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk.

  12. Culture and transfection of axolotl cells.

    Science.gov (United States)

    Denis, Jean-François; Sader, Fadi; Ferretti, Patrizia; Roy, Stéphane

    2015-01-01

    The use of cells grown in vitro has been instrumental for multiple aspects of biomedical research and especially molecular and cellular biology. The ability to grow cells from multicellular organisms like humans, squids, or salamanders is important to simplify the analyses and experimental designs to help understand the biology of these organisms. The advent of the first cell culture has allowed scientists to tease apart the cellular functions, and in many situations these experiments help understand what is happening in the whole organism. In this chapter, we describe techniques for the culture and genetic manipulation of an established cell line from axolotl, a species widely used for studying epimorphic regeneration.

  13. Collection and culture techniques for gelatinous zooplankton.

    Science.gov (United States)

    Raskoff, Kevin A; Sommer, Freya A; Hamner, William M; Cross, Katrina M

    2003-02-01

    Gelatinous zooplankton are the least understood of all planktonic animal groups. This is partly due to their fragility, which typically precludes the capture of intact specimens with nets or trawls. Specialized tools and techniques have been developed that allow researchers and aquarists to collect intact gelatinous animals at sea and to maintain many of these alive in the laboratory. This paper summarizes the scientific literature on the capture, collection, and culture of gelatinous zooplankton and incorporates many unpublished methods developed at the Monterey Bay Aquarium in the past 15 years.

  14. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  15. General overview of neuronal cell culture.

    Science.gov (United States)

    Gordon, Jennifer; Amini, Shohreh; White, Martyn K

    2013-01-01

    In this introductory chapter, we provide a general overview of neuronal cell culture. This is a rapidly evolving area of research and we provide an outline and contextual framework for the different chapters of this book. These chapters were all contributed by scientists actively working in the field who are currently using state-of-the-art techniques to advance our understanding of the molecular and cellular biology of the central nervous system. Each chapter provides detailed descriptions and experimental protocols for a variety of techniques ranging in scope from basic neuronal cell line culturing to advanced and specialized methods.

  16. Successful culture techniques for Helicobacter species: general culture techniques for Helicobacter pylori.

    Science.gov (United States)

    Whitmire, Jeannette M; Merrell, D Scott

    2012-01-01

    Half of the world's population is persistently infected with Helicobacter pylori. The chronicity of this infection ultimately elicits clinical manifestations ranging from gastritis and peptic ulcers to adenocarcinoma and MALT lymphoma. Laboratory research following the initial observations of Helicobacter species was greatly hindered by an inability to isolate and culture the bacteria. Thus, the ability to culture bacterial species from this genus is an extremely important step in expanding clinical knowledge and development of therapies. This chapter describes successful techniques for culturing H. pylori on selective horse blood agar media and in Brucella broth liquid media. Additionally, the specific growth requirements of other Helicobacter species are noted.

  17. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R;

    2003-01-01

    A streamlined, simple technique for primary cell culture from E17 rat tissue is presented. In an attempt to standardize culturing methods for all neuronal cell types in the embryo, we evaluated a commercial medium without serum and used similar times for trypsinization and tested different surfaces...... for plating. In 1 day, using one method and a single medium, it is possible to produce robust E17 cultures of dorsal root ganglia (DRG), cerebellum, and enteric plexi. Allowing the endogenous glial cells to repopulate the cultures saves time compared with existing techniques, in which glial cells are added...... to cultures first treated with antimitotic agents. It also ensures that all the cells present in vivo will be present in the culture. Myelination commences after approximately 2 weeks in culture for dissociated DRG and 3-4 weeks in cerebellar cultures. In enteric cultures, glial wrapping of the enteric...

  18. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    Directory of Open Access Journals (Sweden)

    Parvaneh Farzaneh

    2012-01-01

    Full Text Available One of the main problems in cell culture is mycoplasma infection. It can extensively affectcell physiology and metabolism. As the applications of cell culture increase in research,industrial production and cell therapy, more concerns about mycoplasma contaminationand detection will arise. This review will provide valuable information about: 1. the waysin which cells are contaminated and the frequency and source of mycoplasma species incell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importanceof mycoplasma tests in cell culture; 4. different methods to identify mycoplasmacontamination; 5. the consequences of mycoplasma contamination in cell culture and 6.available methods to eliminate mycoplasma contamination. Awareness about the sourcesof mycoplasma and pursuing aseptic techniques in cell culture along with reliable detectionmethods of mycoplasma contamination can provide an appropriate situation to preventmycoplasma contamination in cell culture.

  19. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)

    1982-01-01

    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  20. Cell Phone Detection Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phone’s electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  1. Detection of Chlamydia in the peripheral blood cells of normal donors using in vitro culture, immunofluorescence microscopy and flow cytometry techniques

    Directory of Open Access Journals (Sweden)

    Andrzejewski Chester

    2006-02-01

    Full Text Available Abstract Background Chlamydia trachomatis (Ct and Chlamydia pneumoniae (Cp are medically significant infectious agents associated with various chronic human pathologies. Nevertheless, specific roles in disease progression or initiation are incompletely defined. Both pathogens infect established cell lines in vitro and polymerase chain reaction (PCR has detected Chlamydia DNA in various clinical specimens as well as in normal donor peripheral blood monocytes (PBMC. However, Chlamydia infection of other blood cell types, quantification of Chlamydia infected cells in peripheral blood and transmission of this infection in vitro have not been examined. Methods Cp specific titers were assessed for sera from 459 normal human donor blood (NBD samples. Isolated white blood cells (WBC were assayed by in vitro culture to evaluate infection transmission of blood cell borne chlamydiae. Smears of fresh blood samples (FB were dual immunostained for microscopic identification of Chlamydia-infected cell types and aliquots also assessed using Flow Cytometry (FC. Results ELISA demonstrated that 219 (47.7% of the NBD samples exhibit elevated anti-Cp antibody titers. Imunofluorescence microscopy of smears demonstrated 113 (24.6% of samples contained intracellular Chlamydia and monoclonals to specific CD markers showed that in vivo infection of neutrophil and eosinophil/basophil cells as well as monocytes occurs. In vitro culture established WBCs of 114 (24.8% of the NBD samples harbored infectious chlamydiae, clinically a potentially source of transmission, FC demonstrated both Chlamydia infected and uninfected cells can be readily identified and quantified. Conclusion NBD can harbor infected neutrophils, eosinophil/basophils and monocytes. The chlamydiae are infectious in vitro, and both total, and cell type specific Chlamydia carriage is quantifiable by FC.

  2. Cell culture purity issues and DFAT cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shengjuan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Bergen, Werner G. [Program in Cellular and Molecular Biosciences/Department of Animal Sciences, Auburn University, Auburn, AL 36849 (United States); Hausman, Gary J. [Animal Science Department, University of Georgia, Athens, GA 30602-2771 (United States); Zan, Linsen, E-mail: zanls@yahoo.com.cn [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Dodson, Michael V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  3. Cell culture purity issues and DFAT cells.

    Science.gov (United States)

    Wei, Shengjuan; Bergen, Werner G; Hausman, Gary J; Zan, Linsen; Dodson, Michael V

    2013-04-12

    Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  4. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  5. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  6. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  7. Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

    KAUST Repository

    Limongi, Tania

    2014-12-12

    Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

  8. The matter of technique. Cultural and aesthetic variants

    Directory of Open Access Journals (Sweden)

    Juan Diego Parra Valencia

    2014-12-01

    Full Text Available This paper, thinking about technique, runs several scenarios that integrate forms of apprehension of the human and its integration into the cultural evolution. The technique overlaps the use of objects and devices, as well as coding systems that allow a social articulation of a zitgeist of the the contemporary, whether at a discursive level or in the socio-economic and cultural practices. This paper aims to present an overview about contemporary meanings of the concept of technique, based on etymological details and historical contextualization in order to find a functional transversality linking it to aesthetic axes in an expanded sense, defining a cultural appropriation of the phenomenon .

  9. Learning about Cells as Dynamic Entities: An Inquiry-Driven Cell Culture Project

    Science.gov (United States)

    Palombi, Peggy Shadduck; Jagger, Kathleen Snell

    2008-01-01

    Using cultured fibroblast cells, undergraduate students explore cell division and the responses of cultured cells to a variety of environmental changes. The students learn new research techniques and carry out a self-designed experiment. Through this project, students enhance their creative approach to scientific inquiry, learn time-management and…

  10. Fundamentals of microfluidic cell culture in controlled microenvironments.

    Science.gov (United States)

    Young, Edmond W K; Beebe, David J

    2010-03-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology.

  11. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  12. LIF-Free Embryonic Stem Cell Culture in Simulated Microgravity

    OpenAIRE

    Yumi Kawahara; Tomotaka Manabe; Masaya Matsumoto; Teruyuki Kajiume; Masayasu Matsumoto; Louis Yuge

    2009-01-01

    BACKGROUND: Leukemia inhibitory factor (LIF) is an indispensable factor for maintaining mouse embryonic stem (ES) cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required. METHODOLOGY/PRINCIPAL FINDINGS: We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and...

  13. LIF-free embryonic stem cell culture in simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Yumi Kawahara

    Full Text Available BACKGROUND: Leukemia inhibitory factor (LIF is an indispensable factor for maintaining mouse embryonic stem (ES cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required. METHODOLOGY/PRINCIPAL FINDINGS: We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and serum-free media without LIF. CONCLUSIONS/SIGNIFICANCE: Here we show that simulated microgravity allows novel LIF-free and animal derived material-free culture methods for mouse ES cells.

  14. Defining viability in mammalian cell cultures

    OpenAIRE

    Browne, Susan M.; Al-Rubeai, Mohamed

    2011-01-01

    Abstract A large number of assays are available to monitor viability in mammalian cell cultures with most defining loss of viability as a loss of plasma membrane integrity, a characteristic of necrotic cell death. However, the majority of cultured cells die by apoptosis and early apoptotic cells, although non-viable, maintain an intact plasma membrane and are thus ignored. Here we measure the viability of cultures of a number of common mammalian cell lines by assays that measure me...

  15. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  16. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  17. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    Science.gov (United States)

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered.

  18. Laser-based direct-write techniques for cell printing.

    Science.gov (United States)

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2010-09-01

    Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.

  19. Laser-based direct-write techniques for cell printing

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Nathan R; Corr, David T [Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States); Huang Yong [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Raof, Nurazhani Abdul; Xie Yubing [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY (United States); Chrisey, Douglas B, E-mail: schien@rpi.ed, E-mail: chrisd@rpi.ed [Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2010-09-15

    Fabrication of cellular constructs with spatial control of cell location ({+-}5 {mu}m) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  20. Cell density monitoring and control of microencapsulated CHO cell cultures

    OpenAIRE

    Cole, Harriet Emma

    2015-01-01

    Though mammalian cells play a key role in the manufacturing of recombinant glycosylated proteins, cell cultures and productivity are limited by the lack of suitable systems to enable stable perfusion culture. Microencapsulation, or entrapping cells within a semi-permeable membrane, offers the potential to generate high cell density cultures and improve the productivity by mimicking the cells natural environment. However, the cells being secluded by the microcapsules membrane are difficult to ...

  1. Cell Culture as an Alternative in Education.

    Science.gov (United States)

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  2. Enzymatic Cell Isolation and Explant Cultures of Rat Calvarial Osteoblast Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two culture methods. The biologic characteristics of tbs osteoblast cells were studied via cell number counting,morphology observation, alkaline phosphatase staining of the cells and alizarine- red staining of the calcified nodules. The results show that osteoblast cells can be cultured in vitro via collagenase digestion method and explant technique, and the obtained cells are of good biologic characteristics. In comparison with the explant techniqne,the operative procedure of the enzymatic digestion method is more complicated. The digestion time must be carefully controlled. However, with this method, one can obtain a lager number of cells in a short time. The operative procedure of the explant technique is simpler, but it usually takes longer time to obtain cells of desirable number.

  3. Primary Culture of Porcine Pancreatic Acinar Cells

    OpenAIRE

    2001-01-01

    OBJECTIVE: To develop a method for the primary culture of porcine pancreatic acinar cells. INTERVENTIONS: Dispersed pancreatic acinar cells available utilizing RPMI-1640 medium containing collagenase III. After purification, the isolated acinar cells were cultured in RPMI-1640 medium with the addition of 2.5% fetal bovine serum. MAIN OUTCOME MEASURES: The morphological characteristics of acinar cells were described. (3)H-thymidine incorporation of acinar cells and the activity of amylase or l...

  4. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    cells, neuronal cells, astrocytes cultures and brain slices. The microfluidic system provides efficient nutrient delivery, waste removal, access to oxygen, fine control over the neurochemical environment and access to modern microscopy. Additionally, the setup consists of an in vitro culturing......The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings...... and electrochemical sensor system that enables real time detection of metabolites, e.g. dopamine from cell cultures and brain slices. In summary we present results on culturing of brain slices and cells in the microfluidic system as well as on the incorporation of an electrochemical sensor system for characterization...

  5. Primary Culture of Porcine Pancreatic Acinar Cells

    Directory of Open Access Journals (Sweden)

    Zhao X

    2001-03-01

    Full Text Available OBJECTIVE: To develop a method for the primary culture of porcine pancreatic acinar cells. INTERVENTIONS: Dispersed pancreatic acinar cells available utilizing RPMI-1640 medium containing collagenase III. After purification, the isolated acinar cells were cultured in RPMI-1640 medium with the addition of 2.5% fetal bovine serum. MAIN OUTCOME MEASURES: The morphological characteristics of acinar cells were described. (3H-thymidine incorporation of acinar cells and the activity of amylase or lipase were determined during the culture process. RESULTS: There were no remarkable morphological changes in the pancreatic acinar cells during the 20 days culture. The acini showed a tendency to gather but did not attach to the walls of the culture disks. A good (3H-thymidine incorporation of acinar cells in the primary culture was maintained. The secretion of amylase or lipase from the acini decreased with the length of time of the culture. DISCUSSION: The primary culture of acinar cells from a porcine pancreas which was carried out in this study maintained the normal morphology of the acinar cells and their ability to grow but not their secretion of amylase or lipase. The method would benefit by the further experiments on acini of porcine pancreas.

  6. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids.

    Directory of Open Access Journals (Sweden)

    Cynthia A Batchelder

    Full Text Available Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.

  7. Microfluidic cardiac cell culture model (μCCCM).

    Science.gov (United States)

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  8. Isolation and culture of sinus node cells and identification of patch clamp technique in neonatal rabbits%乳兔窦房结细胞的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    刘如秀; 刘宇; 汪艳丽; 彭杰; 徐利亚

    2013-01-01

    Objective To summarize the isolation, purification, culture and identification of sinus node cells ( SNC ) in neonatal rabbits. Methods New Zealand neonatal rabbits ( n=5 ) were selected and from them SNC were digested and isolated by using dual anzymolysis. The isolated SNC were purified and cultured by using differential adherence combining 5-BrdU. The morphological changes of SNC were observed and action potential was recorded by using patch clamp technique. Results The morphological forms of cultured SNC were mainly spindle cells, triangular cells and irregular cells and fusiformis was the most with the fastest beating rate, which was accorded with the characteristics of SNC. Among action potential recorded from 10 spindle cells by patch clamp technique, the average maximum diastolic potential was ( -50.9 ± 5.3 ) mV and amplitude of action potential was ( 61.9 ±4.8 ) mV. Conclusion The active condition of SNC digested, isolated and purified by using dual enzymolysis, differential adherenc and 5-BrdU are quite good with typical action potential.%目的 乳兔窦房结细胞(sinus node cell,SNC)的分离、纯化、培养与鉴定.方法 选用新生新西兰乳兔5只,采用双酶解法对细胞进行消化分离,差速贴壁结合5-BrdU对分离的细胞进行纯化培养,观察SNC形态变化并采用全细胞膜片钳技术对SNC进行动作电位的记录.结果 培养得到的SNC主要有3种形态:梭形、三角形与不规则形,而梭形细胞最多,搏动频率最快,符合窦房结细胞的特征.采用膜片钳技术记录10个梭形细胞的动作电位中,平均最大舒张电位为(-50.9±5.3)mV,动作电位幅度为(61.9±4.8)mV.结论 采用双酶解、差速贴壁及BrdU对乳兔窦房结细胞进行消化、分离可得到纯化的SNC,此种方法得到的SNC状态活性良好,且具有典型特征的动作电位.

  9. Cell Suspension Culture of Neem Tree

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The establishment of suspension culture system for neem (Azadirachta indica A. Juss) cells and the suspension culture condition was studied. It shows that the neem cell suspension culture system was best in B5 liquid medium, 2.0~4.0mg/L NAA with direct spill method. Based on the integrated analysis of cell biomass, Azadirachtin content and productivity, the optimum culture conditions were B5 liquid medium, 2.0-4.0 mg/L NAA, 3% sucrose at 25 ℃. The optimum rotating speed of the shaker and broth content d...

  10. Embryonic Stem Cells: Isolation, Characterization and Culture

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  11. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sui-Yi Xu

    2012-01-01

    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  12. [Effects of beryllium chloride on cultured cells].

    Science.gov (United States)

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M

    1984-05-01

    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  13. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  14. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  15. Autofluorescence of viable cultured mammalian cells.

    Science.gov (United States)

    Aubin, J E

    1979-01-01

    The autofluorescence other than intrinsic protein emission of viable cultured mammalian cells has been investigated. The fluorescence was found to originate in discrete cytoplasmic vesicle-like regions and to be absent from the nucleus. Excitation and emission spectra of viable cells revealed at least two distinct fluorescent species. Comparison of cell spectra with spectra of known cellular metabolites suggested that most, if not all, of the fluorescence arises from intracellular nicotinamide adenine dinucleotide (NADH) and riboflavin and flavin coenzymes. Various changes in culture conditions did not affect the observed autofluorescence intensity. A multiparameter flow system (MACCS) was used to compare the fluorescence intensities of numerous cultured mammalian cells.

  16. Emulsions Containing Perfluorocarbon Support Cell Cultures

    Science.gov (United States)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  17. Cell culture processes for monoclonal antibody production

    OpenAIRE

    LI Feng; Vijayasankaran, Natarajan; Shen, Amy (Yijuan); Kiss, Robert; Amanullah, Ashraf

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including (1) cell lines capable of synthesizin...

  18. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    Science.gov (United States)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  19. Comparison of human nasal epithelial cells grown as explant outgrowth cultures or dissociated tissue cultures in vitro.

    Science.gov (United States)

    Jiao, Jian; Meng, Na; Wang, Hong; Zhang, Luo

    2013-12-01

    The purpose of this study was to compare cell growth characteristics, ciliated cell differentiation, and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures. Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods. Epithelial cell growth characteristics were observed by inverted phase contrast microscopy. Ciliated cell differentiation was detected by β-tubulin IVand ZO-1 immunocytochemistry. Basal and ATP-stimulated ciliary beat frequency (CBF) was measured using a highspeed digital microscopic imaging system. Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition, with both types of cultures comprising ciliated and non-ciliated epithelial cells. Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures. In both culture systems, the highest ciliated cell density appeared at 7th-10th culture day and declined with time, with the lifespan of ciliated cells ranging from 14 to 21 days. Overall, 10% of the cells in explant cultures and 20% of the cells in the dissociated tissue cultures were ciliated. These two cultures demonstrated similar ciliary beat frequency values at baseline (7.78 ± 1.99 Hz and 7.91 ± 2.52 Hz, respectively) and reacted equivalently following stimulation with 100 μM ATP. The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells, which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.

  20. Is cell culture a risky business? Risk analysis based on scientist survey data.

    Science.gov (United States)

    Shannon, Mark; Capes-Davis, Amanda; Eggington, Elaine; Georghiou, Ronnie; Huschtscha, Lily I; Moy, Elsa; Power, Melinda; Reddel, Roger R; Arthur, Jonathan W

    2016-02-01

    Cell culture is a technique that requires vigilance from the researcher. Common cell culture problems, including contamination with microorganisms or cells from other cultures, can place the reliability and reproducibility of cell culture work at risk. Here we use survey data, contributed by research scientists based in Australia and New Zealand, to assess common cell culture risks and how these risks are managed in practice. Respondents show that sharing of cell lines between laboratories continues to be widespread. Arrangements for mycoplasma and authentication testing are increasingly in place, although scientists are often uncertain how to perform authentication testing. Additional risks are identified for preparation of frozen stocks, storage and shipping.

  1. Insect cell culture in reagent bottles.

    Science.gov (United States)

    Rieffel, S; Roest, S; Klopp, J; Carnal, S; Marti, S; Gerhartz, B; Shrestha, B

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:•Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.•Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.•Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors.

  2. A new in vitro fertilization technique: intravaginal culture.

    Science.gov (United States)

    Ranoux, C; Aubriot, F X; Dubuisson, J B; Cardone, V; Foulot, H; Poirot, C; Chevallier, O

    1988-04-01

    Intravaginal culture (IVC) is a new technique elaborated by the authors for the fertilization and culture of human oocytes. Its principle consists of fertilization and early development of the eggs in a closed, air-free milieu without the addition of CO2. One to five ovocytes are deposited in a tube completely filled with 3 ml of culture medium less than 1 hour after their recovery, with 10,000 to 20,000 spermatozoa per ml previously prepared. The tube is then hermetically closed and it is placed in the maternal vagina and held by a diaphragm for incubation for 44 to 50 hours. After this time, the content of the tube is examined and embryos are transferred to the uterus. In the first 100 consecutive punctures, 22 clinical pregnancies were obtained: 17 deliveries, 3 spontaneous abortions, and 2 tubal pregnancies. Also, a randomized study comparing IVC to in vitro fertilization (IVF) was done (160 cycles) and no statistically different cleavage, transfer, or pregnancy rate was seen between IVC and IVF. By simplifying the laboratory manipulations, this technique decreases the cost of IVF and permits its standardization and diffusion. It creates a psychologic comfort permitting active participation of the mother in this stage of embryo development. Also, the use of this technique may give greater knowledge of human gamete metabolism and of the physiology of reproduction.

  3. Innovation for reducing blood culture contamination: initial specimen diversion technique.

    Science.gov (United States)

    Patton, Richard G; Schmitt, Timothy

    2010-12-01

    We hypothesized that diversion of the first milliliter of venipuncture blood-the initial specimen diversion technique (ISDT)-would eliminate incompletely sterilized fragments of skin from the culture specimen and significantly reduce our blood culture contamination rate (R). We studied our hypothesis prospectively beginning with our control culture (C) definition: one venipuncture with two sequentially obtained specimens, 10 ml each, the first specimen (M1) for aerobic and the second (M2) for anaerobic media. The test ISDT culture (D) was identical, with the exception that each was preceded by diverting a 1-ml sample (DS) from the same venipuncture. During the first of two sequential 9-month periods, we captured D versus C data (n=3,733), where DMXR and CMXR are R for D and C specimens. Our hypothesis predicted DS would divert soiled skin fragments from DM1, and therefore, CM1R would be significantly greater than DM1R. This was confirmed by CM1R (30/1,061 [2.8%]) less DM1R (37/2,672 [1.4%]; P=0.005), which equals 1.4%. For the second 9-month follow-up period, data were compiled for all cultures (n=4,143), where ADMXR is R for all (A) diversion specimens, enabling comparison to test ISDT. Our hypothesis predicted no significant differences for test ISDT versus all ISDT. This was confirmed by DM1R (37/2,672 [1.4%]) versus ADM1R (42/4,143 [1.0%]; P=0.17) and DM2R (21/2,672 [0.80%]) versus ADM2R (39/4,143 [0.94%]; P=0.50). We conclude that our hypothesis is valid: venipuncture needles soil blood culture specimens with unsterilized skin fragments and increase R, and ISDT significantly reduces R from venipuncture-obtained blood culture specimens.

  4. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  5. Porcine mitral valve interstitial cells in culture.

    Science.gov (United States)

    Lester, W; Rosenthal, A; Granton, B; Gotlieb, A I

    1988-11-01

    There are connective tissue cells present within the interstitium of the heart valves. This study was designed to isolate and characterize mitral valve interstitial cells from the anterior leaflet of the mitral valve. Explants obtained from the distal part of the leaflet, having been scraped free of surface endocardial cells, were incubated in medium 199 supplemented with 10% fetal bovine serum. Cells grew out of the explant after 3 to 5 days and by 3 weeks these cells were harvested and passaged. Passages 1 to 22 were characterized in several explant sets. The cells showed a growth pattern reminiscent of fibroblasts. Growth was dependent on serum concentration. Cytoskeletal localization of actin and myosin showed prominent stress fibers. Ultrastructural studies showed many elongated cells with prominent stress fibers and some gap junctions and few adherens junctions. There were as well cells with fewer stress fibers containing prominent Golgi complex and dilated endoplasmic reticulum. In the multilayered superconfluent cultures, the former cells tended to be on the substratum of the dish or surface of the multilayered culture, whereas the latter was generally located within the layer of cells. Extracellular matrix was prominent in superconfluent cultures, often within the layers as well. Labeling of the cells with antibody HHF 35 (Tsukada T, Tippens D, Gordon D, Ross R, Gown AM: Am J Pathol 126:51, 1987), which recognizes smooth muscle cell actin, showed prominent staining of the elongated stress fiber-containing cells and much less in the secretory type cells. These studies show that interstitial mitral valve cells can be grown in culture and that either two different cell types or one cell type with two phenotypic expressions is present in culture.

  6. Cloning higher plants from aseptically cultured tissues and cells

    Science.gov (United States)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  7. Measurement and analysis of calcium signaling in heterogeneous cell cultures.

    Science.gov (United States)

    Richards, Gillian R; Jack, Andrew D; Platts, Amy; Simpson, Peter B

    2006-01-01

    High-content imaging platforms capable of studying kinetic responses at a single-cell level have elevated kinetic recording techniques from labor-intensive low-throughput experiments to potential high-throughput screening assays. We have applied this technology to the investigation of heterogeneous cell cultures derived from primary neural tissue. The neuronal cultures mature into a coupled network and display spontaneous oscillations in intracellular calcium, which can be modified by the addition of pharmacological agents. We have developed algorithms to perform Fourier analysis and quantify both the degree of synchronization and the effects of modulators on the oscillations. Functional and phenotypic experiments can be combined using this approach. We have used post-hoc immunolabeling to identify subpopulations of cells in cocultures and to dissect the calcium responses of these cells from the population response. The combination of these techniques represents a powerful tool for drug discovery.

  8. Susceptibility of testicular cell cultures of crab, Scylla serrata (Forskal) to white spot syndrome virus.

    Science.gov (United States)

    Shashikumar, Anumol; Desai, P V

    2013-03-01

    Testicular cell culture of crab, Scylla serrata (Forskal) was used to study the effects of White spot syndrome virus (WSSV). We are showing the susceptibility of cell culture of crabs to WSSV. The proliferating cell culture of testes were maintained for more than 4 months in a medium prepared from L15 and crab saline supplemented with epidermal growth factor. The cell cultures inoculated with different concentrations of virus showed distinct cytopathic effects such as change in cell appearance, shrinkage and cell lysis. WSSV infection of cultured cells was confirmed by Nested PCR technique. The incorporation of viral DNA in cultured cells was shown by RAPD profile generated using 10-mer primers. The controls that were not exposed to WSSV did not show cytopathic effects. This work shows the usefulness of proliferating testicular cell culture for studying WSSV infection using molecular tools. Thus, this report gains significance as it opens new vistas for diagnostics and drugs for WSSV.

  9. On techniques to integrate cultural learning within English language teaching classrooms

    Institute of Scientific and Technical Information of China (English)

    王丹邱

    2015-01-01

    Culture is inseparable from language teaching and learning. Learning the target culture may arouse students’cultural awareness and avoid cultural misunderstanding in cross-cultural communications. It is important to integrate cultural learning within English language classrooms. This essay discusses the techniques of achieving this integration.

  10. Virus Elimination from Ornamental Plants Using in vitro Culture Techniques

    Directory of Open Access Journals (Sweden)

    Snežana Milošević

    2012-01-01

    Full Text Available Viruses are responsible for numerous epidemics in different crops in all parts of the world.As a consequence of their presence great economic losses are being incurred. In addition tothe development of sensitive techniques for detection, identification and characterization ofviruses, substantial attention has also been paid to biotechnological methods for their eliminationfrom plants. In this review article, the following biotechnological in vitro culture techniquesfor virus elimination from ornamental plants are presented: meristem culture, thermotherapy,chemotherapy, cryotherapy or a combination of these methods. The plant species,as well as the type of virus determine the choice of a most suitable method. The state ofthe art in investigation of virus elimination from Impatiens sp. in Serbia is summarized.

  11. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  12. Wound Coverage by Cultured Skin Cells

    Science.gov (United States)

    1988-11-01

    and spread. 6 We later coated collagen sponges with human or porcine plasma. Although this coating improved the plating of epidermal cells, it did not...healing by cultured epidermal grafts, we have found that: - We were able to grow epidermal cells on collapsed collagen sponges . As a result, we can create...plastic. Epidermal cells grown on collagen sponges formed four to five layers of nucleated cells, compared to only one layer on plastic surfaces. The use of

  13. Analytical techniques applied to study cultural heritage objects

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N., E-mail: rizzutto@if.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  14. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    Science.gov (United States)

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  15. Maintenance of mesenchymal stem cells culture due to the cells with reduced attachment rate

    Directory of Open Access Journals (Sweden)

    Shuvalova N. S.

    2013-01-01

    Full Text Available Aim. The classic detachment techniques lead to changes in cells properties. We offer a simple method of cultivating the population of cells that avoided an influence on the surface structures. Methods. Mesenchymal stem cells (MSC from human umbilical cord matrix were obtained and cultivated in standard conditions. While substituting the culture media by a fresh portion, the conditioned culture medium, where the cells were maintained for three days, was transferred to other culture flacks with addition of serum and growth factors. Results. In the flacks, one day after medium transfer, we observed attached cells with typical MSC morphology. The cultures originated from these cells had the same rate of surface markers expression and clonogenic potential as those replated by standard methods. Conclusions. MSC culture, derived by preserving the cells with reduced attachment ability, actually has the properties of «parent» passage. Using this method with accepted techniques of cells reseeding would allow maintaining the cells that avoided an impact on the cell surface proteins.

  16. Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocytes.

    Science.gov (United States)

    Föllmann, W; Weber, S; Birkner, S

    2000-10-01

    Epithelial cells from bovine colon were isolated by mechanical preparation combined with an enzymatic digestion from colon specimens derived from freshly slaughtered animals. After digestion with collagenase I, the isolated tissue was centrifuged on a 2% D-sorbitol gradient to separate epithelial crypts which were seeded in collagen I-coated culture flasks. By using colon crypts and omitting the seeding of single cells a contamination by fibroblasts was prevented. The cells proliferated under the chosen culture conditions and formed monolayer cultures which were maintained for several weeks, including subcultivation steps. A population doubling time of about 21 hr was estimated in the log phase of the corresponding growth curve. During the culture period the cells were characterized morphologically and enzymatically. By using antibodies against cytokeratine 7 and 13 the isolated cells were identified as cells of epithelial origin. Antibodies against vimentin served as negative control. Morphological features such as microvilli, desmosomes and tight junctions, which demonstrated the ability of the cultured cells to restore an epithelial like monolayer, were shown by ultrastructural investigations. The preservation of the secretory function of the cultured cells was demonstrated by mucine cytochemistry with alcian blue staining. A stable expression of enzyme activities over a period of 6 days in culture occurred for gamma-glutamyltranspeptidase, acid phosphatase and NADH-dehydrogenase activity under the chosen culture conditions. Activity of alkaline phosphatase decreased to about 50% of basal value after 6 days in culture. Preliminary estimations of the metabolic competence of these cells revealed cytochrome P450 1A1-associated EROD activity in freshly isolated cells which was stable over 5 days in cultured cells. Then activity decreased completely. This culture system with primary epithelial cells from the colon will be used further as a model for the colon

  17. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  18. Objective Assessments of Temperature Maintenance Using In Vitro Culture Techniques

    OpenAIRE

    Cooke, Simon; Tyler, John P. P.; Driscoll, Geoff

    2002-01-01

    Purpose: To assess the ability of various facets of embryo culture (microscope stage warmers, volumes of culture media, culture vessel lids, and type of culture incubator) to maintain a constant temperature in vitro.

  19. Riverside Population in Amazon: Culture, Environment and Construction Technique

    Directory of Open Access Journals (Sweden)

    Célia Regina Moretti Meirelles

    2016-12-01

    Full Text Available This article´s objective is to study the construction techniques of the riverside dwellers in the Amazon rainforest. The studied communities are located in the banks of the Solimões River, and suffer with the constant floods and physical phenomena related to the region environment. An ecosystem of thunderous natural forces, which makes it harder the importation of approaches from other regions as alternatives to the Amazon rainforest. As a method of research and understanding of the problematics, an assessment of the riverside communities in the city of Manacapuru and in two rural communities was carried out, surveying the cultural, social, and environmental characteristics of each community, and surveying the local constructive characteristics, materials and vernacular techniques. In the conclusion, we observed that: the relevance of a joint action to understand the wood and the housing durability, expanding the life cycle of the river buildings and reducing the impact on the rainforest. Regarding thermic comfort, it is important to redeem the bioclimatic techniques of crossed ventilation and to highlight the relevancy of sustainable techniques that work with local materials, such as natural fibers

  20. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  1. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific productivit

  2. Pitfalls in cell culture work with xanthohumol.

    Science.gov (United States)

    Motyl, M; Kraus, B; Heilmann, J

    2012-01-01

    Xanthohumol, the most abundant prenylated chalcone in hop (Humulus lupulus L.) cones, is well known to exert several promising pharmacological activities in vitro and in vivo. Among these, the chemopreventive, anti-inflammatory and anti-cancer effects are probably the most interesting. As xanthohumol is hardly soluble in water and able to undergo conversion to isoxanthohumol we determined several handling characteristics for cell culture work with this compound. Recovery experiments revealed that working with xanthohumol under cell culture conditions requires a minimal amount of 10% FCS to increase its solubility to reasonable concentrations (-50-75 micromol/l) for pharmacological in vitro tests. Additionally, more than 50% of xanthohumol can be absorbed to various plastic materials routinely used in the cell culture using FCS concentrations below 10%. In contrast, experiments using fluorescence microscopy in living cells revealed that detection of cellular intake of xanthohumol is hampered by concentrations above 1% FCS.

  3. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  4. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  5. Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE.

    Science.gov (United States)

    Waters, Sinéad M; Murphy, Richard A; Power, Ronan F G

    2006-08-01

    Undefined Nurmi-type cultures (NTCs) have been used successfully to prevent salmonella colonisation in poultry for decades. Such cultures are derived from the caecal contents of specific-pathogen-free birds and are administered via drinking water or spray application onto eggs in the hatchery. These cultures consist of many non-culturable and obligately anaerobic bacteria. Due to their undefined nature it is difficult to obtain approval from regulatory agencies to use these preparations as direct fed microbials for poultry. In this study, 10 batches of prototype NTCs were produced using an identical protocol over a period of 2 years. Traditional microbiological techniques and a molecular culture-independent methodology, polymerase chain reaction combined with denaturing gradient gel electrophoresis (PCR-DGGE), were applied to characterise these cultures and also to examine if the constituents of the NTCs were identical. Culture-dependent analysis of these cultures included plating on a variety of selective and semi-selective agars, examination of colony morphology, Gram-staining and a series of biochemical tests (API, BioMerieux, France). Two sets of PCR-DGGE studies were performed. These involved the amplification of universal and subsequently lactic acid bacteria (LAB)-specific hypervariable regions of a 16S rRNA gene by PCR. Resultant amplicons were subjected to DGGE. Sequence analysis was performed on subsequent bands present in resultant DGGE profiles using the Basic Local Alignment Search Tool (BLAST). Microbiological culturing techniques tended to isolate common probiotic bacterial species from the genera Lactobacillus, Lactococcus, Bifidobacterium, Enterococcus, Clostridium, Escherichia, Pediococcus and Enterobacterium as well as members of the genera, Actinomyces, Bacteroides, Propionibacterium, Capnocytophaga, Proteus, and Klebsiella. Bacteroides, Enterococcus, Escherichia, Brevibacterium, Klebsiella, Lactobacillus, Clostridium, Bacillus, Eubacterium

  6. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models.

    Science.gov (United States)

    Costa, Elisabete C; Gaspar, Vítor M; Coutinho, Paula; Correia, Ilídio J

    2014-08-01

    Three-dimensional (3D) cell culture models of solid tumors are currently having a tremendous impact in the in vitro screening of candidate anti-tumoral therapies. These 3D models provide more reliable results than those provided by standard 2D in vitro cell cultures. However, 3D manufacturing techniques need to be further optimized in order to increase the robustness of these models and provide data that can be properly correlated with the in vivo situation. Therefore, in the present study the parameters used for producing multicellular tumor spheroids (MCTS) by liquid overlay technique (LOT) were optimized in order to produce heterogeneous cellular agglomerates comprised of cancer cells and stromal cells, during long periods. Spheroids were produced under highly controlled conditions, namely: (i) agarose coatings; (ii) horizontal stirring, and (iii) a known initial cell number. The simultaneous optimization of these parameters promoted the assembly of 3D characteristic cellular organization similar to that found in the in vivo solid tumors. Such improvements in the LOT technique promoted the assembly of highly reproducible, individual 3D spheroids, with a low cost of production and that can be used for future in vitro drug screening assays.

  7. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    Science.gov (United States)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  8. Controlled shear filtration: A novel technique for animal cell separation.

    Science.gov (United States)

    Vogel, J H; Kroner, K H

    1999-06-20

    A novel rotary microfiltration technique specifically suited for the separation of animal cells has been developed. The concept allows the independent adjustment of wall shear stress, transmembrane pressure, and residence time, allowing straightforward optimization of the microfiltration process. By using a smooth, conically shaped rotor, it is possible to establish a controlled shear field in which animal cells experience a significant hydrodynamic lift away from the membrane surface. It is shown in preliminary experiments that shear-induced cell-rupture speeds up membrane clogging and that cell debris poses the most significant problem in harvesting of BHK cell cultures by dynamic microfiltration. However, a threshold value of shear stability exists which depends on the frequency of passing the shear field, the residence time in the shear field, as well as on cell status. By operating close to this threshold value, cell viability can be maintained while concentration polarization is efficiently minimized. By applying this concept, it is possible to attain flux rates several times higher compared to conventional crossflow filtration. Controlled shear filtration (CSF) can be used for batch harvesting as well as for cell retention in high cell density systems. In batch harvesting of hIL-2 from rBHK cell culture, a constant flux rate of 290 L h-1 m-2 has been adjusted without indication of membrane clogging or fouling.

  9. Fabrication of multi-well chips for spheroid cultures and implantable constructs through rapid prototyping techniques.

    Science.gov (United States)

    Lopa, Silvia; Piraino, Francesco; Kemp, Raymond J; Di Caro, Clelia; Lovati, Arianna B; Di Giancamillo, Alessia; Moroni, Lorenzo; Peretti, Giuseppe M; Rasponi, Marco; Moretti, Matteo

    2015-07-01

    Three-dimensional (3D) culture models are widely used in basic and translational research. In this study, to generate and culture multiple 3D cell spheroids, we exploited laser ablation and replica molding for the fabrication of polydimethylsiloxane (PDMS) multi-well chips, which were validated using articular chondrocytes (ACs). Multi-well ACs spheroids were comparable or superior to standard spheroids, as revealed by glycosaminoglycan and type-II collagen deposition. Moreover, the use of our multi-well chips significantly reduced the operation time for cell seeding and medium refresh. Exploiting a similar approach, we used clinical-grade fibrin to generate implantable multi-well constructs allowing for the precise distribution of multiple cell types. Multi-well fibrin constructs were seeded with ACs generating high cell density regions, as shown by histology and cell fluorescent staining. Multi-well constructs were compared to standard constructs with homogeneously distributed ACs. After 7 days in vitro, expression of SOX9, ACAN, COL2A1, and COMP was increased in both constructs, with multi-well constructs expressing significantly higher levels of chondrogenic genes than standard constructs. After 5 weeks in vivo, we found that despite a dramatic size reduction, the cell distribution pattern was maintained and glycosaminoglycan content per wet weight was significantly increased respect to pre-implantation samples. In conclusion, multi-well chips for the generation and culture of multiple cell spheroids can be fabricated by low-cost rapid prototyping techniques. Furthermore, these techniques can be used to generate implantable constructs with defined architecture and controlled cell distribution, allowing for in vitro and in vivo investigation of cell interactions in a 3D environment.

  10. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  11. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  12. Pinoresinol from Ipomoea cairica cell cultures.

    Science.gov (United States)

    Páska, Csilla; Innocenti, Gabbriella; Ferlin, Mariagrazia; Kunvári, Mónika; László, Miklós

    2002-10-01

    Ipomoea cairica cell cultures produced a tetrahydrofuran lignan, (+)-pinoresinol, identified by UV, IR, MS and NMR methods, not yet found in the intact plant, and new in the Convolvulaceae family. Pinoresinol was found to have antioxidant and Ca2+ antagonist properties. As it could be requested for its biological activity, we examined the possibility to raise the pinoresinol yield of I. cairica cultures, as well as we continued investigations on lignans' response to optimization.

  13. Experimental study of bioartificial liver with cultured human liver cells

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM To establish an extracorporeal bioartificial liver support system (EBLSS) using cultured human liver cells and to study its support effect for fulminant hepatic failure (FHF).METHODS The liver support experiment of EBLSS consisting of aggregates cultured human liver cells, hollow fiber bioreactor, and circulation unit was carried out in dizhepatic dogs.RESULTS The viability of isolated hepatocytes and nonparenchymal liver cells reached 96%. These cells were successfully cultured as multicellular spheroids with synthetic technique. The typical morphological appearance was retained up to the end of the artificial liver experiment. Compared with the control dogs treated with EBLSS without liver cells, the survival time of artificial liver support dogs was significantly prolonged. The changes of blood pressure, heart rate and ECG were slow. Both serum ammonia and lactate levels were significantly lowered at the 3rd h and 5th h. In addition, a good viability of human liver cells was noted after 5 h experiment.CONCLUSION EBLSS playing a metabolic role of cultured human hepatocytes, is capable of compensating the function of the liver, and could provide effective artificial liver support and therapy for patients with FHF.

  14. Reactivity of alveolar epithelial cells in primary culture with type I cell monoclonal antibodies.

    Science.gov (United States)

    Danto, S I; Zabski, S M; Crandall, E D

    1992-03-01

    An understanding of the process of alveolar epithelial cell growth and differentiation requires the ability to trace and analyze the phenotypic transitions that the cells undergo. This analysis demands specific phenotypic probes to type II and, especially, type I pneumocytes. To this end, monoclonal antibodies have been generated to type I alveolar epithelial cells using an approach designed to enhance production of lung-specific clones from a crude lung membrane preparation. The monoclonal antibodies were screened by a combination of enzyme-linked immunosorbent assay and immunohistochemical techniques, with the determination of type I cell specificity resting primarily on immunoelectron microscopic localization. Two of these new markers of the type I pneumocyte phenotype (II F1 and VIII B2) were used to analyze primary cultures of type II cells growing on standard tissue culture plastic and on a variety of substrata reported to affect the morphology of these cells in culture. On tissue culture plastic, the antibodies fail to react with early (days 1 to 3) type II cell cultures. The cells become progressively more reactive with time in culture to a plateau of approximately 6 times background by day 8, with a maximum rate of increase between days 3 and 5. This finding is consistent with the hypothesis that type II cells in primary culture undergo at least partial differentiation into type I cells. Type II cells grown on laminin, which reportedly delays the loss of type II cell appearance, and on fibronectin, which has been reported to facilitate cell spreading and loss of type II cell features, develop the type I cell markers during cultivation in vitro with kinetics similar to those on uncoated tissue culture plastic. Cells on type I collagen and on tissue culture-treated Nuclepore filters, which have been reported to support monolayers with type I cell-like morphology, also increase their expression of the II F1 and VIII B2 epitopes around days 3 to 5. Taken

  15. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Directory of Open Access Journals (Sweden)

    Tali Mass

    Full Text Available The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag~4, the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  16. Computational Swarming: A Cultural Technique for Generative Architecture

    Directory of Open Access Journals (Sweden)

    Sebastian Vehlken

    2014-11-01

    Full Text Available After a first wave of digital architecture in the 1990s, the last decade saw some approaches where agent-based modelling and simulation (ABM was used for generative strategies in architectural design. By taking advantage of the self-organisational capabilities of computational agent collectives whose global behaviour emerges from the local interaction of a large number of relatively simple individuals (as it does, for instance, in animal swarms, architects are able to understand buildings and urbanscapes in a novel way as complex spaces that are constituted by the movement of multiple material and informational elements. As a major, zoo-technological branch of ABM, Computational Swarm Intelligence (SI coalesces all kinds of architectural elements – materials, people, environmental forces, traffic dynamics, etc. – into a collective population. Thereby, SI and ABM initiate a shift from geometric or parametric planning to time-based and less prescriptive software tools.Agent-based applications of this sort are used to model solution strategies in a number of areas where opaque and complex problems present themselves – from epidemiology to logistics, and from market simulations to crowd control. This article seeks to conceptualise SI and ABM as a fundamental and novel cultural technique for governing dynamic processes, taking their employment in generative architectural design as a concrete example. In order to avoid a rather conventional application of philosophical theories to this field, the paper explores how the procedures of such technologies can be understood in relation to the media-historical concept of Cultural Techniques.

  17. [Stem cells and tissue engineering techniques].

    Science.gov (United States)

    Sica, Gigliola

    2013-01-01

    The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.

  18. The influence of organizational culture on the use of quality techniques and its impact on performance

    DEFF Research Database (Denmark)

    Gambi, Lillian; Jørgensen, Frances; Boer, Harry

    2013-01-01

    This report presents the results of a study about the influence of organizational culture on quality techniques and the impact of matching culture and technique to enhance performance. Data were drawn from 250 manufacturing companies in Brazil and Denmark. Profiles were identified according...... to the companies’ cultural characteristics and use of quality techniques. Findings suggest: 1- Certain cultural profiles predict the use of certain quality techniques better than others. For example, companies with a group culture, which is oriented towards collaboration and development of human resources, tend...... to use goal setting and continuous improvement techniques, rather than measurement techniques. In turn, companies that have a rational or hierarchical culture, which are oriented towards control and competition, tend to use measurement techniques more than cultures oriented to collaboration or creation...

  19. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  20. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    Science.gov (United States)

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  1. Production and excretion of secondary metabolites by plant cell cultures of Tagetes.

    NARCIS (Netherlands)

    Buitelaar, R.M.

    1991-01-01

    In this thesis, the results are presented of several approaches to improve the production and excretion of thiophenes by cell cultures or hairy roots of Tagetes spp.In chapter one, most of the techniques to improve the production and/or excretion of secondary metabolites with plant cell cultures are

  2. Solar Cell Calibration and Measurement Techniques

    Science.gov (United States)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  3. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  4. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  5. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  6. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  7. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  8. Effect of Micro Ridges on Orientation of Cultured Cell

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2014-06-01

    Full Text Available The effect of micro ridges on orientation of cultured cells has been studied in vitro. Several patterns of micro ridges have been fabricated on a transparent polydimethylsiloxane disk with the photo lithography technique. The ridges consist of several lines of rectangular column: the width of 0.003 mm, the interval of 0.007 mm. Variation has been made on the height of the ridge between 0.0003 mm and 0.0035 mm. C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse was cultured on the disk with the micro ridges for one week and was observed with an inverted phase contrast microscope. The experimental results show that cells adhere on the top of the ridge and align to the longitudinal direction of the micro ridges with the height between 0.0015 mm and 0.0025 mm.

  9. A modified micro chamber agar spot slide culture technique for microscopic examination of filamentous fungi.

    Science.gov (United States)

    Prakash, Peralam Yegneswaran; Bhargava, Kanika

    2016-04-01

    The slide culture technique aids in the study of undisturbed microscopic morphological details of filamentous fungi. The existing methods for setting up of slide culture are quite cumbersome, time-consuming and require elaborate preparation. We describe a modified and easy to perform micro chamber agar spot slide culture technique.

  10. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.

    Science.gov (United States)

    Stachniak, Tevye J E; Bourque, Charles W

    2006-07-01

    Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.

  11. Development of primary cell cultures using hemocytes and phagocytic tissue cells of Locusta migratoria: an application for locust immunity studies.

    Science.gov (United States)

    Duressa, Tewodros Firdissa; Huybrechts, Roger

    2016-01-01

    Insect cell cultures played central roles in unraveling many insect physiological and immunological processes. Regardless, despite imminent needs, insect cell lines were developed primarily from Dipteran and Lepidopteran orders, leaving many important insects such as Orthopteran locusts under-represented. Besides the lack of cell lines, the slow progress in development of in vitro techniques is attributed to poor communications between different laboratories regarding optimized primary cell cultures. Therefore, we report here about methods developed for primary cell culture of Locusta migratoria hemocyte and phagocytic tissue cells by which we could maintain viable hemocytes in vitro for over 5 d and phagocytic tissue cells for over 12 d. 2-Mercaptoethanol and phenyl-thiourea supplements in Grace's medium together with addition of fetal bovine serum 30 min after cell seeding resulted in a successful setup of the primary cell cultures and a week-long survival of the hemocytes and phagocytic tissue cells in vitro.

  12. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  13. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers.

    Science.gov (United States)

    Eersels, Kasper; van Grinsven, Bart; Khorshid, Mehran; Somers, Veerle; Püttmann, Christiane; Stein, Christoph; Barth, Stefan; Diliën, Hanne; Bos, Gerard M J; Germeraad, Wilfred T V; Cleij, Thomas J; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2015-02-17

    Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.

  14. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal.

    Science.gov (United States)

    Kubota, Hiroshi; Brinster, Ralph L

    2008-01-01

    Spermatogonial stem cells (SSCs), postnatal male germline stem cells, are the foundation of spermatogenesis, during which an enormous number of spermatozoa is produced daily by the testis throughout life of the male. SSCs are unique among stem cells in the adult body because they are the only cells that undergo self-renewal and transmit genes to subsequent generations. In addition, SSCs provide an excellent and powerful model to study stem cell biology because of the availability of a functional assay that unequivocally identifies the stem cell. Development of an in vitro culture system that allows an unlimited supply of SSCs is a crucial technique to manipulate genes of the SSC to generate valuable transgenic animals, to study the self-renewal mechanism, and to develop new therapeutic strategies for infertility. In this chapter, we describe a detailed protocol for the culture of mouse and rat SSCs. A key factor for successful development of the SSC culture system was identification of in vitro growth factor requirements for the stem cell using a defined serum-free medium. Because transplantation assays using immunodeficient mice demonstrated that extrinsic factors for self-renewal of SSCs appear to be conserved among many mammalian species, culture techniques for SSCs of other species, including farm animals and humans, are likely to be developed in the coming 5-10 years.

  15. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  16. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  17. Optical Management Techniques for Organic Solar Cells

    CERN Document Server

    Rajagopal, Adharsh

    2016-01-01

    In this thesis, two different optical management techniques for organics based solar cells are explored. The first part is focused on the development of a textured rear reflector for OPVs. The use of textured reflector (TR) facilitates an increase in the optical path length along with light trapping within the active layer. TR was fabricated through a relatively simpler technique by depositing metal films over a microlens array (MLA). Zinc oxide nanoparticles were used to minimize the shadowing effect. Using TR, enhancements in short-circuit current density and power conversion efficiencies up to 10-25% were demonstrated for a polymer based organic solar cell. The second part is focused on improving the effectiveness of MLA incorporation in OPVs. The increase in path length achieved using MLA can be improved by increasing the refractive index of MLA and incorporating MLA directly on the transparent electrode instead of glass substrate. This approach could avoid the optical losses occurring at the interface be...

  18. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    OpenAIRE

    KOMAR RUSLAN; ARTRI; ELFAHMI

    2011-01-01

    Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesi...

  19. Embryo forming cells in carrot suspension cultures.

    OpenAIRE

    Toonen, M.A.J.

    1997-01-01

    Somatic cells of many plant species can be cultured in vitro and induced to form embryos that are able to develop into mature plants. This process, termed somatic embryogenesis, was originally described in carrot (Daucus carota L.). Somatic embryos develop through the same characteristic morphological stages, i.e. the globular-, heartand torpedo-stage respectively, as their zygotic counterparts. Due to the different cellular origin of somatic embryos, it is less clear to what extent the earli...

  20. Mouse cell culture: methods and protocols

    OpenAIRE

    Elvira M. Guerra Shinohara

    2010-01-01

    The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases), starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward ...

  1. Current techniques for visualizing RNA in cells

    Science.gov (United States)

    Mannack, Lilith V.J.C.; Eising, Sebastian; Rentmeister, Andrea

    2016-01-01

    Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations. PMID:27158473

  2. Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture

    OpenAIRE

    Song-Bin Huang; Dean Chou; Yu-Han Chang; Ke-Cing Li; Tzu-Keng Chiu; Yiannis Ventikos; Min-Hsien Wu

    2015-01-01

    Before microfluidic-based cell culture models can be practically utilized for bioassays, there is a need for a transitional cell culture technique that can improve conventional cell culture models. To address this, a hybrid cell culture system integrating an active cover lid and a multi-well microplate was proposed to achieve perfusion 3-D cell culture. In this system, a microfluidic-based pneumatically-driven liquid transport mechanism was integrated into the active cover lid to realize 6-un...

  3. Application of modified enzyme digestion method in rapid primary culture of human glioma cells

    Directory of Open Access Journals (Sweden)

    Wei XIANG

    2016-06-01

    Full Text Available Objective  To explore the applied value of modified enzyme digestion method in primary culture of human glioma cells. Methods  A traditional enzyme digestion method was modified based on literatures and our work experience. The glioma cells from 32 glioma patients with different grades were primarily cultured by the modified enzyme digestion method. The morphological features of these cells were observed under an inverted phase contrast microscope. The primary cells were purified by differential adhesion during passage. The primary cells were identified by immunofluorescence technique, and the growth curves were drawn by cell proliferation assays (CCK-8 method for investigating the proliferation of the cells cultured in vitro. Results  The primary human glioma cells were successfully cultured and transferred by the new method, with a success rate of 87.5%. The cells cultured successfully in vitro showed good adherent growth, stable morphologies, thus can be passaged. Fluoroimmunoassay showed positive expression of glial fibrillary acidic protein, which confirms the cultured cells were glioma cells. Cell proliferation assays revealed active cell proliferation in vitro, the higher the tumor grade, the higher the proliferative capacity. Conclusion  The modified enzyme digestion method is simpler and more efficient for primary culture of human glioma cells, and the success rate is also higher, thus being able to provide a good guarantee for fundamental research of glioma. DOI: 10.11855/j.issn.0577-7402.2016.06.06

  4. Development of an image analysis methodology for animal cell cultures characterization

    OpenAIRE

    Amaral, A.L.; Mesquita, D. P.; Xavier, Mariana; Rodrigues, L. R.; Kluskens, Leon; Ferreira, E. C.

    2014-01-01

    To establish a strong cell culture protocol and to evaluate experimental results, a quantitative determination of animal cells characteristics, such as confluence and morphology is quite often required. Quantitative image analysis using automated processing has become a routine methodology in a wide range of applications with the advantage of being non-invasive and non-destructive. However, in animal cells cultures automatic techniques giving valuable information based on visual inspection ar...

  5. Teaching Organizational Culture Using a Projective Technique: Collage Construction

    Science.gov (United States)

    Colakoglu, Saba; Littlefield, Jon

    2011-01-01

    Although the topic of "organizational culture" is an integral part of syllabi across a wide range of core business classes such as Principles of Management, Organizational Behavior, and Human Resource Management, few experiential exercises exist that can enhance student understanding and learning of different layers of organizational culture. In…

  6. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage of electro...... an optical double-fluorescent probe-system[4]. Currently, we are working on integrating both detection methods into a tissue culture system for immobilised plant tissues....

  7. Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures.

    Science.gov (United States)

    Menges, Margit; Murray, James A H

    2004-02-01

    We have recently described Arabidopsis cell suspension cultures that can be effectively synchronised. Here, we describe procedures that allow clonal-transformed cell suspension lines to be produced using Agrobacterium-mediated transformation, and an optimised and straightforward procedure for the cryopreservation and recovery of both parental and transformed lines. Frozen cultures show 90% viability and rapid re-growth after recovery. We show that the cryopreservation procedure is equally applicable to the frequently used tobacco bright yellow (BY)2 cell suspension culture, and that cell cycle synchronisation capacity of parental lines is maintained after both transformation and recovery from cryopreservation. The techniques require no specialised equipment, and are suitable for routine laboratory use, greatly facilitating the handling and maintenance of cell cultures and providing security against both contamination and cumulative somaclonal variation. Finally, the ability to store easily large numbers of transformed lines opens the possibility of using Arabidopsis cell suspension cultures for high-throughput analysis.

  8. Insect cell culture in research: Indian scenario.

    Science.gov (United States)

    Sudeep, A B; Mourya, D T; Mishra, A C

    2005-06-01

    Insect cell cultures are widely used in viral diagnosis and biotechnology, for the production of recombinant proteins, viral pesticides and vaccines as well as in basic research in genetics, molecular biology, biochemistry, endocrinology and virology. Following KRP Singh's pioneering research in 1967, a large number of cell lines from diptera, hemiptera, and lepidopteran insects were established and characterized in India. With the availability of the modern tools in molecular biology and the advancements made in biotechnology, the indigenous cell lines may prove useful in creating a future without biohazardous chemical pesticides as well as producing life saving pharmaceuticals and vaccines for many diseases. This review summarizes information gathered regarding the insect cell lines established so far in India. It also covers the familiarization of the well characterized continuous cell lines and their potential applications. Special attention is given to virus susceptibility of the cell lines, the yield of virus with a comparative analysis with other conventional systems. The potential applications of dipteran and lepidopteran cell lines in agriculture and biotechnology are also briefly discussed for prospective studies.

  9. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  10. IN VITRO CELL CULTURE AND HORMONE RADIOIMMUNOASSAY OF HUAMAN PITUITARY ADENOMAS

    Institute of Scientific and Technical Information of China (English)

    陆汉魁; 林祥通; 等

    1994-01-01

    Tissues from 30 human pituitary adenomas are monolayer-cell-cultured in vitro.Hormone secretion of GH,PRL,TSH,LH and FSH by cells into medium is detected by radioimmunoassay .The pattern and amount of hormone(s0 in the medium are used to determine the nature of the cells and thus to establish functional classification of pituitary adenomas.The results show that cell culture technique provides and easy and suitable mode for investigating the nature of pituitary adenomas.Hormone radioimmunoassay of culture medium is precise and reliable and represents the whole adenoma tissue.Further studies can lead to clearer understandngs of the pathology of pituitary adenomas.

  11. An introduction to plant cell culture: the future ahead.

    Science.gov (United States)

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  12. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    Directory of Open Access Journals (Sweden)

    KOMAR RUSLAN

    2011-01-01

    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  13. The Effect of Spaceflight on Bone Cell Cultures

    Science.gov (United States)

    Landis, William J.

    1999-01-01

    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural

  14. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation.

    Science.gov (United States)

    Watson, P Marc D; Kavanagh, Edel; Allenby, Gary; Vassey, Matthew

    2017-02-01

    Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.

  15. How do culture media influence in vitro perivascular cell behavior?

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries.

  16. Preparation and Primary Culture of Liver Cells Isolated from Adult Rats by Dispase Perfusion

    Directory of Open Access Journals (Sweden)

    Wahid,Syarifuddin

    1984-06-01

    Full Text Available The dispase perfusion technique was used to isolate liver cells from adult rats. The optimum conditions for obtaining many isolated liver cells with high viability were an enzyme concentration of 2000 U/ml, a pH of 7.5 and a perfusion time of 20 min. The population of isolated liver cells prepared with dispase consisted of 43.6% cells with diameters less than 20 micron and 56.4% cells with diameters above 20 micron. The isolated liver cells were cultured in basal culture medium either supplemented with or without dexamethasone (1 X 10(-5M and insulin (10 micrograms/ml. The addition of hormones to the culture medium improved the attachment efficiency of the isolated liver cells and delayed the disappearance of mature hepatocytes. Epithelial-like clear cells proliferated early in primary culture even in the presence of hormones. Therefore, functioning mature hepatocytes and proliferating epithelial-like clear cells coexisted well in the hormone-containing medium. Furthermore, the number of cultured cells reached a maximal level earlier in the presence of hormones than in the absence of hormones. The level of TAT activity in primary cultured cells was higher up to 3 days after inoculation in the presence of hormones than in their absence. No difference between G6Pase activity in primary cultured cells in the presence of hormones and that in the absence of hormones was found.

  17. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Science.gov (United States)

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  18. Sarcoma derived from cultured mesenchymal stem cells.

    Science.gov (United States)

    Tolar, Jakub; Nauta, Alma J; Osborn, Mark J; Panoskaltsis Mortari, Angela; McElmurry, Ron T; Bell, Scott; Xia, Lily; Zhou, Ning; Riddle, Megan; Schroeder, Tania M; Westendorf, Jennifer J; McIvor, R Scott; Hogendoorn, Pancras C W; Szuhai, Karoly; Oseth, Leann; Hirsch, Betsy; Yant, Stephen R; Kay, Mark A; Peister, Alexandra; Prockop, Darwin J; Fibbe, Willem E; Blazar, Bruce R

    2007-02-01

    To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole-body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain-specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon-related genetic abnormality, and p53 was not overexpressed. Infusion of MSC-derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.

  19. DNA MUTAGENESIS IN PANAX GINSENG CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Kiselev K.V.

    2012-08-01

    Full Text Available At the present time, it is well documented that plant tissue culture induces a number of mutations and chromosome rearrangements termed “somaclonal variations”. However, little is known about the nature and the molecular mechanisms of the tissue culture-induced mutagenesis and the effects of long-term subculturing on the rate and specific features of the mutagenesis. The aim of the present study was to investigate and compare DNA mutagenesis in different genes of Panax ginseng callus cultures of different age. It has previously been shown that the nucleotide sequences of the Agrobacterium rhizogenes rolC locus and the selective marker nptII developed mutations during long-term cultivation of transgenic cell cultures of P. ginseng. In the present work, we analyzed nucleotide sequences of selected plant gene families in a 2-year-old and 20-year-old P. ginseng 1c cell culture and in leaves of cultivated P. ginseng plants. We analysed sequence variability between the Actin genes, which are a family of house-keeping genes; the phenylalanine ammonia-lyase (PAL and dammarenediol synthase (DDS genes, which actively participate in the biosynthesis of ginsenosides; and the somatic embryogenesis receptor kinase (SERK genes, which control plant development. The frequency of point mutations in the Actin, PAL, DDS, and SERK genes in the 2-year-old callus culture was markedly higher than that in cultivated plants but lower than that in the 20-year-old callus culture of P. ginseng. Most of the mutations in the 2- and 20-year-old P. ginseng calli were A↔G and T↔C transitions. The number of nonsynonymous mutations was higher in the 2- and 20-year-old callus cultures than the number of nonsynonymous mutations in the cultivated plants of P. ginseng. Interestingly, the total number of N→G or N→C substitutions in the analyzed genes was 1.6 times higher than the total number of N→A or N→T substitutions. Using methylation-sensitive DNA fragmentation

  20. Polystyrene-coated micropallets for culture and separation of primary muscle cells

    OpenAIRE

    Detwiler, David A.; Dobes, Nicholas C.; Sims, Christopher E.; Kornegay, Joseph N.; Allbritton, Nancy L

    2011-01-01

    Despite identification of a large number of adult stem cell types, current primary cell isolation and identification techniques yield heterogeneous samples, making detailed biological studies challenging. To identify subsets of isolated cells, technologies capable of simultaneous cell culture and cloning are necessary. Micropallet arrays, a new cloning platform for adherent cell types, hold great potential. However, the microstructures composing these arrays are fabricated from an epoxy photo...

  1. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  2. Dissecting mitosis by RNAi in Drosophila tissue culture cells

    Directory of Open Access Journals (Sweden)

    Maiato Helder

    2003-01-01

    Full Text Available Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique.

  3. Equipment for large-scale mammalian cell culture.

    Science.gov (United States)

    Ozturk, Sadettin S

    2014-01-01

    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed.

  4. Design of 3D printed insert for hanging culture of Caco-2 cells.

    Science.gov (United States)

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2014-12-17

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30-100% higher brush border enzyme activity and ∼2-7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R(2) = 0.92) to the human oral adsorption than that of the Transwell culture (R(2) = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption.

  5. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques.

    Science.gov (United States)

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-04-01

    Acetic acid bacteria (AAB) usually develop biofilm on the air-liquid interface of the vinegar elaborated by traditional method. This is the first study in which the AAB microbiota present in a biofilm of vinegar obtained by traditional method was detected by pyrosequencing. Direct genomic DNA extraction from biofilm was set up to obtain suitable quality of DNA to apply in culture-independent molecular techniques. The set of primers and TaqMan--MGB probe designed in this study to enumerate the total AAB population by Real Time--PCR detected between 8 × 10(5) and 1.2 × 10(6) cells/g in the biofilm. Pyrosequencing approach reached up to 10 AAB genera identification. The combination of culture-dependent and culture-independent molecular techniques provided a broader view of AAB microbiota from the strawberry biofilm, which was dominated by Ameyamaea, Gluconacetobacter, and Komagataeibacter genera. Culture-dependent techniques allowed isolating only one genotype, which was assigned into the Ameyamaea genus and which required more analysis for a correct species identification. Furthermore, biofilm visualization by laser confocal microscope and scanning electronic microscope showed different dispositions and cell morphologies in the strawberry vinegar biofilm compared with a grape vinegar biofilm.

  6. Headset Culture, Audile, Technique, and sound Space as Private Space

    NARCIS (Netherlands)

    Sterne, Jonathan

    2014-01-01

    abstractThis essay offers a story about changing meanings of listening. The techniques of listening that became widespread with the diffusion of the telephone, the phonograph, and the radio early in the twentieth century were themselves transposed and elaborated from techniques of listening develope

  7. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    Science.gov (United States)

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  8. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  9. Cell-cycle research with synchronous cultures: an evaluation

    Science.gov (United States)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  10. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  11. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    Science.gov (United States)

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  12. Isolation of mammary epithelial cells from three-dimensional mixed-cell spheroid co-culture.

    Science.gov (United States)

    Xu, Kun; Buchsbaum, Rachel J

    2012-04-30

    While enormous efforts have gone into identifying signaling pathways and molecules involved in normal and malignant cell behaviors(1-2), much of this work has been done using classical two-dimensional cell culture models, which allow for easy cell manipulation. It has become clear that intracellular signaling pathways are affected by extracellular forces, including dimensionality and cell surface tension(3-4). Multiple approaches have been taken to develop three-dimensional models that more accurately represent biologic tissue architecture(3). While these models incorporate multi-dimensionality and architectural stresses, study of the consequent effects on cells is less facile than in two-dimensional tissue culture due to the limitations of the models and the difficulty in extracting cells for subsequent analysis. The important role of the microenvironment around tumors in tumorigenesis and tumor behavior is becoming increasingly recognized(4). Tumor stroma is composed of multiple cell types and extracellular molecules. During tumor development there are bidirectional signals between tumor cells and stromal cells(5). Although some factors participating in tumor-stroma co-evolution have been identified, there is still a need to develop simple techniques to systematically identify and study the full array of these signals(6). Fibroblasts are the most abundant cell type in normal or tumor-associated stromal tissues, and contribute to deposition and maintenance of basement membrane and paracrine growth factors(7). Many groups have used three dimensional culture systems to study the role of fibroblasts on various cellular functions, including tumor response to therapies, recruitment of immune cells, signaling molecules, proliferation, apoptosis, angiogenesis, and invasion(8-15). We have optimized a simple method for assessing the effects of mammary fibroblasts on mammary epithelial cells using a commercially available extracellular matrix model to create three

  13. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    -defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  14. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Reipurth, R

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods.......8% of cultured oocytes). Subsequent application of the optimized technique for nuclear transfer using nine different granulosa cell primary cultures (cultured in 0.5% serum for 5-12 days) generated 37.6 +/- 3.9% (11 replicates; range, 16.4-58.1 blastocysts per successfully fused and surviving reconstructed...... embryo (after activation), and 33.6 +/- 3.7% blastocysts per attempted reconstructed embryo. Mean day 7 total blastocyst cell numbers from 5 clone families was 128.1 +/- 15.3. The ongoing pregnancy rate of recipients each receiving two nuclear transfer blastocysts is 3/13 (23.1 recipients pregnant at 5...

  15. A comparative study of protocols for mouse embryonic stem cell culturing.

    Directory of Open Access Journals (Sweden)

    Christoffer Tamm

    Full Text Available Most stem cell laboratories still rely on old culture methods to support the expansion and maintenance of mouse embryonic stem (ES cells. These involve growing cells on mouse embryonic fibroblast feeder cells or on gelatin in media supplemented with fetal bovine serum and leukemia inhibitory factor (LIF. However, these techniques have several drawbacks including the need for feeder-cells and/or use of undefined media containing animal derived components. Culture of stem cells under undefined conditions can induce spontaneous differentiation and reduce reproducibility of experiments. In recent years several new ES cell culture protocols, using more well-defined conditions, have been published and we have compared the standard culture protocols with two of the newly described ones: 1 growing cells in semi-adherence in a medium containing two small molecule inhibitors (CHIR99021, PD0325901 and; 2 growing cells in a spheroid suspension culture in a defined medium containing LIF and bFGF. Two feeder-dependent mouse ES (mES cell lines and two cell lines adapted to feeder-independent growth were used in the study. The overall aim has not only been to compare self-renewal and differentiation capacity, but also ease-of-use and cost efficiency. We show that mES cells when grown adherently proliferate much faster than when grown in suspension as free-floating spheres, independent of media used. Although all the tested culture protocols could maintain sustained pluripotency after prolonged culturing, our data confirm previous reports showing that the media containing two chemical inhibitors generate more pure stem cell cultures with negligible signs of spontaneous differentiation as compared to standard mES media. Furthermore, we show that this medium effectively rescues and cleans up cultures that have started to deteriorate, as well as allow for effective adaption of feeder-dependent mES cell lines to be maintained in feeder-free conditions.

  16. Polymicrobial chronic endophthalmitis diagnosed by culture and molecular technique

    Directory of Open Access Journals (Sweden)

    A Mukherjee

    2014-01-01

    Full Text Available Accurate etiological diagnosis is the key to prevention of ocular morbidity in endophthalmitis cases. A 66 year old male was suffering from chronic endophthalmitis post-cataract surgery. Polymerase chain reaction examination on anterior chamber fluid was positive for Propionibacterium acnes but negative for the panfungal genome. He was advised vitrectomy with intravitreal injections. Polymerase chain reaction of vitreous aspirate was positive for P.acnes as well as panfungal genome. The vitreous sample also grew yeast in culture which was identified as Candida pseudotropicalis. Patient was treated on an alternate day regimen of intravitreal Vancomycin and Amphotericin B in the post-operative period. There was improvement in vision at final follow up. Chronic endophthalmitis can have polymicrobial etiology which will require appropriate diagnostic and therapeutic strategies. The role of molecular testing is vital in these cases as growth in culture is often negative.

  17. Microtiter micromass cultures of limb-bud mesenchymal cells.

    Science.gov (United States)

    Paulsen, D F; Solursh, M

    1988-02-01

    A method is described for growing high-density micromass cultures of chick and mouse limb mesenchyme cells in 96-well microtiter plates (microT microM cultures). Rapid quantitative estimates of chondrogenic expression were obtained by automated spectrophotometric analysis of Alcian-blue-stained cartilage matrix extracts performed in the wells in which the cells had been grown. Quantitative estimates of myogenic expression were obtained similarly using anti-sarcomere myosin monoclonal antibody and modified ELISA techniques. This microT microM-ELISA method may be adapted for use with other antigens for which specific antibodies are available. These methods were used to compare cartilage and muscle differentiation in 1 to 4 d microT microM cultures grown in serum-containing (SCM) and defined (DM) media. The DM contains minimal additives (insulin, hydrocortisone, and in some cases, ascorbate or transferrin) and supports both chondrogenesis and myogenesis. The colorimetric analyses agree well with the morphologic appraisal of chondrogenesis and myogenesis. Similar numbers of cartilage nodules formed in all cultures, but in DM the nodules failed to enlarge; explaining the reduced matrix synthesis in DM as compared with SCM, and suggesting that nodule enlargement is a discrete, serum-dependent step. Studies of selected additives to DM show that transferrin enhances myogenesis, ascorbic acid enhances chondrogenesis, and retinoic acid inhibits chondrogenesis. Together, the microT microM system, in situ colorimetric assays of chondrogenesis and myogenesis, and DM will allow rapid prescreening of teratogens and screening of various bioactive compounds (e.g., hormones, growth factors, vitamins, adhesion factors) for effects on limb mesenchymal cell differentiation.

  18. Tissue Culture and Rapid Multiplication Techniques of Apocynum L.

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to investigate rapid multiplication of Apocynum by tissue culture so as to provide plantlet sources for its industrialized cultivation. [Method] The asepsis seedlings were obtained by dealing with Apocynum seeds. Its cotyledons, hypocotyls and shoot tips were cultured on the media containing different concentrations of hormones. Finally, the influence of different hormone combinations on differentiation of cotyledons and hypocotyls, rapid multiplication of shoot tips, rapid multiplication of regenerated shoots, and rooting of test-tube plantlets was com- pared. [Result] MS+2.0 mg/L BA+0.03 mg/L NAA and MS+0.07 mg/L NAA were the optimum medium for inducing regenerated buds from cotyledons and hypocotyls re- spectively; MS+2.0 mg/L BA+0.02 mg/L NAA was the best medium for rapid multi- plication of shoot tips; MS+1.9 mg/L BA+I.7 mg/L NAA was the best medium for rapid multiplication of regenerated buds: and 1/2MS+0.6 mg/L NAA was the best medium for inducing roots. [Conclusion] The optimum hormone combination was de- termined for Apocynum rapid multiplication by tissue culture, which provides technical support on Apocynum industrialized cultivation.

  19. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  20. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  1. Quantitative-PCR Assessment of Cryptosporidium parvum Cell Culture Infection

    OpenAIRE

    Di Giovanni, George D.; LeChevallier, Mark W.

    2005-01-01

    A quantitative TaqMan PCR method was developed for assessing the Cryptosporidium parvum infection of in vitro cultivated human ileocecal adenocarcinoma (HCT-8) cell cultures. This method, termed cell culture quantitative sequence detection (CC-QSD), has numerous applications, several of which are presented. CC-QSD was used to investigate parasite infection in cell culture over time, the effects of oocyst treatment on infectivity and infectivity assessment of different C. parvum isolates. CC-Q...

  2. Sphingomonas sp. is a novel cell culture contaminant.

    Science.gov (United States)

    Asghar, Muhammad Tahir; Al-Ghanim, K; Mahboob, Shahid; Sharif, Muhammad; Nazir, Jawad; Shakoori, Abdul Rauf

    2015-06-01

    A novel contaminant was isolated from Madin Darby Bovine Kidney (MDBK) cells. The organism was unable to grow on standard microbiological media by conventional techniques, but grew well in Dulbecco's Modified Eagle's Medium (DMEM) containing high glucose concentration. The organism formed a white biofilm on the bottom without any signs of turbidity. Upon genome sequence analysis of 16 S rDNA, the contaminant was identified as Sphingomonas sp. Shah, a member of the group α-Proteobacteria. Neutral red dye uptake method confirmed clear cytotoxic potential of the bacterium on A-549 cells. The organism was capable of invading and infecting different mammalian cell lines: MDBK, ZZ-R, 293-T, A549, and HeLa cells. Infected cells showed a variety of cytopathic effects including vacuolation at perinuclear area, cytoplasmic granulation and membrane blebbing. Microscopic analysis of the infected cells revealed the presence of cytoplasmic vacuoles harboring motile organisms. Apparently local serum preparations seem to be the source of this contamination, which is imperceptibly passed on from one culture passage to the other and ultimately leading to serious cytopathic manifestations.

  3. Growth of the Pittsburgh Pneumonia Agent in Animal Cell Cultures

    OpenAIRE

    Rinaldo, Charles R.; Pasculle, A. William; Myerowitz, Richard L.; Gress, Francis M.; Dowling, John N.

    1981-01-01

    Pittsburgh pneumonia agent (Legionella micdadei) grew in monkey, chicken, and human cell cultures. Pittsburgh pneumonia agent grew predominantly in the cytoplasm, resulting in a nonfocal, mild cytopathic effect.

  4. Studies of the metabolism of cell cultures by microspectrofluoroscopy

    Science.gov (United States)

    Hoehne, Wolfgang; Schramm, Werner; Moritzen, V.; Burgmann, U.; Kronfeldt, Heinz D.

    1996-01-01

    The monitoring of the state of cellular energy metabolism and respiratory activity is a necessary procedure in cell biology and pharmacology. One method is the observation of the redox state by NADH and FAD autofluorescence measurements. Using this technique, investigations on endothelial cell cultures were done to study their behavior under pharmacologic influences. One application was the investigation of cytotoxicity of cyanides, blocking the mitochondrial respiratory chain. Further we studied the activation of energy metabolism as a step of the cellular reaction on extracellular impacts. The measurements have been performed with a fluorescence microscope Zei(beta) Axioplan, extended by a PMT and a CCD camera. During examination, the cell cultures were kept under nearly physiological conditions using a specialized perfusion chamber. The measurements took place on cellular monolayers. Different excitation geometries have been studied to overcome the difficulties, which arose from the very weak absorption of the cell monolayer, resulting in a low quantum yield and SNR. In classical cytotoxicity studies, only the statistical long-time effects (e.g. IC50) of cell damages are recorded. By redox microspectrofluorometry it is possible to observe the process of damage in its progress, shown by the presented results. In the second, more complex model, we studied the reaction of cells on ligands like PIA (Phenylisopropyladenosin). In this case, the intracellular reaction is connected with an increased production of cAMP. Again, this requires an increased production of ATP, which leads to an activation of the cellular energy metabolism. The spectroscopic results are interpreted by a first model.

  5. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  6. Cultural Variations in Mothers' Acceptance of and Intent to Use Behavioral Child Management Techniques

    Science.gov (United States)

    Mah, Janet W. T.; Johnston, Charlotte

    2012-01-01

    We examined cultural differences in mothers' acceptance of and intent to use behavioral parenting techniques for managing disruptive child behavior, and the possible roles of parenting styles and implicit theories in explaining these cultural differences. A community sample of 117 Euro-Canadian and Chinese-immigrant mothers of boys aged 4- to…

  7. Micropropagation of Dalbergia sissoo Roxb. through tissue culture technique.

    Science.gov (United States)

    Sahu, Jyoti; Khan, Shagufta; Sahu, Ram Kumar; Roy, Amit

    2014-04-01

    Multiple shoots of Dalbergia sissoo Roxb. (Sissoo) were incited from seeds through indirect somatic embryogenesis method. Seeds were inoculated in Murashige and Skoog's medium without any growth hormone. Than cotyledonary leaves were struck and used for callus induction on MS medium amplified with 2, 4-dichlorophenoxyacetic acid (0.5 to 4 mg mL(-1)). After 3 to 4 weeks the embryogenic callus clumps was transferred to medium supplemented with cytokinin (BAP 1 to 5 mg L(-1), kinetin 1-5.0 mg L(-1)) for embryo maturation and germination. The high-frequency shoot proliferation (82%) and maximum number of shoots per explants were recorded in MS medium containing NAA (0.5)+BAP (0.5). The findings of recent investigations have shown that, it is possible to induce indirect somatic embryogenesis in Dalbergia sissoo and plant regeneration from callus cultures derived from cotyledonary leaves as explants.

  8. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata

    Directory of Open Access Journals (Sweden)

    Won-Gyu Bae

    2015-12-01

    Full Text Available Engineering complex extracellular matrix (ECM is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed.

  9. Polystyrene-coated micropallets for culture and separation of primary muscle cells.

    Science.gov (United States)

    Detwiler, David A; Dobes, Nicholas C; Sims, Christopher E; Kornegay, Joe N; Allbritton, Nancy L

    2012-01-01

    Despite identification of a large number of adult stem cell types, current primary cell isolation and identification techniques yield heterogeneous samples, making detailed biological studies challenging. To identify subsets of isolated cells, technologies capable of simultaneous cell culture and cloning are necessary. Micropallet arrays, a new cloning platform for adherent cell types, hold great potential. However, the microstructures composing these arrays are fabricated from an epoxy photoresist 1002F, a growth surface unsuitable for many cell types. Optimization of the microstructures' surface properties was conducted for the culture of satellite cells, primary muscle cells for which improved cell isolation techniques are desired. A variety of surface materials were screened for satellite cell adhesion and proliferation and compared to their optimal substrate, gelatin-coated Petri dishes. A 1-μm thick, polystyrene copolymer was applied to the microstructures by contact printing. A negatively charged copolymer of 5% acrylic acid in 95% styrene was found to be equivalent to the control Petri dishes for cell adhesion and proliferation. Cells cultured on control dishes and optimal copolymer-coated surfaces maintained an undifferentiated state and showed similar mRNA expression for two genes indicative of cell differentiation during a standard differentiation protocol. Experiments using additional contact-printed layers of extracellular matrix proteins collagen and gelatin showed no further improvements. This micropallet coating strategy is readily adaptable to optimize the array surface for other types of primary cells.

  10. THE ALKALOID CYTISINE IN THE CELL CULTURE

    Directory of Open Access Journals (Sweden)

    Gazaliev A.M.

    2012-08-01

    Full Text Available Alkaloids are vegetative establishments of complex and original structure with nitrous heterocycles in the basis. For a long time they drew researchers’ attention because of their unique and specific physiological effect on alive organisms. Not all the representatives of the globe’s flora contain these unique substances. Alkaloid cytisine is to be found mainly in the plants of the fabaceous family - Fabaceae. For the cytisine production the seeds of Thermopsis lanceolata R.Br (T. lanceolata R.Br and Cytisus laburnum (C. laburnum are used as a raw material. The object of the research is T. lanceolata cell culture. Sterile sprouts are used at the first stage of the experiment. Callus genesis is accompanied with dedifferentiation. It leads to the cellular organization simplification. Based on an important property of a plant cell, such as totipotency, there appears the formation of the “de novo” biosynthetic device. The cultivation algorithm consists of two basic stages: (i the cultivation conditions optimization of callus with a high level of the primary metabolites biosynthesis (Aspartat – lysine; (ii the research of cultivation chemical and physical factors influence on the secondary metabolite (cytisine biosynthesis and accumulation. During the cultivation the Murashige and Skoog classical recipe of nutrient medium will be used. Optimization of the cultivation conditions will concern the phytohormones, macro- and micronutrients content, as the purpose of optimization is the production of the determined high-level competence embriogenical callus. The main problem is genetic heterogeneity of a cellular population and instability of morpho-physiological processes. The correct management of higher plants cells population is possible at the synchronization of a cellular cycle phases. The references analysis has shown that it is almost impossible to synchronize cellular cycles in the culture of plant tissue. The application of chemical

  11. An Optically Controlled 3D Cell Culturing System

    Directory of Open Access Journals (Sweden)

    Kelly S. Ishii

    2011-01-01

    Full Text Available A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability.

  12. Aeroponics for the culture of organisms, tissues and cells.

    Science.gov (United States)

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.

  13. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  14. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  15. Antioxidant Capacity of Cultured Mammalian Cells Estimated by ESR Method

    Directory of Open Access Journals (Sweden)

    Tamar Kartvelishvili

    2004-01-01

    Full Text Available In the present study, the antioxidant capacity against hydrogen peroxide (H2O2, one of the stress-inducing agents, was investigated in two distinct cell lines: L-41 (human epithelial-like cells and HLF (human diploid lung fibroblasts, which differ in tissue origin, life span in culture, proliferate activity, and special enzyme system activity. The cell antioxidant capacity against H2O2 was estimated by the electron spin resonance (ESR spin-trapping technique in the Fenton reaction system via Fe+2 ion action with H2O2 resulting in hydroxyl radical generation. The effects of catalase inhibitors, such as sodium azide and 3-amino-1,2,4-triazole, on the antioxidant capacity of cells were tested. Based on our observation, it can be concluded that the defensive capacity of cells against H2O2 depends on the ratio between catalase/GPx/SOD and H2O2, especially at high-stress situations, and the intracellular balance of these enzymes are more important than the influence of the single component.

  16. Fabrication and Characterization of Thermoresponsive Polystyrene Nanofibrous Mats for Cultured Cell Recovery

    Science.gov (United States)

    Oh, Hwan Hee; Uyama, Hiroshi; Park, Won Ho; Cho, Donghwan; Kwon, Oh Hyeong

    2014-01-01

    Rapid cell growth and rapid recovery of intact cultured cells are an invaluable technique to maintain the biological functions and viability of cells. To achieve this goal, thermoresponsive polystyrene (PS) nanofibrous mat was fabricated by electrospinning of PS solution, followed by the graft polymerization of thermoresponsive poly(N-isopropylacrylamide)(PIPAAm) on PS nanofibrous mats. Image analysis of the PS nanofiber revealed a unimodal distribution pattern with 400 nm average fiber diameter. Graft polymerization of PIPAAm on PS nanofibrous mats was confirmed by spectroscopic methods such as ATR-FTIR, ESCA, and AFM. Human fibroblasts were cultured on four different surfaces, PIPAAm-grafted and ungrafted PS dishes and PIPAAm-grafted and ungrafted PS nanofibrous mats, respectively. Cells on PIPAAm-grafted PS nanofibrous mats were well attached, spread, and proliferated significantly much more than those on other surfaces. Cultured cells were easily detached from the PIPAAm-grafted surfaces by decreasing culture temperature to 20°C, while negligible cells were detached from ungrafted surfaces. Moreover, cells on PIPAAm-grafted PS nanofibrous mats were detached more rapidly than those on PIPAAm-grafted PS dishes. These results suggest that thermoresponsive nanofibrous mats are attractive cell culture substrates which enable rapid cell growth and recovery from the culture surface for application to tissue engineering and regenerative medicine. PMID:24696851

  17. Experimental Methodology used by Cell Cultures Laboratory from INRMFB to assess the therapeutic effect of natural factors

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2010-11-01

    Full Text Available The experimental study design on cell cultures allows the direct biological evaluation at the cellular level, of the therapeutic effect that natural factors can play over the organism.Techniques for obtaining cell cultures requires a complex and laborious task that starts from live tissue sampling, continuous with isolation of cells and their preparation for sowing a culture plate. This preparation involves mechanical and enzymatic action from the researcher on biological material. Derived cell cultures are monitored morphologically by high-performance inverted biological microscope, with video camera for image acquisition. In the final stage, the cells are scraped, and through biochemical and molecular techniques, the therapeutic efficiency hypothesis of the investigated natural factor is verified experimentally. The cell cultures can be crioconservated in special containers with liquid nitrogen.

  18. Evaluation of limonoid production in suspension cell culture of Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Elisângela Fumagali Gerolino

    2015-10-01

    Full Text Available ABSTRACTThe use of cell and plant tissue culture techniques to produce economically important active metabolites has been growing. Among these substances are total limonoid aglycones, which are produced by "pera" orange (Citrus sinensis (L. Osbeck, Rutaceae and have received considerable attention because of their anticancer actions. The main objective of the present study was to analyze and compare the levels of limonoid aglycones in seeds, callus cultures (originating from seeds, callus cultures (originating from hypocotyls, cell suspensions from hypocotyls cells, and cell suspensions from cotyledons. The cell cultures or C. sinensis were obtained by inoculating two strains of callus in MS medium supplemented with 2.0 µM 2,4-dichlorophenoxyacetic acid, 7.0 µM benzyl aminopurine, and 3% (w/v sucrose in the dark. The highest concentrations of limonoid aglycone that were obtained were observed in cotyledon cell lines (240 mg/100 g dry weight that were produced on day 21 of culture and hypocotyl cell lines on day 7 (210 mg/100 g dry weight. Explants of different origins under the same culture conditions had different limonoid aglycone content. The present results may suggest strategies for enhancing the productivity of biologically important limonoid aglycones and investigating the complex pathways of these secondary metabolites in plant tissue cultures.

  19. Microfabricated surface designs for cell culture and diagnosis.

    Science.gov (United States)

    Matsuda, T; Chung, D J

    1994-01-01

    Grooved and holed surfaces with a well fabricated design may serve as microsubstrates for cell culture and microreactors for diagnosis. In this study, the authors prepared chemically treated, micrometer scale grooved and holed glass surfaces by combined surface modification and ultraviolet (UV) excimer laser ablation techniques, as follows. 1) Microcell-culture substrate: Amino group attached glass surfaces, prepared by the treatment with an aminopropylsilane, were condensed with a carboxylated radical initiator. Subsequently, polyacrylamide was grafted by surface initiated radical polymerization to create a very hydrophilic surface layer. Ultraviolet excimer laser beams (KrF: 248 nm) were irradiated through a microscope onto surfaces to create grooves or holes that were 10 and 50 microns in width or diameter, respectively. The depth, depending on the irradiation light strength, ranged from a few to several tenths of a micrometer. On endothelial cell (EC) seeding, ECs adhered and grew on the bottoms of the grooved or holed surface where glass was exposed on ablation. Little cell adhesion was observed on non ablated, grafted surfaces. Endothelial cells aligned along the groove, resulting in very narrow tube like tissue formation, whereas ECs tended to form a multilayered spherical aggregate in a hole. A single cell resided in a 10 microns square hole. 2) Microreactor for diagnosis: The glass surface, treated with a fluorinated silane, was ablated to create round holes. On addition of a few microliters of water, water could be quantitatively transferred into a hole because of the water repellent characteristics of non ablated, fluorinated glass. As a model of a microreactor, enzyme reactions to affect different levels of glucose were carried out in tiny holed surfaces.

  20. Cultural Dimensional Transformation Techniques of Hypotaxis and Parataxis in Tourist Publicity C-E Translation

    Institute of Scientific and Technical Information of China (English)

    肖付良

    2015-01-01

    In order to make foreign tourists familiar with China’s scenic spots, it is necessary that tourist publicity materials are properly translated. Cultural dimension, as one of the three key dimensions of eco-translatology, plays a very important role in translating. With its basis on cultural dimension of eco-translatology, this paper aims to present transformation techniques of parataxis and hypotaxis between Chinese and English. It is suggested that, with the cultural dimensional transformation tech-niques of parataxis and hypotaxis , translators should exert their subjectivity and creativity to achieve in maximizing the degree of holistic adaptation and selection for achieving successful translations.

  1. [Peculiarities of growth and development of cultured mucosal cells from the upper respiratory tract stimulated by growth factors].

    Science.gov (United States)

    Chekan, V L; Kvacheva, Z B; Petrova, L G

    2009-01-01

    Specific features of growth and development of cultured mucosal cells from the upper respiratory tract were studied during their in vitro stimulation by keratinocyte growth factor (KGF) and epidermal growth factor (EGF). Phenotypic composition and quantitative characteristics of cultured epithelial cells was investigated with the use of monoclonal CD49F antibodies and flow cytofluorometry. The culture technique makes it possible to obtain a large amount of cells for the evaluation of their pathological changes. Moreover, cell cultures can be used to restore lesioned mucosa of the upper respiratory tract both in experiment and under clinical conditions.

  2. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  3. Improved technique for isolation and culture of protoplasts from young leaves of mangosteen (Garcinia mangostana L.

    Directory of Open Access Journals (Sweden)

    Moosikapala, L.

    2002-04-01

    Full Text Available Improved technique for isolation of protoplasts from young leaves of mangosteen was developed using dark treatment and varying ages of in vitro-grown leaves. In this experiment different kinds and concentrations of cellulase Onozuka R-10, macerozyme R-10 and pectolyase Y-23 were used. One gram fresh weight of leaf tissue was incubated in a 10 ml of enzyme solution and placed on a gyratory shaker at 40-50 rpm under darkness for 12 hours. Yield and viability of protoplasts were compared among those treatments, then the density was adjusted and cultured in MS medium supplemented with different kinds and concentrations of growth regulators. The results showed that 8 week-old leaves (after adding liquid culture medium gave released protoplasts at 1.9 × 105/gram fresh weight (g fr wt. This result was obtained when 2% cellulase Onozuka R-10, 1% macerozyme R-10 and 0.1% pectolyase Y-23 were used. Viability of the protoplasts was 77.63%. Pretreatment the leaves in the dark for 24 hours before being subjected to protoplast isolation resulted in the greatest release of protoplasts at 1 × 106/g fr wt. Viability of the protoplasts was also the highest (91.35%. The protoplasts at density of 5 × 105/ml could promote cell division at 3.41% in a thin layer of liquid MS with 0.5 mg/l BA and 0.5 mg/l TDZ.

  4. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    Science.gov (United States)

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  5. Early detection of positive blood cultures by the acridine orange staining technique.

    OpenAIRE

    Tierney, B M; Henry, N K; Washington, J A

    1983-01-01

    Staining 2,205 macroscopically negative blood cultures with acridine orange after 6 to 17 h of inoculation and incubation was as sensitive as an early subculture in detecting positive blood cultures. Of the 179 positive blood cultures, 30 (16.8%) were detected by acridine orange alone, 19 (10.6%) were detected by early subculture alone, 84 (46.9%) were detected by both techniques, and 46 (25.7%) were not detected by either method. The latter group includes cultures that became positive after ...

  6. Data fusion-based assessment of raw materials in mammalian cell culture.

    Science.gov (United States)

    Lee, Hae Woo; Christie, Andrew; Xu, Jin; Yoon, Seongkyu

    2012-11-01

    In mammalian cell culture producing therapeutic proteins, one of the important challenges is the use of several complex raw materials whose compositional variability is relatively high and their influences on cell culture is poorly understood. Under these circumstances, application of spectroscopic techniques combined with chemometrics can provide fast, simple, and non-destructive ways to evaluate raw material quality, leading to more consistent cell culture performance. In this study, a comprehensive data fusion strategy of combining multiple spectroscopic techniques is investigated for the prediction of raw material quality in mammalian cell culture. To achieve this purpose, four different spectroscopic techniques of near-infrared, Raman, 2D fluorescence, and X-ray fluorescence spectra were employed for comprehensive characterization of soy hydrolysates which are commonly used as supplements in culture media. First, the different spectra were compared separately in terms of their prediction capability. Then, ensemble partial least squares (EPLS) was further employed by combining all of these spectral datasets in order to produce a more accurate estimation of raw material properties, and compared with other data fusion techniques. The results showed that data fusion models based on EPLS always exhibit best prediction accuracy among all the models including individual spectroscopic methods, demonstrating the synergetic effects of data fusion in characterizing the raw material quality.

  7. Callus production from photoautotrophic soybean cell culture protoplasts.

    Science.gov (United States)

    Chowhury, V K; Widholm, J M

    1985-10-01

    Protoplasts were prepared from a photoautotrophic (PA) cell line of Glycine max (soybean). A yield of 75 to 90% after two to three hours digestion in a mixture of 1% Cellulase R10, 0.2% Pectolyase Y23 and 2% Driselase was obtained. Cell division and colony formation occurred from approximately 18% of the plated protoplasts. The cultured protoplasts were as sensitive to the herbicide atrazine, a photosynthetic inhibitor, as the original PA cells under the same conditions. Protoplasts and cells of a heterotrophic (HT) soybean culture were not as sensitive to atrazine. The isolated protoplasts retained the PA characteristics of the parental culture in the callus and cell suspension cultures obtained from the protoplasts. The chromosome numbers in the parental cell line and in cells derived from the isolated protoplasts (both PA and HT) were found to be largely (99%) the normal diploid number of 40.

  8. HEPES inhibits the conversion of prion protein in cell culture.

    Science.gov (United States)

    Delmouly, Karine; Belondrade, Maxime; Casanova, Danielle; Milhavet, Ollivier; Lehmann, Sylvain

    2011-05-01

    HEPES is a well-known buffering reagent used in cell-culture medium. Interestingly, this compound is also responsible for significant modifications of biological parameters such as uptake of organic molecules, alteration of oxidative stress mechanisms or inhibition of ion channels. While using cell-culture medium supplemented with HEPES on prion-infected cells, it was noticed that there was a significant concentration-dependent inhibition of accumulation of the abnormal isoform of the prion protein (PrP(Sc)). This effect was present only in live cells and was thought to be related to modification of the PrP environment or biology. These results could modify the interpretation of cell-culture assays of prion therapeutic agents, as well as of previous cell biology results obtained in the field using HEPES buffers. This inhibitory effect of HEPES could also be exploited to prevent contamination or propagation of prions in cell culture.

  9. In vitro isolation and cultivation of rabbit tracheal epithelial cells using tissue explant technique.

    Science.gov (United States)

    Shi, Hong-Can; Lu, Dan; Li, Hai-Jia; Han, Shi; Zeng, Yan-Jun

    2013-04-01

    Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14-15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.

  10. Primary cell culture of human adenocarcinomas--practical considerations.

    Science.gov (United States)

    Lerescu, Lucian; Tucureanu, Cătălin; Caraş, Iuliana; Neagu, Stefan; Melinceanu, Laura; Sălăgeanu, Aurora

    2008-01-01

    Cell culture is one of the major tools for oncology research, being an excellent system in which to study the biochemistry and molecular biology associated with individual cancer types and to understand cancer cell physiology. Progress in understanding the biology of any type of carcinoma has been impeded by the inability to culture adequately malignant cells from most epithelial tissues. The ultimate in vitro tumor model would completely reflect the in vivo tumor microenvironment in function and mechanism. Unfortunately, such a model does not currently exist. Homogeneous cell lines that can be continuously propagated on plastic surfaces have been extensively used as a surrogate for tumor environment; however they are very different from the in vivo tumor cells. Model systems involving primary culture represent the situation most closely related to the original tissue although they have a number of disadvantages over cell lines, such as the limited ability to repeat studies with a well characterized culture system that can be used in multiple laboratories. The primary culture may contain many types of stromal and infiltrating cell types potentially complicating the interpretation of data. Yet, their properties better reflect the cellular interactions present in intact tissue. The present article reviews the critical steps in obtaining, routine maintenance and cryopreservation of primary tumor cell cultures, based on information from literature and personal experience on the subject. The article also includes an updated protocol for primary tumor cell isolation and culture.

  11. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  12. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture

    Directory of Open Access Journals (Sweden)

    Samantha M. Grist

    2010-10-01

    Full Text Available The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternative to traditional cell culture platforms, there is recent interest in integrating oxygen-sensing mechanisms with microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in particular, show great promise in their ability to be integrated with microfluidics and cell culture systems. These sensors can be highly sensitive and do not consume oxygen or generate toxic byproducts in their sensing process. This paper presents a review of previously proposed optical oxygen sensor types, materials and formats most applicable to microfluidic cell culture, and analyzes their suitability for this and other in vitro applications.

  13. Evaluation of conventional castaneda and lysis centrifugation blood culture techniques for diagnosis of human brucellosis.

    Science.gov (United States)

    Mantur, Basappa G; Mangalgi, Smita S

    2004-09-01

    We investigated the role of the lysis centrifugation blood culture technique over the conventional Castaneda technique for the diagnosis of human brucellosis. The lysis centrifugation technique has been found to be more sensitive in both acute (20% higher sensitivity; P < 0.00001) and chronic (40% higher sensitivity; P = 0.087) forms of brucellosis. The major advantage of lysis centrifugation was in the mean detection time, which was only 2.4 days in acute and 2.7 days in chronic cases, with 103 out of 110 (93.6%) and 17 out of 20 (85%) cultures from acute and chronic brucellosis, respectively, detected before the conventional culture was positive. Our results confirmed the potential usefulness of the lysis technique in diagnosis and institution of appropriate antibiotic therapy.

  14. Three-Dimensional Scaffold from Decellularized Human Gingiva for Cell Cultures: Glycoconjugates and Cell Behavior

    Directory of Open Access Journals (Sweden)

    Seyed Ali Banihashem Rad

    2013-01-01

    Full Text Available Objective: We studied both the presence of some carbohydrate compounds in a three-dimensional (3D matrix harvested from human gingiva and the cell behavior in this matrix.Materials and Methods: In this experimental research, in order to prepare 3D scaffolds, human palatal gingival biopsies were harvested and physically decellularized by freeze-thawing and sodium dodecyl sulfate (SDS. The scaffolds were placed within the rings of blastema tissues obtained from a pinna rabbit, in vitro. We evaluated the presence of glycoconjugatesand cellular behavior according to histological, histochemical and spectrophotometry techniques at one, two and three weeks after culture. One-way analysis of variance (ANOVAcomparedthe groups.Results: Extracellular matrix (ECM remained after decellularization of tissue with 1% SDS. Glycoconjugate contents decreased meaningfully at a higher SDS concentration (p<0.0001. After culture of the ECM scaffold with blastema, we observed increased staining of alcian blue, periodic acid-Schiff (PAS and toluidine blue in the scaffold and a number of other migrant cells which was caused by cell penetrationinto the scaffold. Spectrophotometry results showed an increase in glycosaminoglycans (GAGs of the decellularized scaffolds at three weeks after culture.Conclusion: The present study has shown that a scaffold generated from palatal gingival tissue ECM is a suitable substrate for blastema cell migration and activity.This scaffold maypotentially be useful as a biological scaffold in tissue engineering applications.

  15. Biologic characteristics of fibroblast cells cultured from the knee ligaments

    Institute of Scientific and Technical Information of China (English)

    陈鸿辉; 唐毅; 李斯明; 沈雁; 刘向荣; 钟灿灿

    2002-01-01

    Objective: To culture fibroblast cells from the kneeligaments and to study the biological characteristics of thesecells.Methods: Cells of the anterior cruciate ligament(ACL) and the medial collateral ligament (MCL) fromNew Zealand white rabbit were cultured in vitro. Cellulargrowth and expression of the collagen were analyzed.Moreover, an in vitro wound closure model was establishedand the healing of the ACL and the MCL cells wascompared.Results: Maximal growth for all these cells wereobtained with Dulbecco's modified Eagle's mediumsupplemented with 10% fetal bovine serum, but RPMI 1640and Ham's F12 media were not suitable to maintain thesecells. Morphology of both ACL and MCL cells from NewZealand white rabbit was alike in vitro, but the MCL cellsgrew faster than the ACL cells. Both cell types producedsimilar amount of collagen in culture, but the ratio ofcollage type I to type III produced by ACL cells was higherthan that produced by MCL cells. Wound closure assayshowed that at 36 hours after injury, cell-free zones createdin the ACL cultures were occupied partially by the ACLcells; in contrast, the wounded zone in the MCL cultureswas almost completely covered by the cells.Conclusions: Although the ACL cells and the MCLcells from New Zealand white rabbit show similarappearance in morphology in culture, the cellular growthand the biochemical synthesis of collagen as well as thehealing in vitro were significantly different. Thesedifferences in intrinsic properties of the two types of cells invitro might contribute to the differential healing potentialsof these ligaments in vivo.

  16. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  17. Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production

    OpenAIRE

    Behbahani, Mandana; Shanehsazzadeh, Mehrnaz; Hessami,Mohamad Javad

    2011-01-01

    Lycopene is present in a range of fresh fruits and vegetables, especially in the leaves of Barringtonia racemosa. The traditional lycopene extraction from the plant is being employed instead of an easy propagation technique like cell culture process from the leaf explants. We intend to assess how lycopene could be extracted via tissue culture under light (illuminance: 8,200 lux under white fluorescent lamps, photoperiod 16 h per day at 25ºC) and dark. Leaf explants of Barringtonia racemosa we...

  18. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan Pavel Kucera

    2015-09-01

    Full Text Available Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs. However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands.CV was significantly lower in strands composed purely of SCMs (5.5±1.5 cm/s, n=11 as compared to PCMs (34.9±2.9 cm/s, n=21 at similar refractoriness (100% SCMs: 122±25 ms, n=9; 100% PCMs: 139±67 ms, n=14. In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV.These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  19. Colorimetric pH measurement of animal cell culture media.

    Science.gov (United States)

    Jang, Juno; Moon, Soo-Jin; Hong, Sung-Hwan; Kim, Ik-Hwan

    2010-11-01

    Most animal cell culture media can be buffered using bicarbonate and high pressure CO(2) in a closed system. However, in an open system, the pH of the culture media increases continuously due to the marked difference in CO(2) pressure between the culture media and the atmosphere. Therefore, it is important to measure the exact pH of the culture media in an intact closed system. In this study, a pH measurement method was developed using visible light. The pH was calculated from light absorbance by the cells and by the culture media. This method was successfully applied to both suspension and anchorage-dependent cell cultures.

  20. EFFECTS OF PDGF-BB ON INTRACELLULAR CALCIUM CONCENTRATION AND PROLIFERATION IN CULTURED GLOMERULAR MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; ZHANG Chong; BIAN Fan; ZOU Jun; JIANG Geng-ru; ZHU Han-wei

    2006-01-01

    Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured.Intracellular calcium concentrations were measured by confocal Laser Scanning Microscopy and Fura-3 fluorescence dyeing techniques. Cell growth was measured by MTT assay. Results PDGF-BB increased intracellular calcium concentrations in a dose-dependent manner, and at the same time promote the proliferation of mesangial cells. After preincubation with calcium channel blocker nifedipine or angiotensin converting enzyme inhibitor captopril, both the increase of intracellular calcium concentrations and cell proliferations induced by PDGF-BB were inhibited. Tripterigium Wilfordii Glycosides (TMG) significantly inhibited the mesangial cell proliferations, but it had no significant effect on intracellular calcium concentrations. Conclusion There was a positive relationship between the elevation of intracellular calcium concentration and cell proliferation in glomerular mesangial cells, but the increase of in- tracellular calcium concentrations wasn't the only way for proliferation.

  1. Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture

    Science.gov (United States)

    Huang, Song-Bin; Chou, Dean; Chang, Yu-Han; Li, Ke-Cing; Chiu, Tzu-Keng; Ventikos, Yiannis; Wu, Min-Hsien

    2015-12-01

    Before microfluidic-based cell culture models can be practically utilized for bioassays, there is a need for a transitional cell culture technique that can improve conventional cell culture models. To address this, a hybrid cell culture system integrating an active cover lid and a multi-well microplate was proposed to achieve perfusion 3-D cell culture. In this system, a microfluidic-based pneumatically-driven liquid transport mechanism was integrated into the active cover lid to realize 6-unit culture medium perfusion. Experimental results revealed that the flow of culture medium could be pneumatically driven in a flow-rate uniform manner. We used the system to successfully perform a perfusion 3-D cell culture of mesenchymal stem cells (MSCs) for up to 16 days. Moreover, we investigated the effects of various cell culture models on the physiology of MSCs. The physiological nature of MSCs can vary with respect to the cell culture model used. Using the perfusion 3-D cell culture format might affect the proliferation and osteogenic differentiation of MSCs. Overall, we have developed a cell culture system that can achieve multi-well microplate-based perfusion 3-D cell culture in an efficient, cost-effective, and user-friendly manner. These features could facilitate the widespread application of perfusion cell culture models for cell-based assays.

  2. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  3. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  4. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  5. Three-dimensional cell culture models for investigating human viruses.

    Science.gov (United States)

    He, Bing; Chen, Guomin; Zeng, Yi

    2016-10-01

    Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.

  6. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been...... tested successfully with brain slices and PC12 cells. The culture substrate can be modified using metal electrodes and/or nanostructures for conducting electrical measurements while culturing and for better mimicking the in vivo conditions....

  7. Isolating highly pure rat spermatogonial stem cells in culture.

    Science.gov (United States)

    Hamra, F Kent; Chapman, Karen M; Wu, Zhuoru; Garbers, David L

    2008-01-01

    Methods are detailed for isolating highly pure populations of spermatogonial stem cells from primary cultures of testis cells prepared from 22- to 24-day-old rats. The procedure is based on the principle that testicular somatic cells bind tightly to plastic and collagen matrices when cultured in serum-containing medium, whereas spermatogonia and spermatocytes do not bind to plastic or collagen when cultured in serum-containing medium. The collagen-non-binding testis cells obtained using these procedures are thus approx. 97% pure spermatogenic cells. Stem spermatogonia are then easily isolated from the purified spermatogenic population during a short incubation step in culture on laminin matrix. The spermatogenic cells that bind to laminin are more than 90% undifferentiated, type A spermatogonia and are greatly enriched in genetically modifiable stem cells that can develop into functional spermatozoa. This method does not require flow cytometry and can also be applied to obtain enriched cultures of mouse spermatogonial stem cells. The isolated spermatogonia provide a highly potent and effective source of stem cells that have been used to initiate in vitro and in vivo culture studies on spermatogenesis.

  8. Serum-free spheroid suspension culture maintains high proliferation and differentiation potentials of mesenchymal stem cells

    Science.gov (United States)

    Alimperti, Stella; Wen, Yuan; Lei, Pedro; Tian, Jun; Campbell, Andrew; Andreadis, Stelios T.

    2016-01-01

    There have been many clinical trials recently using ex vivo-expanded human mesenchymal stem cells (MSCs) to treat several indications such as graft-versus-host disease, acute myocardial infarction, Crohn’s disease, and multiple sclerosis. However, the conventional 2-dimensional (2D) culture of MSCs is laborious and limited in scale potential. The large dosage requirement for many of the indications further exacerbates this manufacturing challenge. In contrast, spheroid MSC culture does not require a cell attachment surface and is amenable to large-scale suspension cell culture techniques, such as stirred-tank bioreactors. In this present study, we developed and optimized serum free media for culturing MSC spheroids. We used Design of Experiment (DoE)-based strategies to systematically evaluate media mixtures and a panel of different components. The optimization yielded two prototype media that could allow MSCs to form aggregates and proliferate in both static cultures and dynamic cultures. The expanded MSCs expressed the expected surface markers for mesenchymal cells (CD73, CD90 and CD105). In addition, the expanded cells demonstrated multipotency and differentiated to the osteocyte, chondrocyte and adipocyte lineages, which showed similar or enhanced differentiation levels compared with serum-containing adherent cultures. PMID:24616445

  9. Development of an Insert Co-culture System of Two Cellular Types in the Absence of Cell-Cell Contact.

    Science.gov (United States)

    Renaud, Justine; Martinoli, Maria-Grazia

    2016-07-17

    The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.

  10. Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

    Science.gov (United States)

    Kamal, Khaled Y.; Herranz, Raúl; van Loon, Jack J. W. A.; Christianen, Peter C. M.; Medina, F. Javier

    2016-06-01

    Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.

  11. Development of bone marrow mesenchymal stem cell culture in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; PENG Li-pan; WU Nan; LI Le-ping

    2012-01-01

    Objective To review the in vitro development of bone marrow mesenchymal stem cells culture (BM-MSC).Data sources The data cited in this review were mainly obtained from articles listed in Medline and PubMed.The search terms were “bone marrow mesenchymal stem cell" and "cell culture".Study selection Articles regarding the in vitro development of BM-MSCs culture,as well as the challenge of optimizing cell culture environment in two-dimensional (2D) vs.3D.Results Improving the culture conditions increases the proliferation and reduces the differentiation.Optimal values for many culture parameters remain to be identified.Expansion of BM-MSCs under defined conditions remains challenging,including the development of optimal culture conditions for BMSC and large-volume production systems.Conclusions Expansion of BM-MSCs under defined conditions remains challenges,including the development of optimal culture conditions for BMSC and scale-up to large-volume production systems.Optimal values for many culture parameters remain to be identified.

  12. An effective technique for isolating adult activated Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Jifei Zhang; Lianhong Jin; Yuzhen Zhao

    2006-01-01

    BACKGROUND: Schwann cells (SCs) are neuroglial cells of peripheral nerve and play a key role in repairing peripheral nerve injury; therefore, it provides an important evidence for transplantation of SCs which are characterized by active proliferation and adult high-purity in vitro after nerve injury in clinic, and also develops a new therapeutic way for nerve injury.OBJECTIVE: To investigate an effective technique for isolating adult activated Schwann cells.DESIGN: Controlled observational study.SETTING: Mudanjiang Medical College.MATERIALS: The experiment was completed at the Department of Medical Genetics of Harbin Medical University from March 2003 to April 2005. Health female Wistar rats, aged 2 months, weighting 150-160 g, were randomly divided into 3 groups with 5 in each group.METHODS: The right sciatic nerves from 15 Wistar rats were exposed and transected at the mid thigh under pentobarbital anesthesia (4 mg/kg, I.p). Seven days later, the distal segments of the predegenerated nerves were removed and used to produce adult Schwann cell cultures. The distal segment of the predegenerated nerve, 20 mm in length, was resected. The nerve was cut into pieces 1 mm in length and incubated for 3 hours under CO2 at 37 ℃ with an enzyme mixture of 0.05% collagenase/dispase. Rats were divided into 3 groups:① Group 1: The nerve fragments were explanted in poly-L-lysine and laminin-coated dishes with BS medium from the 1st to the 6th day. On the 6th day, the fragments were removed into a new poly-L-lysine-laminin-coated dish and the BS medium was changed to BS with 10% FBS. The nerve fragments were replaced repeatedly in the same way in new dishes on the 12th and the 18th days. ②Group 2: For the first 3 days, the nerve fragments were fed with BS with 10% FBS. This medium was changed to BS medium on the third day. The nerve fragments were removed to another dish on day 6 and BS medium was changed to BS with 25 mL/L FBS. Hereafter the culture method was the same as

  13. THE ULTRASTRUCTURE OF SEPARATED AND CULTURED CELL OF PORPHYRA YEZOENSIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  14. A novel method to generate and culture human mast cells: Peripheral CD34+ stem cell-derived mast cells (PSCMCs).

    Science.gov (United States)

    Schmetzer, Oliver; Valentin, Patricia; Smorodchenko, Anna; Domenis, Rossana; Gri, Giorgia; Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-11-01

    The identification and characterization of human mast cell (MC) functions are hindered by the shortage of MC populations suitable for investigation. Here, we present a novel technique for generating large numbers of well differentiated and functional human MCs from peripheral stem cells (=peripheral stem cell-derived MCs, PSCMCs). Innovative and key features of this technique include 1) the use of stem cell concentrates, which are routinely discarded by blood banks, as the source of CD34+ stem cells, 2) cell culture in serum-free medium and 3) the addition of LDL as well as selected cytokines. In contrast to established and published protocols that use CD34+ or CD133+ progenitor cells from full blood, we used a pre-enriched cell population obtained from stem cell concentrates, which yielded up to 10(8) differentiated human MCs per batch after only three weeks of culture starting with 10(6) total CD34+ cells. The total purity on MCs (CD117+, FcεR1+) generated by this method varied between 55 and 90%, of which 4-20% were mature MCs that contain tryptase and chymase and show expression of FcεRI and CD117 in immunohistochemistry. PSCMCs showed robust histamine release in response to stimulation with anti-FcεR1 or IgE/anti-IgE, and increased proliferation and differentiation in response to IL-1β or IFN-γ. Taken together, this new protocol of the generation of large numbers of human MCs provides for an innovative and suitable option to investigate the biology of human MCs.

  15. Nylon-3 polymers that enable selective culture of endothelial cells.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H; Masters, Kristyn S

    2013-11-06

    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.

  16. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  17. Ontogeny of electrically excitable cells in cultured olfactory epithelium.

    OpenAIRE

    Schubert, D; Stallcup, W.; LaCorbiere, M; Kidokoro, Y; Orgel, L

    1985-01-01

    A primary system has been developed in which it is possible to study the production of electrically excitable neuron-like cells from a precursor population of olfactory epithelial cells. Rat nasal epithelium was dissociated and placed in culture. The initial surviving cells are flat and ciliated and contain glial fibrillary acidic protein (GFAP). After 3-5 days electrically excitable cells appear that contain neuron-specific enolase but not GFAP. These round cells originate by means of the di...

  18. Characterization of a novel miniature cell culture device

    Science.gov (United States)

    Moore, Sandra K.; Kleis, Stanley J.

    2008-05-01

    Recent advancements in the field of microfluidics have generated much interest in the advent of a miniaturized cell culture device. In this study, we developed a novel miniature culture system (cells, either prokaryotic or eukaryotic in type, for both 1 g and microgravity applications. The miniature culture system may advance the development of microanalytical remote monitoring tools such as biological sentinels, biosensors, and lab-on-a-chip. Integrating the autonomous miniature culture system with a microanalytical device makes a powerful biological tool. Cells can be cultured long-term, harvested, and released directly into an analytical tool without the need for human interaction through fluid dynamic manipulations. This work characterizes the miniature bioreactor system through numerical and experimental proof of concept studies.

  19. The Significance Application of Indigenous Phytohemagglutinin (PHA) Mitogen on Metaphase and Cell Culture Procedure.

    Science.gov (United States)

    Movafagh, Abolfazl; Heydary, Hassan; Mortazavi-Tabatabaei, Seyed Abdolreza; Azargashb, Eznollah

    2011-01-01

    Phytohemagglutinin (PHA) is a lectin, obtained from the red kidney bean that binds to the membranes of T-cells and stimulates metabolic activity, cell division, etc. The object of this research was the comparison between self made PHA (Indigenous) and imported commercial one, following conventional and High Resolution Cell Synchronization technique (HRCS) .From each blood sample of healthy individual donor replicate cell culture with two different PHA (self-made and commercial imported) with same concentration were cultured simultaneously. For culture cells, 3-5 × 106(6) cells were cultured in 4 mL medium( RPMI 1640 supplemented with 15 per cent heat inactivated fetal bovine serum, 0.1 mL Phytohemagglutinin was added and kept at 37°C in an atmosphere containing 5% CO2. The processing of mitotic division from 48 h and 72 h cultures was performed according to the standard and High Resolution Cell Synchronization technique. Cytogenetic studies were performed in 100 normal healthy blood donor individuals. Statistical analysis was performed by SPSS (version 16, Inc.USA) software.Our results indicate that the preparation of fresh Phytohemagglutinin at the time of cell division and cell culture procedure reveals satisfactory score. The overall frequency of mitotic index in our study was better when compared with commercial imported Phytohemagglutinin (p < 0.001).The significant differences in the results may be due to fresh preparation. However, cost effective, easy and nearest approach of this indigenous product and high demand for this product among health care services can be considered.

  20. Development and evaluation of a porcine in vitro colon organ culture technique.

    Science.gov (United States)

    Costa, Matheus O; Harding, John C S; Hill, Janet E

    2016-10-01

    The intestinal mucosa comprises a complex assemblage of specialized tissues that interact in numerous ways. In vitro cell culture models are generally focused on recreating a specific characteristic of this organ and do not account for the many interactions between the different tissues. In vitro organ culture (IVOC) methods offer a way to overcome these limitations, but prolonging cell viability is essential. This study aimed to determine the feasibility and optimal conditions for in vitro culture of swine colonic mucosa for use as an enteric pathogen infection model. Explants (n = 168) from commercial pigs (n = 12), aged 5 to 10 wk, were used to assess the impact of various culture protocols on explant viability. Explants were cultured for up to 5 d and formalin fixed at 24-h intervals. Following establishment of the culture protocol, explants (n = 208) from 13 pigs were evaluated at Day 0 and 5 of culture. Assessment of viability was based on histological changes (tissue architecture evaluated by H&E, immunostaining of cell proliferation marker Ki-67) and expression of genes encoding IL-1α, IL-8, TNF-α, IFN-γ, and e-cadherin. After 5 d in culture, 20% of explants displayed over 80% of epithelial coverage, whereas 31% of explants had more than 50% of their surface covered by columnar epithelium, and 81% had crypts but with a decreased number of Ki-67-positive cells when compared to Day 0. Notably, large variability in explant quality was observed between donor pigs. Best possible explants were obtained from the distal colon of pigs, processed immediately after euthanasia, cultured at the liquid-tissue-gas interface in media supplemented with a mixture of antibiotics and antifungals and an oxygen-rich gas mix.

  1. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  2. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  3. Preliminary analysis of cellular sociology of co-cultured glioma initiating cells and macrophages in vitro

    Institute of Scientific and Technical Information of China (English)

    Mingxia Zhang; Xingliang Dai; Xiaonan Li; Qiang Huang; Jun Dong; Junjie Chen; Lin Wang; Xiaoyan Ji; Lin Yang; Yujing Sheng; Hairui Liu; Haiyang Wang; Aidong Wang

    2016-01-01

    Objective:Real-time monitoring of cytokine secretion at the single immunocyte level, based on the concept of immune cells, sociology has been recently reported. However, the relationships between glioma-initiating cells (GICs) and host immune cells and their mutual interactions in the tumor microenvironment have not been directly observed and remain unclear. Methods:The dual fluorescence tracing technique was applied to label the co-cultured GICs and host macrophages (Mø), and the interactions between the two types of cells were observed using a live cell imaging system. Fusion cells in the co-culture system were monocloned and proliferated in vitro and their social interactions were observed and recorded. Results:Using real-time dynamic observation of target cells, 6 types of intercellular conjunction microtubes were found to function in the transfer of intercellular information between GICs and Mø;GICs and host Mø can fuse into hybrid cells after several rounds of mutual interactions, and then these fusion cells fused with each other;Fusion cells generated offspring cells through symmetrical and asymmetrical division or underwent apoptosis. A“cell in cell” phenomenon was observed in the fusion cells, which was often followed by cell release, namely entosis. Conclusions:Preliminary studies revealed the patterns of cell conjunction via microtubes between GICs and host Mø and the processes of cell fusion, division, and entosis. The results revealed malignant transformation of host Mø, induced by GICs, suggesting complex social relationships among tumor-immune cells in gliomas.

  4. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  5. Cells cultured on microgrooves with or without surface coating: Correlation between cell alignment, spreading and local membrane deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiongtu [Ecole Normale Superieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris (France); College of physics and information engineering, Fuzhou University, 350002 Fuzhou (China); Shi, Jian; Hu, Jie [Ecole Normale Superieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris (France); Chen, Yong, E-mail: yong.chen@ens.fr [Ecole Normale Superieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75231 Paris (France); Institute for Integrated Cell-Material Science, Kyoto University, Kyoto 606-8507 (Japan)

    2013-03-01

    The behaviors of cells cultured on patterned substrates vary with the material stiffness, the geometry and the biochemical properties of the pattern. By using a reversed cell imprinting (RCI) technique, together with phase contrast microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM), we have exploited reversed side cellular morphology on patterned microgrooves of different geometries with or without surface coating of adhesion molecules. We have shown a close correlation between the effect of contact guidance and penetration of cellular membrane. Without surface coating, roughly 80% of HeLa cells were aligned along the groove direction regardless of the groove spacing. When the microgrooves were coated with fibronectin, the area of cell spreading was increased but the percentage of aligned cells was significantly decreased. In both cases, the deformation of cell membrane at the cell-pattern interfaces could be measured. We found that the local penetration of the cellular membrane into the grooves was correlated to the cellular alignment for both HeLa and NIH 3T3 cells, and that such a correlation was cell-type dependent. - Highlights: Black-Right-Pointing-Pointer Quantitatively assessment of cell deformation was obtained using RCI technique. Black-Right-Pointing-Pointer Cell alignment is correlated to the cell penetration into microgrooves. Black-Right-Pointing-Pointer Cell spreading is also correlated to the cell penetration into microgrooves. Black-Right-Pointing-Pointer The cell penetration and the cell alignment are cell-type dependent.

  6. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance.

    Science.gov (United States)

    Li, Jincai; Wong, Chun Loong; Vijayasankaran, Natarajan; Hudson, Terry; Amanullah, Ashraf

    2012-05-01

    Lactate has long been regarded as one of the key metabolites of mammalian cell cultures. High levels of lactate have clear negative impacts on cell culture processes, and therefore, a great amount of efforts have been made to reduce lactate accumulation and/or to induce lactate consumption in the later stage of cultures. However, there is virtually no report on the impact of lactate depletion after initial accumulation. In this work, we observed that glucose uptake rate dropped over 50% at the onset of lactate consumption, and that catabolism of alanine due to lactate depletion led to ammonium accumulation. We explored the impact of feeding lactate as well as pyruvate to the cultures. In particular, a strategy was employed where CO(2) was replaced by lactic acid for culture pH control, which enabled automatic lactate feeding. The results demonstrated that lactate or pyruvate can serve as an alternative or even preferred carbon source during certain stage of the culture in the presence of glucose, and that by feeding lactate or pyruvate, very low levels of ammonia can be achieved throughout the culture. In addition, low levels of pCO(2) were also maintained in these cultures. This was in strong contrast to the control cultures where lactate was depleted during the culture, and ammonia and pCO(2) build-up were significant. Culture growth and productivity were similar between the control and lactate-fed cultures, as well as various product quality attributes. To our knowledge, this work represents the first comprehensive study on lactate depletion and offers a simple yet effective strategy to overcome ammonia and pCO(2) accumulation that could arise in certain cultures due to early depletion of lactate.

  7. Optimization of Human Corneal Endothelial Cells for Culture: The Removal of Corneal Stromal Fibroblast Contamination Using Magnetic Cell Separation

    Directory of Open Access Journals (Sweden)

    Gary S. L. Peh

    2012-01-01

    Full Text Available The culture of human corneal endothelial cells (CECs is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated “labeled” and “flow-through” cell fractions were collected separately, cultured, and morphologically assessed. Cells from the “flow-through” fraction displayed compact polygonal morphology and expressed Na+/K+ATPase indicative of corneal endothelial cells, whilst cells from the “labeled” fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.

  8. Adherence of Moraxella bovis to cell cultures of bovine origin.

    Science.gov (United States)

    Annuar, B O; Wilcox, G E

    1985-09-01

    The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.

  9. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  10. Culture of graft-infiltrating cells from cryopreserved endomyocardial biopsies

    NARCIS (Netherlands)

    G.A. Patijn (G.); L.M.B. Vaessen (Leonard); W. Weimar (Willem); F.H.J. Claas (Frans); N.H.P.M. Jutte (Nicolet)

    1996-01-01

    textabstractGraft-infiltrating cells can be cultured from fresh endomyocardial biopsies (EMB) taken after heart transplantation to determine their growth patterns, phenotypic composition, and functional characteristics for clinical or scientific purposes. In this study we investigated whether graft-

  11. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  12. High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique.

    Science.gov (United States)

    Collado, Javier; Platas, Gonzalo; Paulus, Barbara; Bills, Gerald F

    2007-06-01

    High-throughput bacterial cultivation has improved the recovery of slow-growing and previously uncultured bacteria. The most robust high-throughput methods are based on techniques of 'dilution to extinction' or 'extinction culturing'. The low-density partitioning of CFUs in tubes or microwells exploits the fact that the number of culturable species typically increases as inoculum density decreases. Bacterial high-throughput culturing methods were adapted to fungi to generate large numbers of fungal extinction cultures. The efficiency of extinction culturing was assessed by comparing it with particle filtration and automated plate-streaking. Equal volumes of particle suspension from five litter collections of the New Zealand forest tree Elaeocarpus dentatus were compared. Dilute particle suspensions of litter were pipetted into 48-well tissue culture plates containing 1 mL of agar medium per well. Particle volumes from the same samples were applied to continuous agar surfaces in Omnitray plates by automated streaking, and fungal diversity and richness were measured. The spectrum of isolates was assessed by microscopy and sequencing of the ITS or 28S region of the rRNA gene. Estimates of species diversity between the two methods were comparable, but extinction culturing increased species richness. Compared with plating methods using continuous surfaces, extinction culturing distributes fungal propagules over partitioned surfaces. Intercolony interactions are reduced, permitting longer incubation times, and colony initiation and recovery improved. Effort to evaluate and recover colonies from fungal isolation plates was substantially reduced.

  13. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  14. Bovine mammary epithelial cells retain stem-like phenotype in long-term cultures.

    Science.gov (United States)

    Cravero, Diego; Diego, Cravero; Martignani, Eugenio; Eugenio, Martignani; Miretti, Silvia; Silvia, Miretti; Macchi, Elisabetta; Elisabetta, Macchi; Accornero, Paolo; Paolo, Accornero; Baratta, Mario; Mario, Baratta

    2014-10-01

    The detection and characterization of bovine mammary stem cells may give a better understanding of the cyclic characteristic of mammary gland development. In turn, this could potentially offer techniques to manipulate lactation yield and for regenerative medicine. We previously demonstrated that adult stem cells reside in the bovine mammary gland and possess an intrinsic regenerative potential. In vitro maintenance and expansion of this primitive population is a challenging task that could make easier the study of adult mammary stem cells. The aim of this study is to investigate this possibility. Different subpopulations of mammary epithelial cells emerge when they are cultured in two defined culture conditions. Specific cell differentiation markers as cytokeratin 18 (CK18) and cytokeratin 14 (CK14) were expressed with significant differences according to culture conditions. Vimentin, a well-known fibroblast marker was observed to increase significantly (P day 20. In both conditions, after prolonged culture (25 days) a subset of cells still retained regenerative capabilities. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice as shown by the expression of cytokeratin 14 (CK14), cytokeratin 18 (CK18), p63 (a mammary basal cell layer marker) and Epithelial Cell Adhesion Molecule (EpCAM). We also were able to observe the presence of milk proteins signal in these regenerated structures, which is a specific marker of functional mammary alveoli. Progenitor content was also analyzed in vitro through Colony-Forming Cell (CFC) assays with no substantial differences among culture conditions and time points. These results demonstrate that long-term culture of a multipotent cell subpopulation with intrinsic regenerative potential is possible.

  15. Which form of collagen is suitable for nerve cell culture?*

    Institute of Scientific and Technical Information of China (English)

    Mohsen Fathi Najafi; Saber Zahri; Fatemeh Vahedi; Leila Esmaililian Toosi; Nazila Ariaee

    2013-01-01

    In this study, we investigated the effects of hydrolyzed and non-hydrolyzed col agen and two-dimensional and three-dimensional col agen matrices on cell survival, attachment and neurite outgrowth of primary cultured nerve cells using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay and inverted microscopy. Hydrolyzed col agen facilitated nerve cell survival and neurite outgrowth, but it had no obvious influences on cellattachment. In contrast, non-hydrolyzed two-dimensional collagen matrix had no obvious effects on neurite outgrowth. These findings suggest that hydrolyzed col agen is an ideal nerve cell culture media.

  16. Study on Cell Suspension Culture of Floribunda Rose

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun'ai; WANG Jingang; FAN Jinping; GONG Shufang; CHE Daidi

    2008-01-01

    Friable callus was induced when immature seeds of floribunda rose were inoculated on MS medium supplemented with 2,4-D 3.0 mg-L-1.When transfered onto subculture media,fi-iable callus developed into embryogenic callus,which was used to establish cell suspension lines.Cell suspensions had to be subcultured at a interval of 4-5 days at the first several culture cycles.The best subculturing cycle for the stable cell suspensions was 8-10 days.The best inoculum quantity was 1 mL PCV(Packed Cell Volume) per 40 mL culture fluid.

  17. 2D- and 3D-culture of cell

    Directory of Open Access Journals (Sweden)

    Khoruzhenko A. I.

    2011-02-01

    Full Text Available The cultivation of mammalian cells in three-dimensional conditions acquires a priority in a variety of biomedical applications. In the areas of toxicology and anticancer drug development it concerns a significant difference of responses to proapoptotic factors of the cells cultured in 2D versus 3D environment. Besides, the clear-cut differences have been found in cell polarity, cytoskeleton structure, distribution of receptors to wide range of hormones, growth factors, etc. in mammalian cells depending on culture conditions. It is resulted in different response of cultured cells to extracellular stimuli. Multicellular spheroids are regarded presently as the most convenient model of solid tumour growth in vitro. The cultivation of thyroid follicles, mammary acini and other structure units, maintaining initial tissue organization, allows studying the behavior, biochemical features and gene profile of differentiated cells. On the other hand, 3D cultures have some limitations in comparison with a well established monolayer culture. The advantages and disadvantages of each type of cultures and their application in biological and medical researches will be discussed in this review

  18. Frangible electrochemical cell and sealing technique

    Science.gov (United States)

    Halpert, G.; Haynos, J.; Sherfey, J.

    1969-01-01

    Electrochemical cell assembly, which includes a positive electrode plate between two negative electrode plates, is both flexible and compact, and frangible under severe shock conditions. Leak-tight integrity of the housing is maintained by polymer-to-polymer fusion bonds through holes in the expanded metal electrode terminals.

  19. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  20. Convoluted cells as a marker for maternal cell contamination in CVS cultures

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P K; Therkelsen, A J

    1987-01-01

    In order to identify cells of maternal origin in CVS cultures, tissue from 1st trimester abortions were cultivated and the cultures stained in situ for X-chromatin. Convoluted cells and maternal fibroblasts were found to be positive. By chromosome analysis of cultures from 105 diagnostic placenta...... biopsies, obtained by the transabdominal route, metaphases of maternal origin were found in nine cases. In eight of these cases colonies of convoluted cells were observed. We conclude that convoluted cells are of maternal origin and are a reliable marker for maternal cell contamination in CVS cultures....

  1. Guard cell protoplasts: isolation, culture, and regeneration of plants.

    Science.gov (United States)

    Tallman, Gary

    2006-01-01

    Guard cell protoplasts have been used extensively in short-term experiments designed to elucidate the signal transduction mechanisms that regulate stomatal movements. The utility of uard cell protoplasts for other types of longer-term signal transduction experiments is just now being realized. Because highly purified, primary isolates of guard cell protoplasts are synchronous initially, they are uniform in their responses to changes in culture conditions. Such isolates have demonstrated potential to reveal mechanisms that underlie hormonal signalling for plant cell survival, cell cycle re-entry, reprogramming of genes during dedifferentiation to an embryogenic state, and plant cell thermotolerance. Plants have been regenerated from cultured guard cell protoplasts of two species: Nicotiana glauca (Graham), tree tobacco, and Beta vulgaris, sugar beet. Plants genetically engineered for herbicide tolerance have been regenerated from cultured guard cell protoplasts of B. vulgaris. The method for isolating, culturing, and regenerating plants from guard cell protoplasts of N. glauca is described here. A recently developed procedure for large-scale isolation of these cells from as many as nine leaves per experiment is described. Using this protocol, yields of 1.5-2 x 10(7) per isolate may be obtained. Such yields are sufficient for standard methods of molecular, biochemical, and proteomic analysis.

  2. Xeno-free culture of human periodontal ligament stem cells.

    Science.gov (United States)

    Trubiani, Oriana; Diomede, Francesca

    2015-01-01

    The possibility of transplanting adult stem cells into damaged organs has opened a new prospective for the treatment of several human pathologies. Currently, in vitro expansion and culture of mesenchymal stem cells is founded on supplementing cell culture and differentiation medium with fetal calf serum (FCS) or fetal bovine serum (FBS) that contain numerous growth factors inducing cell attachment to plastic surfaces, proliferation, and differentiation. Mesenchymal stem cells (MSCs) cultured with medium containing FCS or FBS are unusable in the cell therapy; in fact the central issues regarding limitations in using animal sera for cell therapy is that its components are highly variable and often unknown and may trigger a xenogenic immune response, immunological reactions, and the potential transmission of prion diseases and zoonoses. Here we describe the culture system protocols for the expansion and production of human Periodontal Ligament Stem Cells (hPDLSCs) using a new xeno-free medium formulation ensuring the maintenance of the stem cells features comprising the multiple passage expansion, mesengenic lineage differentiation, cellular phenotype, and genomic stability, essential elements for conforming to translation to cell therapy.

  3. Auxin requirements of sycamore cells in suspension culture.

    Science.gov (United States)

    Moloney, M M; Hall, J F; Robinson, G M; Elliott, M C

    1983-04-01

    Sycamore (Acer pseudoplatanus L.) cell suspension cultures (strain OS) require 2,4-dichlorophenoxyacetic acid (2,4-D) in their culture medium for normal growth. If the 2,4-D is omitted, rates of cell division are dramatically reduced and cell lysis may occur. Despite this ;auxin requirement,' it has been shown by gas chromatography-mass spectrometry that the cells synthesize indol-3yl-acetic acid (IAA). Changes in free 2,4-D and IAA in the cells during a culture passage have been monitored.There is a rapid uptake of 2,4-D by the cells during the lag phase leading to a maximum concentration per cell (125 nanograms per 10(6) cells) on day 2 followed by a decline to 45 nanograms per 10(6) cells by day 9 (middle of linear phase). The initial concentration of IAA (0.08 nanograms per 10(6) cells) rises slowly to a peak of 1.4 nanograms per 10(6) cells by day 9 then decreases rapidly to 0.2 nanograms per 10(6) cells by day 15 (early declining phase) and 0.08 nanograms per 10(6) cells by day 23 (early stationary phase).

  4. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  5. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    designed for use as a tool to predict the transport and processing that occurs prior to drug uptake in the central nervous system (CNS), and to predict BBB permeability. Electrochemical techniques and immunohistochemistry were used to validate this model and provide detailed information about cellular organization and function. Electrochemical impedance spectroscopy (EIS) provided evidence that endothelial cells cultured in the presence of astrocytes formed tight junctions capable of occluding the flow of electrical current. In a second series of experiments, a microglia-astrocyte co-culture system was developed to assess the effects of glial cells on electrode impedance recorded from neural prosthetic devices in vitro. Impedance measurements were compared with confocal images to determine the effects of glial cell density and cell type on electrode performance. The results indicate that EIS data can be used to model components of the reactive cell responses in brain tissue, and that impedance measurements recorded in vitro can be compared to measurements recorded in vivo. Taken together, these results demonstrate that alginate hydrogels can be used for the creation of 3-D neural cell scaffolds, and that such cell scaffolds can be used to model a variety of three-dimensional neural tissues in vitro, that cannot be studied in 2-D cultures.

  6. [Effect evaluation of three cell culture models].

    Science.gov (United States)

    Wang, Aiguo; Xia, Tao; Yuan, Jing; Chen, Xuemin

    2003-11-01

    Primary rat hepatocytes were cultured using three kinds of models in vitro and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH in the medium decreased over time in the period of culture. However, on 5 days, LDH showed a significant increase in monolayer culture (MC) while after 8 days LDH was not detected in sandwich culture (SC). The levels of AST and ALT in the medium did not change significantly over the investigated time. The basic CYP 1A activity gradually decreased with time in MC and SC. The decline of CYP 1A in rat hepatocytes was faster in MC than that in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducers such as omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than that in SC. Basic CYP 1A activity in bioreactor was keeped over 2 weeks and the highest albumin production was observed in bioreactor, and next were SC and MC. In conclusion, our results clearly indicated that there have some advantages and disadvantages in each of models in which can address different questions in metabolism of toxicants and drugs.

  7. Qualitative study of three cell culture methods.

    Science.gov (United States)

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K

    2002-01-01

    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions.

  8. Lacrimal gland primary acinar cell culture: the role of insulin

    Directory of Open Access Journals (Sweden)

    Leonardo Tannus Malki

    2016-04-01

    Full Text Available ABSTRACT Purpose: The goal of the present study was to establish a protocol for primary culture of lacrimal gland acinar cells (LGACs and to assess the effect of adding insulin to the culture media. Methods: LGACs were isolated and cultured from lacrimal glands of Wistar male rats. The study outcomes included cell number, viability, and peroxidase release over time and in response to three concentrations of insulin (0.5, 5.0, and 50.0 μg/mL. Results: In LGAC primary culture, cells started to form clusters by day 3. There was a time-response pattern of peroxidase release, which rose by day 6, in response to carbachol. Culture viability lasted for 12 days. An insulin concentration of 5.0 μg/mL in the culture medium resulted in higher viability and secretory capacity. Conclusions: The present method simplifies the isolation and culture of LGACs. The data confirmed the relevance of adding insulin to maintain LGACs in culture.

  9. Effects of air pollutants on plant cell tissue cultures. [Tobacco, rose soybean, periwinkle, and morning glory

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    Experiments were conducted to determine morphological and physiological effects of air pollutants on plant tissue cultures. Several cultures will be exposed to polluted atmospheres for various periods and observed for effects. The cultures which have been developed for this purpose are: tobacco pith, rose stem, soybean stem, periwinkle, and morning glory. Exposures will follow two regimens: a relatively high concentration of pollutant for a short duration and a low concentration for a long duration. Effects of pollutants on cell morphology will be observed microscopically. Effects on cell physiology may include altered respiratory quotients which will be determined by Warburg respirometry techniques. The design of an apparatus that is being developed to mix a pollutant with air and deliver it to the cultures is described.

  10. Cell-Detection Technique for Automated Patch Clamping

    Science.gov (United States)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image

  11. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  12. Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture.

    Science.gov (United States)

    Read, Erik K; Bradley, Scott A; Smitka, Tim A; Agarabi, Cyrus D; Lute, Scott C; Brorson, Kurt A

    2013-01-01

    Fermentanomics, or a global understanding of a culture state on the molecular level empowered by advanced techniques like NMR, was employed to show that a model hybridoma culture supplied with glutamine and glucose depletes aspartate, cysteine, methionine, tryptophan, and tyrosine during antibody production. Supplementation with these amino acids prevents depletion and improves culture performance. Furthermore, no significant changes were observed in the distribution of glycans attached to the IgG3 in cultures supplemented with specific amino acids, arguing that this strategy can be implemented without fear of impact on important product quality attributes. In summary, a targeted strategy of quantifying media components and designing a supplementation strategy can improve bioprocess cell cultures when enpowered by fermentanomics tools.

  13. Skin biopsies for cell cultures from Mediterranean free-ranging cetaceans.

    Science.gov (United States)

    Marsili, L; Fossi, M C; Neri, G; Casini, S; Gardi, C; Palmeri, S; Tarquini, E; Panigada, S

    2000-01-01

    The aim of this study was to develop a useful method for obtaining viable tissue samples for establishing cell cultures from skin biopsies of free-ranging cetaceans. The skin biopsies were performed by two methods: dart from an air gun and dart from a crossbow. The dart tip was modified to collect tissue. The tissue was kept in tissue culture medium at ambient temperature, then processed within 24 h. Many modifications in culture technique, with respect to conventional culture methods for human fibroblasts, were made. The cultures thus obtained can be used for many purposes, including genetic and toxicological studies. In toxicology they are an alternative in vitro system for studying threatened animals such as marine mammals. In particular, fibroblasts can be used to test the vulnerability of cetaceans and pinnipeds to different environmental contaminants such as organochlorine compounds, heavy metals and polycyclic aromatic hydrocarbons.

  14. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  15. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...... at similar concentrations to the passive adsorption process, as measured by enzyme-linked immunosorbent assays, and the bound IL-4 did not leak into solution to any measurable extent during cell culture. However, covalently bound IL-4 was incapable of inducing monocyte differentiation. This may be caused...

  16. Good Cell Culture Practice for stem cells and stem-cell-derived models.

    Science.gov (United States)

    Pamies, David; Bal-Price, Anna; Simeonov, Anton; Tagle, Danilo; Allen, Dave; Gerhold, David; Yin, Dezhong; Pistollato, Francesca; Inutsuka, Takashi; Sullivan, Kristie; Stacey, Glyn; Salem, Harry; Leist, Marcel; Daneshian, Mardas; Vemuri, Mohan C; McFarland, Richard; Coecke, Sandra; Fitzpatrick, Suzanne C; Lakshmipathy, Uma; Mack, Amanda; Wang, Wen Bo; Yamazaki, Daiju; Sekino, Yuko; Kanda, Yasunari; Smirnova, Lena; Hartung, Thomas

    2017-01-01

    The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.

  17. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  18. EXPLANTATION OF MESANGIAL CELL HILLOCKS - A METHOD FOR OBTAINING HUMAN MESANGIAL CELLS IN CULTURE

    NARCIS (Netherlands)

    MULLER, EW; KIM, Y; MICHAEL, AF; VERNIER, RL; VANDERHEM, GK; VANDERWOUDE, FJ

    1992-01-01

    A simple method is presented for selective cell culture of human mesangial cells using explanatation of mesangial cell hillocks. Glomeruli which had been incubated with collagenase were explanted on plastic tissue culture flasks. Three to 6 weeks after explantation, a rapidly growing multilayer of e

  19. High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Berta Carola Pérez

    2007-04-01

    Full Text Available Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive. This can be achieved by using techniques leading to high cell concentration and reducing inhibition by the end-product. One of the frequently employed methods involves cell recycling. This work thus developed a membrane reactor incorporating a filtration module with 5 u,m stainless steel tubular units inside a 3L stirred jar fermenter for investigating its application in continuous ethanol production. The effects of cell concentration and transmembrane pressure difference on permeate flux were evaluated for testing the filtration module's performance. The internal cell retention system was operated in Saccharomyces cerevisiae continuous culture derived from sucrose, once fermentation conditions had been selected (30 °C, 1.25 -1.75 vvm, pH 4.5. Filter unit permeability was maintained by applying pulses of air. More than 97% of the grown cells were retained in the fermenter, reaching 51 g/L cell concentration and 8.51 g/L.h average ethanol productivity in culture with internal cell retention; this was twice that obtained in a conventional continuous culture. Key words: Membrane reactor, Saccharomyces cerevisiae, alcoholic fermentation, cell recycling.

  20. Modeling of cell culture damage and recovery leads to increased antibody and biomass productivity in CHO cell cultures.

    Science.gov (United States)

    Naderi, Saeideh; Nikdel, Ali; Meshram, Mukesh; McConkey, Brendan; Ingalls, Brian; Budman, Hector; Scharer, Jeno

    2014-09-01

    The development of an efficient and productive cell-culture process requires a deep understanding of intracellular mechanisms and extracellular conditions for optimal product synthesis. Mathematical modeling provides an effective strategy to predict, control, and optimize cell performance under a range of culture conditions. In this study, a mathematical model is proposed for the investigation of cell damage of a Chinese hamster ovary cell culture secreting recombinant anti-RhD monoclonal antibody (mAb). Irreversible cell damage was found to be correlated with a reduction in pH. This irreversible damage to cellular function is described mathematically by a Tessier-based model, in which the actively growing fraction of cells is dependent on an intracellular metabolic product acting as a growth inhibitor. To further verify the model, an offline model-based optimization of mAb production in the cell culture was carried out, with the goal of minimizing cell damage and thereby enhancing productivity through intermittent refreshment of the culture medium. An experimental implementation of this model-based strategy resulted in a doubling of the yield as compared to the batch operation and the resulting biomass and productivity profiles agreed with the model predictions.

  1. Extracellular matrix-dependent differentiation of rabbit tracheal epithelial cells in primary culture.

    Science.gov (United States)

    Baeza-Squiban, A; Boisvieux-Ulrich, E; Guilianelli, C; Houcine, O; Geraud, G; Guennou, C; Marano, F

    1994-01-01

    The differentiation of tracheal epithelial cells in primary culture was investigated according to the nature of the extracellular matrix used. Cultures obtained by the explant technique were realized on a type I collagen substratum either as a thin, dried coating or as a thick, hydrated gel supplemented with culture medium and serum. These two types of substratum induced distinct cell morphology and cytokeratin expression in the explant derived cells. Where cells are less proliferating (from Day 7 to 10 of culture), differentiation was evaluated by morphologic ultrastructural observations, immunocytochemical detection of cytokeratins, and determination of cytokeratin pattern by biochemical analysis. The epithelium obtained on gel was multilayered, with small, round basal cells under large, flattened upper cells. The determination of the keratin pattern expressed by cells grown on gel revealed an expression of keratin 13, already considered as a specific marker of squamous metaplasia, that diminished with retinoic acid treatment. Present results demonstrated by confocal microscopy that K13-positive cells were large upper cells with a dense keratin network, whereas lower cells were positively stained with a specific monoclonal antibody to basal cells (KB37). Moreover, keratin neosynthesis analysis pointed out a higher expression of K6, a marker of hyperproliferation, on gel than on coating. All these data suggest a differentiation of rabbit tracheal epithelial cells grown on gel toward squamous metaplasia. By contrast, the epithelium observed on coating is nearly a monolayer of very large and spread out cells. No K13-positive cells were observed, but an increase in the synthesis of simple epithelium marker (K18) was detected. These two substrata, similar in composition and different in structure, induce separate differentiation and appear as good tools to explore the mechanisms of differentiation of epithelial tracheal cells.

  2. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    Science.gov (United States)

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  3. Single-cell epigenomics: techniques and emerging applications.

    Science.gov (United States)

    Schwartzman, Omer; Tanay, Amos

    2015-12-01

    Epigenomics is the study of the physical modifications, associations and conformations of genomic DNA sequences, with the aim of linking these with epigenetic memory, cellular identity and tissue-specific functions. While current techniques in the field are characterizing the average epigenomic features across large cell ensembles, the increasing interest in the epigenetics within complex and heterogeneous tissues is driving the development of single-cell epigenomics. We review emerging single-cell methods for capturing DNA methylation, chromatin accessibility, histone modifications, chromosome conformation and replication dynamics. Together, these techniques are rapidly becoming a powerful tool in studies of cellular plasticity and diversity, as seen in stem cells and cancer.

  4. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    Callus cultures of carnation, Dianthus caryophyllus L. ev. G. J. Sim, were grown on a synthetic medium of half strength Murashige and Skoog salts, 3 % sucrose, 100 mg/l of myo-inositol, 0.5 mg/l each of thiamin, HCl, pyridoxin, HCl and nicotinic acid and 10 g/l agar. Optimal concentrations of gro......, but all attempts to induce formation of shoots or em-bryoids gave negative results....

  5. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Directory of Open Access Journals (Sweden)

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  6. Metabolism Kinetics of Glucose in Anchorage-dependent Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    孙祥明; 张元兴

    2001-01-01

    The kinetic model of glucose metabolism was established and successfully applied to batchcultures of rCHO and rBHK cells. It was found that a large amount of glucose was utilized for cellmaintenance, and the overwhelming majority of maintenance energy from glucose was by its anaerobicmetabolism in both rBHK and rCHO cell cultures. The overall maintenance coefficients from aerobicmetabolism were 1.9×10-13 mmol/(cell.h) for rCHO cells and 7×10-13 mmol/(cell.h) for rBHK cells. Inaddition, all Go/T and Eo/T gradually increased with the same trend as the cell growth in the culture ofboth rCHO and rBHK cells. The overall molecule yield coefficients of lactate to glucose were 1.61 for rCHO cells and 1.38 for rBHK cells. The yield coefficients of cell to glucose were 4.5×108 cells/mmol for rCHO cells and 1.9 × 108 cells/mmol for rBHK cells, respectively.

  7. Advances in culture and manipulation of human pluripotent stem cells.

    Science.gov (United States)

    Qian, X; Villa-Diaz, L G; Krebsbach, P H

    2013-11-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.

  8. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  9. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.

    OpenAIRE

    Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W; Roder, J C

    1993-01-01

    Several newly generated mouse embryonic stem (ES) cell lines were tested for their ability to produce completely ES cell-derived mice at early passage numbers by ES cell tetraploid embryo aggregation. One line, designated R1, produced live offspring which were completely ES cell-derived as judged by isoenzyme analysis and coat color. These cell culture-derived animals were normal, viable, and fertile. However, prolonged in vitro culture negatively affected this initial totipotency of R1, and...

  10. Seed train optimization for cell culture.

    Science.gov (United States)

    Frahm, Björn

    2014-01-01

    For the production of biopharmaceuticals a seed train is required to generate an adequate number of cells for inoculation of the production bioreactor. This seed train is time- and cost-intensive but offers potential for optimization. A method and a protocol are described for the seed train mapping, directed modeling without major effort, and its optimization regarding selected optimization criteria such as optimal points in time for cell passaging. Furthermore, the method can also be applied for the set-up of a new seed train, for example for a new cell line. Although the chapter is directed towards suspension cell lines, the method is also generally applicable, e.g. for adherent cell lines.

  11. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  12. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  13. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    Science.gov (United States)

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  14. Cell cultures from the symbiotic soft coral Sinularia flexibilis

    NARCIS (Netherlands)

    Khalesi, M.K.; Vera-Jimenez, N.I.; Aanen, D.K.; Beeftink, H.H.; Wijffels, R.H.

    2008-01-01

    The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cu

  15. Isolation and Characterization of Poliovirus in Cell Culture Systems.

    Science.gov (United States)

    Thorley, Bruce R; Roberts, Jason A

    2016-01-01

    The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.

  16. Quantitative phase imaging for cell culture quality control.

    Science.gov (United States)

    Kastl, Lena; Isbach, Michael; Dirksen, Dieter; Schnekenburger, Jürgen; Kemper, Björn

    2017-03-06

    The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry.

  17. Animal-cell culture in aqueous two-phase systems.

    NARCIS (Netherlands)

    Zijlstra, G.M.

    1998-01-01

    In current industrial biotechnology, animal-cell culture is an important source of therapeutic protein products. The conventional animal-cell production processes, however, include many unit operations as part of the fermentation and downstream processing strategy. The research described in this the

  18. Phenotypic changes in satellite glial cells in cultured trigeminal ganglia.

    Science.gov (United States)

    Belzer, Vitali; Shraer, Nathanael; Hanani, Menachem

    2010-11-01

    Satellite glial cells (SGCs) are specialized cells that form a tight sheath around neurons in sensory ganglia. In recent years, there is increasing interest in SGCs and they have been studied in both intact ganglia and in tissue culture. Here we studied phenotypic changes in SGCs in cultured trigeminal ganglia from adult mice, containing both neurons and SGCs, using phase optics, immunohistochemistry and time-lapse photography. Cultures were followed for up to 14 days. After isolation virtually every sensory neuron is ensheathed by SGCs, as in the intact ganglia. After one day in culture, SGCs begin to migrate away from their parent neurons, but in most cases the neurons still retain an intact glial cover. At later times in culture, there is a massive migration of SGCs away from the neurons and they undergo clear morphological changes, and at 7 days they become spindle-shaped. At one day in culture SGCs express the glial marker glutamine synthetase, and also the purinergic receptor P2X7. From day 2 in culture the glutamine synthetase expression is greatly diminished, whereas that of P2X7 is largely unchanged. We conclude that SGCs retain most of their characteristics for about 24 h after culturing, but undergo major phenotypic changes at later times.

  19. Schwann cell cultures from human fetal dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    Yaping Feng; Hui Zhu; Jiang Hao; Xinmin Wang; Shengping Wu; Li Bai; Xiangming Li; Yun Zha

    2009-01-01

    BACKGROUND:Previous studies have used many methods for in vitro Schwann cells (SCs) cul-tures and purification,such as single cell suspension and cytosine arabinoside.However,it has been difficult to obtain sufficient cellular density,and the procedures have been quite tedious.OBJECTIVE:To investigate the feasibility of culturing high-density SCs using fetal human dorsal root ganglion tissue explants.DESIGN,TIME AND SETTING:Cell culture and immunohistochemistry were performed at the Cen-tral Laboratory of Kunming General Hospital of Chinese PLA between March 2001 and October 2008.MATERIALS:Culture media containing 10% fetal bovine serum,as well as 0.2% collagenase and 0.25% trypsin were purchased from Gibco,USA;mouse anti-human S-100 monoclonal antibody and goat anti-mouse IgG labeled with horseradish peroxidase were provided by Beijing Institute of Bi-ological Products,China.METHODS:Primarily cultured SCs were dissociated from dorsal root ganglia of human aborted fe-tuses at 4-6 months pregnancy.Following removal of the dorsal root ganglion perineurium,the gan-glia were dissected into tiny pieces and digested with 0.2% collagenase and 0.25% trypsin (volume ratio 1:1),then explanted and cultured.SC purification was performed with 5 mL 10% fetal bovine serum added to the culture media,followed by differential adhesion.MAIN OUTCOME MEASURES:SCs morphology was observed under inverted phase contrast light microscopy.SC purity was evaluated according to percentage of S-100 immunostained cells.RESULTS:SCs were primarily cultured for 5-6 days and then subcultured for 4-5 passages.The highly enriched SC population reached > 95% purity and presented with normal morphology.CONCLUSION:A high purity of SCs was obtained with culture methods using human fetal dorsal root ganglion tissue explants.

  20. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  1. Radiosensitivity of cultured insect cells: I. Lepidoptera

    Energy Technology Data Exchange (ETDEWEB)

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five lepidopteran insect cell lines representing five different genera has been investigated. These lines are: (1) TN-368, Trichoplusia ni; (2) IPLB-SF-1254, Spodoptera frugiperda; (3) IPLB-1075, Heliothis zea; (4) MRRL-CHl, clone GVl, Manduca sexta; and (5) IAL-PID2, Plodia interpunctella. The cell lines grew at different rates and had population doubling times that ranged from 19 to 52 hr. All of the lines are highly heteroploid and have approximate chromosome numbers near or above 100. The chromosomes are very small. All of the lines are extremely radioresistant; cell populations are able to recover from 260 kVp X-ray exposures up to and including 400 Gy, the highest dose examined. Cell survival curves were obtainable for only the TN-368 and IPLB-SF-1254 lines. The TN-368 cells displayed a biphasic survival response with D/sub 0/, d/sub q/, and n values of 65.7 and 130.2 Gy, 9.0 and -36.1 Gy, and 1.2 and 0.8, respectively, for the steep and shallow portions of the curve. The IPLB-SF-1254 cells had a D/sub 0/ of 63.9 Gy. D/sub q/ of 19.0 Gy, and n value of 1.4. These studies provide definitive evidence of the radioresistance of lepidopteran cells, and suggest that this radioresistance is a characteristic of lepidopteran insects.

  2. Culture of isolated single cells from Taxus suspensions for the propagation of superior cell populations.

    Science.gov (United States)

    Naill, Michael C; Roberts, Susan C

    2005-11-01

    Single cells isolated from aggregated Taxus cuspidata cultures via enzymatic digestion were grown in suspension culture. High seeding density (4 x 10(5 )cells/ml) and the addition of cell-free conditioned medium were essential for growth. Doubling the concentration of the nutrients [ascorbic acid (150 g/l), glutamine (6.25 mM: ), and citric acid (150 g/l)] had no effect on single cell growth or viability. A specific growth rate of 0.11 days(-1) was achieved, which is similar to the observed growth rate of aggregated Taxus suspensions. The biocide, Plant Preservative Mixture, added at 0.2% (v/v) to all single cell cultures to prevent microbial contamination, had no significant effect on growth or viability. Following cell sorting, single cell cultures can be used to establish new cell lines for biotechnology applications or provide cells for further study.

  3. Cell division and differentiation in protoplasts from cell cultures of Glycine species and leaf tissue of soybean.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    Protoplasts were isolated from cell cultures of G. soja and G. tabacina, respectively. The isolation procedure employed Percoll for the separation and concentration of protoplasts. The cultured protoplasts formed cells which developed into embryo-like structures. Protoplasts also were isolated from leaf tissue of soybean cv. Williams 82. Upon culture, the protoplasts regenerated cell walls and divided to form cell cultures.

  4. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1 After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2 Our culture medium is not supplemented with any additional growth factor. (3 Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4 Our method has been carefully tested in several mouse strains and the results are reproducible. (5 We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.

  5. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies.

    Science.gov (United States)

    Krampe, Britta; Al-Rubeai, Mohamed

    2010-07-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.

  6. Investigating the diversity of Pseudomonas spp. in soil using culture dependent and independent techniques

    DEFF Research Database (Denmark)

    Li, Lili; Al-Soud, Waleed Abu; Bermark, Lasse

    2013-01-01

    Less than 1% of bacterial populations present in environmental samples are culturable, meaning that cultivation will lead to an underestimation of total cell counts and total diversity. However, it is less clear whether this is also true for specific well-defined groups of bacteria for which sele...

  7. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types.

  8. Cytopathogenicity of Naegleria for cultured neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fulford, D.E.

    1985-01-01

    The cytopathic activity of live Naegleria amoebae and cell-free lysates of Naegleria for B-103 rat neuroblastoma cells was investigated using a /sup 51/Cr release assay. Live amoebae and cell-free lysates of N. fowleri, N. australiensis, N. lovaniensis, and N. gruberi all induced sufficient damage to radiolabeled B-103 cells to cause a significant release of chromium. The cytotoxic activity present in the cell-free lysates of N. fowleri can be recovered in the supernatant fluid following centrifugation at 100,000xg and precipitation of the 100,000xg supernatant fluid with ammonium sulfate. Initial characterization of the cytotoxic factor indicates that it is a heat labile, pH sensitive, soluble protein. The cytotoxic activity is abolished by either extraction, unaffected by repeated freeze-thawing, and is not sensitive to inhibitors of proteolytic enzymes. Phospholipase A activity was detected in the cytotoxic ammonium sulfate precipitable material, suggesting that this enzyme activity may have a role in the cytotoxic activity of the cell-free lysates.

  9. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture.

    Science.gov (United States)

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-06-23

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.

  10. Wave characterization for mammalian cell culture: residence time distribution.

    Science.gov (United States)

    Rodrigues, Maria Elisa; Costa, Ana Rita; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2012-02-15

    The high dose requirements of biopharmaceutical products led to the development of mammalian cell culture technologies that increase biomanufacturing capacity. The disposable Wave bioreactor is one of the most promising technologies, providing ease of operation and no cross-contamination, and using an innovative undulation movement that ensures good mixing and oxygen transfer without cell damage. However, its recentness demands further characterization. This study evaluated the residence time distribution (RTD) in Wave, allowing the characterization of mixing and flow and the comparison with ideal models and a Stirred tank reactor (STR) used for mammalian cell culture. RTD was determined using methylene blue with pulse input methodology, at three flow rates common in mammalian cell culture (3.3×10(-5)m(3)/h, 7.9×10(-5)m(3)/h, and 1.25×10(-4)m(3)/h) and one typical of microbial culture (5×10(-3)m(3)/h). Samples were taken periodically and the absorbance read at 660nm. It was observed that Wave behavior diverted from ideal models, but was similar to STR. Therefore, the deviations are not related to the particular Wave rocking mechanism, but could be associated with the inadequacy of these reactors to operate in continuous mode or to a possible inability of the theoretical models to properly describe the behavior of reactors designed for mammalian cell culture. Thus, the development of new theoretical models could better characterize the performance of these reactors.

  11. Isolation and Culture of Postnatal Stem Cells from Deciduous Teeth

    OpenAIRE

    Olávez, Daniela; Facultad de Odontología Universidad de Los Andes; Salmen, Siham; Instituto de Inmunología Clínica, Universidad de Los Andes.; Padrón, Karla; Facultad de Odontología. Univerisdad de Los Andes.; Lobo, Carmine; Facultad de Odontología. Univerisdad de Los Andes.; Díaz, Nancy; Facultad de Odontología, Universidad de Los Andes.; Berrueta, Lisbeth; Doctora en Inmunología por Instituto Venezolano de Investigaciones Científicas (IVIC). Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Venezuela.; Solorzanio, Eduvigis; Facultad de Odontología, Universidad de Los Andes.

    2014-01-01

    Background: Currently, degenerative diseases represent a public health problem; therefore, the development and implementation of strategies to fully or partially recover of damaged tissues has a special interest in the biomedical field. Therapeutic strategies based on mesenchymal stem cells transplantation from dental pulp have been proposed as an alternative. Purpose: To develop a mesenchymal stem cells culture isolated from dental pulp of deciduous teeth. Methods: The mesenchymal stem cells...

  12. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  13. Experiments on tissue culture in the genus Lycopersicon miller : Shoot formation from protoplasts of tomato long-term cell cultures.

    Science.gov (United States)

    Koblitz, H; Koblitz, D

    1982-06-01

    Callus cultures from cotyledon explants were established and maintained in culture for more than two years. After several months callus cultures were transferred into liquid medium and cultured as cell suspensions. Protoplasts were isolated from these cell suspension cultures and cultured in a liquid medium. After formation of new cell walls the cells were further cultured in liquid medium and afterwards transferred to an agar-solidified medium to give a vigorously growing callus culture. In the case of the cultivar 'Lukullus' shoots were recovered from callus. All efforts to root these shoots failed and this, in addition to variations in appearence, suggests that the shoots are changed genetically possibly due to the prolonged culture period.

  14. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M

    2006-01-01

    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled c...

  15. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  16. Metabolic measurements in cell culture and tissue constructs

    Science.gov (United States)

    Rolfe, P.

    2008-10-01

    This paper concerns the study and use of biological cells in which there is a need for sensors and assemblies for the measurement of a diverse range of physical and chemical variables. In this field cell culture is used for basic research and for applications such as protein and drug synthesis, and in cell, tissue and organ engineering. Metabolic processes are fundamental to cell behaviour and must therefore be monitored reliably. Basic metabolic studies measure the transport of oxygen, glucose, carbon dioxide, lactic acid to, from, or within cells, whilst more advanced research requires examination of energy storage and utilisation. Assemblies are designed to incorporate bioreactor functions for cell culture together with appropriate sensing devices. Oxygen consumption by populations of cells is achieved in a flowthrough assembly that incorporates O2 micro-sensors based on either amperometry or fluorescence. Measurements in single cell are possible with intra-cellular fluorophores acting as biosensors together with optical stimulation and detection. Near infra-red spectroscopy (NIRS) is used for analysis within culture fluid, for example for estimation of glucose levels, as well as within cell populations, for example to study the respiratory enzymes.Â#

  17. Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture.

    Science.gov (United States)

    Laydi, F; Rahouadj, R; Cauchois, G; Stoltz, J-F; de Isla, N

    2013-01-01

    Collagen gels could be used as carriers in tissue engineering to improve cell retention and distribution in the defect. In other respect hydroxyapatite could be added to gels to improve mechanical properties and regulate gel contraction. The aim of this work was to analyze the feasibility to incorporate hydroxyapatite into collagen gels and culture mesenchymal stem cells inside it. Human bone marrow mesenchymal stem cells (hMSC-BM) were used in this study. Gels were prepared by mixing rat tail type I collagen, hydroxyapatite microparticles and MSCs. After polymerization gels were kept in culture while gel contraction and mechanical properties were studied. In parallel, cell viability and morphology were analyzed. Gels became free-floating gels contracted from day 3, only in the presence of cells. A linear rapid contraction phase was observed until day 7, then a very slow contraction phase took place. The incorporation of hydroxyapatite improved gel stability and mechanical properties. Cells were randomly distributed on the gel and a few dead cells were observed all over the experiment. This study shows the feasibility and biocompatibility of hydroxyapatite supplemented collagen gels for the culture of mesenchymal stem cells that could be used as scaffolds for cell delivery in osteoarticular regenerative medicine.

  18. Immunocytochemical and structural comparative study of committed versus multipotent stem cells cultured with different biomaterials.

    Science.gov (United States)

    Palumbo, Carla; Baldini, Andrea; Cavani, Francesco; Sena, Paola; Benincasa, Marta; Ferretti, Marzia; Zaffe, Davide

    2013-04-01

    The aim of this work was the comparison of the behavior of committed (human osteoblast cells - hOB - from bone biopsies) versus multipotent (human dental pulp stem cells - hDPSC - from extracted teeth) cells, cultured on shot-peened titanium surfaces, since the kind of cell model considered has been shown to be relevant in techniques widely used in studies on composition/morphology of biomaterial surfaces. The titanium surface morphology, with different roughness, and the behavior of cells were analyzed by confocal microscope (CM), scanning electron microscope (SEM) and X-ray microanalysis. The best results, in terms of hOB adhesion/distribution, were highlighted by both CM and SEM in cultured plates having 20-μm-depth cavities. On the contrary, CM and SEM results highlighted the hDPSC growth regardless the different surface morphology, arranged in overlapped layers due to their high proliferation rate, showing their unfitness in biomaterial surface test. Nevertheless, hDPSC cultured inside 3D-matrices reproduced an osteocyte-like three-dimensional network, potentially useful in the repair of critical size bone defects. The behavior of the two cell models suggests a different use in biomaterial cell cultures: committed osteoblast cells could be appropriate in selecting the best surfaces to improve osseointegration, while multipotent cells could be suitable to obtain in vitro osteocyte-like network for regenerative medicine. The originality of the present work consists in studying for the first time two different cell models (committed versus multipotent) compared in parallel different biomaterial cultures, thus suggesting distinct targets for each cellular model.

  19. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed...

  20. 21 CFR 864.2240 - Cell and tissue culture supplies and equipment.

    Science.gov (United States)

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2240 Cell and tissue culture supplies and equipment. (a) Identification. Cell and tissue culture... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cell and tissue culture supplies and...

  1. Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.

    Science.gov (United States)

    Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle

    2014-01-01

    The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.

  2. Monitoring the biomass accumulation of recombinant yeast cultures: offline estimations of dry cell mass and cell counts.

    Science.gov (United States)

    Palmer, Shane M; Kunji, Edmund R S

    2012-01-01

    Biomass is one of the most important parameters for process optimization, scale-up and control in recombinant protein production experiments. However, a standard unit of biomass remains elusive. Methods of biomass monitoring have increasingly been developed towards online, in situ techniques in order to advance process analysis and control. Offline, ex situ methods, such as dry cell mass determination and direct cell counts, remain the reference for determining cell mass and number, respectively, but this type of analysis is time consuming. In this chapter, protocols are presented for determining these offline measures of the biomass yield of recombinant yeast cultures.

  3. Hollow fiber clinostat for simulating microgravity in cell culture

    Science.gov (United States)

    Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)

    1992-01-01

    A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.

  4. Infrared thermographic assessment of materials and techniques for the protection of cultural heritage

    Science.gov (United States)

    Moropoulou, Antonia; Avdelidis, Nicolas P.; Koui, Maria; Delegou, Ekaterini T.; Tsiourva, Theodora

    2001-09-01

    In this work, infrared thermography was applied and investigated as a non-destructive tool in the assessment of materials and techniques for the protection of cultural heritage. Diagnostic studies on monuments and historic buildings, situated in Greece, were performed. Long wave infrared thermography was used on restoration and traditional - historic materials concerning architectural surfaces and historic structures for research purposes such as: the assessment of moisture impact to porous stone masonries and the evaluation of conservation interventions (materials and techniques) regarding, consolidation interventions on porous stone masonries, restoration of masonries by repair mortars, and cleaning of facades. The results of this work indicate that thermography can be considered as a powerful diagnostic nondestructive tool for the preservation and protection of cultural heritage.

  5. Effects of cholesterol liposomes on cytoskeleton and proliferation of rabbit sphincter of Oddi cells in culture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-song; WEI Jing-guo; WU Jun-zheng; ZHANG Miao-li; WANG Dan; JI Zong-ling

    2002-01-01

    Objective: To discuss the relationship between hypercholesterolemic disease and the functional and structural changes of Sphincter of Oddi (SO) by the study of effect of Cholesterol Liposome (CL) on structural and quantitative changes of SO cells. Methods: Rabbit SO was isolated for primary cell culture and subculture. After subcultured with different concentration of CL culture medium for 20 h, the structural and quantitative changes of SO cells were analyzed and detected by MTT-test, flow cytometer (FCM), electronic microscope and electrophoresis technique respectively. Results: CL contributed a prominent stimulus to SO cells proliferation at middle concentration (<0.5-0.8 mg/ml), which could be confirmed by FCM analysis which indicated the number of SO cells in S-phase increasing remarkably; however, high concentration of CL inhibited SO cells' proliferation (>1.0 mg/ml) and induced apoptosis of SO cells. Swelled mitochondria and dilated endoplasmic reticulum as well as disjoined and diminished microfilaments were found in SO cells by electronic microscopy. The content of SO cells actin decreased with the increment of cholesterol concentration. There was a significant difference of actin content between CL groups and control group (P<0.05).Conclusion: CL may change SO cell membrane's function, organelle's structure and especially the quantity and configuration of microfilaments, at the same time, CL at different concentration can induce changes of SO cells cycle and lead to different changes in the number of SO cells.

  6. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell...

  7. [In vitro cell culture technology in cosmetology research].

    Science.gov (United States)

    Gojniczek, Katarzyna; Garncarczyk, Agnieszka; Pytel, Agata

    2005-01-01

    For ages the humanity has been looking for all kind of active substances, which could be used in improving the health and the appearance of our skin. People try to find out how to protect the skin from harmful, environmental factors. Every year a lot of new natural and synthetic, chemical substances are discovered. All of them potentially could be used as a cosmetic ingredient. In cosmetology research most of new xenobiotics were tested in vivo on animals. Alternative methods to in vivo tests are in vitro tests with skin cell culture system. The aim of this work was to describe two-dimensional and tree-dimensional skin cell cultures. Additionally, in this work we wanted to prove the usefulness of in vitro skin cell cultures in cosmetology research.

  8. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  9. Reversing effect of exogenous WWOX gene expression on malignant phenotype of primary cultured lung carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-long; LI Yue-chuan; SHOU Feng; LIU Chang-qi; PU Yong; TANG Hua

    2010-01-01

    Background Whether WW domain containing oxidoreductase (WWOX) gene is a tumor-suppressor is still controversial. Some researchers found that the transcription of the WWOX gene was lacking not only in tumor tissues but also in non-tumorous tissues and sometimes in normal tissues. Hence it is important to explore the role of the expression of the exogenous WWOX gene in the proliferation and apoptosis of primary cultured lung carcinoma cells. Methods Lipofection technique was used to determine primary cultured lung carcinoma cells containing the highly expressed exogenous WWOX gene and primary cultured cells with vectors as controls. An animal model of lung cancer was made by subcutaneous implantation of tumor cells into nude mice. RT-PCR, Western blotting, flow cytometry, and TUN EL were used to detect the transcription, expression of the exogenous gene and the effect of the expression of targeted genes on the proliferation and apoptosis of the primary cultured lung carcinoma cells. Results The growth, clone formation rate (CFR) ((5.33±1.53)%) of the primary lung cancer cells transfected with the WWOX gene, tumor size and weight were significantly lower than those of the non-transfected lung cancer cells (CFR: (14.33±1.53)%) and the primary lung cancer cells transfected with blank plasmids (CFR: (11.00±1.73)%, P<0.05). The apoptosis level of primary lung cancer cells transfected with the WWOX gene ((40.72±5.20)%) was significantly higher than that of the non-transfected lung cancer cells ((2.76±0.02)%) and the primary lung cancer cells transfected with blank plasmids ((2.72±0.15)%, P<0.05). Conclusion The expression of the exogenous WWOX gene can significantly inhibit the proliferation of lung cancer cells and induce their apoptosis, suggesting that the WWOX gene possesses tumor-suppressing effect.

  10. Paper-based microreactor integrating cell culture and subsequent immunoassay for the investigation of cellular phosphorylation.

    Science.gov (United States)

    Lei, Kin Fong; Huang, Chia-Hao

    2014-12-24

    Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.

  11. A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation.

    Directory of Open Access Journals (Sweden)

    Sanna Vuoristo

    Full Text Available Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines.

  12. Isolated Cells of Porphyra yezoensis Cultured on Solid Medium

    Institute of Scientific and Technical Information of China (English)

    沈颂东; 戴继勋

    2001-01-01

    Vegetative cells of Porphyra yezoensis are isolated with sea snail enzyme and cultured on the solidified agar medium. The results of experiments show that the isolated cells can survive,divide and regenerate well on the medium solidified with agar. The first division on the solid medium starts after 7 days' culture, 4 days later than the liquid culture. The survival rate of isolated cells is 71.3% on the solid medium, lower than the 86.2% of that in seawater.Thalli, thalloids,conchocelis, spermatangia and multicellular masses are developed on the solid/medium in the first month, slowly but normally. Spermatangia sacs disappear within 4 weeks. Without adding nutrient liquid onto the surface of solid medium or injecting seawater under the agar layer in order to keep moisture, the thalli and cell groups release monospores to form new thalli instead of enlarging their areas after 5 weeks' culturing. Some monospores regenerate new thalli. Other monospores lose their pigments and minimize their volume and divide quickly to form light pink calli. After 16 weeks, numerous calli can be seen on the solid medium and after 24 weeks' culturing, almost only calli and conchocelis can be seen. If the calli are immersed in seawater, the monospores are released and may develop into young thallus.

  13. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  14. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  15. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  16. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  17. Effects of rotational culture on morphology, nitric oxide production and cell cycle of endothelial cells.

    Science.gov (United States)

    Tang, Chaojun; Wu, Xue; Ye, Linqi; Xie, Xiang; Wang, Guixue

    2012-12-01

    Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering. However, there are few reports exploring the effects of rotational culture on cell morphology, nitric oxide (NO) production, and cell cycle of the endothelial cells from human umbilical vein on the stent surface. This study focuses on these parameters after the cells are seeded on the stents. Results showed that covering of stents by endothelial cells was improved by rotational culture. NO production decreased within 24 h in both rotational and static culture groups. In addition, rotational culture significantly increased NO production by 37.9% at 36 h and 28.9% at 48 h compared with static culture. Flow cytometry showed that the cell cycle was not obviously influenced by rotational culture. Results indicate that rotational culture may be helpful for preparation of cell-seeded vascular grafts and intravascular stents, which are expected to be the most frequently implanted materials in the future.

  18. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture...

  19. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification.

    Science.gov (United States)

    Braam, Stefan R; Denning, Chris; Matsa, Elena; Young, Lorraine E; Passier, Robert; Mummery, Christine L

    2008-01-01

    Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.

  20. PCR-Based Multiple Species Cell Counting for In Vitro Mixed Culture.

    Science.gov (United States)

    Huang, Ruijie; Zhang, Junjie; Yang, X Frank; Gregory, Richard L

    2015-01-01

    Changes of bacterial profiles in microbial communities are strongly associated with human health. There is an increasing need for multiple species research in vitro. To avoid high cost or measurement of a limited number of species, PCR-based multiple species cell counting (PCR-MSCC) has been conceived. Species-specific sequence is defined as a unique sequence of one species in a multiple species mixed culture. This sequence is identified by comparing a random 1000 bp genomic sequence of one species with the whole genome sequences of the other species in the same artificial mixed culture. If absent in the other genomes, it is the species-specific sequence. Species-specific primers were designed based on the species-specific sequences. In the present study, ten different oral bacterial species were mixed and grown in Brain Heart Infusion Yeast Extract with 1% sucrose for 24 hours. Biofilm was harvested and processed for DNA extraction and q-PCR amplification with the species-specific primers. By comparing the q-PCR data of each species in the unknown culture with reference cultures, in which the cell number of each species was determined by colony forming units on agar plate, the cell number of that strain in the unknown mixed culture was calculated. This technique is reliable to count microorganism numbers that are less than 100,000 fold different from other species within the same culture. Theoretically, it can be used in detecting a species in a mixed culture of over 200 species. Currently PCR-MSCC is one of the most economic methods for quantifying single species cell numbers, especially for the low abundant species, in a multiple artificial mixed culture in vitro.

  1. Mass spectrometric characterization of elements and molecules in cell cultures and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Arlinghaus, H.F. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)]. E-mail: arlinghaus@uni-muenster.de; Kriegeskotte, C. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany); Fartmann, M. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany); Wittig, A. [Strahlenklinik, Universitaetsklinikum Essen, D-45122 Essen (Germany); Sauerwein, W. [Strahlenklinik, Universitaetsklinikum Essen, D-45122 Essen (Germany); Lipinsky, D. [Physikalisches Institut, Universitaet Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)

    2006-07-30

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (laser-SNMS) have been used to image and quantify targeted compounds, intrinsic elements and molecules with subcellular resolution in single cells of both cell cultures and tissues. Special preparation procedures for analyzing cell cultures and tissue materials were developed. Cancer cells type MeWo, incubated with boronated compounds, were sandwiched between two substrates, cryofixed, freeze-fractured and freeze-dried. Also, after injection with boronated compounds, different types of mouse tissues were extracted, prepared on a special specimen carrier and plunged with high velocity into LN{sub 2}-cooled propane for cryofixation. After trimming, these tissue blocks were freeze-dried. The measurements of the K/Na ratio demonstrated that for both cell cultures and tissue materials the special preparation techniques used were appropriate for preserving the chemical and structural integrity of the living cell. The boron images show inter- and intracellular boron signals with different intensities. Molecular images show distinct features partly correlated with the cell structure. A comparison between laser-SNMS and ToF-SIMS showed that especially laser-SNMS is particularly well-suited for identifying specific cell structures and imaging ultratrace element concentrations in tissues.

  2. Evaluation of bioactivity of octacalcium phosphate using osteoblastic cell aggregates on a spheroid culture device

    Directory of Open Access Journals (Sweden)

    Takahisa Anada

    2016-03-01

    Full Text Available Much attention has been paid to three-dimensional cell culture systems in the field of regenerative medicine, since three-dimensional cellular aggregates, or spheroids, are thought to better mimic the in vivo microenvironments compared to conventional monolayer cultured cells. Synthetic calcium phosphate (CaP materials are widely used as bone substitute materials in orthopedic and dental surgeries. Here we have developed a technique for constructing a hybrid spheroid consisting of mesenchymal stem cells (MSCs and synthetic CaP materials using a spheroid culture device. We found that the device is able to generate uniform-sized CaP/cell hybrid spheroids rapidly and easily. The results showed that the extent of osteoblastic differentiation from MSCs was different when cells were grown on octacalcium phosphate (OCP, hydroxyapatite (HA, or β-tricalcium phosphate (β-TCP. OCP showed the greatest ability to increase the alkaline phosphatase activity of the spheroid cells. The results suggest that the spheroids with incorporated OCP may be an effective implantable hybrid consisting of scaffold material and cells for bone regeneration. It is also possible that this CaP–cell spheroid system may be used as an in vitro method for assessing the osteogenic induction ability of CaP materials.

  3. Studies on the Developmental Potentiality of Cultured Cell Nuclei of Fish

    Directory of Open Access Journals (Sweden)

    Hongxi Chen, Yonglan Yi, Minrong Chen, Xingqi Yang

    2010-01-01

    Full Text Available By means of the serial nuclear transplantation technique, the authors obtained a nuclear transplant fish from subcultured cell originated from the blastula cells of the crucian carp (Carassius auratus Linnaeus. This nuclear transplant fish survived for three years, but its sexual glands were undifferentiated. The authors have also obtained a sexually mature adult fish from short-term cultured kidney cell nucleus of an adult crucian carp. Results of the experiment implied that the subcultured cell nuclei of fish blastula cells and the specialized somatic cell nuclei of adult fish still retained their developmental totipotency, and thus, it indicated that there is a possibility of fish somatic cell breeding through the use of nuclear transplantation.

  4. Cell Size Clues for the Allee Effect in Vegetative Amoeba Suspension Culture

    Science.gov (United States)

    Franck, Carl; Rappazzo, Brendan; Wang, Xiaoning; Segota, Igor

    That cells proliferate at higher rates with increasing density helps us appreciate and understand the development of multicellular behavior through the study of dilute cell systems. However, arduous cell counting with a microscope reveals that in the model eukaryote, Dictyostelium discoideum this transition is difficult to ascertain and thereby further explore despite our earlier progress (Phys. Rev. E 77, 041905, (2008)). Here we report preliminary evidence that the slow proliferation phase is well characterized by reduced cell size compared to the wide distribution of cell sizes in the familiar exponential proliferation phase of moderate densities. This observation is enabled by a new system for characterizing cells in stirred suspension cultures. Our technique relies on quickly acquiring magnitude distributions of detected flashes of laser light scattered in situ by cell targets.

  5. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  6. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface

    Science.gov (United States)

    Li, Jingan; Li, Guicai; Zhang, Kun; Liao, Yuzhen; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2013-05-01

    Micro-patterning as an effective bio-modification technique is increasingly used in the development of biomaterials with superior mechanical and biological properties. However, as of now, little is known about the simultaneous regulation of endothelial cells (EC) and smooth muscle cells (SMC) by cardiovascular implants. In this study, a co-culture system of EC and SMC was built on titanium surface by the high molecular weight hyaluronic acid (HMW-HA) micro-pattern. Firstly, the micro-pattern sample with a geometry of 25 μm wide HMW-HA ridges, and 25 μm alkali-activated Ti grooves was prepared by microtransfer molding (μTM) for regulating SMC morphology. Secondly, hyaluronidase was used to decompose high molecular weight hyaluronic acid into low molecular weight hyaluronic acid which could promote EC adhesion. Finally, the morphology of the adherent EC was elongated by the SMC micro-pattern. The surface morphology of the patterned Ti was imaged by SEM. The existence of high molecular weight hyaluronic acid on the modified Ti surface was demonstrated by FTIR. The SMC micro-pattern and EC/SMC co-culture system were characterized by immunofluorescence microscopy. The nitric oxide release test and cell retention calculation were used to evaluate EC function on inhibiting hyperplasia and cell shedding, respectively. The results indicate that EC in EC/SMC co-culture system displayed a higher NO release and cell retention compared with EC cultured alone. It can be suggested that the EC/SMC co-culture system possessed superiority to EC cultured alone in inhibiting hyperplasia and cell shedding at least in a short time of 24 h.

  7. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    Science.gov (United States)

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems.

  8. Polyamines in relation to growth in carrot cell cultures.

    Science.gov (United States)

    Fallon, K M; Phillips, R

    1988-09-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed.

  9. Polyamines in Relation to Growth in Carrot Cell Cultures 1

    Science.gov (United States)

    Fallon, Kevin M.; Phillips, Richard

    1988-01-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed. PMID:16666271

  10. A self-feeding roller bottle for continuous cell culture.

    Science.gov (United States)

    Berson, R Eric; Friederichs, Goetz

    2008-01-01

    The concept of a self-feeding roller bottle that delivers a continuous supply of fresh media to cells in culture, which is mechanically simplistic and works with existing roller apparatuses, is presented here. A conventional roller bottle is partitioned into two chambers; one chamber contains the fresh culture media reservoir, and the other contains the cell culture chamber. A spiroid of tubing inside the fresh media reservoir acts as a pump when the bottle rotates on its horizontal axis, continuously delivering fresh media through an opening in the partition to the cell culture chamber. The modified bottle proved capable of maintaining steady-state cell densities of a hybridoma cell line over the 10-day period tested, although at lower densities than reached during batch operation due to the continuous volume dilution. Steady-state density proved to be controllable by adjusting the perfusion rate, which changes with the rotation rate of the bottle. Specific antibody production rate is as much as 3.7 times the rate in conventional roller bottles operating with intermittent batch feeding.

  11. Cell culture systems for the hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Gilles Duverlie; Czeslaw Wychowski

    2007-01-01

    Since the discovery of HCV in 1989, the lack of a cell culture system has hampered research progress on this important human pathogen. No robust system has been obtained by empiric approaches, and HCV cell culture remained hypothetical until 2005. The construction of functional molecular clones has served as a starting point to reconstitute a consensus infectious cDNA that was able to transcribe infectious HCV RNAs as shown by intrahepatic inoculation in a chimpanzee. Other consensus clones have been selected and established in a human hepatoma cell line as replicons, i.e. self-replicating subgenomic or genomic viral RNAs. However, these replicons did not support production of infectious virus. Interestingly, some full-length replicons could be established without adaptive mutations and one of them was able to replicate at very high levels and to release virus particles that are infectious in cell culture and in vivo. This new cell culture system represents a major breakthrough in the HCV field and should enable a broad range of basic and applied studies to be achieved.

  12. Tunable swelling of polyelectrolyte multilayers in cell culture media for modulating NIH-3T3 cells adhesion.

    Science.gov (United States)

    Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua

    2014-11-01

    For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine.

  13. Acquired resistance to auranofin in cultured human cells.

    Science.gov (United States)

    Glennås, A; Rugstad, H E

    1985-01-01

    A substrain (HEAF) of cultured human epithelial cells, grown as monolayers, was selected for resistance to auranofin (AF), a gold-containing anti-arthritic drug, by growing the parental HE cells with stepwise increased concentrations of AF in the medium. HEAF cells acquired resistance to 2 mumol AF/l, twice the concentration tolerated by the sensitive HE cells. Resistance to AF was also demonstrated in another substrain (HE100) originally selected for by its cadmium resistance, and characterized by a high cytosolic metallothionein (MT) content. Following continuous exposure to 2 mumol AF/l for 4 days, 58% of the HEAF cells, 67% of the HE100 cells, and 16% of the HE cells remained adherent to the flasks, compared with non-treated controls. Following 24 h AF exposure to living cells, HEAF cells had one-half and HE100 cells twice the cellular and cytosolic gold concentration per mg protein, as compared with HE cells. Gel filtration of cell cytosols revealed gold-binding proteins with a mol. wt. of about 10 000 apparently occurring on AF exposure in HEAF and HE cells. They bound 10-15% of cytosolic gold. MT in HE100 cells bound AF-gold to about the same extent. We suggest that the ability of cells to maintain the gold concentration at a low level (HEAF) and trapping of gold by MT (HE100) or low molecular weight proteins occurring on AF treatment (HEAF) may be mechanisms contributing to the observed cellular resistance to AF.

  14. Testing of serum atherogenicity in cell cultures: questionable data published

    Directory of Open Access Journals (Sweden)

    Sergei V. Jargin

    2012-01-01

    Full Text Available In a large series of studies was reported that culturing of smooth muscle cells with serum from atherosclerosis patients caused intracellular lipid accumulation, while serum from healthy controls had no such effect. Cultures were used for evaluation of antiatherogenic drugs. Numerous substances were reported to lower serum atherogenicity: statins, trapidil, calcium antagonists, garlic derivatives etc. On the contrary, beta-blockers, phenothiazines and oral hypoglycemics were reported to be pro-atherogenic. Known antiatherogenic agents can influence lipid metabolism and cholesterol synthesis, intestinal absorption or endothelium-related mechanisms. All these targets are absent in cell monocultures. Inflammatory factors, addressed by some antiatherogenic drugs, are also not reproduced. In vivo, relationship between cholesterol uptake by cells and atherogenesis must be inverse rather than direct: in familial hypercholesterolemia, inefficient clearance of LDL-cholesterol by cells predisposes to atherosclerosis. Accordingly, if a pharmacological agent reduces cholesterol uptake by cells in vitro, it should be expected to elevate cholesterol in vivo. Validity of clinical recommendations, based on serum atherogenicity testing in cell monocultures, is therefore questionable. These considerations pertain also to the drugs developed on the basis of the cell culture experiments.

  15. Cell culture media impact on drug product solution stability.

    Science.gov (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J

    2016-07-08

    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016.

  16. Effects of Visible Light on Cultured Bovine Trabecular Cells

    Institute of Scientific and Technical Information of China (English)

    姜发纲; 郝风芹; 魏厚仁; 许德胜

    2004-01-01

    To explore the biological effects of light on trabecular cells, cultured bovine trabecular cells were exposed to visible light of different wavelength with different energy. Cellular morphology, structure, proliferation, and phagocytosis were observed. The cells showed no remarkable changes when the energy was low. When the exposure energy reached 1. 12 mW/cm2 , the cytoplasm showed a rough appearance, and cell proliferation and phagocytosis decreased. This phototoxicity was strong with white light (compound chromatic light), moderate with violet light or yellow light, and mild with red light.

  17. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    Science.gov (United States)

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  18. Xeno-free culture of human pluripotent stem cells.

    Science.gov (United States)

    Bergström, Rosita; Ström, Susanne; Holm, Frida; Feki, Anis; Hovatta, Outi

    2011-01-01

    Stem cell culture systems that rely on undefined animal-derived components introduce variability to the cultures and complicate their therapeutic use. The derivation of human embryonic stem cells and the development of methods to produce induced pluripotent stem cells combined with their potential to treat human diseases have accelerated the drive to develop xenogenic-free, chemically defined culture systems that support pluripotent self-renewal and directed differentiation. In this chapter, we describe four xeno-free culture systems that have been successful in supporting undifferentiated growth of hPSCs as well as methods for xeno-free subculture and cryopreservation of hPSCs. Each culture system consists of a xeno-free growth medium and xeno-free substratum: (1) TeSR2™ with human recombinant laminin (LN-511); (2) NutriStem™ with LN-511; (3) RegES™ with human foreskin fibroblasts (hFFs); (4) KO-SR Xeno-Free™/GF cocktail with CELLstart™ matrix.

  19. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... proceeded via anthraquinone photochemistry to introduce amine functionalities at the surface followed by coupling of IL-4 through a bifunctional amine-reactive linker. X-ray photoelectron spectroscopy showed that undesirable multilayer formation of the photoactive compound could be avoided by reaction...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...

  20. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  1. Expression of Caspase-3 in Cord Blood CD34+ Cells during Culture in vitro

    Institute of Scientific and Technical Information of China (English)

    MAYanping; LIRongping; ZOUPing; XIAOJuan; HUANGShiang; QIAOZhenhua

    2003-01-01

    Objective: To investigate the expression and significance of caspase-3 protein in CD34+ cells from cord blood (CB) during culture in vitro with different growth factors. Methods: RT-PCR, Western blot and flow cytometry techniques were used to detect the expression of caspase-3 in CD34+ CB cells during culture in vitro. Results: Caspase-3 mRNA was constitutively expressed at a low level in freshly isolated CD34+ cells. The expression of caspase-3 mRNA and protein was upregulated when these cellswere first expanded in suspension culture with growth factors for 3 days. However, only the 32 kDa inactive caspase-3 proenzyme was detected in the freshly isolated CD34+ cells as well as during the first 3 days expansion with cytokines. With longer culture time in vitro, especially in the presence of the combination of IL-3, IL-6 and GM-CSF, caspase-3 was activated and a cleavage product of 20 kDa became detectable.Conclusion: Caspase-3 is involved in apoptosis of primitive CB CD34+ cells during expansion in vitro.

  2. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-03-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  3. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

    Directory of Open Access Journals (Sweden)

    Tor Paaske Utheim

    2016-03-01

    Full Text Available The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC, which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD. Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  4. Tumor promoters cause a rapid and reversible inhibition of the formation and maintenance of electrical cell coupling in culture.

    OpenAIRE

    ENOMOTO, T; Sasaki, Y.; Y Shiba; Kanno, Y.; Yamasaki, H

    1981-01-01

    The effect of tumor promoters on electrical coupling between human FL cells was investigated with a microelectrode technique. When a low concentration (100 ng/ml) of 12-O-tetradecanoylphorbol 13-acetate (TPA) was added to culture medium, only 6% of the cells showed electrical coupling after 5 hr, whereas in control medium more than 90% of the cells were coupled. In the presence of TPA, cell coupling remained suppressed for at least another 19 hr. When TPA was washed out from the culture mediu...

  5. Withaferin A from cell cultures of Withania somnifera

    Directory of Open Access Journals (Sweden)

    Ciddi Veeresham

    2006-01-01

    Full Text Available Suspension cultures of Withania somnifera cells were established and shown to produce withaferin A. The identification of withaferin A was done by TLC, UV absorption, HPLC and electron spray mass spectroscopy. These cultures could be strongly elicited by exposure to salacin. Addition of salacin at the concentration of 750 µM to the cultures in production medium enhanced production levels of withaferin A to 25±2.9 mg/l compared to 0.47±0.03 mg/l in unelicited controls. This report is the first to demonstrate withaferin A production in plant suspension cultures and provides prerequisites for commercial scale, controlled production of withaferin A.

  6. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  7. Crude subcellular fractionation of cultured mammalian cell lines

    OpenAIRE

    Holden Paul; Horton William A

    2009-01-01

    Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this...

  8. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    Science.gov (United States)

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  9. Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion.

    Science.gov (United States)

    Anamelechi, Charles C; Truskey, George A; Reichert, W Monty

    2005-12-01

    The textured and opaque nature of Dacron and ePTFE has prevented the use of these fabrics in conventional cell culture techniques normally employed to optimize cell attachment and retention. This lack of optimization has led, in part, to the poor performance of endothelialization strategies for improving vascular graft patency. Here we show that thin, transparent films of Mylar and Teflon-AF are viable in vitro cell culture mimics of Dacron and ePTFE vascular graft materials, particularly for the study of protein mediated endothelial cell (EC) attachment, spreading and adhesion. Glass substrates were used as controls. X-ray photoelectron spectroscopy (XPS) and contact angle analysis showed that Mylar and Teflon-AF have surface chemistries that closely match Dacron and ePTFE. (125)I radiolabeling was used to quantify fibronectin (FN) adsorption, and FN and biotinylated-BSA "dual ligand" co-adsorption onto glass, Mylar and Teflon-AF substrates. Native human umbilical vein endothelial cells (HUVEC) and streptavidin-incubated biotinylated-HUVEC (SA-b-HUVEC) spreading was measured using phase contrast microscopy. Cell retention and adhesion was determined using phase contrast microscopy under laminar flow. All surfaces lacking protein pre-treatment, regardless of surface type, showed the lowest degree of cell spreading and retention. Dual ligand treated Mylar films showed significantly greater SA-b-HUVEC spreading up to 2 h, but were similar to HUVEC on FN treated Mylar at longer times; whereas SA-b-HUVEC spreading on dual ligand treated Teflon-AF was never significantly different from HUVEC on FN treated Teflon-AF at any time point. SA-b-HUVEC retention was significantly greater on dual ligand treated Mylar compared to HUVEC on FN treated Mylar over the entire range of shear stresses tested (3.54-28.3 dynes/cm(2)); whereas SA-b-HUVEC retention to dual ligand and HUVEC retention to FN treated Teflon-AF gave similar results at each shear stress, with only the mid

  10. Isolation of Cultured Endothelial Progenitor Cells in vitro from PBMCs and CD133~+ Enriched Cells

    Institute of Scientific and Technical Information of China (English)

    郑伟红; 万亚峰; 马小鹏; 李兴睿; 杨志芳; 殷茜; 易继林

    2010-01-01

    Two isolation methods for sorting of endothelial progenitor cells(EPCs):from peripheral blood mononuclear cells(PBMCs)and CD133+ enriched cells were compared,by defining the cell morphology,phenotype,reproductive activities and function in vitro,to provide a reference for clinical application of EPCs.PBMCs from healthy subjects were used either directly for cell culture or for CD133+ sorting.The two groups of cells were cultured in complete medium 199(M199)for 7 to 14 days and the phenotypes of EPCs were an...

  11. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Science.gov (United States)

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  12. Effects of viscoelastic ophthalmic solutions on cell cultures

    Directory of Open Access Journals (Sweden)

    Madhavan Hajib

    1998-01-01

    Full Text Available The development of mild but significant inflammation probably attributable to viscoelastic ophthalmic solutions in cataract surgery was recently brought to the notice of the authors, and hence a study of the effects of these solutions available in India, on cell cultures was undertaken. We studied the effects of 6 viscoelastic ophthalmic solutions (2 sodium hyaluronate designated as A and B, and 4 hydroxypropylmethylcellulose designated as C, D, E and F on HeLa, Vero and BHK-21 cell lines in tissue culture microtitre plates using undiluted, 1:10 and 1:100 dilutions of the solutions, and in cover slip cultures using undiluted solutions. Phase contrast microscopic examination of the solutions was also done to determine the presence of floating particles. The products D and F produced cytotoxic changes in HeLa cell line and these products also showed the presence of floating particles under phase contrast microscopy. Other products did not have any adverse effects on the cell lines nor did they show floating particles. The viscoelastic ophthalmic pharmaceutical products designated D and F have cytotoxic effects on HeLa cell line which appears to be a useful cell line for testing these products for their toxicity. The presence of particulate materials in products D and F indicates that the methods used for purification of the solution are not effective.

  13. Characterization of tendon cell cultures of the human rotator cuff.

    Science.gov (United States)

    Pauly, S; Klatte, F; Strobel, C; Schmidmaier, G; Greiner, S; Scheibel, M; Wildemann, B

    2010-07-26

    Rotator cuff tears are common soft tissue injuries of the musculoskeletal system that heal by formation of repair tissue and may lead to high retear rates and joint dysfunction. In particular, tissue from chronic, large tendon tears is of such degenerative nature that it may be prone to retear after surgical repair. Besides several biomechanical approaches, biologically based strategies such as application of growth factors may be promising for increasing cell activity and production of extracellular tendon matrix at the tendon-to-bone unit. As a precondition for subsequent experimental growth factor application, the aim of the present study was to establish and characterize a human rotator cuff tendon cell culture. Long head biceps (LHB)- and supraspinatus muscle (SSP)- tendon samples from donor patients undergoing shoulder surgery were cultivated and examined at the RNA level for expression of collagen type-I, -II and -III, biglycan, decorin, tenascin-C, aggrecan, osteocalcin, tenomodulin and scleraxis (by Real-time PCR). Finally, results were compared to chondrocytes and osteoblasts as control cells. An expression pattern was found which may reflect a human rotator cuff tenocyte-like cell culture. Both SSP and LHB tenocyte-like cells differed from chondrocyte cell cultures in terms of reduced expression of collagen type-II (ptendon matrix and osteofibroblastic integration at the tendon-bone unit following tendon repair.

  14. Test chambers for cell culture in static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Glinka, Marek, E-mail: mag@iq.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Gawron, Stanisław, E-mail: s.gawron@komel.katowice.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Sieroń, Aleksander, E-mail: sieron1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Pawłowska–Góral, Katarzyna, E-mail: kgoral@sum.edu.pl [Department of Food and Nutrition in Sosnowiec. Medical University of Silesia in Katowice. 8 Jednosci Street, 41-200 Sosnowiec (Poland); Cieślar, Grzegorz, E-mail: cieslar1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Sieroń–Stołtny, Karolina [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland)

    2013-04-15

    Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2–4% and 8 to 10% in 3D method (reaching 10% only out of the cells′ cultures margins). -- Highlights: ► We present test chamber to be used for in vitro cell culture in static magnetic field. ► The technical data of the chamber construction was presented. ► 2D versus 3D simulation of static magnetic field distribution in chamber was reported. ► We report the accuracy of 2D calculation than 3D.

  15. CYTOTOXICITY TESTING OF WOUND DRESSINGS USING METHYLCELLULOSE CELL-CULTURE

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; JONKMAN, MF

    1992-01-01

    Wound dressings may induce cytotoxic effects. In this study, we check several, mostly commercially available, wound dressings for cytotoxicity. We used our previously described, newly developed and highly sensitive 7 d methylcellulose cell culture with fibroblasts as the test system. Cytotoxicity is

  16. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    and establishment of synaptic transmission. Here, we used calcium imaging in slice cultures of the postnatal cerebellum, and observe spontaneous propagating calcium waves in NeuN-positive granule-like cells. Wave formation was blocked by TTX and the AMPA antagonist NBQX, but persisted after NMDA receptor blockade...

  17. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  18. Preparation of crude rough microsomes from tissue culture cells.

    Science.gov (United States)

    Sabatini, David D

    2014-09-02

    There are various procedures for isolating microsomal fractions from tissue culture cells. The essential conditions for each step of one procedure are described here. Notes for special circumstances are included so that the procedure can be modified according to the experimental purpose.

  19. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  20. Complementation of mutant phenotypes and genotypes of cultured mammalian cells

    NARCIS (Netherlands)

    A.J.R. de Jonge

    1985-01-01

    textabstractThis dissertation describes experiments aimed at the complementation of a genetic mutation in cultured mammalian cells in order to investigate several aspects of the structure and functioning of the human genome. Complementation is indicated by the correction of a biochemical function in

  1. [Prokaryotic community of subglacial bottom sediments of Antarctic Lake Untersee: detection by cultural and direct microscopic techniques].

    Science.gov (United States)

    Muliukin, A L; Demkina, E V; Manucharova, N A; Akimov, V N; Andersen, D; McKay, C; Gal'chenko, V F

    2014-01-01

    The heterotrophic mesophilic component was studied in microbial communities of the samples of frozen regolith collected from the glacier near Lake Untersee collected in 2011 during the joint Russian-American expedition to central Dronning Maud Land (Eastern Antarctica). Cultural techniques revealed high bacterial numbers in the samples. For enumeration of viable cells, the most probable numbers (MPN) method proved more efficient than plating on agar media. Fluorescent in situ hybridization with the relevant oligonucleotide probes revealed members of the groups Eubacteria (Actinobacteria, Firmicutes) and Archaea. Application of the methods of cell resuscitation, such as the use of diluted media and prevention of oxidative stress, did not result in a significant increase in the numbers of viable cells retrieved form subglacial sediment samples. Our previous investigations demonstrated the necessity for special procedures for efficient reactivation of the cells from microbial communities of preserved fossil soil and permafrost samples collected in the Arctic zone. The differences in response to the special resuscitation procedures may reflect the differences in the physiological and morphological state of bacterial cells in microbial communities subject to continuous or periodic low temperatures and dehydration.

  2. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold.

    Science.gov (United States)

    Nakamura, Kazuaki; Kato, Natsuko; Aizawa, Kazuko; Mizutani, Reiko; Yamauchi, Junji; Tanoue, Akito

    2011-10-01

    The Nanoculture plate (NCP) is a recently developed plate which essentially consists of a textured surface with specific characteristics that induce spheroid formation: microfabrications with a micro-square pattern on the culture surface. The NCP can be used to generate uniform adhesive spheroids of cancer cell lines using conventional techniques without the need of any animal compounds. In this study, we assessed the performance of human hepatoma cell line HepG2 cells cultured with an NCP to evaluate the effects of the NCP on their hepatocyte-specific functions. The NCP facilitated the formation of three-dimensional (3D) HepG2 cell architecture. HepG2 cells cultured with an NCP exhibited enhanced mRNA expression levels of albumin and cytochrome P450 (CYP) enzymes compared to those cultured with a two-dimensional (2D) conventional plate. The expression levels of two specific liver-enriched transcription factors, hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer binding protein α (C/EBPα), were higher in HepG2 cells grown with the NCP than those in HepG2 cells grown with conventional plates before albumin and CYP enzymes expression levels were increased. The inducibility of CYP1A2 and CYP3A4 mRNA following exposure to inducers in HepG2 cells cultured with an NCP was comparable to that in HepG2 cells cultured with conventional plates, while the expression levels of CYP1A2 and CYP3A4 mRNA following exposure to inducers were higher when using an NCP than when using conventional plates. These results suggest that the use of an NCP enhances the hepatocyte-specific functions of HepG2 cells, such as drug-metabolizing enzyme expression, making the NCP/HepG2 system a useful tool for evaluating drug metabolism in vitro.

  3. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.

    2010-01-01

    microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent....... The series of cytotoxicity tests in the microdevice as well as in classic way using 96-well cell culture plates were performed to compare results obtained in micro- and macroscale. Fluorescein dibutyrate (FDB) and iodide propidine (PI) were used as viable and dead cells' markers, respectively. Fabricated...... MCCS microdevices were reproducible and apart from cell culture for long period of time, including cell passaging, it allowed cell-based cytotoxicity assays performance. The MCCS can be applied in high-throughput cell-based assays providing important informations on potential drug targets, substances...

  4. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii.

    Science.gov (United States)

    Farkas, Joel; Chung, Daehwan; Cha, Minseok; Copeland, Jennifer; Grayeski, Philip; Westpheling, Janet

    2013-01-01

    Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD(680)) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.

  5. Microspectroscopic investigation of the membrane clogging during the sterile filtration of the growth media for mammalian cell culture.

    Science.gov (United States)

    Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing

    2016-02-01

    Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media.

  6. Differential effect of culture temperature and specific growth rate on CHO cell behavior in chemostat culture.

    Science.gov (United States)

    Vergara, Mauricio; Becerra, Silvana; Berrios, Julio; Osses, Nelson; Reyes, Juan; Rodríguez-Moyá, María; Gonzalez, Ramon; Altamirano, Claudia

    2014-01-01

    Mild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific productivity of r-proteins. To separately analyze the effects of mild hypothermia and specific growth rate on CHO cell metabolism and recombinant human tissue plasminogen activator productivity as a model system, high dilution rate (0.017 h(-1)) and low dilution rate (0.012 h(-1)) at two cultivation temperatures (37 and 33 °C) were evaluated using chemostat culture. The results showed a positive effect on the specific productivity of r-protein with decreasing specific growth rate at 33 °C. Differential effect was achieved by mild hypothermia on the specific productivity of r-protein, contrary to the evidence reported in batch culture. Interestingly, reduction of metabolism could not be associated with a decrease in culture temperature, but rather with a decrease in specific growth rate.

  7. Detection of human immunodeficiency virus DNA in cultured human glial cells by means of the polymerase chain reaction

    DEFF Research Database (Denmark)

    Teglbjærg, Lars Stubbe; Hansen, J-ES; Dalbøge, H;

    1991-01-01

    This report describes the use of the polymerase chain reaction (PCR) for the detection of viral genomic sequences in latently infected cells. Infection with human immunodeficiency virus in cultures of human glial cells was demonstrated, using nucleic acid amplification followed by dot blot...... hybridization. It was not possible to detect any viral antigen production in the cultures, and attempts to recover virus by highly sensitive coculture techniques were unsuccessful, indicating that the infection was latent. The PCR technique provides a simple approach to the study of viral infection in cases...

  8. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system

    DEFF Research Database (Denmark)

    Østergaard, Lars; Traulsen, J; Birkelund, Svend

    1993-01-01

    Two hundred and fifty-four specimens from males and females consulting a clinic for sexually transmitted diseases were analyzed for genital Chlamydia trachomatis infection. Each clinical sample was tested by the cell culture technique and the polymerase chain reaction using a closed system. When...... the two test systems were compared, the overall sensitivity of the polymerase chain reaction was 96% and the specificity 94% when compared to the cell culture technique. By use of a closed system for DNA extraction and sample transfer for the polymerase chain reaction, contamination of the samples...

  9. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system

    DEFF Research Database (Denmark)

    Østergaard, Lars; Traulsen, J; Birkelund, Svend

    1991-01-01

    Two hundred and fifty-four specimens from males and females consulting a clinic for sexually transmitted diseases were analyzed for genital Chlamydia trachomatis infection. Each clinical sample was tested by the cell culture technique and the polymerase chain reaction using a closed system. When...... the two test systems were compared, the overall sensitivity of the polymerase chain reaction was 96% and the specificity 94% when compared to the cell culture technique. By use of a closed system for DNA extraction and sample transfer for the polymerase chain reaction, contamination of the samples...

  10. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  11. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    Science.gov (United States)

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-01-13

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  12. Effects of RTC-silicone maxillofacial prosthetic elastomers on cell cultures.

    Science.gov (United States)

    Polyzois, G L; Hensten-Pettersen, A; Kullman, A

    1994-05-01

    The use of a wide variety of materials in the construction of maxillofacial prostheses makes biocompatibility testing a necessity. However, the dental literature contains few reports of biocompatibility testing of maxillofacial prosthetic materials. The cytotoxic profiles of five room-temperature cross-linking (RTC)-silicone elastomers were investigated by means of two in vitro cell culture techniques. Mouse fibroblast cells (L929) were used, and the results indicated that RTC-silicone elastomers adversely affected cells in culture and that storage of samples for 1 week in saline solution did not alter this effect. Clinical follow-up of patients wearing prostheses made of these silicone materials is warranted to evaluate host reactions in long-term contact with human mucous membrane and skin tissue.

  13. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.;

    2013-01-01

    Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only...... rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino...... developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein...

  14. Mefloquine damage vestibular hair cells in organotypic cultures.

    Science.gov (United States)

    Yu, Dongzhen; Ding, Dalian; Jiang, Haiyan; Stolzberg, Daniel; Salvi, Richard

    2011-07-01

    Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.

  15. Electrolytic valving isolation of cell co-culture microenvironment with controlled cell pairing ratios.

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2014-12-21

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial-temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we have presented a cell-cell interaction microfluidic platform that can accurately control the co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We have verified that the electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we have performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays were successfully performed which showed that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells.

  16. Characterization of tendon cell cultures of the human rotator cuff

    Directory of Open Access Journals (Sweden)

    S Pauly

    2010-07-01

    Full Text Available tator cuff tears are common soft tissue injuries of the musculoskeletal system that heal by formation of repair tissue and may lead to high retear rates and joint dysfunction. In particular, tissue from chronic, large tendon tears is of such degenerative nature that it may be prone to retear after surgical repair. Besides several biomechanical approaches, biologically based strategies such as application of growth factors may be promising for increasing cell activity and production of extracellular tendon matrix at the tendon-to-bone unit. As a precondition for subsequent experimental growth factor application, the aim of the present study was to establish and characterize a human rotator cuff tendon cell culture.Long head biceps (LHB- and supraspinatus muscle (SSP- tendon samples from donor patients undergoing shoulder surgery were cultivated and examined at the RNA level for expression of collagen type-I, -II and -III, biglycan, decorin, tenascin-C, aggrecan, osteocalcin, tenomodulin and scleraxis (by Real-time PCR. Finally, results were compared to chondrocytes and osteoblasts as control cells.An expression pattern was found which may reflect a human rotator cuff tenocyte-like cell culture. Both SSP and LHB tenocyte-like cells differed from chondrocyte cell cultures in terms of reduced expression of collagen type-II (p≤0.05 and decorin while higher levels of collagen type-I were seen (p≤0.05. With respect to osteoblasts, tenocyte-like cells expressed lower levels of osteocalcin (p≤0.05 as well as tenascin C, biglycan and collagen type-III. Expression of scleraxis, tenomodulin and aggrecan was similar between all cell types.This study represents a characterization of tenocyte-like cells from the human rotator cuff as close as possible. It helps analyzing their biological properties and allows further studies to improve production of tendon matrix and osteofibroblastic integration at the tendon-bone unit following tendon repair.

  17. Unique cell culture systems for ground based research

    Science.gov (United States)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  18. An In Vitro Nematic Model for Proliferating Cell Cultures

    CERN Document Server

    Pai, Sunil; Green, Morgaine; Cordeiro, Christine; Cabral, Elise; Chen, Bertha; Baer, Thomas

    2016-01-01

    Confluent populations of elongated cells give rise to ordered patterns seen in nematic phase liquid crystals. We correlate cell elongation and intercellular distance with intercellular alignment using an amorphous spin glass model. We compare in vitro time-lapse imaging with Monte Carlo simulation results by framing a novel hard ellipses model in terms of Boltzmann statistics. Furthermore, we find a statistically distinct alignment energy at quasi-steady state among fibroblasts, smooth muscle cells, and pluripotent cell populations when cultured in vitro. These findings have important implications in both non-invasive clinical screening of the stem cell differentiation process and in relating shape parameters to coupling in active crystal systems such as nematic cell monolayers.

  19. Genotoxic Effects of Culture Media on Human Pluripotent Stem Cells

    Science.gov (United States)

    Prakash Bangalore, Megha; Adhikarla, Syama; Mukherjee, Odity; Panicker, Mitradas M.

    2017-01-01

    Culture conditions play an important role in regulating the genomic integrity of Human Pluripotent Stem Cells (HPSCs). We report that HPSCs cultured in Essential 8 (E8) and mTeSR, two widely used media for feeder-free culturing of HPSCs, had many fold higher levels of ROS and higher mitochondrial potential than cells cultured in Knockout Serum Replacement containing media (KSR). HPSCs also exhibited increased levels of 8-hydroxyguanosine, phospho-histone-H2a.X and p53, as well as increased sensitivity to γ-irradiation in these two media. HPSCs in E8 and mTeSR had increased incidence of changes in their DNA sequence, indicating genotoxic stress, in addition to changes in nucleolar morphology and number. Addition of antioxidants to E8 and mTeSR provided only partial rescue. Our results suggest that it is essential to determine cellular ROS levels in addition to currently used criteria i.e. pluripotency markers, differentiation into all three germ layers and normal karyotype through multiple passages, in designing culture media. PMID:28176872

  20. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Seyedi

    2016-04-01

    Full Text Available Objective: Worldwide, diabetes mellitus (DM is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs into IPCs and measured insulin production. Materials and Methods: In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12 medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC and the chemiluminesence immunoassay (CLIA. Results: Reverse transcription-polymerase chain reaction (RT-PCR showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion: We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation.

  1. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  2. Mechanism of Gonadal Precocity in Cultured Large Yellow Croaker,Pseudosciaena Crocea: A Study of Microstructure and Submicrostructure of Leydig Cell and Sertoli Cell in Testis

    Institute of Scientific and Technical Information of China (English)

    Fang Yongqiang; Weng Youzhu; Zhou Jing; Xie Fangjing; Liu Jiafu

    2002-01-01

    Microstructure and submicrostructure of Leydig cell and Sertoli cell in the testis of gonadal precocity and immaturation in cultured large yellow croaker, Pseudosciaena crocea, are studied using histology and electron microscopic technique. The results indicate that the fine structure of the two kinds of cells in different development stages presents an obvious difference. The smooth endoplasmic reticular and tubular mitochondria of Leydig cell and Sertoli cell are well developed in the testis of gonadal precocity, but poorly developed in the testis of immaturation. We suggest that the reason for gonadal precocity in the large yellow croaker may be related to the earlier development and maturation of Leydig cell and Sertoli cell.

  3. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  4. Effects of Shuanghuangbu on the total protein content and ultrastructure in cultured human periodontal ligament cells

    Institute of Scientific and Technical Information of China (English)

    许彦枝; 邹慧儒; 王小玲; 刘世正; 王永军

    2004-01-01

    Background Successful periodontal regeneration depends on the migration, proliferation and differentiation of periodontal ligament cells in periodontal defects. The total protein content and the ultrastructure demonstrate the metabolizability and activity of periodontal ligament cells. This study was conducted to observe the effects of Shuanghuangbu, a mixture of medicinal herbs, on the total protein content and the ultrastructure of human periodontal ligament cells.Methods Periodontal ligament cells were grown to confluence and then cultured in Dulbecco's modified eagle medium (DMEM) supplemented with Shuanghuangbu over the concentration range of 0 to 1000 μg/ml. The total protein content in cultured cells was determined by using Coommasie brilliant blue technique. Periodontal ligament cells were incubated in 0 and 100 μg/ml Shuanghuangbu decoction for 5 days, then observed through transmission electron microscope.Results The total protein content of human periodontal ligament cells increased in each experiment group added 10-1000 μg/ml Shuanghuangbu respectively, and the effect of 100 μg/ml was excellent. Under the transmission electron microscope, there were more rough endoplasmic reticulums and mitochodrias in the experiment group than those in the control group. Conclusion Shuanghuangbu stimulates the protein synthesis of human periodontal ligament cells and improves human periodontal ligament cells' metabolizability and activity.

  5. Morphological and protein profile comparison of large vessel and microvascular endothelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Beer, D.M.; Kim, J.S.; Carson, M.P.; Haudeuschild, C.C.; Patton, W.F.; Jacobson, B.S.

    1986-05-01

    Bovine adrenal medulla (AmMEC) and brain (BrMEC) microvessel endothelial cells, and bovine aortic (BAE) endothelial cells were isolated and cultured under identical conditions using a modification of a technique previously described for BrMEC. The cells were isolated and passaged under conditions minimizing cell surface alterations. Primary cultures were confluent in 4-6 days at a plating density in the region of 10/sup 4/ cells/cm/sup 2/. BAEs maintained a cobblestone morphology and a denser monolayer than MECs in primary and passaged cells whether the cells were passaged using Pancreatin, Trypsin-EDTA, or Collagenase-EDTA. MECs were initially elongate and became more like BAEs with passaging. BAEs and AmMECs were examined for differences in whole cell, Triton extracted cytoskeleton and plasma membrane (PM) protein profiles by two-dimensional gel electrophoresis. Cells were labeled with /sup 35/S-methionine and PM by lactoperoxidase catalyzed iodination. Though for the most part protein patterns were similar, several proteins in the PM and cytoskeletal preparations differed. A significant difference in the isoelectric forms of proteins with the same molecular weight was observed in the PM.

  6. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture.

    Science.gov (United States)

    Moreno, Edinson Lucumi; Hachi, Siham; Hemmer, Kathrin; Trietsch, Sebastiaan J; Baumuratov, Aidos S; Hankemeier, Thomas; Vulto, Paul; Schwamborn, Jens C; Fleming, Ronan M T

    2015-06-07

    A hallmark of Parkinson's disease is the progressive loss of nigrostriatal dopaminergic neurons. We derived human neuroepithelial cells from induced pluripotent stem cells and successfully differentiated them into dopaminergic neurons within phase-guided, three-dimensional microfluidic cell culture bioreactors. After 30 days of differentiation within the microfluidic bioreactors, in situ morphological, immunocytochemical and calcium imaging confirmed the presence of dopaminergic neurons that were spontaneously electrophysiologically active, a characteristic feature of nigrostriatal dopaminergic neurons in vivo. Differentiation was as efficient as in macroscopic culture, with up to 19% of differentiated neurons immunoreactive for tyrosine hydroxylase, the penultimate enzyme in the synthesis of dopamine. This new microfluidic cell culture model integrates the latest innovations in developmental biology and microfluidic cell culture to generate a biologically realistic and economically efficient route to personalised drug discovery for Parkinson's disease.

  7. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  8. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  9. Label-free classification of cultured cells through diffraction imaging.

    Science.gov (United States)

    Dong, Ke; Feng, Yuanming; Jacobs, Kenneth M; Lu, Jun Q; Brock, R Scott; Yang, Li V; Bertrand, Fred E; Farwell, Mary A; Hu, Xin-Hua

    2011-06-01

    Automated classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. We have investigated this possibility experimentally and numerically using a diffraction imaging approach. A fast image analysis software based on the gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images. The results of GLCM analysis and subsequent classification demonstrate the potential for rapid classification among six types of cultured cells. Combined with numerical results we show that the method of diffraction imaging flow cytometry has the capacity as a platform for high-throughput and label-free classification of biological cells.

  10. Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells.

    Science.gov (United States)

    Chatterjee, Ishita; Li, Fei; Kohler, Erin E; Rehman, Jalees; Malik, Asrar B; Wary, Kishore K

    2016-01-01

    The study of stem cell behavior and differentiation in a developmental context is complex, time-consuming, and expensive, and for this reason, cell culture remains a method of choice for developmental and regenerative biology and mechanistic studies. Similar to ES cells, iPS cells have the ability to differentiate into endothelial cells (ECs), and the route for differentiation appears to mimic the developmental process that occurs during the formation of an embryo. Traditional EC induction methods from embryonic stem (ES) cells rely mostly on the formation of embryoid body (EB), which employs feeder or feeder-free conditions in the presence or absence of supporting cells. Similar to ES cells, iPS cells can be cultured in feeder layer or feeder-free conditions. Here, we describe the iPS cell culture methods and induction differentiation of these cells into ECs. We use anti-mouse Flk1 and anti-mouse VE-cadherin to isolate and characterize mouse ECs, because these antibodies are commercially available and their use has been described in the literature, including by our group. The ECs produced by this method have been used by our laboratory, and we have demonstrated their in vivo potential. We also discuss how iPS cells differ in their ability to differentiate into endothelial cells in culture.

  11. Induced Pluripotent Stem (iPS) Cell Culture Methods and Induction of Differentiation into Endothelial Cells

    Science.gov (United States)

    Chatterjee, Ishita; Li, Fei; Kohler, Erin E.; Rehman, Jalees; Malik, Asrar B.; Wary, Kishore K.

    2015-01-01

    Summary The studies of stem cell behavior and differentiation in a developmental context is complex, time-consuming and expensive, and for this reason, cell culture remains a method of choice for developmental and regenerative biology and mechanistic studies. Similar to ES cells, iPS cells have the ability to differentiate into endothelial cells (ECs), and the route for differentiation appears to mimic the developmental process that occurs during the formation of an embryo. Traditional EC induction methods from embryonic stem (ES) cells rely mostly on the formation the embryoid body (EB), which employs feeder or feeder-free conditions in the presence or absence of supporting cells. Similar to ES cells, iPS cells can be cultured in feeder-layer or feeder-free conditions. Here, we describe the iPS cell culture methods and induction differentiation of these cells into ECs. We use anti-mouse Flk1 and anti-mouse VE-cadherin to isolate and characterize mouse ECs, because these antibodies are commercially available and their use has been described in the literature, including by our group. The ECs produced by this method have been used by our laboratory, and we have demonstrated their in vivo potential. We also discuss how iPS cells differ in their ability to differentiate into endothelial cells in culture. PMID:25687301

  12. Sparse grid techniques for particle-in-cell schemes

    CERN Document Server

    Ricketson, Lee F

    2016-01-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called `combination technique' from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme's efficiency, both in terms of computation time and memory usage.

  13. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    of gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...... morphological differentiation of epitheloid neural cells into astrocytes. This occurred in carcinogen treated cells as well as in untreated control cultures. At the same time cells with astrocyte morphology showed accumulation of glial fibrillary acidic protein (GFA) as tested by indirect immunofluorescence...... with monospecific antibodies against GFA. Thereafter, in the EtNU pre-treated cultures an increased number of cells with astrocyte morphology was seen, and BE further increased the number of cells with long cytoplasmic processes. Control cells were GFA negative, while some few strongly, as well as many weakly...

  14. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.

  15. Development of a bovine luteal cell in vitro culture system suitable for co-culture with early embryos.

    Science.gov (United States)

    Batista, M; Torres, A; Diniz, P; Mateus, L; Lopes-da-Costa, L

    2012-10-01

    The cross talk between the corpus luteum (CL) and the early embryo, potentially relevant to pregnancy establishment, is difficult to evaluate in the in vivo bovine model. In vitro co-culture of bovine luteal cells and early embryos (days 2-8 post in vitro fertilization) may allow the deciphering of this poorly understood cross talk. However, early embryos and somatic cells require different in vitro culture conditions. The objective of this study was to develop a bovine luteal cell in vitro culture system suitable for co-culture with early embryos in order to evaluate their putative steroidogenic and prostanoid interactions. The corpora lutea of the different stages of the estrous cycle (early, mid, and late) were recovered postmortem and enriched luteal cell populations were obtained. In experiments 1 and 2, the effects of CL stage, culture medium (TCM, DMEM-F12, or SOF), serum concentration (5 or 10%), atmosphere oxygen tension (5 or 20%), and refreshment of the medium on the ability of luteal cells to produce progesterone (P(4)) were evaluated. The production of P(4) was significantly increased in early CL cultures, and luteal cells adapted well to simple media (SOF), low serum concentrations (5%), and oxygen tensions (5%). In experiment 3, previous luteal cell cryopreservation did not affect the production of P(4), PGF(2α), and PGE(2) compared to fresh cell cultures. This enables the use of pools of frozen-thawed cells to decrease the variation in cell function associated with primary cell cultures. In experiment 4, mineral oil overlaying culture wells resulted in a 50-fold decrease of the P(4) quantified in the medium, but had no effect on PGF(2α) and PGE(2) quantification. In conclusion, a luteal cell in vitro culture system suitable for the 5-d-long co-culture with early embryos was developed.

  16. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures.

    Science.gov (United States)

    Jackson, Jonathan P; Li, Linhou; Chamberlain, Erica D; Wang, Hongbing; Ferguson, Stephen S

    2016-09-01

    Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.

  17. [The effect of Solcoseryl on in-vitro cultured cells].

    Science.gov (United States)

    Lindner, G; Grosse, G; Lehmann, A

    1977-01-01

    Explants of peripherical nervous system (PNS), skin and ventriculus cordis from chick embryo were cultivated in Maximow chambers and the effect of Solcoseryl, Fa. Solco Basel AG, on some morphological parameters was tested. 1. The growth of tissue cultures is influenced by Solcoseryl in relation to concentration and time of application. The index of area in cultures of PNS and cor increased within the first days. By long time application up to 6 days in vitro the index of area decreased and the index was the same than in controls. Explants of skin showed no essential stimulation of growth. 2. The number of cells per unit of culture in the outgrowth of PNS, cor and skin was different influenced. The density of cells in cultures of PNS and skin decreased (signif. difference). In explants of heart we could not observe a difference between the inside and outside of the outgrowth. An influence of Solcoseryl on the degree of migration is discussed. 3. The area of cell nuclei from heartcells was observed. The area decreased under the influence of Solcoseryl. The difference is significant. 4. The mitotic index of heart cells increased by application of Solcoseryl within the first 2 and 3 days in vitro. 5. The number of nucleoli per nucleus of heart cells under experimental conditions increased significant. It is discussed, Solcoseryl influenced in vitro metabolic processes in suitable systems; stimulation of cell proliferation and migration and rns-synthesis was observed within the first days of cultivation. In-vitro-systems are important objects and they are suitable for tests of pharmaca in vitro.

  18. Over-pressurized bioreactors: application to microbial cell cultures.

    Science.gov (United States)

    Lopes, Marlene; Belo, Isabel; Mota, Manuel

    2014-01-01

    In industrial biotechnology, microbial cultures are exposed to different local pressures inside bioreactors. Depending on the microbial species and strains, the increased pressure may have detrimental or beneficial effects on cellular growth and product formation. In this review, the effects of increased air pressure on various microbial cultures growing in bioreactors under moderate total pressure conditions (maximum, 15 bar) will be discussed. Recent data illustrating the diversity of increased air pressure effects at different levels in microbial cells cultivation will be presented, with particular attention to the effects of oxygen and carbon dioxide partial pressures on cellular growth and product formation, and the concomitant effect of oxygen pressure on antioxidant cellular defense mechanisms.

  19. STUDY ON DIFFERENTIATION OF RATS EMBRYONIC STEM CELLS CULTURED IN BRL-CM INTO NEURAL PRECURSOR CELLS

    Institute of Scientific and Technical Information of China (English)

    张晓智; 李旭; 徐海伟; 陈葳

    2003-01-01

    Objective To investigate whether buffalo rat liver cell-conditioned medium (BRL-CM) can be used as the culture medium of embryonic stem (ES) cells, and to get relatively pure neural precursor cells (NPCs) for treatment aim. Methods Mouse ES cells were cultured in BRL-CM and medium contain leukemia inhibitory factor (LIF), respectively. NPCs were selectively cultured in serum-free medium. Alkaline phosphatase activity was visualized with NBT/BCIP and nestin antigen was detected with immunocytochemical methods. Results BRL-CM could be used as an efficiency culture condition instead of LIF in ES cells culture. About 86% of cells derived from ES cells in the serum-free culture were NPCs. Conclusion BRL-CM can replace LIF to use in ES cell culture. High purity of NPC can be induced from ES cells with serum-free culture method.

  20. Bridging Mediterranean cultures in the IYS: A documentary exhibition on irrigation techniques in water scarcity conditions

    Science.gov (United States)

    Barontini, Stefano; Louki, Amina; Ben Slima, Zied; Ezzahra Ghaouch, Fatima; Labaran, Raisa; Raffelli, Giulia; Peli, Marco; Vitale, Nicola

    2015-04-01

    Brescia, an industrial city in Northern Italy, is now experiencing a crucial change in its traditional structure. In recent years in fact it has been elected as living and working seat by many foreigners and it is now one of the cities with the greatest percentage of migrants in the Country. This is an important challenge for the city and an opportunity to merge, compare and integrate different cultures to build its future. In this context some students of different Courses (engineering and medicine), belonging both to the Arabian and local community, met together and with researchers in the study team 'Al-B¯i r¯u n¯i , for culture, science and society'. The team aims at organising cultural events in which, starting from the figure of the Persian scientist Ab¯u Raih. ¯a n Al-B¯i r¯u n¯i (about 973, 1051), the contribution of the Arabian and Islamic culture to the development of the European one in the middle ages is investigated. Moving from the initial idea of the study team Al-B¯i r¯u n¯i and from the suggestions of the World Soil Day 2014 and of the International Year of Soils 2015, we built a documentary exhibition entitled 'Irrigation techniques in water scarcity conditions'. The exhibition, which stresses the importance of the irrigation techniques for the soil conservation, is focused on the idea of disseminating two main concepts, i.e. (1) the technological continuity of some water supply systems in countries, around the Mediterranean Sea, affected by similar conditions of water availability, and (2) the possibility of building environments where, due to severe or extreme climatic conditions, the sustainability is reached when the man lives in equilibrium with the nature. The exhibition, which is written in Italian and will move around in the city during all 2015, consists of about twenty posters organized into three main chapters, corresponding to three main classes of water supply systems which are common in most of the countries surrounding

  1. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  2. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    Science.gov (United States)

    Urbano, R.; Palenik, B.; Gaston, C. J.; Prather, K. A.

    2011-02-01

    Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms can impact atmospheric chemistry through metabolic reactions and can potentially influence physical processes by participating in ice nucleation and cloud droplet formation. Microbial roles in atmospheric processes are thought to be species-specific and potentially dependent on cell viability. Using a coastal pier monitoring site as a sampling platform, culture-dependent (i.e. agar plates) and culture-independent (i.e. DNA clone libraries from filters) approaches were combined with 18S rRNA and 16S rRNA gene targeting to obtain insight into the local atmospheric microbial composition. From 13 microbial isolates and 42 DNA library clones, a total of 55 sequences were obtained representing four independent sampling events. Sequence analysis revealed that in these coastal samples two fungal phyla, Ascomycota and Basidiomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture-dependent study verifies the viability of microbes from all four phyla detected through our culture-independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not typically found. The abundance of terrestrial and marine sediment-associated microorganisms suggests a potential importance for bioaerosols derived from beaches and/or coastal erosion processes.

  3. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    Directory of Open Access Journals (Sweden)

    R. Urbano

    2010-08-01

    Full Text Available Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms in the atmosphere have great potential to impact chemical and physical processes that influence global climateby participating in both ice nucleation and cloud droplet formation. The role of microorganisms in atmospheric processes is thought to be species-specific and, potentially, dependent on the viability of the cell; however, few simultaneous measurements of both parameters exist. Using a coastal pier monitoring site as a sampling platform to investigate the exchange of airborne microorganisms at the air-sea interface, culture independent (i.e. DNA clone libraries from filters and culture dependent approaches (i.e. agar plates were combined with 18S rRNA and 16S rRNA gene targeting to determine the microbial diversity. The results indicate that in these coastal air samples two fungal phyla, Basidiomycota and Ascomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture dependent study verifies the viability of microbes from all four phyla detected through our culture independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not abundantly found in our air samples indicating the potential importance of bioaerosols derived from beaches and/or coastal erosion processes.

  4. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    Directory of Open Access Journals (Sweden)

    R. Urbano

    2011-02-01

    Full Text Available Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms can impact atmospheric chemistry through metabolic reactions and can potentially influence physical processes by participating in ice nucleation and cloud droplet formation. Microbial roles in atmospheric processes are thought to be species-specific and potentially dependent on cell viability. Using a coastal pier monitoring site as a sampling platform, culture-dependent (i.e. agar plates and culture-independent (i.e. DNA clone libraries from filters approaches were combined with 18S rRNA and 16S rRNA gene targeting to obtain insight into the local atmospheric microbial composition. From 13 microbial isolates and 42 DNA library clones, a total of 55 sequences were obtained representing four independent sampling events. Sequence analysis revealed that in these coastal samples two fungal phyla, Ascomycota and Basidiomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture-dependent study verifies the viability of microbes from all four phyla detected through our culture-independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not typically found. The abundance of terrestrial and marine sediment-associated microorganisms suggests a potential importance for bioaerosols derived from beaches and/or coastal erosion processes.

  5. Controlled and reversible induction of differentiation and activation of adult human hepatocytes by a biphasic culture technique

    Institute of Scientific and Technical Information of China (English)

    Marcus K.H. Auth; Wolf-Otto Bechstein; Roman A. Blaheta; Kim A. Boost; Kerstin Leckel; Wolf-Dietrich Beecken; Tobias Engl; Dietger Jonas; Elsie Oppermann; Philip Hilgard; Bernd H. Markus

    2005-01-01

    AIM: Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC.METHODS: Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexamethasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), andgranulocyte-macrophage colony-stimulating factor (GMCSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting.RESULTS: In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type Ⅰ gel.CONCLUSION: Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplishedin vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome dedifferentiation, which occurs during continuous stimulation by means of growth factors.

  6. Detection of Changes in the Medicago sativa Retinoblastoma-Related Protein (MsRBR1) Phosphorylation During Cell Cycle Progression in Synchronized Cell Suspension Culture.

    Science.gov (United States)

    Ayaydin, Ferhan; Kotogány, Edit; Ábrahám, Edit; Horváth, Gábor V

    2017-01-01

    Deepening our knowledge on the regulation of the plant cell division cycle depends on techniques that allow for the enrichment of cell populations in defined cell cycle phases. Synchronization of cell division can be achieved using different plant tissues; however, well-established cell suspension cultures provide large amount of biological sample for further analyses. Here, we describe the methodology of the establishment, propagation, and analysis of a Medicago sativa suspension culture that can be used for efficient synchronization of the cell division. A novel 5-ethynyl-2'-deoxyuridine (EdU)-based method is used for the estimation of cell fraction that enters DNA synthesis phase of the cell cycle and we also demonstrate the changes in the phosphorylation level of Medicago sativa retinoblastoma-related protein (MsRBR1) during cell cycle progression.

  7. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  8. Improvement of human dendritic cell culture for immunotoxicological investigations.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-07-01

    A toxic injury such as a decrease in the number of immature dendritic cells caused by a cytotoxic effect or a disturbance in their maturation process can be responsible for immunodepression. There is a need to improve in vitro assays on human dendritic cells used to detect and evaluate adverse effects of xenobiotics. Two aspects were explored in this work: cytotoxic effects of xenobiotics on immature dendritic cells, and the interference of xenobiotics with dendritic cell maturation. Dendritic cells of two different origins were tested. Dendritic cells obtained either from umbilical cord blood CD34(+) cells or, for the first time, from umbilical cord blood monocytes. The cytotoxicity assay on immature dendritic cells has been improved. For the study of the potential adverse effects of xenobiotics on the maturation process of dendritic cells, several parameters were selected such as expression of markers (CD86, CD83, HLA-DR), secretion of interleukins 10 and 12, and proliferation of autologous lymphocytes. The relevance and the efficiency of the protocol applied were tested using two mycotoxins, T-2 toxin and deoxynivalence, DON, which are known to be immunosuppressive, and one phycotoxin, domoic acid, which is known not to have any immunotoxic effect. Assays using umbilical cord monocyte dendritic cell cultures with the protocol defined in this work, which involves a cytotoxicity study followed by evaluation of several markers of adverse effects on the dendritic cell maturation process, revealed their usefulness for investigating xenobiotic immunotoxicity toward immune primary reactions.

  9. A Cultural Psychological Approach to Analyze Intercultural Learning: Potential and Limits of the Structure Formation Technique

    Directory of Open Access Journals (Sweden)

    Doris Weidemann

    2009-01-01

    Full Text Available Despite the huge interest in sojourner adjustment, there is still a lack of qualitative as well as of longitudinal research that would offer more detailed insights into intercultural learning processes during overseas stays. The present study aims to partly fill that gap by documenting changes in knowledge structures and general living experiences of fifteen German sojourners in Taiwan in a longitudinal, cultural-psychological study. As part of a multimethod design a structure formation technique was used to document subjective theories on giving/losing face and their changes over time. In a second step results from this study are compared to knowledge-structures of seven long-term German residents in Taiwan, and implications for the conceptualization of intercultural learning will be proposed. Finally, results from both studies serve to discuss the potential and limits of structure formation techniques in the field of intercultural communication research. URN: urn:nbn:de:0114-fqs0901435

  10. Spaceflight effects on cultured embryonic chick bone cells

    Science.gov (United States)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  11. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other importan

  12. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  13. [In vitro regeneration and applications using vegetable cell and tissue culture].

    Science.gov (United States)

    Jordán, M

    1990-10-01

    Plant cells by means of their totipotency and aided by in vitro culture techniques can be induced to perform morphogenesis leading to somatic embryoids and massive clonal multiplication; microspores or pollen can be triggered to recover haploid plants, then characters expressed via haploidy can be selected and fixed. Protoplasts from different species can lead to recombinations. We report here work done on Carica pubescens, where somatic embryoids were obtained from cells; in Prunus avium androgenesis leading to pollen calli was triggered, while plants were recovered from Nicotiana tabacum anthers. Fusion products were obtained using C. pubescens and C. papaya protoplasts, leading up to calli and shoots.

  14. Microstructured multi-well plate for three-dimensional packed cell seeding and hepatocyte cell culture.

    Science.gov (United States)

    Goral, Vasiliy N; Au, Sam H; Faris, Ronald A; Yuen, Po Ki

    2014-07-01

    In this article, we present a microstructured multi-well plate for enabling three-dimensional (3D) high density seeding and culture of cells through the use of a standard laboratory centrifuge to promote and maintain 3D tissue-like cellular morphology and cell-specific functionality in vitro without the addition of animal derived or synthetic matrices or coagulants. Each well has microfeatures on the bottom that are comprised of a series of ditches/open microchannels. The dimensions of the microchannels promote and maintain 3D tissue-like cellular morphology and cell-specific functionality in vitro. After cell seeding with a standard pipette, the microstructured multi-well plates were centrifuged to tightly pack cells inside the ditches in order to enhance cell-cell interactions and induce formation of 3D cellular structures during cell culture. Cell-cell interactions were optimized based on cell packing by considering dimensions of the ditches/open microchannels, orientation of the microstructured multi-well plate during centrifugation, cell seeding density, and the centrifugal force and time. With the optimized cell packing conditions, we demonstrated that after 7 days of cell culture, primary human hepatocytes adhered tightly together to form cord-like structures that resembled 3D tissue-like cellular architecture. Importantly, cell membrane polarity was restored without the addition of animal derived or synthetic matrices or coagulants.

  15. Comparison of Selective Culturing and Biochemical Techniques for Measuring Biological Activity in Geothermal Process Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pryfogle, Peter Albert

    2000-09-01

    For the past three years, scientists at the Idaho National Engineering and Environmental Laboratory have been conducting studies aimed at determining the presence and influence of bacteria found in geothermal plant cooling water systems. In particular, the efforts have been directed at understanding the conditions that lead to the growth and accumulation of biomass within these systems, reducing the operational and thermal efficiency. Initially, the methods selected were based upon the current practices used by the industry and included the collection of water quality parameters, the measurement of soluble carbon, and the use of selective medial for the determination of the number density of various types of organisms. This data has been collected on a seasonal basis at six different facilities located at the Geysers’ in Northern California. While this data is valuable in establishing biological growth trends in the facilities and providing an initial determination of upset or off-normal conditions, more detailed information about the biological activity is needed to determine what is triggering or sustaining the growth in these facilities in order to develop improved monitoring and treatment techniques. In recent years, new biochemical approaches, based upon the analyses of phospholipid fatty acids and DNA recovered from environmental samples, have been developed and commercialized. These techniques, in addition to allowing the determination of the quantity of biomass, also provide information on the community composition and the nutritional status of the organisms. During the past year, samples collected from the condenser effluents of four of the plants from The Geysers’ were analyzed using these methods and compared with the results obtained from selective culturing techniques. The purpose of this effort was to evaluate the cost-benefit of implementing these techniques for tracking microbial activity in the plant study, in place of the selective culturing

  16. Culture and purification of human fetal olfactory bulb ensheathing cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To obtain high purity of human fetal olfactory bulb ensheathing cells (OB-hOECs) in vitro and to develop a simple and effective method for primary culture of OB-hOECs. Methods: OB-hOECs were cultured based on the differential rates of attachment of the various harvested cell types. Then the method was combined with arabinoside cytosine (Ara-C)inhibition, serum-free starvation or intermittent neurotrophin 3 (NT3) nutrition method to observe cell states in different cultural environments. The purity of OB-hOECs was assessed with immunocytochemical analysis. Results: OB-hOECs appeared bipolar and tripolar shape, with slender processes forming network. The purity of OECs reached 88% with the selective attachment method on day 6, and then fibroblast proliferated quickly and reduced the purity. When combined with the starvation method, the purity of OECs was 91% on day 6 and 86% on day 9, however, OECs were in a poor state. While combined with the NT3 method, the purity reached 95% on day 9 and 83% on day 12, respectively. The cells still remained in a good state. Conclusion: A combination of selective attachment and intermittent NT3 nutrition is an effective method to obtain OECs with higher purity and quality.

  17. Aging and senescence of skin cells in culture

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    aging in vitro are dermal fibroblasts, epidermal keratinocytes, and melanocytes. Serial subcultivation of normal diploid skin cells can be performed only a limited number of times, and the emerging senescent phenotype can be categorized into structural, physiological, biochemical, and molecular......Studying age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. The three main cell types that have been studied extensively with respect to cellular...... phenotypes, which can be used as biomarkers of cellular aging in vitro. The rate and phenotype of aging are different in different cell types. There are both common features and specific features of aging of skin fibroblasts, keratinocytes, melanocytes, and other cell types. A progressive accumulation...

  18. Enrichment of cancer stem cell-like cells by culture in alginate gel beads.

    Science.gov (United States)

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Yang, Li; Li, Nan; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2014-05-10

    Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.

  19. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    Directory of Open Access Journals (Sweden)

    Iris Eke

    2015-11-01

    Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

  20. Obtaining freshly isolated and cultured mesenchymal stem cells from human adipose tissue.

    Science.gov (United States)

    Boquest, Andrew C; Collas, Philippe

    2012-01-01

    The stromal compartment of adipose tissue harbors mesenchymal stem cells (MSCs) (also called stromal stem cells) that display extensive proliferative capacity and multilineage differentiation potential. Such cells offer a practical avenue of generating patient-matched tissue for use in regenerative medicine. It is relatively easy to isolate these cells from adipose tissue in large enough quantities (tens of millions) to allow for their clinical use in a native, uncultured form. Alternatively, MSCs from adipose tissue can be expanded and differentiated into the desired tissue type in vitro using straightforward cell culture techniques. In this chapter, we outline procedures for isolating large numbers of highly purified MSCs from human adipose tissue in their native, uncultured form and methods for their subsequent expansion and differentiation in vitro.

  1. Removal of hematopoietic cells and macrophages from mouse bone marrow cultures: isolation of fibroblastlike stromal cells.

    Science.gov (United States)

    Modderman, W E; Vrijheid-Lammers, T; Löwik, C W; Nijweide, P J

    1994-02-01

    A method is described that permits the removal of hematopoietic cells and macrophages from mouse bone marrow cultures. The method is based on the difference in effect of extracellular ATP4- ions (ATP in the absence of divalent, complexing cations) on cells of hematopoietic origin, including macrophages, and of nonhematopoietic origin, such as fibroblastlike stromal cells. In contrast to fibroblastlike cells, hematopoietic cells and macrophages form under the influence of ATP4- lesions in their plasma membranes, which allows the entrance of molecules such as ethidium bromide (EB) and potassium thiocyanate (KSCN), which normally do not easily cross the membrane. The lesions can be rapidly closed by the addition of Mg2+ to the incubation medium, leaving the EB or KSCN trapped in the cell. This method allows the selective introduction of cell-toxic substances such as KSCN into hematopoietic cells and macrophages. By using this method, fibroblastlike stromal cells can be isolated from mouse bone marrow cultures.

  2. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Christina; McKee; Mick; Perez-Cruet; Ferman; Chavez; G; Rasul; Chaudhry

    2015-01-01

    AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as

  3. Apheresis techniques for collection of peripheral blood progenitor cells.

    Science.gov (United States)

    Moog, Rainer

    2004-12-01

    The combination of effective mobilisation protocols and efficient use of apheresis machines has caused peripheral blood progenitor cells (PBPC) transplantation to grow rapidly. The development of apheresis technology has improved over the years. Today PBSC procedures have changed towards systems to minimise operator interaction and to reduce the collection of undesired cells such as polymorphonuclear cells and platelets using functionally closed, sterile environments for PBSC collection in keeping with Good Manufacturing Practice guidelines. Blood cell separators with continuous flow technique allow the processing of more blood than intermittent flow devices resulting in higher PBSC yields. Large volume leukapheresis with the processing of 3-4-fold donor's/patient's blood volume can increase the number of collected progenitor cells. Therefore, intermittent flow cell separators are indicated if only single vein access is available. Anticoagulant induced hypocalcaemia is an often observed side effect in long lasting PBPC harvesting and monitoring of electrolytes should be performed especially at the end of the apheresis procedure to supplement low levels of potassium, calcium or magnesium. Refinement and improvement of collection techniques continue to add to the armamentarium of current approaches for cancer and non-malignant conditions and will enable future strategies.

  4. Microfluidic cell culture systems with integrated sensors for drug screening

    Science.gov (United States)

    Grist, Samantha; Yu, Linfen; Chrostowski, Lukas; Cheung, Karen C.

    2012-03-01

    Cell-based testing is a key step in drug screening for cancer treatments. A microfluidic platform can permit more precise control of the cell culture microenvironment, such as gradients in soluble factors. These small-scale devices also permit tracking of low cell numbers. As a new screening paradigm, a microscale system for integrated cell culture and drug screening promises to provide a simple, scalable tool to apply standardized protocols used in cellular response assays. With the ability to dynamically control the microenvironment, we can create temporally varying drug profiles to mimic physiologically measured profiles. In addition, low levels of oxygen in cancerous tumors have been linked with drug resistance and decreased likelihood of successful treatment and patient survival. Our work also integrates a thin-film oxygen sensor with a microfluidic oxygen gradient generator which will in future allow us to create spatial oxygen gradients and study effects of hypoxia on cell response to drug treatment. In future, this technology promises to improve cell-based validation in the drug discovery process, decreasing the cost and increasing the speed in screening large numbers of compounds.

  5. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    Science.gov (United States)

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.

  6. Mapping air pollution using Earth observation techniques for cultural heritage sites

    Science.gov (United States)

    Agapiou, Athos; Nisantzi, Argyro; Lysandrou, Vasiliki; Mamouri, Rodanthi; Alexakis, Dimitrios D.; Themistocleous, Kyriacos; Sarris, Apostolos; Hadjimitsis, Diofantos G.

    2013-08-01

    Air pollutants, together with climatic parameters, are of major importance for the deterioration of cultural heritage monuments. Atmospheric pollution is widely recognized as one of the major anthropogenic threats to architectural cultural heritage, in particular when associated with water absorption phenomena. Atmospheric particle deposition on surfaces of Monuments (of cultural heritage interest) may cause an aesthetic impact induced by a series of chemical reactions. Therefore there is a need for systematic monitoring and mapping of air pollution for areas where important archaeological sites and monuments are found. observation techniques, such as the use of satellite image for the retrieval of Aerosol Optical Thickness (AOT), are ideal for this purpose. In this paper, all important monuments of the Paphos District, listed by the Department of Antiquities of Cyprus, have been mapped using Geographical Information Systems. Several recent (2012) MODIS satellite images (both Aqua and Terra) have been used to extract the AOT values in this area. Multi-temporal analysis was performed to identify areas of high risk where AOT values are considered to be high. In situ observations have been also carried out to verify the results.

  7. 紫背菜水培管理技术%Hydroponic Culture Techniques of Gynura Bicolor

    Institute of Scientific and Technical Information of China (English)

    罗思良; 潘廷由; 周连芳

    2012-01-01

    水培是无土栽培中的一种,即以营养液代替土壤,人为提供作物生长发育所需的养分、氧气、水分和热量。从育苗、消毒、定植、水肥调控、采收等方面介绍了紫背菜水培的管理技术,以期为蔬菜水培生产提供技术参考。%Hydroponic is a subset of soilless culture and is a method to artificially grow plants by nutrient solutions instead of soil. Hydroponics culture can provide the nutrient,oxygen, water and heat, which meet the require of plants' growth and development. The hydroponics culture techniques of Gynura bicolor were introduced from seedling,disinfecting,planting,water and fertilizer regulation harvesting,etc,so as to provide technical references for vegetable production by hydroponics.

  8. Effects of diluents on cell culture viability measured by automated cell counter

    Science.gov (United States)

    Chen, Aaron; Leith, Matthew; Tu, Roger; Tahim, Gurpreet; Sudra, Anish; Bhargava, Swapnil

    2017-01-01

    Commercially available automated cell counters based on trypan blue dye-exclusion are widely used in industrial cell culture process development and manufacturing to increase throughput and eliminate inherent variability in subjective interpretation associated with manual hemocytometers. When using these cell counters, sample dilution is often necessary to stay within the assay measurement range; however, the effect of time and diluents on cell culture is not well understood. This report presents the adverse effect of phosphate buffered saline as a diluent on cell viability when used in combination with an automated cell counter. The reduced cell viability was attributed to shear stress introduced by the automated cell counter. Furthermore, length of time samples were incubated in phosphate buffered saline also contributed to the observed drop in cell viability. Finally, as erroneous viability measurements can severely impact process decisions and product quality, this report identifies several alternative diluents that can maintain cell culture viability over time in order to ensure accurate representation of cell culture conditions. PMID:28264018

  9. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  10. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  11. Spatial Techniques to Visualize Acoustic Comfort along Cultural and Heritage Routes for a World Heritage City

    Directory of Open Access Journals (Sweden)

    Ni Sheng

    2015-07-01

    Full Text Available This paper proposes to visualize acoustic comfort along tourist routes. Route-based tourism is crucial to the sustainability of tourism development in historic areas. Applying the concept of route-based tourism to guide tourists rambling along cultural and heritage routes can relieve overcrowded condition at hot scenic spots and increase the overall carrying capacity of the city. However, acoustic comfort along tourist routes is rarely addressed in academic studies and decision-making. Taking Macao as an example, this paper has studied pedestrian exposure to traffic noise along the cultural and heritage routes. The study is based on a GIS-based traffic noise model system with a high spatial resolution down to individual buildings along both sides of the street. Results show that tourists suffer from excessive traffic noise at certain sites, which may have negative impact on the promotion of route-based tourism in the long run. In addition, it is found that urban growth affects urban form and street layout, which in turn affect traffic flow and acoustic comfort in urban area. The present study demonstrates spatial techniques to visualize acoustic comfort along tourist routes, and the techniques are foreseen to be used more frequently to support effective tourism planning in the future.

  12. Cell chirality: emergence of asymmetry from cell culture.

    Science.gov (United States)

    Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi

    2016-12-19

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  13. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  14. Spontaneous and electrically-evoked catecholamine secretion from long-term cultures of bovine adrenal chromaffin cells.

    Science.gov (United States)

    Noga, Brian R; Pinzon, Alberto

    2013-09-05

    Catecholamine release was measured from bovine adrenal medullary chromaffin cell (CC) cultures maintained over a period of three months. Cells were plated over simple biocompatible cell platforms with electrical stimulation capability and at specified times transferred to an acrylic superfusion chamber designed to allow controlled flow of superfusate over the culture. Catecholamine release was measured from the superfusates using fast cyclic voltammetry before, during and after electrical stimulation of the cells. Immunocytochemical staining of CC cultures revealed that they were composed of epinephrine (EP) and/or norepinephrine (NE) type cells. Both spontaneous and evoked-release of catecholamines from CCs were observed throughout the testing period. EP predominated during spontaneous release, whereas NE was more prevalent during electrically-evoked release. Electrical stimulation for 20 s, increased total catecholamine release by 60-130% (measured over a period of 500 s) compared to that observed for an equivalent 20 s period of spontaneous release. Stimulus intensity was correlated with the amount of evoked release, up to a plateau which was observed near the highest intensities. Shorter intervals between stimulation trials did not significantly affect the initial amount of release, and the amount of evoked release was relatively stable over time and did not decrease significantly with age of the culture. The present study demonstrates long-term survival of CC cultures in vitro and describes a technique useful for rapid assessment of cell functionality and release properties of cultured monoaminergic cell types that later can be transplanted for neurotransmitter replacement following injury or disease.

  15. Cell division in Escherichia coli cultures monitored at single cell resolution

    Directory of Open Access Journals (Sweden)

    Luidalepp Hannes

    2008-04-01

    Full Text Available Abstract Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular

  16. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  17. Ultra-thin Polyethylene glycol Coatings for Stem Cell Culture

    Science.gov (United States)

    Schmitt, Samantha K.

    Human mesenchymal stem cells (hMSCs) are a widely accessible and a clinically relevant cell type that are having a transformative impact on regenerative medicine. However, current clinical expansion methods can lead to selective changes in hMSC phenotype resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding stem cell behavior. In particular we have developed chemically defined ultra-thin coatings that are stable over timeframes relevant to differentiation of hMSCs (several weeks). The approach employs synthesis of a copolymer with distinct chemistry in solution before application to a substrate. This provides wide compositional flexibility and allows for characterization of the orthogonal crosslinking and peptide binding groups. Characterization is done in solution by proton NMR and after crosslinking by X-ray photoelectron spectroscopy (XPS). The solubility of the copolymer in ethanol and low temperature crosslinking, expands its applicability to plastic substrates, in addition to silicon, glass, and gold. Cell adhesive peptides, namely Arg-Gly-Asp (RGD) fragments, are coupled to coating via different chemistries resulting in the urethane, amide or the thioester polymer-peptide bonds. Development of azlactone-based chemistry allowed for coupling in water at low peptide concentrations and resulted in either an amide or thioester bonds, depending on reactants. Characterization of the peptide functionalized coating by XPS, infrared spectroscopy and cell culture assays, showed that the amide linkages can present peptides for multiple weeks, while shorter-term presentation of a few days is possible using the more labile thioester bond. Regardless, coatings promoted initial adhesion and spreading of hMSCs in a peptide density dependent manner. These coatings address the following challenges in chemically defined cell culture simultaneously: (i) substrate adaptability, (ii) scalability over large areas

  18. Microphotographs of cyanobacteria documenting the effects of various cell-lysis techniques

    Science.gov (United States)

    Rosen, Barry H.; Loftin, Keith A.; Smith, Christopher E.; Lane, Rachael F.; Keydel, Susan P.

    2011-01-01

    Cyanotoxins are a group of organic compounds biosynthesized intracellularly by many species of cyanobacteria found in surface water. The United States Environmental Protection Agency has listed cyanotoxins on the Safe Drinking Water Act's Contaminant Candidate List 3 for consideration for future regulation to protect public health. Cyanotoxins also pose a risk to humans and other organisms in a variety of other exposure scenarios. Accurate and precise analytical measurements of cyanotoxins are critical to the evaluation of concentrations in surface water to address the human health and ecosystem effects. A common approach to total cyanotoxin measurement involves cell membrane disruption to release the cyanotoxins to the dissolved phase followed by filtration to remove cellular debris. Several methods have been used historically, however no standard protocols exist to ensure this process is consistent between laboratories before the dissolved phase is measured by an analytical technique for cyanotoxin identification and quantitation. No systematic evaluation has been conducted comparing the multiple laboratory sample processing techniques for physical disruption of cell membrane or cyanotoxins recovery. Surface water samples collected from lakes, reservoirs, and rivers containing mixed assemblages of organisms dominated by cyanobacteria, as well as laboratory cultures of species-specific cyanobacteria, were used as part of this study evaluating multiple laboratory cell-lysis techniques in partnership with the U.S. Environmental Protection Agency. Evaluated extraction techniques included boiling, autoclaving, sonication, chemical treatment, and freeze-thaw. Both treated and untreated samples were evaluated for cell membrane integrity microscopically via light, epifluorescence, and epifluorescence in the presence of a DNA stain. The DNA stain, which does not permeate live cells with intact membrane structures, was used as an indicator for cyanotoxin release into the

  19. Isolation and culture of Celosia cristata L cell suspension protoplasts

    Directory of Open Access Journals (Sweden)

    Retno Mastuti

    2003-06-01

    Full Text Available Developmental competence of Celosia cristata L. cell suspension-derived protoplasts was investigated. The protoplasts were isolatedfrom 3- to 9-d old cultures in enzyme solution containing 2% (w/v Cellulase YC and 0.5% (w/v Macerozyme R-10 which was dissolvedin washing solution (0.4 M mannitol and 10 mM CaCl2 at pH 5.6 for 3 hours. The highest number of viable protoplasts was releasedfrom 5-d old culture of a homogenous cell suspension. Subsequently, three kinds of protoplast culture media were simultaneously examinedwith four kinds of concentration of gelling agent. Culturing the protoplasts on KM8p medium solidified with 1.2% agarose significantlyenhanced plating efficiency as well as microcolony formation. Afterwards, the microcalli actively proliferated into friable watery calluswhen they were subcultured on MS medium supplemented with 0.3 mg/l 2,4-D and 1.0 mg/l kinetin. Although the plant regenerationfrom the protoplasts-derived calli has not yet been obtained, the reproducible developmental step from protoplasts to callus in thisstudy may facilitate the establishment of somatic hybridization using C. cristata as one parent.

  20. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux.

    Science.gov (United States)

    Capati, Mark Luigi Fabian; Nakazono, Ayako; Igawa, Kazunari; Ookubo, Kensuke; Yamamoto, Yuya; Yanagiguchi, Kajirou; Kubo, Shisei; Yamada, Shizuka; Hayashi, Yoshihiko

    2016-12-01

    A low concentration of boron (B) accelerates the proliferation and differentiation of mammalian osteoblasts. The aim of this study was to investigate the effects of 0.1 mM of B on the membrane function of osteoblastic cells in vitro. Genes involved in cell activity were investigated using gene expression microarray analyses. The Ca(2+) influx and efflux were evaluated to demonstrate the activation of L-type Ca(2+) channel for the Ca(2+) influx, and that of Na(+)/K(+)-ATPase for the Ca(2+) efflux. A real-time PCR analysis revealed that the messenger RNA (mRNA) expression of four mineralization-related genes was clearly increased after 3 days of culture with a B-supplemented culture medium. Using microarray analyses, five genes involved in cell proliferation and differentiation were upregulated compared to the control group. Regarding the Ca(2+) influx, in the nifedipine-pretreated group, the relative fluorescence intensity for 1 min after adding B solution did not increase compared with that for 1 min before addition. In the control group, the relative fluorescence intensity was significantly increased compared with the experimental group (P < 0.05). Regarding the Ca(2+) efflux, in the experimental group cultured in 0.1 mM of B-supplemented medium, the relative fluorescence intensity for 10 min after ouabain treatment revealed a significantly lower slope value compared with the control group (P < 0.01). This is the first study to demonstrate the acceleration of Ca(2+) flux by B supplementation in osteoblastic cells. Cell membrane stability is related to the mechanism by which a very low concentration of B promotes the proliferation and differentiation of mammalian osteoblastic cells in vitro.