WorldWideScience

Sample records for cell culture techniques

  1. Basic Techniques in Mammalian Cell Tissue Culture.

    Science.gov (United States)

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  2. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Science.gov (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  3. Comparison of chromosome analysis using cell culture by coverslip technique with flask technique.

    Science.gov (United States)

    Sajapala, Suraphan; Buranawut, Kitti; NiwatArunyakasemsuk, Md

    2014-02-01

    To determine accuracy rate ofchromosome study from amniotic cellculture by coverslip technique compared with flask technique and to compared timing ofamniotic cell culture, amount ofamniotic cell culture media and cost ofamniotic cell culture. Cross sectional study. Department of Obstetrics and Gynecology, Phramongkutklao Hospital. Subjects: 70 pregnant women who underwent amniocentesis at Phramongkutklao Hospital during November 1, 2007 to February 29, 2008. Amniotic cell culture by flask technique and coverslip technique. Accuracy of amniotic cell culture for chromosome study by coverslip technique compared with flask technique. Totally 70 pregnant women who underwent to amniocentesis and dividedamniotic fluid to cell culture by flask technique and coverslip technique. 69 samples had similar resultfrom both techniques. The only one sample had cell culture failure inboth methods due to blood contamination. Accuracy in coverslip technique was 100% compared with flask technique. In timing of amniotic cell culture, amount ofamniotic cell culture media and cost of amniotic cell culture between 2 methods that coverslip technique was lesser than flask technique. There is statistically significant of accuracy in chromosome result between coverslip technique and flask technique. Coverslip technique was lesser than flask technique in timing, amniotic cell culture media and costs ofamniotic cell culture.

  4. [Application of cell co-culture techniques in medical studies].

    Science.gov (United States)

    Luo, Yun; Sun, Gui-Bo; Qin, Meng; Yao, Fan; Sun, Xiao-Bo

    2012-11-01

    As the cell co-culture techniques can better imitate an in vivo environment, it is helpful in observing the interactions among cells and between cells and the culture environment, exploring the effect mechanisms of drugs and their possible targets and filling the gaps between the mono-layer cell culture and the whole animal experiments. In recently years, they has attracted much more attention from the medical sector, and thus becoming one of research hotspots in drug research and development and bio-pharmaceutical fields. The cell co-culture techniques, including direct and indirect methods, are mainly used for studying pathological basis, new-type treatment methods and drug activity screening. Existing cell co-culture techniques are used for more pharmacological studies on single drug and less studies on interaction of combined drugs, such as collaborative compatibility and attenuation and synergistic effect among traditional Chinese medicines (TCMs). In line with the action characteristics of multi-component and multi-target, the cell co-culture techniques provide certain reference value for future studies on the effect and mechanism of combined TCMs on organisms as well as new methods for studies on TCMs and their compounds. This essay summarizes cell co-culture methods and their application and look into the future of their application in studies on TCMs and compounds.

  5. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  6. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  7. A microlagoon technique for the culture of mammalian cells

    Science.gov (United States)

    Cone, C. D., Jr.; Peddrew, K. H.

    1968-01-01

    Technique obtains micropartitioning in a simple and reproducible manner by forming a field of tiny ponds or lagoons on the surface of a suitable culturing vessel. The technique allows free access of the common culture to all parts of the field.

  8. Chikungunya virus isolation using simplified cell culture technique in Mauritius.

    Science.gov (United States)

    Pyndiah, M N; Pursem, V; Meetoo, G; Daby, S; Ramuth, V; Bhinkah, P; Chuttoo, R; Paratian, U

    2012-03-01

    During the chikungunya outbreak of 2005 - 2006, the only laboratory facilities available in Mauritius were virus isolation in cell culture tubes and serology. The laboratory was submerged with large numbers of blood samples. Comparative isolation was made in human embryonic lung (HEL) and VERO cells grown in 96-well plate. Culture on HEL cells was found to be more sensitive and presence of cytopathic effect (CPE) was observed earlier than in VERO cells. Out of the 18 300 blood samples inoculated on HEL, 11 165 were positive. This virus isolation method was of great help for the surveillance and control of the vectors. In cases of an outbreak a cheap, rapid and simple method of isolating chikungunya virus is described.

  9. [Effects on proliferation ability of vascular smooth muscle cells by static and/or dynamic cell culture: utility of pre-seeding technique for dynamic cell culture].

    Science.gov (United States)

    Yokomuro, Hiroki; Ozawa, Tsukasa; Fujii, Takeshiro; Shiono, Noritsugu; Watanabe, Yoshinori; Yoshihara, Katsunori; Koyama, Nobuya; Okada, Mitsumasa

    2007-11-01

    Conventional biomaterials are not viable, do not grow, and do not provide contractile effects in cardiac tissue. Foreign synthetic material may become thrombogenic or infected. The most recent cardiac constructs consist of biodegradable material which has the potential to solve these problems. However, dynamic three-dimensional cell culture is necessary because conventional culture is limited to construct tough biografts. Vascular smooth muscle cells derived from rat aorta were seeded to poly-L-lactide-epsilon-capro-lactone copolymer in three groups; static culture group (static cell seeding + static cell culture), dynamic culture group (dynamic cell seeding + dynamic cell culture), and pre-seeding group [static cell seeding and culture for 1 week (pre-seeding) + dynamic cell culture]. The dynamic cell culture system used an original spinner flask. The pre-seeding technique used static cell seeding and culture before dynamic culture. The three groups were evaluated by cell proliferation and histologic studies. Vascular smooth muscle cells could be proliferated in/on the biodegradable materials. The pre-seeding group cells grew much more efficiently than the other groups. Very few cells were found in the biodegradable materials with the dynamic groups. However, there were many cells in the materials with the static culture group and pre-seeding group, especially the pre-seeding group. Dynamic culture is useful for constructing tough biografts by the pre-seeding technique.

  10. Simple and inexpensive technique for measuring oxygen consumption rate in adherent cultured cells.

    Science.gov (United States)

    Takahashi, Eiji; Yamaoka, Yoshihisa

    2017-11-01

    Measurement of cellular oxygen consumption rate (OCR) is essential in assessing roles of mitochondria in physiology and pathophysiology. Classical techniques, in which polarographic oxygen electrode measures the extracellular oxygen concentration in a closed measuring vessel, require isolation and suspension of the cell. Because cell functions depend on the extracellular milieu including the extracellular matrix, isolation of cultured cells prior to the measurement may significantly affect the OCR. More recent techniques utilize optical methods in which oxygen-dependent quenching of fluorophores determines oxygen concentration in the medium at a few microns above the surface of the cultured cells. These techniques allow the OCR measurement in cultured cells adhered to the culture dish. However, this technique requires special equipment such as a fluorescence lifetime microplate reader or specialized integrated system, which are usually quite expensive. Here, we introduce a simple and inexpensive technique for measuring OCR in adherent cultured cells that utilizes conventional fluorescence microscopy and a glassware called a gap cover glass.

  11. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    Science.gov (United States)

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  12. A review of the three-dimensional cell culture technique: Approaches, advantages and applications.

    Science.gov (United States)

    Zhang, Weijie; Zhuang, Ai; Gu, Ping; Zhou, Huifang; Fan, Xianqun

    2016-01-01

    Cell culture is a core and basic technique in biotechnology and is widely applied in biology, medicine, drug research and development. Traditional two-dimensional cell culture methods have undergone great developments. However, with in-depth basic research, higher requirements are needed to better mimic the in vivo environment to accurately observe cell behavior and explore its mechanisms. To comply with this situation, the three-dimensional cell culture technique emerged and has made profound advances in sustaining inherent cell properties. Here, we briefly review the development of this technique, including the main approaches to form three-dimensional microtissues, and its application and potential for future clinical therapies.

  13. Three-dimensional cell culture technique and pathophysiology.

    Science.gov (United States)

    Matsusaki, Michiya; Case, Charles Patrick; Akashi, Mitsuru

    2014-07-01

    Three-dimensional (3D) tissue constructs consisting of human cells have opened a new avenue for tissue engineering, pharmaceutical and pathophysiological applications, and have great potential to estimate the dynamic pharmacological effects of drug candidates, metastasis processes of cancer cells, and toxicity expression of nano-materials, as a 3D-human tissue model instead of in vivo animal experiments. However, most 3D-cellular constructs are a cell spheroid, which is a heterogeneous aggregation, and thus the reconstruction of the delicate and precise 3D-location of multiple types of cells is almost impossible. In recent years, various novel technologies to develop complex 3D-human tissues including blood and lymph capillary networks have demonstrated that physiological human tissue responses can be replicated in the nano/micro-meter ranges. Here, we provide a brief overview on current 3D-tissue fabrication technologies and their biomedical applications. 3D-human tissue models will be a powerful technique for pathophysiological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A technique for in vitro culture of canine valvular interstitial cells.

    Science.gov (United States)

    Heaney, Allison M; Bulmer, Barret J; Ross, Christopher R; Schermerhorn, Thomas

    2009-06-01

    To develop a method for in vitro culture of canine valvular interstitial cells (VICs). Canine VICs were isolated from the distal third of the anterior mitral valve leaflet using an explant technique and maintained in cell culture. Molecular phenotyping of the cultured cells was performed using reverse transcription polymerase chain reaction and immunocytochemistry. Cells resembling fibroblasts migrated from canine mitral valve explants and were maintained in culture for up to eight passages. Establishment of the valve explant required collagen but once established, subsequent passages grew on non-coated plastic plates. At confluence the cultured cells exhibited the characteristic whorled pattern of fibroblasts in culture. The isolated valve cells expressed vimentin but not platelet endothelial cell adhesion molecule or von Willebrand's factor, consistent with the molecular phenotype of VICs. VICs can be readily isolated from canine mitral valve leaflets and successfully maintained in culture using standard culture techniques. The described techniques permit the study of bioactive VICs in a controlled environment and may be a useful in vitro model for investigation of cellular and molecular alterations associated with canine chronic degenerative valve disease.

  15. Selective Cell Elimination from Mixed 3D Culture Using a Near Infrared Photoimmunotherapy Technique.

    Science.gov (United States)

    Sato, Kazuhide; Choyke, Peter L; Hisataka, Kobayashi

    2016-03-14

    Recent developments in tissue engineering offer innovative solutions for many diseases. For example, tissue engineering using induced pluripotent stem cell (iPS) emerged as a new method in regenerative medicine. Although this tissue regeneration is promising, contamination with unwanted cells during tissue cultures is a major concern. Moreover, there is a safety concern regarding tumorigenicity after transplantation. Therefore, there is an urgent need for eliminating specific cells without damaging other cells that need to be protected, especially in established tissue. Here, we present a method for specific cell elimination from a mixed 3D cell culture in vitro with near infrared photoimmunotherapy (NIR-PIT) without damaging non-targeted cells. This technique enables the elimination of specific cells from mixed cell cultures or tissues.

  16. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  17. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  18. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H 2 O 2 removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities

  19. Assessing Adipogenic Potential of Mesenchymal Stem Cells: A Rapid Three-Dimensional Culture Screening Technique

    Directory of Open Access Journals (Sweden)

    Jean F. Welter

    2013-01-01

    Full Text Available Bone-marrow-derived mesenchymal stem cells (MSCs have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion.

  20. Assessing adipogenic potential of mesenchymal stem cells: a rapid three-dimensional culture screening technique.

    Science.gov (United States)

    Welter, Jean F; Penick, Kitsie J; Solchaga, Luis A

    2013-01-01

    Bone-marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion.

  1. A cell culture technique for human epiretinal membranes to describe cell behavior and membrane contraction in vitro.

    Science.gov (United States)

    Wertheimer, Christian; Eibl-Lindner, Kirsten H; Compera, Denise; Kueres, Alexander; Wolf, Armin; Docheva, Denitsa; Priglinger, Siegfried G; Priglinger, Claudia; Schumann, Ricarda G

    2017-11-01

    To introduce a human cell culture technique for investigating in-vitro behavior of primary epiretinal cells and membrane contraction of fibrocellular tissue surgically removed from eyes with idiopathic macular pucker. Human epiretinal membranes were harvested from ten eyes with idiopathic macular pucker during standard vitrectomy. Specimens were fixed on cell culture plastic using small entomological pins to apply horizontal stress to the tissue, and then transferred to standard cell culture conditions. Cell behavior of 400 epiretinal cells from 10 epiretinal membranes was observed in time-lapse microscopy and analyzed in terms of cell migration, cell velocity, and membrane contraction. Immunocytochemistry was performed for cell type-specific antigens. Cell specific differences in migration behavior were observed comprising two phenotypes: (PT1) epiretinal cells moving fast, less directly, with small round phenotype and (PT2) epiretinal cells moving slowly, directly, with elongated large phenotype. No mitosis, no outgrowth and no migration onto the plastic were seen. Horizontal contraction measurements showed variation between specimens. Masses of epiretinal cells with a myofibroblast-like phenotype expressed cytoplasmatic α-SMA stress fibers and correlated with cell behavior characteristics (PT2). Fast moving epiretinal cells (PT1) were identified as microglia by immunostaining. This in-vitro technique using traction application allows for culturing surgically removed epiretinal membranes from eyes with idiopathic macular pucker, demonstrating cell behavior and membrane contraction of primary human epiretinal cells. Our findings emphasize the abundance of myofibroblasts, the presence of microglia and specific differences of cell behavior in these membranes. This technique has the potential to improve the understanding of pathologies at the vitreomacular interface and might be helpful in establishing anti-fibrotic treatment strategies.

  2. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  3. Simulation of limiting dilution technique in determination of immunocompetent cells frequency in irradiated cell cultures

    International Nuclear Information System (INIS)

    Martini Filho, R.J.; Barlette, V.E.; Goes, E.G.; Covas, D.T.; Orellana, M.

    2001-01-01

    Limiting dilution techniques (LDA) dose-response data have been used to detect immunocompetent T-Cells in microcultures. In this work, LDA frequencies estimates was obtained using χ2 minimization for irradiated cells in a range of 500 to 1,500 cGy. (author)

  4. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique.

    Science.gov (United States)

    Goh, Bee See; Che Omar, Siti Nurhadis; Ubaidah, Muhammad Azhan; Saim, Lokman; Sulaiman, Shamsul; Chua, Kien Hui

    2017-04-01

    In conclusion, these result showed HADSCs could differentiate into chondrocytes-like cells, dependent on signaling induced by TGF-β3 and chondrocytes. This is a promising result and showed that HADSCs is a potential source for future microtia repair. The technique of co-culture is a positive way forward to assist the microtia tissue. Reconstructive surgery for the repair of microtia still remains the greatest challenge among the surgeons. Its repair is associated with donor-site morbidity and the degree of infection is inevitable when using alloplastic prosthesis with uncertain long-term durability. Thus, human adipose derived stem cells (HADSCs) can be an alternative cell source for cartilage regeneration. This study aims to evaluate the chondrogenic potential of HADSCs cultured with transforming growth factor-beta (TGF-β) and interaction of auricular chondrocytes with HADSCs for new cartilage generation. Multi-lineages differentiation features of HADSCs were monitored by Alcian Blue, Alizarin Red, and Oil Red O staining for chondrogenic, adipogenic, and osteogenic differentiation capacity, respectively. Further, HADSCs alone were culture in medium added with TGF-β3; and human auricular chondrocytes were interacted indirectly in the culture with and without TGF-βs for up to 21 days, respectively. Cell morphology and chondrogenesis were monitored by inverted microscope. For cell viability, Alamar Blue assay was used to measure the cell viability and the changes in gene expression of auricular chondrocyte markers were determined by real-time polymerase chain reaction analysis. For the induction of chondrogenic differentiation, HADSCs showed a feature of aggregation and formed a dense matrix of proteoglycans. Staining results from Alizirin Red and Oil Red O indicated the HADSCs also successfully differentiated into adipogenic and osteogenic lineages after 21 days. According to a previous study, HADSCs were strongly positive for the mesenchymal markers CD90, CD73

  5. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    International Nuclear Information System (INIS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-01-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  6. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation.

    Science.gov (United States)

    Nakashima, Y; Tsusu, K; Minami, K; Nakanishi, Y

    2014-06-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  7. Drifter technique: a new method to obtain metaphases in Hep-2 cell line cultures

    Directory of Open Access Journals (Sweden)

    Eleonidas Moura Lima

    2005-07-01

    Full Text Available The Hep-2 cell line is derived from laryngeal carcinoma cells and is often utilized as a model in carcinogenesis and mutagenesis tests. To evaluate the proliferative potential of this line, we developed a cytogenetic methodology (drifter technique to obtain metaphases from cells that loose cellular adhesion when they underwent mitosis in culture. By this procedure, 2000 cells were counted, resulting in a mitotic index (MI of 22.2%. Although this MI was not statistically different from the one obtained using either a classical cytogenetic method or a cell synchronization technique, the drifter technique has the advantage of not requiring the use of some reagents for the obtention of metaphases and also of diminishing the consumption of maintenance reagents for this cell line.A linhagem celular Hep-2 é formada por células de carcinoma da laringe e é muito utilizada em modelos de carcinogênese e mutagenêse. Para avaliar o potencial proliferativo desta linhagem, desenvolvemos uma metodologia citogenética (técnica do sobrenadante para obtenção de metáfases a partir de células que, ao entrarem em mitose, perdem adesão celular, ficando em suspensão no meio de cultura. Através deste procedimento, foram contadas 2000 células, correspondendo a um índice mitótico (IM de 22.2% . Apesar de o IM obtido por esta técnica não ter sido estatisticamente diferente do IM obtido por outras metodologias citogenéticas clássicas, a técnica do sobrenadante é vantajosa porque elimina o uso de alguns reagentes utilizados na obtenção de metáfases e também diminui o consumo de reagentes de manutenção desta linhagem.

  8. A Novel Technique for Accelerated Culture of Murine Mesenchymal Stem Cells that Allows for Sustained Multipotency.

    Science.gov (United States)

    Caroti, Courtney M; Ahn, Hyunhee; Salazar, Hector F; Joseph, Giji; Sankar, Sitara B; Willett, Nick J; Wood, Levi B; Taylor, W Robert; Lyle, Alicia N

    2017-10-17

    Bone marrow derived mesenchymal stem cells (MSCs) are regularly utilized for translational therapeutic strategies including cell therapy, tissue engineering, and regenerative medicine and are frequently used in preclinical mouse models for both mechanistic studies and screening of new cell based therapies. Current methods to culture murine MSCs (mMSCs) select for rapidly dividing colonies and require long-term expansion. These methods thus require months of culture to generate sufficient cell numbers for feasibility studies in a lab setting and the cell populations often have reduced proliferation and differentiation potential, or have become immortalized cells. Here we describe a simple and reproducible method to generate mMSCs by utilizing hypoxia and basic fibroblast growth factor supplementation. Cells produced using these conditions were generated 2.8 times faster than under traditional methods and the mMSCs showed decreased senescence and maintained their multipotency and differentiation potential until passage 11 and beyond. Our method for mMSC isolation and expansion will significantly improve the utility of this critical cell source in pre-clinical studies for the investigation of MSC mechanisms, therapies, and cell manufacturing strategies.

  9. Ex vivo produced oral mucosa equivalent by using the direct explant cell culture technique.

    Science.gov (United States)

    Bayar, Gürkan Raşit; Aydıntuğ, Yavuz Sinan; Günhan, Omer; Oztürk, Kamile; Gülses, Aydın

    2012-09-01

    The aim of this study is the histological and immunohistochemical evaluation of ex vivo produced oral mucosal equivalents using keratinocytes cultured by direct explant technique. Oral mucosa tissue samples were obtained from the keratinized gingival tissues of 14 healthy human subjects. Human oral mucosa keratinocytes from an oral mucosa biopsy specimen were dissociated by the explant technique. Once a sufficient population of keratinocytes was reached, they were seeded onto the type IV collagen coated "AlloDerm" and taken for histological and immunohistochemical examinations at 11 days postseeding of the keratinocytes on the cadaveric human dermal matrix. Histopathologically and immunohistochemically, 12 out of 14 successful ex vivo produced oral mucosa equivalents (EVPOME) that consisted of a stratified epidermis on a dermal matrix have been developed with keratinocytes cultured by the explant technique. The technical handling involved in the direct explant method at the beginning of the process has fewer steps than the enzymatic method and use of the direct explant technique protocol for culturing of human oral mucosa keratinocyte may be more adequate for EVPOME production.

  10. A double labeling technique for performing immunocytochemistry and in situ hybridization in virus infected cell cultures and tissues

    International Nuclear Information System (INIS)

    Gendelman, H.E.; Moench, T.R.; Narayan, O.; Griffin, D.E.; Clements, J.E.

    1985-01-01

    This report describes a combined immunocytochemical and in situ hybridization procedure which allows visualization of cellular or viral antigens and viral RNA in the same cell. Cultures infected with visna or measles virus were fixed in periodate-lysine-paraformaldehyde-glutaraldehyde, stained by the avidin-biotin-peroxidase technique using antibodies to viral or cellular proteins and then incubated with radiolabeled specific DNA probes (in situ hybridization). This technique provides a new approach to the study of viral pathogenesis by: (1) identifying the types of cells which are infected in the host and (2) identifying points of blockade in the virus life cycle during persistent infections. (Auth.)

  11. Analytical techniques for characterization of raw materials in cell culture media

    OpenAIRE

    Sharma, Chandana; Drew, Barry; Head, Kevin; Pusuluri, Rani; Caple, Matthew V

    2011-01-01

    Abstract Raw materials are a critical part of any cell culture medium; therefore, it is of utmost importance to understand and characterize them for high-quality product. The raw material characterization (RMC) program at SAFC focuses on individual screening of raw materials both analytically and biologically. The goal of the program is to develop the best-in-class knowledge base of the raw materials used in SAFC’s media formulations and their impact on performance of products.

  12. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  13. The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells.

    Science.gov (United States)

    Metzger, Wolfgang; Sossong, Daniela; Bächle, Annick; Pütz, Norbert; Wennemuth, Gunther; Pohlemann, Tim; Oberringer, Martin

    2011-09-01

    The 3-dimensional (3-D) culture of various cell types reflects the in vivo situation more precisely than 2-dimensional (2-D) cell culture techniques. Spheroids as 3-D cell constructs have been used in tumor research for a long time. They have also been used to study angiogenic mechanisms, which are essential for the success of many tissue-engineering approaches. Several methods of forming spheroids are known, but there is a lack of systematic studies evaluating the performance of these techniques. We evaluated the performance of the hanging drop technique, carboxymethyl cellulose technique and liquid overlay technique to form both mono- and co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. The performance of the three techniques was evaluated in terms of rate of yield and reproducibility. The size of the generated spheroids was determined systematically. The liquid overlay technique was the most suitable for generating spheroids reproducibly. The rate of yield for this technique was between 60% and 100% for monoculture spheroids and 100% for co-culture spheroids. The size of the spheroids could be adjusted easily and precisely by varying the number of seeded cells organized in one spheroid. The formation of co-culture spheroids consisting of three different cell types was possible. Our results show that the most suitable technique for forming spheroids can vary from the chosen cell type, especially if primary cells are used. Co-culture spheroids consisting of three different cell types will be used to study angiogenic phenomena in further studies.

  14. Parathyroid Autotransplantation During Thyroid Surgery: A Novel Technique Using a Cell Culture Nutrient Solution.

    Science.gov (United States)

    Famà, Fausto; Cicciù, Marco; Polito, Francesca; Cascio, Antonio; Gioffré-Florio, Maria; Piquard, Arnaud; Saint-Marc, Olivier; Sindoni, Alessandro

    2017-02-01

    Parathyroid autotransplantation is an easy procedure with a low complication rate. We adopted the transplantation into the sternocleidomastoid muscle, which allows an easier and time-saving surgical procedure using the same surgical incision. In this study, we retrospectively reviewed the records of 396 consecutive patients, who underwent total thyroidectomy for benign thyroid disease. In all cases in which a parathyroid was damaged or inadvertently removed, the gland was transplanted; before the autotransplantation, the parathyroid tissue was put in a cell culture nutrient solution for 5 min, afterward fragmented, and then was transplanted in the sternocleidomastoid muscle. To demonstrate a beneficial effect of the cell nutrient solution step, we compared data of transplanted patients with a control group of cases (n = 190) undergoing a standard immediate autotransplantation. We divided patients in two main groups: group A (n = 160) including subjects that underwent one or more parathyroid gland autotransplantation using the cell nutrient solution, and group B (n = 236) concerning those who were not transplanted. Among patients, 62 hypocalcemias occurred, 40 in the group A and 22 in the group B (P culture nutrient solution before gland transplantation.

  15. [Study on the setup of a new technique of tissue and cell culture for vitreous fluid of vitrectomy].

    Science.gov (United States)

    Li, Gen-lin; Liu, Yue-yue; Zhang, Xiang; Zhang, Cheng-yue; Wang, Liang-hai

    2008-12-01

    To setup a new technique of tissue and cell culture for vitreous aspirates. Experiment study. Specimens used for supporting new culture technique were selected based on random digit table. Thirty cases with rhegmatogenous retinal detachment (RRD) and forty-eight with proliferative diabetic retinopathy (PDR), which undergoing primary pars plana vitrectomy, were selected randomly and included in the study. After being antiphase stained with fluorescein-natrium (0.5%) and digested with hyaluronidase (10(5) U/L) combined with collagenase I (10(6) U/L) for removing vitreous gel, sediment of vitreous fluid after centrifugation were inoculated into standard culturing bottle with which polylysine (0.01%) was pre-set. The bottle which contained F12 medium with 30% fetal bovine serum was placed upside down for 24 hours and consecutively upside for 6 days. During which, F12 medium was replaced once in half volume, and cell growth along the edge of sedimentary membrane was observed at time of the 3rd and the 6th day after upside culture. Under condition of pre-setting by polylysine (0.01%) and being placed upside down for 24 hours, pieces from vitreous fluids could adhere to the bottom of bottle in a way of semi-xerosis with adherence rate of 100% (78/78). No bacteria, fungus and mycoplasma contamination was found within 7 days. Antiphase stained with fluorescein-natrium (0.5%) and digested with hyaluronidase (10(5) U/L) combined with collagenase I (10(6) U/L) for 30 minutes, vitreous gel in 78 specimens could be digested (78/78). Cell emigration could be found in edge area of some pieces of vitreous fluid and cell growth as well as proliferation was shown. In 30 specimens of RRD, cell growth rate were 43.33% (13/30). In 48 specimens of PDR, cell growth rate were 37.50% (18/48). Concerning PDR phase V (PDR-V), cell growth rate reach 41.67% (10/24). Enzymolysis with upside down and semi-xerosis could ensure good adherence of membrane, moreover, no contamination and obvious cell

  16. Basic cell culture.

    Science.gov (United States)

    Pollard, J W

    1990-01-01

    This article will describe the basic techniques required for successful cell culture. It will also act to introduce some of the other chapters in this volume. It is not intended, as this volume is not, to describe the establishment of a tissue culture laboratory, nor to provide a historical or theoretical survey of cell culture. There are several books that adequately cover these areas, including the now somewhat dated but still valuable volume by Paul (1), the multi-authored Methods in Enzymology volume edited by Jakoby and Pastan (2), and the new edition of Freshney (3). Instead, this chapter's focus will be on the techniques for establishing primary rodent cell cultures from embryos and adult skin, maintaining and subculturing these fibro-blasts and their transformed derivatives, and the isolation of genetically pure strains. The cells described are all derived from Chinese hamsters since, to date, these cells, have proved to be the most useful for somatic cell genetics (4,5). The techniques, however, are generally applicable to most fibroblastic cell types.

  17. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells

    DEFF Research Database (Denmark)

    Soares, Ricardo J; Maglieri, Giulia; Gutschner, Tony

    2018-01-01

    approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected......Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection...... the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the b...

  18. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue.

    Science.gov (United States)

    Sorg, D; Potzel, A; Beck, M; Meyer, H H D; Viturro, E; Kliem, H

    2012-10-01

    Primary bovine mammary epithelial cells (pbMEC) are often used in cell culture to study metabolic and inflammatory processes in the udder of dairy cows. The most common source is udder tissue from biopsy or after slaughter. However, it is also possible to culture them from milk, which is non-invasive, repeatable and yields less contamination with fibroblasts. Generally, not much is known about the influence of cell origin and cell culture techniques such as cryopreservation on pbMEC functionality. Cells were extracted from milk and udder tissue to evaluate if milk-derived pbMEC are a suitable alternative to tissue-derived pbMEC and to test what influence cryopreservation has. The cells were cultivated for three passages and stored in liquid nitrogen. The relative gene expression of the five target genes kappa-casein, lingual antimicrobial peptide (LAP), lactoferrin, lysozyme (LYZ1) and the prolactin receptor normalised with keratin 8 showed a tendency to decrease in the tissue cultures, but not in the milk-derived cultures, suggesting a greater influence of the cultivation process on tissue-derived cells, freezing lowered expression levels in both cultures. Overall expression of LAP and LYZ1 tended to be higher in milk cells. Cholesterol efflux was measured to compare passages one to seven in milk-derived cells. Passage number did not alter the efflux rate (p ≤ 0.05). We showed for the first time that the extraction of pbMEC from milk can be a suitable alternative to tissue extraction.

  19. A co-culture microtunnel technique demonstrating a significant contribution of unmyelinated Schwann cells to the acceleration of axonal conduction in Schwann cell-regulated peripheral nerve development.

    Science.gov (United States)

    Sakai, Koji; Shimba, Kenta; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2017-08-14

    Schwann cells (SCs) contribute to the regulation of axonal conduction in a myelin-dependent and -independent manner. However, due to the lack of investigative techniques that are able to record axonal conduction under conditions that control the proliferation of specific SC types, little is known about the extent to which myelinated SCs (mSCs) and unmyelinated SCs (umSCs) modulate axonal conduction. In this study, a microtunnel-electrode approach was applied to a neuron/SC co-culture technique. Rat dorsal root ganglion neurons and SCs were co-cultured in a microtunnel-electrode device, which enabled recording of the conduction delay in multiple axons passing through microtunnels. Despite the absence of nuclei in the microtunnel when SCs were eliminated, cultured cells were densely packed and expressed S100 beta (an SC marker) at a rate of 96% in neuron/SC co-culture, indicating that SCs migrated into the microtunnel. In addition, supplementation with ascorbic acid after 6 days in vitro (DIV) successfully induced myelination from 22 DIV. Activity recording experiments indicated that the conduction delay decreased with culture length from 17 DIV in the neuron/SC co-culture but not in neuron monoculture. Interestingly, the SC-modulated shortening of conduction delay was attenuated at 17 DIV and 22 DIV by supplementing the culture medium with ascorbic acid and, at the same time, suppressing SC proliferation, suggesting that immature umSCs increased axonal conduction velocity in a cell density-dependent manner before the onset of myelination. These results suggest that this method is an effective tool for investigating the contributions of mSCs or umSCs to the regulation of axonal conduction.

  20. Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells

    Directory of Open Access Journals (Sweden)

    Davide Ricci

    2017-01-01

    Full Text Available Stem-cell-based therapies require a high number (106–109 of cells, therefore in vitro expansion is needed because of the initially low amount of stem cells obtainable from human tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization technique enables three-dimensional micro-structures to be fabricated, which we named synthetic nichoids. Here we review our activity on the technological improvements in manufacturing biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction to increase the patterned area and the percentage of cell culture surface covered by such synthetic nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time. These results establish two-photon laser polymerization as a promising tool to fabricate substrates for stem cell expansion, without any chemical supplement and in feeder-free conditions for potential therapeutic uses.

  1. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.

    Science.gov (United States)

    Amiri, Fatemeh; Halabian, Raheleh; Dehgan Harati, Mozhgan; Bahadori, Marzie; Mehdipour, Ahmad; Mohammadi Roushandeh, Amaneh; Habibi Roudkenar, Mehryar

    2015-05-01

    Wharton's jelly (WJ), an appropriate source of mesenchymal stem cells (MSCs), has been shown to have a wide array of therapeutic applications. However, the WJ-derived MSCs are very heterogeneous and have limited expression of pluripotency markers. Hence, improvement of their culture condition would promote the efficiency of WJ-MSCs. This study aims to employ a simple method of cultivation to obtain WJ-MSCs which express more pluripotency markers. CD105(+) cells were separated by magnetic-associated (activated) cell sorting from umbilical cord mucous tissue. CD105(+) cells were added to Methocult medium diluted in α-minimum essential medium (α-MEM) and seeded in poly(2-hydroxyethyl methacrylate) (poly-HEMA)-coated plates for suspension culture preparation. Differentiation capacity of isolated cells was evaluated in the presence of differentiation-inducing media. The expression of pluripotency markers such as Oct3/4, Nanog, and Sox2 was also analyzed by RT-PCR and western blot techniques. Moreover, immunocytochemistry was performed to detect alpha-smooth muscle actin (antigene) (α-SMA) protein. WJ-MSCs grew homogeneously and formed colonies when cultured under suspension culture conditions (Non-adhesive WJ-MSCs). They maintained their growth ability in both adherent and suspension cultures for several passages. Non-adhesive WJ-MSCs expressed Oct3/4, Nanog, and Sox2 both at transcriptional and translational levels in comparison to those cultured in conventional adherent cultures. They also expressed α-SMA protein. In this study, we isolated WJ-MSCs using a slightly modified culture condition. Our simple non-genetic method resulted in a homogeneous population of WJ-MSCs, which highly expressed pluripotency markers. In the future, more multipotent WJ-MSCs can be harnessed as a non-embryonic source of MSCs in MSC-based cell therapy.

  2. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique.

    Science.gov (United States)

    Bartosh, Thomas J; Ylostalo, Joni H

    2014-02-06

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. Copyright © 2014 John Wiley & Sons, Inc.

  3. Expression of human immunodeficiency virus (HIV) in naturally infected peripheral blood mononuclear cells: comparison of a standard co-culture technique with a newly developed microculture method.

    Science.gov (United States)

    Eberlein, B; Baur, A; Neundorfer, M; Jahn, G

    1991-05-01

    Peripheral blood mononuclear cells (PBMCs) from 29 patients infected with human immunodeficiency virus (HIV) were cultured by two different methods. One was the standard co-culture technique, the other a newly developed microculture method. In this assay 10(6) PBMCs were cultivated in 250 microliters medium, no activating agents or allogeneic cells were present. P24 antigen production measured by this method was found in 7 out of 11 PBMC cultures of patients in the Walter Reed (WR) stage 1 or 2, whereas only 4 samples were positive by the co-culture procedure. Cultures from patients in the later stages of the disease (WR 5/6) showed a higher p24 production by the co-culture method than by the microculture assay. It is assumed that rapidly growing HIV strains can be better assessed by the co-culture method which may select for these strains. P24 expression can be more easily obtained by the microculture technique even in cases where slowly replicating strains may be present. In conclusion, results from the microculture procedure described may be a useful supplementation to findings observed by the co-culture method.

  4. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Hösli, E; Belhage, B

    1991-01-01

    . At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling...

  5. Plastic compressed collagen constructs for ocular cell culture and transplantation: a new and improved technique of confined fluid loss.

    Science.gov (United States)

    Levis, Hannah J; Menzel-Severing, Johannes; Drake, Rosemary A L; Daniels, Julie T

    2013-01-01

    Cultured limbal epithelial cell transplantation is a commonly used clinical treatment for ocular surface repair. We have previously shown that plastic compressed (PC) type I collagen constructs are a suitable substrate for human limbal epithelial cell (HLEC) culture for transplantation. For this process to achieve compliance with Good Manufacturing Practice, and therefore be suitable for therapeutic cell therapy manufacture, the original method required substantial modification. The compression method was changed from unconfined (highly variable reproducibility) to confined compression (CC) (highly reproducible manufacture) and we assessed whether this altered the physical characteristics of the substrate. We have measured transparency, assessed scanning electron microscope images of the surface and performed live/dead cell viability assays of cells within the constructs. HLECs were then cultured on the surface of both types of construct and the resulting cell phenotype characterized. We have determined that the change in process does not alter the physical characteristics of the substrate. Furthermore, there is no change to the substrate's ability to support HLEC culture and maintenance of a mixed population of stem and differentiated cells. Additionally, cells were able to form a confluent sheet and multilayer to produce an intact epithelium. This modification allows scaling up of the process in a well-plate format, which is essential for creation of multiple corneal epithelial models for in vitro testing. This improvement to the original plastic compression method also allows the process to be employed in custom-made cassettes, the design of which takes into consideration the manufacturing and regulatory requirements for delivery of a cell therapy.

  6. Construction of three-dimensional liver tissue models by cell accumulation technique and maintaining their metabolic functions for long-term culture without medium change.

    Science.gov (United States)

    Matsuzawa, Atsushi; Matsusaki, Michiya; Akashi, Mitsuru

    2015-04-01

    Three-dimensional (3D) hepatocyte cultures have attracted much attention to obtain high biological functions of hepatocyte for pharmaceutical drug assessment. However, maintaining the high functions for over one month is still a key challenge although many approaches have been reported. In this study, we demonstrate for the first time simple and rapid construction of 3D-hepatocyte constructs by our cell accumulation technique and their high biological functions for one month, without any medium change. The human hepatocyte carcinoma (HepG2) cells were coated with ∼ 7 nm-sized extracellular matrix (ECM) films consisting of fibronectin (FN) and gelatin (G), and then incubated in cell culture insert to construct 3D-tissue constructs for 24 h. The thickness of obtained 3D-HepG2 constructs was easily controlled by altering seeding cell number and the maximum is over 100 μm. When a large volume of culture media was employed, the 3D-constructs showed higher mRNA expression of albumin and some cytochrome P450 (CYP) enzymes as compared to general two-dimensional (2D) culture. Surprisingly, their high cell viabilities (over 80%) and high mRNA expressions were successfully maintained without medium change for at least 27 days. These results demonstrate novel easy and rapid technique to construct 3D-human liver tissue models which can maintain their high functions and viability for 1 month without medium change. © 2014 Wiley Periodicals, Inc.

  7. Controlling the Effective Oxygen Tension Experienced by Cells Using a Dynamic Culture Technique for Hematopoietic Ex Vivo Expansion.

    Science.gov (United States)

    Tiwari, Abhilasha; Wong, Cynthia S; Nekkanti, Lakshmi P; Deane, James A; McDonald, Courtney; Li, Jingang; Pham, Yen; Sutherland, Amy E; Jenkin, Graham; Kirkland, Mark A

    2018-02-28

    Clinical hematopoietic stem/progenitor cell (HSPC) transplantation outcomes are strongly correlated with the number of cells infused. Hence, to generate sufficient HSPCs for transplantation, the best culture parameters for expansion are critical. It is generally assumed that the defined oxygen (O 2 ) set for the incubator reflects the pericellular O 2 to which cells are being exposed. Studies have shown that low O 2 tension maintains an undifferentiated state, but the expansion rate may be constrained because of limited diffusion in a static culture system. A combination of low ambient O 2 and dynamic culture conditions has been developed to increase the reconstituting capacity of human HSPCs. In this unit, the protocols for serum-free expansion of HSPCs at 5% and 20% O 2 in static and dynamic nutrient flow mode are described. Finally, the impact of O 2 tension on HSPC expansion in vitro by flow cytometry and colony forming assays and in vivo through engraftment using a murine model is assessed. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  8. Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique.

    Science.gov (United States)

    Li, Dongjie; Chai, Jiake; Shen, Chuanan; Han, Yanfu; Sun, Tianjun

    2014-08-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) isolated from human umbilical Wharton's Jelly are a population of primitive and pluripotent cells. In specific conditions, hUCMSCs can differentiate into various cells, including adipocytes, osteoblasts, chondrocytes, neurocytes, and endothelial cells. However, few studies have assessed their differentiation into epidermal cells in vitro. To assess the potential of hUCMSCs to differentiate into epidermal cells, a microporous membrane-based indirect co-culture system was developed in this study. Epidermal stem cells (ESCs) were seeded on the bottom of the microporous membrane, and hUCMSCs were seeded on the top of the microporous membrane. Cell morphology was assessed by phase contrast microscopy, and the expression of early markers of epidermal cell lineage, P63, cytokeratin19 (CK19), and β1-integrin, was determined by immunofluorescence, Western blot, and quantitative real-time PCR (Q-PCR) analyses. hUCMSC morphology changed from spindle-like to oblate or irregular with indirect co-culture with ESCs; they also expressed greater levels P63, CK19, and β1-integrin mRNA and protein compared to the controls (p cultures, indirect co-culture expressed significantly greater CK19 protein (p culture model.

  9. Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate.

    Science.gov (United States)

    Priya, Nancy; Sarcar, Shilpita; Majumdar, Anish Sen; SundarRaj, Swathi

    2014-09-01

    Adipose tissue has emerged as a preferred source of mesenchymal stem/stromal cells (MSC), due to its easy accessibility and high MSC content. The conventional method of isolation of adipose tissue-derived stromal cells (ASC) involves enzymatic digestion and centrifugation, which is a costly and time-consuming process. Mechanical stress during isolation, use of bacterial-derived products and potential contamination with endotoxins and xenoantigens are other disadvantages of this method. In this study, we propose explant culture as a simple and efficient process to isolate ASC from human adipose tissue. This technique can be used to reproducibly isolate ASC from fat tissue obtained by liposuction as well as surgical resection, and yields an enriched ASC population free from contaminating haematopoietic cells. We show that explanting adipose tissue results in a substantially higher yield of ASC at P0 per gram of initial fat tissue processed, as compared to that obtained by enzymatic digestion. We demonstrate that ASC isolated by explant culture are phenotypically and functionally equivalent to those obtained by enzymatic digestion. Further, the explant-derived ASC share the immune privileged status and immunosuppressive properties implicit to MSC, suggesting that they are competent to be tested and applied in allogeneic clinical settings. As explant culture is a simple, inexpensive and gentle method, it may be preferred over the enzymatic technique for obtaining adipose tissue-derived stem/stromal cells for tissue engineering and regenerative medicine, especially in cases of limited starting material. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  11. Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique.

    Science.gov (United States)

    Asano, Yoshiya; Nishiguchi, Akihiro; Matsusaki, Michiya; Okano, Daisuke; Saito, Erina; Akashi, Mitsuru; Shimoda, Hiroshi

    2014-06-01

    Cell accumulation technique is an extracellular matrix (ECM) nanofilm-based tissue-constructing method that enables formation of multilayered hybrid culture tissues. In this method, ECM-nanofilm is constructed using layer-by-layer assembly of fibronectin and gelatin on culture cells. The ECM-nanofilm promotes cell-to-cell interaction; then the three-dimensional (3D) multilayered tissue can be constructed with morphological change of the cells mimicking living tissues. By using this method, we have successfully produced tubular networks of human umbilical venous endothelial cells (HUVECs) and human dermal lymphatic endothelial cells (HDLECs) in 3D multilayered normal human dermal fibroblasts (NHDFs). This study demonstrated morphological characteristics of the vascular networks in the engineered tissues by using light and electron microscopy. In light microscopy, HUVECs and HDLECs formed luminal structures such as native blood and lymphatic capillaries, respectively. Electron microscopy showed distinct ultrastructural aspects of the vasculature of HUVECs or HDLECs with intermediated NHDFs and abundant ECM. The vasculature constructed by HUVECs exhibited structures similar to native blood capillaries, involving overlapping endothelial connections with adherens junctions, abundant vesicles in the endothelial cells and basement membrane-like structure. The detection of laminin around HUVEC-constructed vessels supported the presence of perivascular basal lamina. The vasculature constructed by HDLECs showed some ultrastructural characteristics similar to those of native lymphatic capillaries such as irregular vascular shape, loose adhesive connection and gap formation between endothelial cells. In conclusion, our novel vascular network models fabricated by the cell accumulation technique provide highly organized blood and lymphatic capillary networks mimicking the vasculatures in vivo. © The Author 2014. Published by Oxford University Press on behalf of The Japanese

  12. Techniques for Dual Staining of DNA and Intracellular Immunoglobulins in Murine Hybridoma Cells: Applications to Cell-Cycle Analysis of Hyperosmotic Cultures

    OpenAIRE

    McNeeley, Kathleen M.; Sun, Zhe; Sharfstein, Susan T.

    2005-01-01

    Flow cytometry was used to evaluate the effects of hyperosmotic stress on cell-cycle distribution and cell-associated immunoglobulins for murine hybridoma cells grown in batch culture. Paraformaldehyde/methanol fixation substantially increased the fluorescence signal for intracellular immunoglobulins compared to ethanol fixation. For surface immunoglobulins, similar fluorescence signals were observed regardless of fixation method. Dual staining of immunoglobulins and cellular DNA was employed...

  13. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  14. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  15. Inoculation Technique for Fungus Cultures

    Science.gov (United States)

    Fusaro, Ramon M.

    1972-01-01

    A plastic straw and wood applicator stick serve as a simple, inexpensive, and disposable inoculation unit for fungal studies. The method gives a uniform and intact inoculum. The technique is especially useful because a large number of agar plates can be inoculated rapidly. Images PMID:5059618

  16. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  17. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  18. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  19. Tissue culture as a plant production technique for horticultural crops

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... Recovery of regenerants from transformed cells. - Cell culture .... methods. Micropropagation techniques. Micropropagation is a simple concept. The basic pro- tocols were well established by the 1960s and a whole research field and ... the environment are naturally contaminated on their sur- faces (and ...

  20. Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique.

    Science.gov (United States)

    Centeno, Christopher J; Schultz, John R; Cheever, Michelle; Freeman, Michael; Faulkner, Stephen; Robinson, Brent; Hanson, Ronald

    2011-12-01

    Mesenchymal stem cells (MSCs) hold great promise as therapeutic agents in regenerative medicine. Numerous animal studies have documented the multipotency of MSCs, showing their capabilities for differentiating into orthopedic tissues such as muscle, bone, cartilage, and tendon. However, the safety of culture expanded MSC's for human use has only just begun to be reported. Between 2006 and 2010, two groups of patients were treated for various orthopedic conditions with culture-expanded, autologous, bone marrow-derived MSCs (group 1: n=50; group 2: n=290-one patient in both groups). Cells were cultured in monolayer culture flasks using an autologous platelet lysate technique and re-injected into peripheral joints or into intervertebral discs with use of c-arm fluoroscopy. While both groups had prospective surveillance for complications, Group 1 additionally underwent 3.0T MRI tracking of the re-implant sites. The mean age of patients treated was 53 +/- 13.85 years; 214 were males and 125 females with mean follow-up time from any procedure being 435 days +/- 261 days. Number of contacts initiated based on time from first procedure was 482 at 3 months, 433 at 6 months, 316 contacts at 12 months, 110 contacts at 24 months, and 22 contacts at 36 months. For Group 1, 50 patients underwent 210 MRI surveillance procedures at 3 months, 6 months, 1, 2, and 3 years which failed to demonstrate any tumor formation at the re-implant sites. Formal disease surveillance for adverse events based on HHS criteria documented significantly less morbidity than is commonly reported for more invasive surgical procedures, all of which were either self-limited or were remedied with therapeutic measures. Two patients were diagnosed with cancer out of 339 patients treated since study inception; however, this was almost certainly unrelated to the MSC therapy and the neoplasm rate in similar to that seen in the U.S. Caucasian population. Knee outcome data was collected on a subset of patients

  1. Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits.

    Science.gov (United States)

    Niswender, K D; Blackman, S M; Rohde, L; Magnuson, M A; Piston, D W

    1995-11-01

    To determine the application limits of green fluorescent protein (GFP) as a reporter gene or protein tag, we expressed GFP by itself and with fusion protein partners, and used three different imaging methods to identify GFP fluorescence. In conventional epifluorescence photomicroscopy, GFP expressed in cells could be distinguished as a bright green signal over a yellow-green autofluorescence background. In quantitative fluorescence microscopy, however, the GFP signal is contaminated by cellular autofluorescence. Improved separation of GFP signal from HeLa cell autofluorescence was achieved by the combination of confocal scanning laser microscopy using 488-nm excitation, a rapid cut-on dichroic mirror and a narrow-bandpass emission filter. Two-photon excitation of GFP fluorescence at the equivalent of approximately 390 nm provided better absorption than did 488-nm excitation. This resulted in increased signal/background but also generated a different autofluorescence pattern and appeared to increase GFP photobleaching. Fluorescence spectra similar to those of GFP alone were observed when GFP was expressed as a fusion protein either with glutathione-S-transferase (GST) or with glucokinase. Furthermore, purified GST.GFP fusion protein displayed an extinction coefficient and quantum yield consistent with values previously reported for GFP alone. In HeLa cells, the cytoplasmic GFP concentration must be greater than approximately 1 microM to allow quantifiable discrimination over autofluorescence. However, lower expression levels may be detectable if GFP is targeted to discrete subcellular compartments, such as the plasma membrane, organelles or nucleus.

  2. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  3. The r.b.e. of different-energy neutrons as determined by human bone-marrow cell-culture techniques

    International Nuclear Information System (INIS)

    Boeyum, A.; Carsten, A.L.; Chikkappa, G.; Cook, L.; Bullis, J.; Honikel, L.; Cronkite, E.P.

    1978-01-01

    The effect of X-rays and different-energy neutrons on human bone-marrow cells was studied using two different cell-culture techniques - diffusion chamber (DC) growth and colony formation in vitro (CFU-C). Based on the survival and proliferative granulocytes in DC on day 13, the D 0 value was 80 rad with X-rays, and 117 rad as measured by the CFU-C assay. The D 0 values for neutrons depended on the radiation source and the energy level. The r.b.e. values, which dropped with increasing energy levels of mono-energetic neutrons, were (i) 0.44 MeV; DC 3.7, CFU-C 4.1; (ii) 6 MeV; DC 1.8, CFU-C 2.0; (iii) 15 MeV; DC 1.6, CFU-C 1.6; (iv) fission neutrons; DC 2.6, CFU-C 2.4. (author)

  4. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  5. Ureaplasma infection of cell cultures.

    Science.gov (United States)

    Kotani, H; McGarrity, G J

    1986-05-01

    Studies were performed to characterize the effects of ureaplasmas in HeLa, 3T6, and CV-1 cell cultures. The ureaplasmas studied were human Ureaplasma urealyticum T960 (serotype VIII), bovine U. diversum T95, simian strain T167-2, ovine strain 1202, canine strain D1M-C, and feline strains 382 and FT2-B. FT2-B was the only ureaplasma to grow in the cell free culture medium, Dulbecco modified Eagle-Earle medium containing 10% fetal bovine serum. The growth pattern of the ureaplasmas varied in the different cell cultures, but each strain grew in at least two of the cell cultures, suggesting a requirement for a product of the cell culture and for low concentrations of urea. When growth occurred, organisms grew to concentrations that approached, but did not equal, those observed in 10B broth. Most, but not all, ureaplasmas grew quickly, reaching peak titers 2 days after infection. Canine strain D1M-C did not grow in 3T6, but showed rapid growth in HeLa and CV-1 cells, killing both cultures, In some systems, e.g., U. urealyticum T960 and simian strain T167-2, the infection persisted, and ureaplasmas could be recovered from cell cultures four passages after infection, when studies were terminated. The cell culture ureaplasmas grew on T agar, but not on mycoplasma agar medium.

  6. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  7. Analysis of the Global Changes in SH2 Binding Properties Using Mass Spectrometry Supported by Quantitative Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technique.

    Science.gov (United States)

    Sobota, Radoslaw M

    2017-01-01

    Quantitative mass spectrometry (MS)-based proteomics enables fast and reliable analysis of protein complexes. Its robustness and sensitivity effectively substitute traditional antibody-based approaches. Here, we describe the combination of mass spectrometry and Stable Isotope Labeling by Amino acids in Cell culture (SILAC) in characterization of the SH2 domain binding capacity.

  8. Cell Phone Detection Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phone’s electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  9. Functional innervation of human induced pluripotent stem cell-derived cardiomyocytes by co-culture with sympathetic neurons developed using a microtunnel technique.

    Science.gov (United States)

    Sakai, Koji; Shimba, Kenta; Ishizuka, Kazuma; Yang, Zhuonan; Oiwa, Kosuke; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2017-12-09

    Microelectrode array (MEA) based-drug screening with human induced pluripotent stem cell-derived cardiomyocytes (hiPSCM) is a potent pre-clinical assay for efficiently assessing proarrhythmic risks in new candidates. Furthermore, predicting sympathetic modulation of the proarrhythmic side-effects is an important issue. Although we have previously developed an MEA-based co-culture system of rat primary cardiomyocyte and sympathetic neurons (rSNs), it is unclear if this co-culture approach is applicable to develop and investigate sympathetic innervation of hiPSCMs. In this study, we developed a co-culture of rSNs and hiPSCMs on MEA substrate, and assessed functional connections. The inter-beat interval of hiPSCM was significantly shortened by stimulation in SNs depending on frequency and pulse number, indicating functional connections between rSNs and hiPSCM and the dependency of chronotropic effects on rSN activity pattern. These results suggest that our co-culture approach can evaluate sympathetic effects on hiPSCMs and would be a useful tool for assessing sympathetic modulated-cardiotoxicity in human cardiac tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  11. A novel technique to determine the cell type specific response within an in vitro co-culture model via multi-colour flow cytometry.

    Science.gov (United States)

    Clift, Martin J D; Fytianos, Kleanthis; Vanhecke, Dimitri; Hočevar, Sandra; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2017-03-27

    Determination of the cell type specific response is essential towards understanding the cellular mechanisms associated with disease states as well as assessing cell-based targeting of effective therapeutic agents. Recently, there have been increased calls for advanced in vitro multi-cellular models that provide reliable and valuable tools correlative to in vivo. In this pursuit the ability to assess the cell type specific response is imperative. Herein, we report a novel approach towards resolving each specific cell type of a multi-cellular model representing the human lung epithelial tissue barrier via multi-colour flow cytometry (FACS). We proved via ≤ five-colour FACS that the manipulation of this in vitro model allowed each cell type to be resolved with no impact upon cell viability. Subsequently, four-colour FACS verified the ability to determine the biochemical effect (e.g. oxidative stress) of each specific cell type. This technique will be vital in gaining information upon cellular mechanics when using next-level, multi-cellular in vitro strategies.

  12. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  13. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  14. Extra thin alginate film: an efficient technique for protoplast culture.

    Science.gov (United States)

    Pati, P K; Sharma, Madhu; Ahuja, Paramvir Singh

    2005-12-01

    This paper reports an efficient protoplast culture technique, the "extra thin alginate film" technique. The development of this improved method of protoplast culture was an outcome of an assessment of the efficiency and shortcomings of various protoplast culture techniques. The efficiency of this technique was evaluated with two model plant systems, viz., Nicotiana tabacum and Lotus corniculatus, and a comparison was made with the "thin alginate layer" technique, another efficient protoplast culture system. Results indicate that the culture technique with extra thin alginate film is as efficient as the technique with thin alginate layer, with many additional advantages. The present innovation overcomes most of the limitations of protoplast culture techniques described so far and can now be applied to a wide variety of crops to check its general applicability.

  15. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    A streamlined, simple technique for primary cell culture from E17 rat tissue is presented. In an attempt to standardize culturing methods for all neuronal cell types in the embryo, we evaluated a commercial medium without serum and used similar times for trypsinization and tested different surfaces...

  16. Youth Culture and Cell Phone

    Directory of Open Access Journals (Sweden)

    mohammad saeed zokaei

    2009-11-01

    Full Text Available Iranian youth’s leisure culture has been immediately affected by the digital media culture. As a communicative media, cell phone has crossed borders of youth norms and identity; and in addition to facilitating their communication, has changed its patterns. Applying Bourdieu’s concepts of habitus and field, and relied on the qualitative and quantitative data gathered from the mobile youth users, the present study argues that mobile has produced a new field in which youth’s opportunities for leisure, entertainment, communication, and independence have extended. In addition, cell phone has facilitated and compensated for some defects in public sphere, and therefore empowered youth agency, individuality, and power. Despite this strengthening, cell phone does not cross borders of gender and class differences, or the levels of social capital.

  17. Indirect immunofluorescence staining of cultured neural cells.

    Science.gov (United States)

    Barbierato, Massimo; Argentini, Carla; Skaper, Stephen D

    2012-01-01

    Immunofluorescence is a technique allowing the visualization of a specific protein or antigen in cells or tissue sections by binding a specific antibody chemically conjugated with a fluorescent dye such as fluorescein isothiocyanate. There are two major types of immunofluorescence staining methods: (1) direct immunofluorescence staining in which the primary antibody is labeled with fluorescence dye and (2) indirect immunofluorescence staining in which a secondary antibody labeled with fluorochrome is used to recognize a primary antibody. This chapter describes procedures for the application of indirect immunofluorescence staining to neural cells in culture.

  18. Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

    KAUST Repository

    Limongi, Tania

    2014-12-12

    Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

  19. Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria.

    Science.gov (United States)

    Davis, Catherine

    2014-08-01

    Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Standard culture techniques are commonly used to quantify probiotic strains, but cell culture only measures replicating cells. In response to the stresses of processing and formulation, some fraction of the live probiotic microbes may enter a viable but non-culturable state (VBNC) in which they are dormant but metabolically active. These microbes are capable of replicating once acclimated to a more hospitable host environment. An operating definition of live probiotic bacteria that includes this range of metabolic states is needed for reliable enumeration. Alternative methods, such as fluorescent in situ hybridization (FISH), nucleic acid amplification techniques such as real-time quantitative PCR (RT-qPCR or qPCR), reverse transcriptase (RT-PCR), propidium monoazide-PCR, and cell sorting techniques such as flow cytometry (FC)/fluorescent activated cell sorting (FACS) offer the potential to enumerate both culturable and VBNC bacteria. Modern cell sorting techniques have the power to determine probiotic strain abundance and metabolic activity with rapid throughput. Techniques such as visual imaging, cell culture, and cell sorting, could be used in combination to quantify the proportion of viable microbes in various metabolic states. Consensus on an operational definition of viability and systematic efforts to validate these alternative techniques ultimately will strengthen the accuracy and reliability of probiotic strain enumeration. Copyright © 2014 The Author. Published by Elsevier B.V. All rights reserved.

  20. Profound improvements of isolated microspores culture techniques ...

    African Journals Online (AJOL)

    We studied the effects of sampling stages, physical conditions (like temperature), culture conditions, embryo long-distance transportation methodology and plantlet regeneration on isolated microspores from donor plants in field. Results indicated that if microspores were sampled in bud stage instead of blooming stage to ...

  1. Generation of a patterned co-culture system composed of adherent cells and immobilized nonadherent cells.

    Science.gov (United States)

    Yamazoe, Hironori; Ichikawa, Takashi; Hagihara, Yoshihisa; Iwasaki, Yasuhiko

    2016-02-01

    Patterned co-culture is a promising technique used for fundamental investigation of cell-cell communication and tissue engineering approaches. However, conventional methods are inapplicable to nonadherent cells. In this study, we aimed to establish a patterned co-culture system composed of adherent and nonadherent cells. Nonadherent cells were immobilized on a substrate using a cell membrane anchoring reagent conjugated to a protein, in order to incorporate them into the co-culture system. Cross-linked albumin film, which has unique surface properties capable of regulating protein adsorption, was used to control their spatial localization. The utility of our approach was demonstrated through the fabrication of a patterned co-culture consisting of micropatterned neuroblastoma cells surrounded by immobilized myeloid cells. Furthermore, we also created a co-culture system composed of cancer cells and immobilized monocytes. We observed that monocytes enhanced the drug sensitivity of cancer cells and its influence was limited to cancer cells located near the monocytes. Therefore, the incorporation of nonadherent cells into a patterned co-culture system is useful for creating culture systems containing immune cells, as well as investigating the influence of these immune cells on cancer drug sensitivity. Various methods have been proposed for creating patterned co-culture systems, in which multiple cell types are attached to a substrate with a desired pattern. However, conventional methods, including our previous report published in Acta Biomaterialia (2010, 6, 526-533), are unsuitable for nonadherent cells. Here, we developed a novel method that incorporates nonadherent cells into the co-culture system, which allows us to precisely manipulate and study microenvironments containing nonadherent and adherent cells. Using this technique, we demonstrated that monocytes (nonadherent cells) could enhance the drug sensitivity of cancer cells and that their influence had a

  2. The matter of technique. Cultural and aesthetic variants

    Directory of Open Access Journals (Sweden)

    Juan Diego Parra Valencia

    2014-12-01

    Full Text Available This paper, thinking about technique, runs several scenarios that integrate forms of apprehension of the human and its integration into the cultural evolution. The technique overlaps the use of objects and devices, as well as coding systems that allow a social articulation of a zitgeist of the the contemporary, whether at a discursive level or in the socio-economic and cultural practices. This paper aims to present an overview about contemporary meanings of the concept of technique, based on etymological details and historical contextualization in order to find a functional transversality linking it to aesthetic axes in an expanded sense, defining a cultural appropriation of the phenomenon .

  3. Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi and Teruo Okano

    2010-01-01

    Full Text Available This article reviews the properties and characterization of an intelligent thermoresponsive surface, which is a key technology for cell sheet-based tissue engineering. Intelligent thermoresponsive surfaces grafted with poly(N-isopropylacrylamide exhibit hydrophilic/hydrophobic alteration in response to temperature change. Cultured cells are harvested on thermoresponsive cell culture dishes by decreasing the temperature without the use of digestive enzymes or chelating agents. Our group has developed cell sheet-based tissue engineering for therapeutic uses with single layer or multilayered cell sheets, which were recovered from the thermoresponsive cell culture dish. Using surface derivation techniques, we developed a new generation of thermoresponsive cell culture dishes to improve culture conditions. We also designed a new methodology for constructing well-defined organs using microfabrication techniques.

  4. Synthesis of polymer materials for use as cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lakard, Sophie [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, IUT, 30 Avenue de l' Observatoire, 25009 Besancon (France)], E-mail: sophie.lakard@univ-fcomte.fr; Morrand-Villeneuve, Nadege [Laboratoire de Neurosciences, University of Franche-Comte, Place Leclerc, 25030 Besancon (France); Lesniewska, Eric [Laboratoire de Physique de l' Universite de Bourgogne, University of Bourgogne, 9 Avenue Savary, 21078 Dijon (France); Lakard, Boris [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Michel, Germaine [Laboratoire de Neurosciences, University of Franche-Comte, Place Leclerc, 25030 Besancon (France); Herlem, Guillaume [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Gharbi, Tijani [Laboratoire d' Optique P.M. Duffieux, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Fahys, Bernard [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France)

    2007-12-20

    Up to today, several techniques have been used to maintain cells in culture for studying many aspects of cell biology and physiology. More often, cell culture is dependent on proper anchorage of cells to the growth surface. Thus, poly-L-lysine, fibronectin or laminin are the most commonly used substrates. In this study, electrosynthesized biocompatible polymer films are proposed as an alternative to these standard substrates. The electrosynthesized polymers tested were polyethylenimine, polypropylenimine and polypyrrole. Then, the adhesion, proliferation and morphology of rat neuronal cell lines were investigated on these polymer substrates in an attempt to develop new and efficient polymer materials for cell culture. During their growth on the polymers, the evolution of the cell morphology was monitored using both confocal microscopy and immunohistochemistry, leading to the conclusion of a normal development. An estimation of the adhesion and proliferation rates of rat neuronal cell cultures indicated that polyethylenimine and polypropylenimine were the best substrates for culturing olfactory neuronal cells. A method to favour the differentiation of the neuronal cells was also developed since the final aim of this work is to develop a biosensor for odour detection using differentiated neuronal cells as transducers. Consequently, a biosensor was microfabricated using silicon technology. This microsystem allowed us to culture the cells on a silicon wafer and to position the cells on certain parts of the silicon wafer.

  5. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES...

  6. The study of cultural objects by nuclear and conventional techniques

    International Nuclear Information System (INIS)

    Palacios, Tulio A.

    2000-01-01

    A survey is given of the techniques that are used at the National Atomic Energy Commission of Argentina for the characterization and study of cultural and archaeological specimens. A short history of these activities is also given. (author)

  7. Application of Hanging Drop Technique for Kidney Tissue Culture.

    Science.gov (United States)

    Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng

    2017-01-01

    The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; van Kooten, T; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  9. Cell proliferation and radiosensitivity of cow lymphocytes in culture

    International Nuclear Information System (INIS)

    Modave, C.; Fabry, L.; Leonard, A.

    1982-01-01

    The harlequin-staining technique has been used to study, after PHA-stimulation, the cell proliferation of cow lymphocytes in culture and to assess the radiosensitivity in first mitosis cells. At the 48 h fixation time, only 34% of the cells are in first mitosis whereas 55% are already in second and 11% in third mitosis. The exposure of cow lymphocytes to 200 rad X-rays result in the production of 16% dicentric chromosomes in first mitosis cells [fr

  10. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance.

    Science.gov (United States)

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li

    2016-01-01

    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  11. Protein biosynthesis in cultured human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  12. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  13. In vitro spermatogenesis using an organ culture technique.

    Science.gov (United States)

    Yokonishi, Tetsuhiro; Sato, Takuya; Katagiri, Kumiko; Ogawa, Takehiko

    2013-01-01

    Research on in vitro spermatogenesis has a long history and remained to be an unaccomplished task until very recently. In 2010, we succeeded in producing murine sperm from primitive spermatogonia using an organ culture method. The fertility of the sperm or haploid spermatids was demonstrated by microinsemination. This organ culture technique uses the classical air-liquid interphase method and is based on conditions extensively examined by Steinbergers in 1960s. Among adaptations in the new culture system, application of serum-free media was the most important. The system is very simple and easy to follow.

  14. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  15. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Misting cooling technique for protected culture of Oncidium orchids ...

    African Journals Online (AJOL)

    Oncidium are planted in open protected culture or under shading nets in subtropical regions. Because of the lack of cooling techniques for the inside microclimates, the production period is limited, and the quantity and quality of flowers is unstable. Without ventilating, high humidity and temperature induces severe growth ...

  17. Generative Research Techniques Crossing Cultures : A Field Study in China

    NARCIS (Netherlands)

    Hao, C.; van Boeijen, A.G.C.; Sonneveld, M.H.; Stappers, P.J.

    2017-01-01

    The value of understanding user needs has been recognized by industry, and user research methods have become an accepted part of industrial design practice. These techniques were originally developed and tested for Western markets, with participants from Western cultures. More recently, companies

  18. Propagation of Aquilaria malaccensis seedlings through tissue culture techniques

    International Nuclear Information System (INIS)

    Salahbiah Abdul Majid; Zaiton Ahmad; Mohd Rafaie Abdul Salam; Nurhayati Irwan; Affrida Abu Hassan; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis or karas is the principal source of gaharu resin, which is used in many cultures for incense, perfumes and traditional medicines. The species is mainly propagated conventionally through seeds, cuttings and graftings. Propagation by seeds is usually a reliable method for other forest species, but for karas, this technique is inadequate to meet the current demand of seedling supplies. This is principally due to its low seed viability, low germination rate, delayed rooting of seedlings, long life-cycle and rare seed production. Tissue culture has several advantages over conventional propagation, especially for obtaining large number of uniform and high-yielding plantlets or clones. This paper presents the current progress on mass-propagation of Aquilaria malaccensis seedlings through tissue culture technique at Nuclear Malaysia. (author)

  19. Is cell culture a risky business? Risk analysis based on scientist survey data.

    Science.gov (United States)

    Shannon, Mark; Capes-Davis, Amanda; Eggington, Elaine; Georghiou, Ronnie; Huschtscha, Lily I; Moy, Elsa; Power, Melinda; Reddel, Roger R; Arthur, Jonathan W

    2016-02-01

    Cell culture is a technique that requires vigilance from the researcher. Common cell culture problems, including contamination with microorganisms or cells from other cultures, can place the reliability and reproducibility of cell culture work at risk. Here we use survey data, contributed by research scientists based in Australia and New Zealand, to assess common cell culture risks and how these risks are managed in practice. Respondents show that sharing of cell lines between laboratories continues to be widespread. Arrangements for mycoplasma and authentication testing are increasingly in place, although scientists are often uncertain how to perform authentication testing. Additional risks are identified for preparation of frozen stocks, storage and shipping. © 2015 UICC.

  20. Isolation and culture of pulmonary endothelial cells.

    OpenAIRE

    Ryan, U S

    1984-01-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vas...

  1. A modified technique for culturing primary fetal rat cortical neurons.

    Science.gov (United States)

    Xu, Sui-Yi; Wu, Yong-Min; Ji, Zhong; Gao, Xiao-Ya; Pan, Su-Yue

    2012-01-01

    The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm(2) onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco's Modified Eagle's Medium (HG-DMEM) to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV); cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  2. A Modified Technique for Culturing Primary Fetal Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sui-Yi Xu

    2012-01-01

    Full Text Available The study explored a modified primary culture system for fetal rat cortical neurons. Day E18 embryos from pregnant Sprague Dawley rats were microdissected under a stereoscope. To minimize enzymatic damage to the cultured neurons, we applied a sequential digestion protocol using papain and Dnase I. The resulting sifted cell suspension was seeded at a density of 50,000 cells per cm2 onto 0.1 mg/mL L-PLL-covered vessels. After a four-hour incubation in high-glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM to allow the neurons to adhere, the media was changed to neurobasal medium that was refreshed by changing half of the volume after three days followed by a complete medium change every week. The cells displayed progressively robust neurite extension, and nonneuronal-like cells could barely be detected by five days in vitro (DIV; cell growth was still substantial at 14 DIV. Neurons were identified by β-tubulin III immunofluorescence, and neuronal purity within the cultures was assessed at over 95% by both flow cytometry and by dark-field counting of β-tubulin III-positive cells. These results suggest that the protocol was successful and that the high purity of neurons in this system could be used as the basis for generating various cell models of neurological disease.

  3. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    Science.gov (United States)

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered.

  4. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane

    and electrochemical sensor system that enables real time detection of metabolites, e.g. dopamine from cell cultures and brain slices. In summary we present results on culturing of brain slices and cells in the microfluidic system as well as on the incorporation of an electrochemical sensor system for characterization......The brain is the center of the nervous system, where serious neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s are products of functional loss in the neural cells (1). Typical techniques used to investigate these diseases lack precise control of the cellular surroundings......, in addition to isolating the neural tissue from nutrient delivery and to creating unwanted gradients (2). This means that typical techniques used to investigate neurodegenerative diseases cannot mimic in vivo conditions, as closely as desired. We have developed a novel microfluidic system for culturing PC12...

  5. Development of a cell sheet transportation technique for regenerative medicine.

    Science.gov (United States)

    Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo; Nishida, Kohji

    2014-05-01

    A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies.

  6. Advances in 3D neuronal cell culture

    NARCIS (Netherlands)

    Frimat, Jean Philippe; Xie, Sijia; Bastiaens, Alex; Schurink, Bart; Wolbers, Floor; Den Toonder, Jaap; Luttge, Regina

    2015-01-01

    In this contribution, the authors present our advances in three-dimensional (3D) neuronal cell culture platform technology contributing to controlled environments for microtissue engineering and analysis of cellular physiological and pathological responses. First, a micromachined silicon sieving

  7. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  8. Isolation and culture of pulmonary endothelial cells.

    Science.gov (United States)

    Ryan, U S

    1984-06-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan.

  9. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Seagrave, J.C.; Valdez, J.G.; Tobey, R.A.; Gurley, L.R.

    1985-06-01

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC1 2 , one being increased in amount while the other was reduced to an insignificant level. In ZnC1 2 -treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC1 2 -treated cells. While ZnC1 2 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC1 2 -treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC1 2 -treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  10. Henrietta Lacks, HeLa cells, and cell culture contamination.

    Science.gov (United States)

    Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M

    2009-09-01

    Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.

  11. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific

  12. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  13. Establishing a stem cell culture laboratory for clinical trials

    Science.gov (United States)

    Sekiya, Elíseo Joji; Forte, Andresa; Kühn, Telma Ingrid Borges de Bellis; Janz, Felipe; Bydlowski, Sérgio Paulo; Alves, Adelson

    2012-01-01

    Adult stem/progenitor cells are found in different human tissues. An in vitro cell culture is needed for their isolation or for their expansion when they are not available in a sufficient quantity to regenerate damaged organs and tissues. The level of complexity of these new technologies requires adequate facilities, qualified personnel with experience in cell culture techniques, assessment of quality and clear protocols for cell production. The rules for the implementation of cell therapy centers involve national and international standards of good manufacturing practices. However, such standards are not uniform, reflecting the diversity of technical and scientific development. Here standards from the United States, the European Union and Brazil are analyzed. Moreover, practical solutions encountered for the implementation of a cell therapy center appropriate for the preparation and supply of cultured cells for clinical studies are described. Development stages involved the planning and preparation of the project, the construction of the facility, standardization of laboratory procedures and development of systems to prevent cross contamination. Combining the theoretical knowledge of research centers involved in the study of cells with the practical experience of blood therapy services that manage structures for cell transplantation is presented as the best potential for synergy to meet the demands to implement cell therapy centers. PMID:23049427

  14. Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals.

    Science.gov (United States)

    Soon, Chin Fhong; Omar, Wan Ibtisam Wan; Berends, Rebecca F; Nayan, Nafarizal; Basri, Hatijah; Tee, Kian Sek; Youseffi, Mansour; Blagden, Nick; Denyer, Morgan Clive Thomas

    2014-01-01

    This study aimed at examining the biophysical characteristics of human derived keratinocytes (HaCaT) cultured on cholesteryl ester liquid crystals (CELC). CELC was previously shown to improve sensitivity in sensing cell contractions. Characteristics of the cell integrin expressions and presence of extracellular matrix (ECM) proteins on the liquid crystals were interrogated using various immunocytochemical techniques. The investigation was followed by characterization of the chemical properties of the liquid crystals (LC) after immersion in cell culture media using Fourier transform infrared spectroscopy (FTIR). The surface morphology of cells adhered to the LC was studied using atomic force microscopy (AFM). Consistent with the expressions of the integrins α2, α3 and β1, extracellular matrix proteins (laminin, collagen type IV and fibronectin) were found secreted by the HaCaT onto CELC and these proteins were also secreted by cells cultured on the glass substrates. FTIR analysis of the LC revealed the existence of spectrum assigned to cholesterol and ester moieties that are essential compounds for the metabolizing activities of keratinocytes. The immunostainings indicated that cell adhesion on the LC is mediated by self-secreted ECM proteins. As revealed by the AFM imaging, the constraint in cell membrane spread on the LC leads to the increase in cell surface roughness and thickness of cell membrane. The biophysical expressions of cells on biocompatible CELC suggested that CELC could be a new class of biological relevant material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Innovation for reducing blood culture contamination: initial specimen diversion technique.

    Science.gov (United States)

    Patton, Richard G; Schmitt, Timothy

    2010-12-01

    We hypothesized that diversion of the first milliliter of venipuncture blood-the initial specimen diversion technique (ISDT)-would eliminate incompletely sterilized fragments of skin from the culture specimen and significantly reduce our blood culture contamination rate (R). We studied our hypothesis prospectively beginning with our control culture (C) definition: one venipuncture with two sequentially obtained specimens, 10 ml each, the first specimen (M1) for aerobic and the second (M2) for anaerobic media. The test ISDT culture (D) was identical, with the exception that each was preceded by diverting a 1-ml sample (DS) from the same venipuncture. During the first of two sequential 9-month periods, we captured D versus C data (n=3,733), where DMXR and CMXR are R for D and C specimens. Our hypothesis predicted DS would divert soiled skin fragments from DM1, and therefore, CM1R would be significantly greater than DM1R. This was confirmed by CM1R (30/1,061 [2.8%]) less DM1R (37/2,672 [1.4%]; P=0.005), which equals 1.4%. For the second 9-month follow-up period, data were compiled for all cultures (n=4,143), where ADMXR is R for all (A) diversion specimens, enabling comparison to test ISDT. Our hypothesis predicted no significant differences for test ISDT versus all ISDT. This was confirmed by DM1R (37/2,672 [1.4%]) versus ADM1R (42/4,143 [1.0%]; P=0.17) and DM2R (21/2,672 [0.80%]) versus ADM2R (39/4,143 [0.94%]; P=0.50). We conclude that our hypothesis is valid: venipuncture needles soil blood culture specimens with unsterilized skin fragments and increase R, and ISDT significantly reduces R from venipuncture-obtained blood culture specimens.

  16. Design of thiol-ene photoclick hydrogels using facile techniques for cell culture applications†Electronic supplementary information (ESI) available. See DOI: 10.1039/c4bm00187gClick here for additional data file.

    Science.gov (United States)

    Sawicki, Lisa A; Kloxin, April M

    2014-11-30

    Thiol-ene 'click' chemistries have been widely used in biomaterials applications, including drug delivery, tissue engineering, and controlled cell culture, owing to their rapid, cytocompatible, and often orthogonal reactivity. In particular, hydrogel-based biomaterials formed by photoinitiated thiol-ene reactions afford spatiotemporal control over the biochemical and biomechanical properties of the network for creating synthetic materials that mimic the extracellular matrix or enable controlled drug release. However, the use of charged peptides functionalized with cysteines, which can form disulfides prior to reaction, and vinyl monomers that require multistep syntheses and contain ester bonds, may lead to undesired inhomogeneity or degradation under cell culture conditions. Here, we designed a thiol-ene hydrogel formed by the reaction of allyloxycarbonyl-functionalized peptides and thiol-functionalized poly(ethylene glycol). Hydrogels were polymerized by free radical initiation under cytocompatible doses of long wavelength ultraviolet light in the presence of water-soluble photoinitiators (lithium acylphosphinate, LAP, and 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone, Irgacure 2959). Mechanical properties of these hydrogels were controlled by varying the monomer concentration to mimic a range of soft tissue environments, and hydrogel stability in cell culture medium was observed over weeks. Patterns of biochemical cues were created within the hydrogels post-formation and confirmed through the incorporation of fluorescently-labeled peptides and Ellman's assay to detect free thiols. Human mesenchymal stem cells remained viable after encapsulation and subsequent photopatterning, demonstrating the utility of the monomers and hydrogels for three-dimensional cell culture. This facile approach enables the formation and characterization of hydrogels with well-defined, spatially-specific properties and expands the suite of monomers available for three

  17. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  18. Characterisation and germline transmission of cultured avian primordial germ cells.

    Science.gov (United States)

    Macdonald, Joni; Glover, James D; Taylor, Lorna; Sang, Helen M; McGrew, Michael J

    2010-11-29

    Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  19. Characterisation and germline transmission of cultured avian primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Joni Macdonald

    Full Text Available BACKGROUND: Avian primordial germ cells (PGCs have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. PRINCIPAL FINDINGS: We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. CONCLUSIONS: The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  20. Integration of embryonic stem cells in metanephric kidney organ culture.

    Science.gov (United States)

    Steenhard, Brooke M; Isom, Kathryn S; Cazcarro, Patricia; Dunmore, Judy H; Godwin, Alan R; St John, Patricia L; Abrahamson, Dale R

    2005-06-01

    Many stages of nephrogenesis can be studied using cultured embryonic kidneys, but there is no efficient technique available to readily knockdown or overexpress transgenes for rapid evaluation of resulting phenotypes. Embryonic stem (ES) cells have unlimited developmental potential and can be manipulated at the molecular genetic level by a variety of methods. The aim of this study was to determine if ES cells could respond to developmental signals within the mouse embryonic day 12 to embryonic day 13 (E12 to E13) kidney microenvironment and incorporate into kidney structures. ROSA26 ES cells were shown to express beta-galactosidase ubiquitously when cultured in the presence of leukemia inhibitory factor to suppress differentiation. When these cells were microinjected into E12 to E13 metanephroi and then placed in transwell organ culture, ES cell-derived, beta-galactosidase-positive cells were identified in epithelial structures resembling tubules. On rare occasions, individual ES cells were observed in structures resembling glomerular tufts. Electron microscopy showed that the ES cell-derived tubules were surrounded by basement membrane and had apical microvilli and junctional complexes. Marker analysis revealed that a subset of these epithelial tubules bound Lotus tetragonolobus and expressed alpha(1) Na(+)/K(+) ATPase. ES cells were infected before injection with a cytomegalovirus promoter-green fluorescence protein (GFP) adenovirus and GFP expression was found as early as 18 h, persisting for up to 48 h in cultured kidneys. This ES cell technology may achieve the objective of obtaining a versatile cell culture system in which molecular interventions can be used in vitro and consequences of these perturbations on the normal kidney development program in vivo can be studied.

  1. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  2. [Precut technique for Descemet's membrane endothelial keratoplasty, preparation and storage in organ culture].

    Science.gov (United States)

    Bayyoud, T; Röck, D; Hofmann, J; Bartz-Schmidt, K-U; Yoeruek, E

    2012-06-01

    The preparation of the Descemet's membrane (DM) with the endothelial cell layer may be performed directly prior to surgery or as a precut tissue procedure. The purpose of the current study was the evaluation of the preparation technique and the tissue culture of 10 days regarding potential endothelial cell loss. Ten corneoscleral rims with an average age of 64.3 years were dissected to obtain 8.5 mm in diameter endothelial-DM complexes, which subsequently were organ cultured for 10 days. The endothelial cell density (ECD) was assessed during the cell culture period at days 1., 4., 7. and 10. In addition, time of preparation and transplant morphology were evaluated. The DM with the endothelial cell layer could successfully be dissected from all corneoscleral rims. The average preparation time was 8.3 min. The average ECD count was 2183 ± 77 cells/mm2 prior to, 2094 ± 110 cells/ mm2 at day 1, 2078 ± 134 cells/mm2 at day 4, 1977 ± 107 cells/mm2 at day 7 and 1898 ± 170 cells/mm2 at day 10 after preparation, respectively. Endothelial cell loss was 4.1 %, 4.8 %, 9.4 % and 13.1 % after preparation, respectively. None of the transplants exhibited large, centrally-located cell deficits. The isolated storage of DM with the endothelial layer, without any stromal remnants, showed gratifying results under storage conditions in organ culture with a moderate ECD decrease. Hence, the implementation of a precut DMEK is conceivable. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Therapeutic touch stimulates the proliferation of human cells in culture.

    Science.gov (United States)

    Gronowicz, Gloria A; Jhaveri, Ankur; Clarke, Libbe W; Aronow, Michael S; Smith, Theresa H

    2008-04-01

    Our objective was to assess the effect of Therapeutic Touch (TT) on the proliferation of normal human cells in culture compared to sham and no treatment. Several proliferation techniques were used to confirm the results, and the effect of multiple 10-minute TT treatments was studied. Fibroblasts, tendon cells (tenocytes), and bone cells (osteoblasts) were treated with TT, sham, or untreated for 2 weeks, and then assessed for [(3)H]-thymidine incorporation into the DNA, and immunocytochemical staining for proliferating cell nuclear antigen (PCNA). The number of PCNA-stained cells was also quantified. For 1 and 2 weeks, varying numbers of 10-minute TT treatments were administered to each cell type to determine whether there was a dose-dependent effect. TT administered twice a week for 2 weeks significantly stimulated proliferation of fibroblasts, tenocytes, and osteoblasts in culture (p = 0.04, 0.01, and 0.01, respectively) compared to untreated control. These data were confirmed by PCNA immunocytochemistry. In the same experiments, sham healer treatment was not significantly different from the untreated cultures in any group, and was significantly less than TT treatment in fibroblast and tenocyte cultures. In 1-week studies involving the administration of multiple 10-minute TT treatments, four and five applications significantly increased [(3)H]-thymidine incorporation in fibroblasts and tenocytes, respectively, but not in osteoblasts. With different doses of TT for 2 weeks, two 10-minute TT treatments per week significantly stimulated proliferation in all cell types. Osteoblasts also responded to four treatments per week with a significant increase in proliferation. Additional TT treatments (five per week for 2 weeks) were not effective in eliciting increased proliferation compared to control in any cell type. A specific pattern of TT treatment produced a significant increase in proliferation of fibro-blasts, osteoblasts, and tenocytes in culture. Therefore, TT may

  4. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  5. Cell Culture on MEMS Platforms: A Review

    Science.gov (United States)

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry

    2009-01-01

    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  6. Virus Elimination from Ornamental Plants Using in vitro Culture Techniques

    Directory of Open Access Journals (Sweden)

    Snežana Milošević

    2012-01-01

    Full Text Available Viruses are responsible for numerous epidemics in different crops in all parts of the world.As a consequence of their presence great economic losses are being incurred. In addition tothe development of sensitive techniques for detection, identification and characterization ofviruses, substantial attention has also been paid to biotechnological methods for their eliminationfrom plants. In this review article, the following biotechnological in vitro culture techniquesfor virus elimination from ornamental plants are presented: meristem culture, thermotherapy,chemotherapy, cryotherapy or a combination of these methods. The plant species,as well as the type of virus determine the choice of a most suitable method. The state ofthe art in investigation of virus elimination from Impatiens sp. in Serbia is summarized.

  7. The use of tissue culture techniques to detect irradiated vegetables

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I

    2001-01-01

    the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)

  8. A review of photovoltaic cells cooling techniques

    Science.gov (United States)

    Zubeer, Swar A.; Mohammed, H. A.; Ilkan, Mustafa

    2017-11-01

    This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  9. A review of photovoltaic cells cooling techniques

    Directory of Open Access Journals (Sweden)

    Zubeer Swar A.

    2017-01-01

    Full Text Available This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  10. Effects of radiation on cultured fish cells

    International Nuclear Information System (INIS)

    Etoh, Hisami; Suyama, Ippei

    1980-01-01

    A new fibroblastic cell line was established in our laboratory from the caudal fin of the goldfish, C. auratus. The cells, designated CAF, have been subcultured over 80 passages since initiation in August, 1977. A brief description of cell cultivation and colony formation is presented. The plating efficiency obtained was considerably higher than those reported for other fish cell lines. CAF cells were irradiated with 250, 500, 1,000, 2,000, and 3,000 R of x-rays at a dose rate of 80 R/min in air. The survival parameters changed when the number of passages of culture increased. Values for D 0 , D sub(q), and n obtained from cells irradiated at the 70th passage were calculated to be 650 R, 700 R, and 2.7 respectively. Thus CAF cells would be several times as resistant in general as cultured mammalian cells. The cells irradiated with 1,000 R of x-rays received a second dose from 250 to 2,000 R at intervals of 3, 6, and 24 hr. The cells kept at 26 0 C showed a pronounced recovery from sublethal damage during the intervals between two doses. Magnitude of recovery was larger if the interval was longer under the present experimental conditions. These results may indicate that the recovery observed at an individual level accounts partly for that in vitro. (author)

  11. Analytical techniques applied to study cultural heritage objects

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N.

    2015-01-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  12. Analytical techniques applied to study cultural heritage objects

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N., E-mail: rizzutto@if.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  13. Promouvoir la culture scientifique et technique en Afrique

    OpenAIRE

    Sabrié, Marie-Lise

    2012-01-01

    La mise en place par l’Institut de Recherche pour le Développement (IRD) d’un programme de promotion de la culture scientifique et technique dans dix pays africains a permis de mettre en évidence les attentes des populations mais également les faiblesses structurelles dans ce domaine : l’une des responsables de ce projet dresse le bilan de cette opération qui – malgré les difficultés constatées – laisse entrevoir des possibilités futures de développement pour les initiatives en faveur de la d...

  14. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Science.gov (United States)

    Mass, Tali; Drake, Jeana L; Haramaty, Liti; Rosenthal, Yair; Schofield, Oscar M E; Sherrell, Robert M; Falkowski, Paul G

    2012-01-01

    The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag)~4), the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM) and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective) similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  15. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Directory of Open Access Journals (Sweden)

    Tali Mass

    Full Text Available The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag~4, the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  16. Insights into the multifaceted application of microscopic techniques in plant tissue culture systems.

    Science.gov (United States)

    Moyo, Mack; Aremu, Adeyemi O; Van Staden, Johannes

    2015-10-01

    Microscopic techniques remain an integral tool which has allowed for the better understanding and manipulation of in vitro plant culture systems. The recent advancements will inevitably help to unlock the long-standing mysteries of fundamental biological mechanisms of plant cells. Beyond the classical applications in micropropagation aimed at the conservation of endangered and elite commercial genotypes, plant cell, tissue and organ cultures have become a platform for elucidating a myriad of fundamental physiological and developmental processes. In conjunction with microscopic techniques, in vitro culture technology has been at the centre of important breakthroughs in plant growth and development. Applications of microscopy and plant tissue culture have included elucidation of growth and development processes, detection of in vitro-induced physiological disorders as well as subcellular localization using fluorescent protein probes. Light and electron microscopy have been widely used in confirming the bipolarity of somatic embryos during somatic embryogenesis. The technique highlights basic anatomical, structural and histological evidence for in vitro-induced physiological disorders during plant growth and development. In this review, we discuss some significant biological insights in plant growth and development, breakthroughs and limitations of various microscopic applications and the exciting possibilities offered by emergent in vivo live imaging and fluorescent protein engineering technologies.

  17. Ion beam analysis and spectrometry techniques for Cultural Heritage studies

    International Nuclear Information System (INIS)

    Beck, L.

    2013-01-01

    The implementation of experimental techniques for the characterisation of Cultural heritage materials has to take into account some requirements. The complexity of these past materials requires the development of new techniques of examination and analysis, or the transfer of technologies developed for the study of advanced materials. In addition, due to precious aspect of artwork it is also necessary to use the non-destructive methods, respecting the integrity of objects. It is for this reason that the methods using radiations and/or particles play a important role in the scientific study of art history and archaeology since their discovery. X-ray and γ-ray spectrometry as well as ion beam analysis (IBA) are analytical tools at the service of Cultural heritage. This report mainly presents experimental developments for IBA: PIXE, RBS/EBS and NRA. These developments were applied to the study of archaeological composite materials: layered materials or mixtures composed of organic and non-organic phases. Three examples are shown: evolution of silvering techniques for the production of counterfeit coinage during the Roman Empire and in the 16. century, the characterization of composites or mixed mineral/organic compounds such as bone and paint. In these last two cases, the combination of techniques gave original results on the proportion of both phases: apatite/collagen in bone, pigment/binder in paintings. Another part of this report is then dedicated to the non-invasive/non-destructive characterization of prehistoric pigments, in situ, for rock art studies in caves and in the laboratory. Finally, the perspectives of this work are presented. (author) [fr

  18. Characterisation and preservation of cultural heritage artefacts using nuclear techniques

    International Nuclear Information System (INIS)

    2011-01-01

    This report covers the studies performed for the identification and preservation of cultural heritage using nuclear analytical techniques (NAT). Within the context of the project financed by the IAEA, cultural articles from various excavation regions and from the Anatolian Civilizations Museum were analyzed and identified using the instruments at our Center and information was provided regarding their manufacturing techniques, past restoration history and socioeconomic indicators about the period within which these articles were used. The analysis of the articles which could not be removed from the museum were performed in-situ using portable instruments and support was provided to the experts for some articles from excavation regions for the evaluation of their originality. Within the framework the of this Project, five experts attended to the workshops and meetings organised by the IAEA and in the context of scientific visits and bilateral cooperation, one expert from Greece and three experts from Macedonia visited our Center and Anatolian Civilizations Museum and experimental studies were performed together

  19. Embryo forming cells in carrot suspension cultures

    NARCIS (Netherlands)

    Toonen, M.A.J.

    1997-01-01


    Somatic cells of many plant species can be cultured in vitro and induced to form embryos that are able to develop into mature plants. This process, termed somatic embryogenesis, was originally described in carrot (Daucus carota L.). Somatic embryos develop through the same characteristic

  20. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  1. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    Science.gov (United States)

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  2. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  3. A new culture technique that allows in vitro meiotic prophase development of fetal human oocytes.

    Science.gov (United States)

    Brieño-Enríquez, M A; Robles, P; García-Cruz, R; Roig, I; Cabero, L; Martínez, F; Garcia Caldés, M

    2010-01-01

    Little is known about the mechanisms that regulate meiosis in the human female fetus as a result of the technical difficulties in obtaining samples. Currently, there is no technique for human fetal oocyte culture that permits the maintenance of fetal ovarian tissue in vitro which allows the progression of meiosis in a reproducible and standardized way. Meiotic progression was analyzed following pairing-synapsis and recombination progress. A total of 7119 oocytes were studied and analyzed. The proteins used to evaluate meiotic progression were: REC8, SYCP1, SYCP3 and MLH1, studied by immunofluorescence. Four different sample disaggregating methods were used, two enzymatic (trypsin and collagenase + hyaluronidase) and two mechanical (puncture and ovarian fragments). Two different culture media were used, control media and stem cell factor (SCF)-supplemented media. The oocytes were studied at initial time T0, and then at T7, T14 and T21 days after culture. The mechanical methods increased the total number of oocytes found at the different times of culture and decreased the number of degenerated oocytes. Independently of the disaggregation method used, oocytes cultured with SCF-supplemented media showed a higher proportion of viable oocytes and fewer degenerated cells at all culture timepoints. No evidence of abnormal homologous chromosome synapsis was observed. Meiotic recombination was only observed in oocytes mechanically disaggregated and cultured with supplemented media. The oocytes obtained by mechanical disaggregating methods and cultured with SCF-supplemented media are able to follow pairing-synapsis and recombination, comparable to oocytes in vivo. The culture conditions described herein confirm the methodology as a standardized and reproducible method.

  4. A study of chromosomal aberrations in amniotic fluid cell cultures.

    Science.gov (United States)

    Wolstenholme, J; Crocker, M; Jonasson, J

    1988-06-01

    This paper represents the analysis of 1916 routine amniotic fluid specimens harvested by an in situ fixation technique in a prospective study with regard to cultural chromosome anomalies. Excluding constitutional abnormalities, 2.9 per cent of 19,432 cells analysed showed some form of chromosome anomaly, terminal deletions (57 per cent) and chromatid/chromosome breaks and gaps (18 per cent) being the most frequent, followed by interchange aberrations (13 per cent) and trisomy (5 per cent). No case was found of more than one colony from the same culture showing the same anomaly without it being present in other cultures from the same fluid. The wholly abnormal colonies had a surplus of trisomies and from the mathematical considerations presented one may infer that these are likely to reflect the presence of abnormal cells in the amniotic fluid. Partly abnormal colonies appeared at a frequency that would correspond to virtual absence of selection against chromosomally abnormal cells when cultured in vitro. The aberrations found were similar to those seen as single cell anomalies, except for chromatid breaks and exchanges. The data suggest a basic preferential induction of trisomy for chromosomes 2, 18, 21, and the Y-chromosome. Structural aberrations showed a marked clustering of breakpoints around the centromeres. The frequency of mutant cells was low (1.4 X 10(-3)) before culture was initiated. At harvest, the frequency of abnormal cells was much higher (3 X 10(-2)) corresponding to 3 X 10(-3) mutations per cell per generation accumulating over approximately ten generations in vitro.

  5. Effect of Micro Ridges on Orientation of Cultured Cell

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2014-06-01

    Full Text Available The effect of micro ridges on orientation of cultured cells has been studied in vitro. Several patterns of micro ridges have been fabricated on a transparent polydimethylsiloxane disk with the photo lithography technique. The ridges consist of several lines of rectangular column: the width of 0.003 mm, the interval of 0.007 mm. Variation has been made on the height of the ridge between 0.0003 mm and 0.0035 mm. C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse was cultured on the disk with the micro ridges for one week and was observed with an inverted phase contrast microscope. The experimental results show that cells adhere on the top of the ridge and align to the longitudinal direction of the micro ridges with the height between 0.0015 mm and 0.0025 mm.

  6. Problems and potentialities of cultured plant cells in retrospect and prospect

    Science.gov (United States)

    Steward, F. C.; Krikorian, A. D.

    1979-01-01

    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  7. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  8. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  9. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  10. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  11. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  12. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.

    Science.gov (United States)

    Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L

    2017-04-01

    The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    Science.gov (United States)

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  14. Cell in situ zymography: an in vitro cytotechnology for localization of enzyme activity in cell culture.

    Science.gov (United States)

    Chhabra, Aastha; Jaiswal, Astha; Malhotra, Umang; Kohli, Shrey; Rani, Vibha

    2012-09-01

    In situ zymography is a unique technique for detection and localization of enzyme-substrate interactions majorly in histological sections. Substrate with quenched fluorogenic molecule is incorporated in gel over which tissue sections are mounted and then incubated in buffer. The enzymatic activity is observed in the form of fluorescent signal. With the advancements in the field of biological research, use of in vitro cell culture has become very popular and holds great significance in multiple fields including inflammation, cancer, stem cell biology and the still emerging 3-D cell cultures. The information on analysis of enzymatic activity in cell lines is inadequate presently. We propose a single-step methodology that is simple, sensitive, cost-effective, and functional to perform and study the 'in position' activity of enzyme on substrate for in vitro cell cultures. Quantification of enzymatic activity to carry out comparative studies on cells has also been illustrated. This technique can be applied to a variety of enzyme classes including proteases, amylases, xylanases, and cellulases in cell cultures.

  15. Computational Swarming: A Cultural Technique for Generative Architecture

    Directory of Open Access Journals (Sweden)

    Sebastian Vehlken

    2014-11-01

    Full Text Available After a first wave of digital architecture in the 1990s, the last decade saw some approaches where agent-based modelling and simulation (ABM was used for generative strategies in architectural design. By taking advantage of the self-organisational capabilities of computational agent collectives whose global behaviour emerges from the local interaction of a large number of relatively simple individuals (as it does, for instance, in animal swarms, architects are able to understand buildings and urbanscapes in a novel way as complex spaces that are constituted by the movement of multiple material and informational elements. As a major, zoo-technological branch of ABM, Computational Swarm Intelligence (SI coalesces all kinds of architectural elements – materials, people, environmental forces, traffic dynamics, etc. – into a collective population. Thereby, SI and ABM initiate a shift from geometric or parametric planning to time-based and less prescriptive software tools.Agent-based applications of this sort are used to model solution strategies in a number of areas where opaque and complex problems present themselves – from epidemiology to logistics, and from market simulations to crowd control. This article seeks to conceptualise SI and ABM as a fundamental and novel cultural technique for governing dynamic processes, taking their employment in generative architectural design as a concrete example. In order to avoid a rather conventional application of philosophical theories to this field, the paper explores how the procedures of such technologies can be understood in relation to the media-historical concept of Cultural Techniques.

  16. Acetaldehyde and hexanaldehyde from cultured white cells

    Directory of Open Access Journals (Sweden)

    Zaldivar Frank

    2009-04-01

    Full Text Available Abstract Background Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds. Methods To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium. Results HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene. Conclusion This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured in vitro in trace amounts.

  17. Improving tolerance to Fusarium oxysporum f. sp. melonis in melon using tissue culture and mutation techniques

    International Nuclear Information System (INIS)

    Kantoglu, Y.; Secer, E.; Tutluer, I.; Kunter, B.; Peskircioglu, H.; Sagel, Z.; Erzurum, K.

    2010-01-01

    Fusarium wilt is a vascular disease of the Cucurbitaceae family, especially in muskmelon (Cucumis melo L.), caused by the soil fungus Fusarium oxysporum f. sp. melonis (FOM). This pathogen persists in the soil for extended periods of time, and the only effective control is the use of resistant cultivars. During the last three decades, tissue culture techniques have been utilised in crop improvement to generate changes in the genetic material of plants via in vitro somaclonal variations (by organogenesis or somatic embryogenesis) and induced mutagenesis. More recently, researchers have been using in vitro techniques to investigate the effects of fungal culture filtrates or toxins on susceptible and resistant genotypes of different plant species or cultivars to assess disease resistance. This method is effectively used for cucumber and melon. There are various in vitro culture techniques that can be used for cucumber (Malepszy, 1988). In this chapter, we show a method for mass-selection of melon mutants resistant to Fusarium wilt. In vitro selection of resistant cells, from both irradiated and non- irradiated explants, is performed using culture filtrates of different FOM races. This research could lead to the development of new melon cultivars resistant to Fusarium wilt. (author)

  18. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  19. Modeling Physiological Events in 2D vs. 3D Cell Culture.

    Science.gov (United States)

    Duval, Kayla; Grover, Hannah; Han, Li-Hsin; Mou, Yongchao; Pegoraro, Adrian F; Fredberg, Jeffery; Chen, Zi

    2017-07-01

    Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research. Copyright © 2017 the American Physiological Society.

  20. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  1. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    of growth regulators were observed to be 3 × 10−6M indoleacetic acid (JAA) combined with 3 × 10−6M benzylaminopurin (BAP) or 10−6M 2,4-dichlorophenoxy acetic acid (2,4-D) alone. IAA + BAP caused a 100 fold increase in fresh weight over 4 weeks at 25°C. Addition of casein hydrolysate increased growth further....... Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  2. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    Science.gov (United States)

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  3. Cultured epidermal stem cells in regenerative medicine.

    Science.gov (United States)

    Jackson, Catherine J; Tønseth, Kim Alexander; Utheim, Tor Paaske

    2017-07-04

    Transplantation of cultured epidermal cell sheets (CES) has long been used to treat patients with burns, chronic wounds, and stable vitiligo. In patients with large area burns this can be a life-saving procedure. The ultimate goal, however, is to restore all normal functions of the skin and prevent scar formation. Increased focus on the incorporation of epidermal stem cells (EpiSCs) within CES transplants may ultimately prove to be key to achieving this. Transplanted EpiSCs contribute to restoring the complete epidermis and provide long-term renewal.Maintenance of the regenerative potential of EpiSCs is anchorage-dependent. The extracellular matrix (ECM) provides physical cues that are interpreted by EpiSCs and reciprocal signaling between cells and ECM are integrated to determine cell fate. Thus, the carrier scaffold chosen for culture and transplant influences maintenance of EpiSC phenotype and may enhance or detract from regenerative healing following transfer.Long-term effectiveness and safety of genetically modified EpiSCs to correct the severe skin blistering disease epidermolysis bullosa has been shown clinically. Furthermore, skin is gaining interest as an easily accessible source of adult epithelial stem cells potentially useful for restoration of other types of epithelia. This review highlights the role of EpiSCs in the current treatment of skin injury and disease, as well as their potential in novel regenerative medicine applications involving other epithelia.

  4. The influence of organizational culture on the use of quality techniques and its impact on performance

    DEFF Research Database (Denmark)

    Gambi, Lillian; Jørgensen, Frances; Boer, Harry

    2013-01-01

    This report presents the results of a study about the influence of organizational culture on quality techniques and the impact of matching culture and technique to enhance performance. Data were drawn from 250 manufacturing companies in Brazil and Denmark. Profiles were identified according...... to the companies’ cultural characteristics and use of quality techniques. Findings suggest: 1- Certain cultural profiles predict the use of certain quality techniques better than others. For example, companies with a group culture, which is oriented towards collaboration and development of human resources, tend...... to use goal setting and continuous improvement techniques, rather than measurement techniques. In turn, companies that have a rational or hierarchical culture, which are oriented towards control and competition, tend to use measurement techniques more than cultures oriented to collaboration or creation...

  5. Ascorbic acid transport into cultured pituitary cells

    International Nuclear Information System (INIS)

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-01-01

    An amidating enzyme designated peptidyl-glycine α-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 μM [ 14 C]ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 μM ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system

  6. Obtaining phenolic acids from cell cultures of various Artemisia ...

    African Journals Online (AJOL)

    Plant cell cultures represent a high valuable source for the production of bioactive secondary metabolites which can be used in food industry, medicine and cosmetic industry. In our study, we focused on obtaining phenolic acids from plant cell cultures. We compared cell cultures obtained from nine plant species of two ...

  7. The influence of organizational culture on the use of quality techniques and its impact on performance

    DEFF Research Database (Denmark)

    Gambi, Lillian; Jørgensen, Frances; Boer, Harry

    2013-01-01

    to enhanced performance more than if those culture profiles are combined with the use of measurement techniques. This research has important implications for managers in the sense that they need to be actively aware of the need to adopt quality techniques that fit with the culture of their organization.......This report presents the results of a study about the influence of organizational culture on quality techniques and the impact of matching culture and technique to enhance performance. Data were drawn from 250 manufacturing companies in Brazil and Denmark. Profiles were identified according...... to the companies’ cultural characteristics and use of quality techniques. Findings suggest: 1- Certain cultural profiles predict the use of certain quality techniques better than others. For example, companies with a group culture, which is oriented towards collaboration and development of human resources, tend...

  8. A modified micro chamber agar spot slide culture technique for microscopic examination of filamentous fungi.

    Science.gov (United States)

    Prakash, Peralam Yegneswaran; Bhargava, Kanika

    2016-04-01

    The slide culture technique aids in the study of undisturbed microscopic morphological details of filamentous fungi. The existing methods for setting up of slide culture are quite cumbersome, time-consuming and require elaborate preparation. We describe a modified and easy to perform micro chamber agar spot slide culture technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  10. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence

    Directory of Open Access Journals (Sweden)

    Natasha S Lewis

    2017-04-01

    Full Text Available Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies.

  12. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage of electro...... an optical double-fluorescent probe-system[4]. Currently, we are working on integrating both detection methods into a tissue culture system for immobilised plant tissues.......This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage...... of electrochemical detection systems is that they can be miniaturized, multiplexed and automated without losing their performance[1,2]. Combining tissue culture with electrochemical and optical detection allows implementation of a wide range of assays for online, real-time, parallel analysis of important parameters...

  13. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    Directory of Open Access Journals (Sweden)

    KOMAR RUSLAN

    2011-01-01

    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  14. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled c...... compared to cell cultured in culture flasks incubated in a dark and CO2 conditioned incubator....

  15. Comparison of prostanoid forming capacity of neuronal and astroglial cells in primary cultures.

    Science.gov (United States)

    Keller, M; Jackisch, R; Seregi, A; Hertting, G

    1985-01-01

    Prostaglandin (PG) and thromboxane (TX) biosynthesis in primary neuronal and astroglial cell cultures was studied. Cultures obtained from fetal (15-16 days old) and neonatal rat brain hemispheres were characterized by chemical and immunocytochemical staining techniques as predominantly neurons or mature and immature astrocytes, respectively. Six-day old neuronal cell cultures grown in the presence of cytosine arabinoside (2 ?M) from the day 3 onwards were contaminated up to 10% with glioblasts. In astroglial cultures up to 3% of the cells were postively stained with a marker for oligodendroglial cells. Fibroblast contamination was below 1% in both cultures. Prostanoid formation (measured by specific radioimmunoassays) in 6-day old neuronal cell cultures was low (sum of the amount of PGs and TX formed: 1.16 +/- 0.17 (ng/mg protein/15 min) as compared to 14-day old cultured astroglial cells: 21.27 +/- 2.53 (ng/mg protein/15 min). Also the pattern of prostanoids formed was different in neuronal (PGD(2) ? PGF(2?) > TXB(2) ? PGE(2)) and astroglial cells (PGD(2) > TXB(2) ? PGF(2?) ? PGE(2) ? 6-ketoPGF(1?)). Preincubation with arachidonic acid (1 ?g/ml) did not affect prostanoid formation in both cultures, whereas it was stimulated 4-6-fold by addition of the calcium ionophore A23187 (1 ?M). These results, although found on cultured neuronal and glial cells of different stages of development, support the view that astroglial cells might play a crucial role in brain prostanoid synthesis.

  16. Good cell culture practices &in vitro toxicology.

    Science.gov (United States)

    Eskes, Chantra; Boström, Ann-Charlotte; Bowe, Gerhard; Coecke, Sandra; Hartung, Thomas; Hendriks, Giel; Pamies, David; Piton, Alain; Rovida, Costanza

    2017-12-01

    Good Cell Culture Practices (GCCP) is of high relevance to in vitro toxicology. The European Society of Toxicology In Vitro (ESTIV), the Center for Alternatives for Animal Testing (CAAT) and the In Vitro Toxicology Industrial Platform (IVTIP) joined forces to address by means of an ESTIV 2016 pre-congress session the different aspects and applications of GCCP. The covered aspects comprised the current status of the OECD guidance document on Good In Vitro Method Practices, the importance of quality assurance for new technological advances in in vitro toxicology including stem cells, and the optimized implementation of Good Manufacturing Practices and Good Laboratory Practices for regulatory testing purposes. General discussions raised the duality related to the difficulties in implementing GCCP in an academic innovative research framework on one hand, and on the other hand, the need for such GCCP principles in order to ensure reproducibility and robustness of in vitro test methods for toxicity testing. Indeed, if good cell culture principles are critical to take into consideration for all uses of in vitro test methods for toxicity testing, the level of application of such principles may depend on the stage of development of the test method as well as on the applications of the test methods, i.e., academic innovative research vs. regulatory standardized test method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An introduction to plant cell culture: the future ahead.

    Science.gov (United States)

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  18. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Directory of Open Access Journals (Sweden)

    Camila Bonazza

    Full Text Available Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2 and progesterone (P4 effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation. These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  19. An Important Method in the Investigation of Vascular Pathologies: Endothelial Cell Culture

    Directory of Open Access Journals (Sweden)

    Yusufhan Yazır

    2012-12-01

    Full Text Available Endothelial cells line the interior surface of blood vessels and form an interface between circulating blood in the lumen and the rest of the vessel wall. Endothelial cells are involved in many aspects of vascular biology, including barrier function, vasoconstriction, coagulation and inflamation. The endothelial cells in different organs have different functions and surface phenotype. These cells express prostoglandin-I2, platelet activating factor, collagen, endothelin-1, laminin, fibronectin and growth factors including platelet derived growth factor, fibroblast growth factor. İn the cell culture, cells can be isolated, maintened and proliferate in the laboratory conditions. The techniques of the cell culture have allowed scientists to use the cells in vitro for experimental studies, such as the production of vaccine, antibody and enzime, drug research, cell-cell interactions. Human umbilical vein endothelial cell is a good source for endothelial cell, because it is cheaper, easy to find and has the basic features of the normal endothelial cells.

  20. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  1. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  2. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  3. Soft Micro-Channels for Cell Culturing and Migration Studies

    Science.gov (United States)

    Abbasirazgaleh, Sara

    Various techniques and methods have been studied and developed to aid nerve regeneration and repairing nerve injuries. Among all, nerve grafting is the gold standard for bridging the gap between the injured nerve stumps. Despite the advantages of this technique, there are also various drawbacks that have encouraged the exploration of alternative, less invasive methods for promoting nerve regeneration. In this thesis, we have fabricated soft micro-channels for cell culturing and migration studies which could act as an interface capable of long-term, reliable, and high-resolution stimulation device for nerve regeneration. Micro-channels fabrication is performed using a combination of photolithography technique and physical vapor deposition (PVD) methods. Initially, the surfaces of the micro-channels are treated with oxygen plasma to convert the surface of PDMS from hydrophobic to hydrophilic and to further provide an optimal environment for cells to adhere and grow. Next, in vitro studies were performed on the fabricated micro-channels to demonstrate feasibility of the platform to promote adherence and growth of PC12 cells (cell line derived from a pheochromocytomas of the rat adrenal medulla).

  4. Equipment for large-scale mammalian cell culture.

    Science.gov (United States)

    Ozturk, Sadettin S

    2014-01-01

    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed.

  5. [Research progress of cell co-culture method].

    Science.gov (United States)

    Qin, Yanqin; Chen, Yulong; Li, Jiansheng

    2016-08-01

    Cell culture technology is the most commonly used method in the in vitro experiments at present. However, monolayer cell culture technology has been unable to meet the demand of the researchers. This is because that monolayer cell culture cannot mimic the cellular environment in which multiple cells interact with each other in the body. We cannot discuss the relationship of many cells, because we do not know the relationship between cells through a single kind of cell. So cell co-culture medicine arises at the historic moment for the demand. With the development of research method in recent years, cell co-culture method also has been improved in practice: from direct contact co-cultures to indirect contact co-cultures, from two-dimensional co-cultures to three-dimensional co-cultures. Cell co-culture method is closer to the human body. It is also more advantageous to study the interaction among cells. Nowadays, there are more researchers tend to select this method to study the physiological and pathological in vitro model, tissue engineering, and cell differentiation research. At the same time, it has become the focus of drug research and development, drug analysis, mechanism of drug action, and drug targets. This article will review the studies of cell co-culture method, summarize advantages and disadvantages of various methods, so as to promote improvement of cell culture methods, to build cells co-culture system that more close to human body, and build the in vitro model that simulate internal circulation of human body further.

  6. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  7. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  8. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  9. Cell-cycle research with synchronous cultures: an evaluation

    Science.gov (United States)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  10. Design of 3D printed insert for hanging culture of Caco-2 cells.

    Science.gov (United States)

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2014-12-17

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30-100% higher brush border enzyme activity and ∼2-7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R(2) = 0.92) to the human oral adsorption than that of the Transwell culture (R(2) = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption.

  11. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing.

    Science.gov (United States)

    Park, Ju An; Yoon, Sejeong; Kwon, Jimin; Now, Hesung; Kim, Young Kwon; Kim, Woo-Jong; Yoo, Joo-Yeon; Jung, Sungjune

    2017-11-06

    Microfabrication methods have widely been used to control the local cellular environment on a micron scale. However, accurately mimicking the complexity of the in vivo tissue architecture while maintaining the freedom of form and design is still a challenge when co-culturing multiple types of cells on the same substrate. For the first time, we present a drop-on-demand inkjet printing method to directly pattern living cells into a cell-friendly liquid environment. High-resolution control of cell location is achieved by precisely optimizing printing parameters with high-speed imaging of cell jetting and impacting behaviors. We demonstrated the capabilities of the direct cell printing method by co-printing different cells into various designs, including complex gradient arrangements. Finally, we applied this technique to investigate the influence of the heterogeneity and geometry of the cell population on the infectivity of seasonal H1N1 influenza virus (PR8) by generating A549 and HeLa cells printed in checkboard patterns of different sizes in a medium-filled culture dish. Direct inkjet cell patterning can be a powerful and versatile tool for both fundamental biology and applied biotechnology.

  12. Teaching Organizational Culture Using a Projective Technique: Collage Construction

    Science.gov (United States)

    Colakoglu, Saba; Littlefield, Jon

    2011-01-01

    Although the topic of "organizational culture" is an integral part of syllabi across a wide range of core business classes such as Principles of Management, Organizational Behavior, and Human Resource Management, few experiential exercises exist that can enhance student understanding and learning of different layers of organizational culture. In…

  13. An efficient 3D cell culture method on biomimetic nanostructured grids.

    Directory of Open Access Journals (Sweden)

    Maria Wolun-Cholewa

    Full Text Available Current techniques of in vitro cell cultures are able to mimic the in vivo environment only to a limited extent, as they enable cells to grow only in two dimensions. Therefore cell culture approaches should rely on scaffolds that provide support comparable to the extracellular matrix. Here we demonstrate the advantages of novel nanostructured three-dimensional grids fabricated using electro-spinning technique, as scaffolds for cultures of neoplastic cells. The results of the study show that the fibers allow for a dynamic growth of HeLa cells, which form multi-layer structures of symmetrical and spherical character. This indicates that the applied scaffolds are nontoxic and allow proper flow of oxygen, nutrients, and growth factors. In addition, grids have been proven to be useful in in situ examination of cells ultrastructure.

  14. Immunocytochemical characterization of primary cell culture in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Luis M.M. Flórez

    Full Text Available Abstract: Immunochemistry with anti-vimentin, anti-lysozyme, anti-alpha 1 antitrypsin, anti-CD3 and anti-CD79α antibodies has been used for characterization of primary cell culture in the transmissible venereal tumor (TVT. Samples for primary cell culture and immunohistochemistry assays were taken from eight dogs with cytological and clinical diagnosis of TVT. To validate the immunochemical results in the primary cell culture of TVT, a chromosome count was performed. For the statistical analysis, the Mann-Whitney test with p<0.05 was used. TVT tissues and culture cells showed intense anti-vimentin immunoreactivity, lightly to moderate immunoreactivity for anti-lysozyme, and mild for anti-alpha-antitrypsin. No marking was achieved for CD3 and CD79α. All culture cells showed chromosomes variable number of 56 to 68. This is the first report on the use of immunocytochemical characterization in cell culture of TVT. Significant statistic difference between immunochemistry in tissue and culture cell was not established, what suggests that the use of this technique may provide greater certainty for the confirmation of tumors in the primary culture. This fact is particularly important because in vitro culture of tumor tissues has been increasingly used to provide quick access to drug efficacy and presents relevant information to identify potential response to anticancer medicine; so it is possible to understand the behavior of the tumor.

  15. Identification of Viable Helicobacter pylori in Drinking Water Supplies by Cultural and Molecular Techniques.

    Science.gov (United States)

    Santiago, Paula; Moreno, Yolanda; Ferrús, M Antonía

    2015-08-01

    Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, directly related to peptic ulcer and gastric cancer. It has been suggested that H. pylori can be acquired through different transmission routes, including water. In this study, culture and qPCR were used to detect and identify the presence of H. pylori in drinking water. Furthermore, the combined techniques PMA-qPCR and DVC-FISH were applied for detection of viable cells of H. pylori. Among 24 drinking water samples, 16 samples were positive for the presence of H. pylori, but viable cells were only detected in six samples. Characteristic colonies, covered by a mass of bacterial unspecific growth, were observed on selective agar plates from an only sample, after enrichment. The mixed culture was submitted to DVC-FISH and qPCR analysis, followed by sequencing of the amplicons. Molecular techniques confirmed the growth of H. pylori on the agar plate. Our results demonstrate for the first time that H. pylori can survive and be potentially infective in drinking water, showing that water distribution systems could be a potential route for H. pylori transmission. © 2015 John Wiley & Sons Ltd.

  16. Methods for the isolation and identification of polycyclic aromatic hydrocarbons found in complex mixtures and the determination of their possible toxicity by means of a host mediated bioassay technique. Progress report, July 1, 1976--February 1, 1977. [Cultured mouse leumemia cell bioassay system

    Energy Technology Data Exchange (ETDEWEB)

    Lipsky, S.R.; Alexander, G.; McMurray, W.; Capizzi, R.

    1977-02-01

    Techniques were developed to produce excellent high performance glass capillary columns for gas chromatographic analyses of a wide range of complex mixtures of organic compounds, including those containing a wide array of polycyclic aromatic hydrocarbons (PAH) derived from a coal liquefaction process. Work was begun to assess the potential mutogenicity and/or carcinogenicity of the various isolated PAH fractions utilizing a unique host mediated bioassay system. Preliminary results indicate that further efforts will be required to determine dose response parameters of cultured mouse leukemia cells, as well as suitable vehicles for the satisfactory introduction of certain PAH fractions into this particular bioassay system.

  17. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    Science.gov (United States)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  18. Detection of Infectious Bovine Rhinotracheitis and Bovine Viral Diarrhea Viruses in the Nasal Epithelial Cells by the Direct Immunofluorescence Technique

    Science.gov (United States)

    Silim, A.; Elazhary, M.A.S.Y.

    1983-01-01

    Nasal epithelial cells were collected by cotton swabs for the diagnosis in experimental and field cases of infectious bovine rhinotracheitis and field cases of bovine viral diarrhea in calves. A portion of the cells was washed twice in phosphate buffered saline and a 25 µL drop was placed on microscope slides. The cells were dried, fixed and stained according to the direct fluorescent antibody technique. Another portion of the same specimen was inoculated onto primary bovine skin cell cultures for virus isolation. In the experimental studies for infectious bovine rhinotracheitis, 29/35 specimens were positive by fluorescent antibody technique and 32/35 by cell culture and in the field cases, 22/119 were positive by fluorescent antibody technique and 19/119 by cell culture. In the field cases of bovine viral diarrhea, 28/69 samples were positive by fluorescent antibody technique and 14/69 by cell culture. When fluorescent antibody technique was performed on inoculated cell cultures a total of 24/69 specimens were positive for bovine viral diarrhea. The sensitivity of fluorescent antibody technique was thus comparable to that of cell culture method for infectious bovine rhinotracheitis and bovine viral diarrhea. ImagesFig. 1.Fig. 2.Fig. 3. PMID:6299484

  19. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  20. Mutation Analysis in Cultured Cells of Transgenic Rodents

    Directory of Open Access Journals (Sweden)

    Ahmad Besaratinia

    2018-01-01

    Full Text Available To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.

  1. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.

    1984-01-01

    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  2. Cholera toxin stimulation of human mammary epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  3. Establishment and characterization of American elm cell suspension cultures

    Science.gov (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  4. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping.

    Science.gov (United States)

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer

    2017-08-01

    It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Electrospinning of microbial polyester for cell culture

    International Nuclear Information System (INIS)

    Kwon, Oh Hyeong; Lee, Ik Sang; Ko, Young-Gwang; Meng, Wan; Jung, Kyung-Hye; Kang, Inn-Kyu; Ito, Yoshihiro

    2007-01-01

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture

  6. Documentation of cultural heritage; techniques, potentials, and constraints

    Science.gov (United States)

    Hassani, F.; Moser, M.; Rampold, R.; Wu, C.

    2015-08-01

    Cultural Heritage is known as an invaluable asset of human being, which portrays his achievements over centuries. The need for identification and preservation of cultural heritage is well understood and experts' attempt is to exploit any possible method to fulfill this aim. There are several published literatures and documents, which emphasize on the importance of the documentation of the cultural heritage such as Burra Charter. However, with the development of human and invention of new tools and technologies, the concept of the conservation of cultural heritage has changed considerably. The new technologies such as computers and digital tools have opened new windows and bestowed new opportunities in the process of conservation of cultural heritage. In this regard, it is important to review different technologies in order to make the best advantage of these tools in the cultural heritage field. The focus of this paper would be on the non-technical users who need to gain an overall comprehension of these new emerging tools. The foundation of this paper will be on the existing literatures published by various experts in addition to the author's experience and research in the conservation field.

  7. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    of the microfluidic perfusion cell culture system is shown by investigation of adipose-derived stem cell (ASC) differentiation into adipocytes, where we have revealed that paracrine/autocrine signaling is involved in differentiation of a population of ASCs into adipocytes. We have thereby demonstrated......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs...

  8. Can established cultured papilloma cells harbor bovine papillomavirus?

    Science.gov (United States)

    Campos, S R C; Trindade, C; Ferraz, O P; Giovanni, D N S; Lima, A A; Caetano, H V A; Carvalho, R F; Birgel, E H; Dagli, M L Z; Mori, E; Brandão, P E; Richtzenhain, L J; Beçak, W; Stocco, R C

    2008-10-21

    Papillomaviruses have been reported to be very difficult to grow in cell culture. Also, there are no descriptions of cell cultures from lesions of bovine cutaneous papillomatosis, with identification of different bovine papilloma virus (BPV) DNA sequences. In the present report, we describe primary cell cultures from samples of cutaneous lesions (warts). We investigated the simultaneous presence of different BPV DNA sequences, comparing the original lesion to different passages of the cell cultures and to peripheral blood. BPV 1, 2 and 4 DNA sequences were found in lesion samples, and respective cell cultures and peripheral blood, supporting our previous hypothesis of the possible activity of these sequences in different samples and now also showing how they can be maintained in different passages of cell cultures.

  9. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  10. Metabolomics profiling of cell culture media leading to the identification of riboflavin photosensitized degradation of tryptophan causing slow growth in cell culture.

    Science.gov (United States)

    Zang, Li; Frenkel, Ruth; Simeone, Jeffrey; Lanan, Maureen; Byers, Mark; Lyubarskaya, Yelena

    2011-07-01

    As more protein biopharmaceuticals are produced using mammalian cell culture techniques, it becomes increasingly important for the biopharmaceutical industry to have tools to characterize the cell culture media and evaluate its impact on the cell culture performance. Exposure of the cell culture media to light, temperature stress, or adventitious introduction of low-level organisms during preparation can lead to the generation of chemical degradants or metabolites of the media components, which are potentially detrimental to the cell culture process. In this work, we applied a liquid chromatography-mass spectrometry based metabolomics methodology for the investigation of a media lot used for a mammalian cell culture process that had resulted in low growth rate and failure to meet required viable cell density (VCD). The study led to the observation of increased levels of tryptophan oxidation products and a riboflavin degradant, lumichrome, in the malfunctioning media lot, relative to working media lots. A compound found 7-fold higher in the working media lots appeared to be tetrahydropentoxyline, a condensation product of glucose and tryptophan. A second compound found at an over 50-fold higher level in the malfunctioning media lot with a proposed molecular formula of C(21)H(17)N(3)O(3) from high-resolution mass spectrometry (HRMS) analysis remains unknown, although it is confirmed to be a degradant of tryptophan in the media. A study of the cell culture media performed under stress conditions using fluorescent light and heat showed that the media powder was highly resistant to light-induced degradation, while solution media could be easily degraded after brief light exposure. It is therefore suspected that inadvertent exposure of the media to light during preparation and storage has resulted in the poor performance of the media causing the low growth and VCD in the cell culture process.

  11. Impact of embryo co-culture with cumulus cells on pregnancy & implantation rate in patients undergoingin vitrofertilization using donor oocyte.

    Science.gov (United States)

    Bhadarka, Harsha K; Patel, Nayana H; Patel, Niket H; Patel, Molina; Patel, Kruti B; Sodagar, Nilofar R; Phatak, Ajay G; Patel, Jagdish S

    2017-09-01

    Cumulus cell co-culture of embryo had been found to be beneficial for achieving better pregnancy and implantation rate (IR). The present study was aimed to evaluate efficiency of cumulus co-culture technique over simple culture of embryo in terms of pregnancy rate (PR) and IR in patients undergoing treatment for infertility using donor oocytes fertilized by intracytoplasmic sperm injection. This was a quasi-experimental study between control and study groups. The primary endpoint was achievement of pregnancy. Control group included 508 women who underwent embryo development without cumulus cell co-culture and study group included 394 women who underwent embryo development with cumulus cell co-culture using donor's cumulus cells. The present study demonstrated a significant increase in the IR (37.2 vs 24.2%, Pculture technique was found to be more effective than simple culture technique for embryo development in women undergoing treatment for infertility using donor oocytes fertilized by intracytoplasmic sperm injection.

  12. Density-gradient centrifugation enables the purification of cultured corneal endothelial cells for cell therapy by eliminating senescent cells

    Science.gov (United States)

    Okumura, Naoki; Kusakabe, Ayaka; Hirano, Hiroatsu; Inoue, Ryota; Okazaki, Yugo; Nakano, Shinichiro; Kinoshita, Shigeru; Koizumi, Noriko

    2015-01-01

    The corneal endothelium is essential for maintaining corneal transparency; therefore, corneal endothelial dysfunction causes serious vision loss. Tissue engineering-based therapy is potentially a less invasive and more effective therapeutic modality. We recently started a first-in-man clinical trial of cell-based therapy for treating corneal endothelial dysfunction in Japan. However, the senescence of corneal endothelial cells (CECs) during the serial passage culture needed to obtain massive quantities of cells for clinical use is a serious technical obstacle preventing the push of this regenerative therapy to clinical settings. Here, we show evidence from an animal model confirming that senescent cells are less effective in cell therapy. In addition, we propose that density-gradient centrifugation can eliminate the senescent cells and purify high potency CECs for clinical use. This simple technique might be applicable for other types of cells in the settings of regenerative medicine. PMID:26443440

  13. Cell cycle phase of nondividing cells in aging human cell cultures determined by DNA content and chromosomal constitution

    International Nuclear Information System (INIS)

    Yanishevsky, R.M.

    1975-01-01

    Human diploid cell cultures, strain WI-38, have a finite proliferative capacity and have been proposed as a model of biological aging. To identify the cell cycle phase of the nondividing cells, cultures of various ages were exposed to 3 Hdt for 48 hours to label dividing cells, then the cycle phase was identified for individual cells by one of two methods, and finally, the proliferative status of the same cells was scored by autoradiographic evidence of 3 HdT uptake. The methods to identify the cycle phase were: determination of DNA strain content by Feulgen scanning cytophotometry, and determination of chromosome constitution by the technique of premature chromosome condensation (PCC). Preliminary experiments showed the effect of continuous exposure to various levels of 3 HdT on cell growth. High levels of 3 HdT inhibited cell cycle traverse: the cell number and labeling index curves reached a plateau; the cell volume increased; the cells accumulated with 4C DNA contents and it appeared that they blocked in G 2 phase. This pattern is consistent with a radiation effect. (U.S.)

  14. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques.

    Science.gov (United States)

    Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz

    2015-04-01

    Acetic acid bacteria (AAB) usually develop biofilm on the air-liquid interface of the vinegar elaborated by traditional method. This is the first study in which the AAB microbiota present in a biofilm of vinegar obtained by traditional method was detected by pyrosequencing. Direct genomic DNA extraction from biofilm was set up to obtain suitable quality of DNA to apply in culture-independent molecular techniques. The set of primers and TaqMan--MGB probe designed in this study to enumerate the total AAB population by Real Time--PCR detected between 8 × 10(5) and 1.2 × 10(6) cells/g in the biofilm. Pyrosequencing approach reached up to 10 AAB genera identification. The combination of culture-dependent and culture-independent molecular techniques provided a broader view of AAB microbiota from the strawberry biofilm, which was dominated by Ameyamaea, Gluconacetobacter, and Komagataeibacter genera. Culture-dependent techniques allowed isolating only one genotype, which was assigned into the Ameyamaea genus and which required more analysis for a correct species identification. Furthermore, biofilm visualization by laser confocal microscope and scanning electronic microscope showed different dispositions and cell morphologies in the strawberry vinegar biofilm compared with a grape vinegar biofilm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of conventional castaneda and lysis centrifugation blood culture techniques for diagnosis of human brucellosis.

    Science.gov (United States)

    Mantur, Basappa G; Mangalgi, Smita S

    2004-09-01

    We investigated the role of the lysis centrifugation blood culture technique over the conventional Castaneda technique for the diagnosis of human brucellosis. The lysis centrifugation technique has been found to be more sensitive in both acute (20% higher sensitivity; P centrifugation was in the mean detection time, which was only 2.4 days in acute and 2.7 days in chronic cases, with 103 out of 110 (93.6%) and 17 out of 20 (85%) cultures from acute and chronic brucellosis, respectively, detected before the conventional culture was positive. Our results confirmed the potential usefulness of the lysis technique in diagnosis and institution of appropriate antibiotic therapy.

  16. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    Science.gov (United States)

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  17. A flexible thermoresponsive cell culture substrate for direct transfer of keratinocyte cell sheets.

    Science.gov (United States)

    Praveen, Wulligundam; Madathil, Bernadette K; Sajin Raj, R S; Kumary, T V; Anil Kumar, P R

    2017-10-25

    Most cell sheet engineering systems require a support or carrier to handle the harvested cell sheets. In this study, polyethylene terephthalate-based overhead projection transparency sheets (OHPS) were subjected to surface hydrolysis by alkali treatment to increase pliability and hydrophilicity and enable poly(N-isopropylacrylamide-co-glycidylmethacrylate) copolymer (NGMA) coating to impart thermoresponsiveness. NGMA was applied on the modified OHPS by the technique of spin coating using an indigenously designed spin coater. The spin coating had the advantage of using low volumes of the polymer and a reduced coating time. The surface chemistry and thermoresponsive coating was analyzed by Fourier transform infrared spectroscopy and water contact angle. Human keratinocyte cells were cultured on the spin coated surface and scaffold-free cell sheets were successfully harvested by simple variation of temperature. These cell sheets were found to be viable, exhibited epithelial characteristic and cell-cell contact as confirmed by positive immunostaining for ZO-1. The integrity and morphology of the cell sheet was confirmed by stereomicroscopy and E-SEM. These results highlight the potential of the NGMA spin coated modified OHPS to serve as a thermoresponsive culture surface-cum-flexible transfer tool.

  18. Headset Culture, Audile, Technique, and sound Space as Private Space

    NARCIS (Netherlands)

    Sterne, Jonathan

    2014-01-01

    abstractThis essay offers a story about changing meanings of listening. The techniques of listening that became widespread with the diffusion of the telephone, the phonograph, and the radio early in the twentieth century were themselves transposed and elaborated from techniques of listening

  19. Production of monozygotic twin calves using the blastomere separation technique and Well of the Well culture system.

    Science.gov (United States)

    Tagawa, M; Matoba, S; Narita, M; Saito, N; Nagai, T; Imai, K

    2008-03-15

    The present study was conducted to establish a simple and efficient method of producing monozygotic twin calves using the blastomere separation technique. To produce monozygotic twin embryos from zona-free two- and eight-cell embryos, blastomeres were separated mechanically by pipetting to form two demi-embryos; each single blastomere from the two-cell embryo and tetra-blastomeres from the eight-cell embryo were cultured in vitro using the Well of the Well culture system (WOW). This culture system supported the successful arrangement of blastomeres, resulting in their subsequent aggregation to form a demi-embryo developing to the blastocyst stage without a zona pellucida. There was no significant difference in the development to the blastocyst stage between blastomeres separated from eight-cell (72.0%) and two-cell (62.0%) embryos. The production rates of the monozygotic pair blastocysts and transferable paired blastocysts for demi-embryos obtained from eight-cell embryos (64.0 and 45.0%, respectively) were higher than those for demi-embryos obtained from two-cell embryos (49.0 and 31.0%, PWOW culture system, yielded viable monozygotic demi-embryos, resulting in high rates of pregnancy and twinning rates after embryo transfer.

  20. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  1. Comparison of Nested-PCR technique and culture method in ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... tuberculosis (GUTB) compared with acid fast staining and culture method. In total ... tuberculosis; PCR, polymerase chain reaction; MTB,. Mycobacterium tuberculosis;. EPTB, extrapulmonary tuberculosis; AFB, acid-fast bacilli; SDS, sodium ..... Dingtoumda B, Diallo B, Defer MC, Sombié I, Zanetti S, Sechi LA.

  2. From cultural aesthetic to perfor- mance technique: continuities and ...

    African Journals Online (AJOL)

    Introduction. A broad-based survey of Malawian dances that I undertook several years ago aimed rather ambitiously to identify persistent regional forms of these dances as well as their governing aesthetic(s). In the course of the field work, a recurrent ~estion emerged: how do we approach dance as cultural performance?

  3. Callus formation using in vitro tissue culture technique in cultivated ...

    African Journals Online (AJOL)

    Abhishek

    2013-07-24

    Jul 24, 2013 ... cotyledon, coteledonary node and hypocotyl measuring 4 to 5 mm obtained from asceptically grown seedlings were inoculated on the surface of different culture medium. Murashige and Skoog (MS) salts supplemented with B5 vitamins was used as basal medium and fortified with different concentrations of ...

  4. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  5. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  6. Guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata

    Directory of Open Access Journals (Sweden)

    Won-Gyu Bae

    2015-12-01

    Full Text Available Engineering complex extracellular matrix (ECM is an important challenge for cell and tissue engineering applications as well as for understanding fundamental cell biology. We developed the methodology for fabrication of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with original wrinkling technique for the generation of well-defined native ECM-like platforms by culturing fibroblast cells on the multiscale substrata [1]. This paper provides information on detailed characteristics of polyethylene glycol-diacrylate multiscale substrata. In addition, a possible model for guided extracellular matrix formation from fibroblast cells cultured on bio-inspired configurable multiscale substrata is proposed.

  7. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  8. Aeroponics for the culture of organisms, tissues and cells.

    Science.gov (United States)

    Weathers, P J; Zobel, R W

    1992-01-01

    Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.

  9. A method for culturing human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1981-01-01

    For the first time a method for culturing human hair follicle cells is described. The bovine eye lens capsule, a basement membrane-like structure, is used as the substrate for the cultures. In a culture medium supplemented with hydrocortisone and insulin about 70% of the original follicles will form growing colonies of diploid keratinocytes.

  10. Fabrication and characterization of thermoresponsive polystyrene nanofibrous mats for cultured cell recovery.

    Science.gov (United States)

    Oh, Hwan Hee; Ko, Young-Gwang; Uyama, Hiroshi; Park, Won Ho; Cho, Donghwan; Kwon, Oh Hyeong

    2014-01-01

    Rapid cell growth and rapid recovery of intact cultured cells are an invaluable technique to maintain the biological functions and viability of cells. To achieve this goal, thermoresponsive polystyrene (PS) nanofibrous mat was fabricated by electrospinning of PS solution, followed by the graft polymerization of thermoresponsive poly(N-isopropylacrylamide)(PIPAAm) on PS nanofibrous mats. Image analysis of the PS nanofiber revealed a unimodal distribution pattern with 400 nm average fiber diameter. Graft polymerization of PIPAAm on PS nanofibrous mats was confirmed by spectroscopic methods such as ATR-FTIR, ESCA, and AFM. Human fibroblasts were cultured on four different surfaces, PIPAAm-grafted and ungrafted PS dishes and PIPAAm-grafted and ungrafted PS nanofibrous mats, respectively. Cells on PIPAAm-grafted PS nanofibrous mats were well attached, spread, and proliferated significantly much more than those on other surfaces. Cultured cells were easily detached from the PIPAAm-grafted surfaces by decreasing culture temperature to 20 °C, while negligible cells were detached from ungrafted surfaces. Moreover, cells on PIPAAm-grafted PS nanofibrous mats were detached more rapidly than those on PIPAAm-grafted PS dishes. These results suggest that thermoresponsive nanofibrous mats are attractive cell culture substrates which enable rapid cell growth and recovery from the culture surface for application to tissue engineering and regenerative medicine.

  11. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  12. Polymicrobial chronic endophthalmitis diagnosed by culture and molecular technique.

    Science.gov (United States)

    Mukherjee, A; Pramanik, S; Das, D; Roy, R; Therese, K L

    2014-01-01

    Accurate etiological diagnosis is the key to prevention of ocular morbidity in endophthalmitis cases. A 66 year old male was suffering from chronic endophthalmitis post-cataract surgery. Polymerase chain reaction examination on anterior chamber fluid was positive for Propionibacterium acnes but negative for the panfungal genome. He was advised vitrectomy with intravitreal injections. Polymerase chain reaction of vitreous aspirate was positive for P.acnes as well as panfungal genome. The vitreous sample also grew yeast in culture which was identified as Candida pseudotropicalis. Patient was treated on an alternate day regimen of intravitreal Vancomycin and Amphotericin B in the post-operative period. There was improvement in vision at final follow up. Chronic endophthalmitis can have polymicrobial etiology which will require appropriate diagnostic and therapeutic strategies. The role of molecular testing is vital in these cases as growth in culture is often negative.

  13. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  14. Endothelial cell loss secondary to two different phacoemulsification techniques.

    Science.gov (United States)

    Kohlhaas, M; Klemm, M; Kammann, J; Richard, G

    1998-11-01

    The endothelial cell count after phacoemulsification serves as a sensitive indicator for the level of corneal damage caused by different phacoemulsification techniques. In a prospective and randomized study, the "Reversed Tip and Snip" technique and the "Divide and Conquer" technique were performed in groups of 30 patients each. The corneal endothelial cell count was measured preoperatively as well as 4 weeks and 3 months postoperatively. The endothelial cell count showed significant (P < .001) reduction by approximately 10% after the "Reversed Tip and Snip" technique and by approximately 15% (P < .001) after the "Divide and Conquer" technique. The latter produced a significantly (P < .001) greater cell loss. The "Reversed Tip and Snip" phacoemulsification technique produces less endothelial cell loss than the "Divide and Conquer" technique.

  15. Experimental Methodology used by Cell Cultures Laboratory from INRMFB to assess the therapeutic effect of natural factors

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2010-11-01

    Full Text Available The experimental study design on cell cultures allows the direct biological evaluation at the cellular level, of the therapeutic effect that natural factors can play over the organism.Techniques for obtaining cell cultures requires a complex and laborious task that starts from live tissue sampling, continuous with isolation of cells and their preparation for sowing a culture plate. This preparation involves mechanical and enzymatic action from the researcher on biological material. Derived cell cultures are monitored morphologically by high-performance inverted biological microscope, with video camera for image acquisition. In the final stage, the cells are scraped, and through biochemical and molecular techniques, the therapeutic efficiency hypothesis of the investigated natural factor is verified experimentally. The cell cultures can be crioconservated in special containers with liquid nitrogen.

  16. Evaluation of limonoid production in suspension cell culture of Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Elisângela Fumagali Gerolino

    Full Text Available ABSTRACTThe use of cell and plant tissue culture techniques to produce economically important active metabolites has been growing. Among these substances are total limonoid aglycones, which are produced by "pera" orange (Citrus sinensis (L. Osbeck, Rutaceae and have received considerable attention because of their anticancer actions. The main objective of the present study was to analyze and compare the levels of limonoid aglycones in seeds, callus cultures (originating from seeds, callus cultures (originating from hypocotyls, cell suspensions from hypocotyls cells, and cell suspensions from cotyledons. The cell cultures or C. sinensis were obtained by inoculating two strains of callus in MS medium supplemented with 2.0 µM 2,4-dichlorophenoxyacetic acid, 7.0 µM benzyl aminopurine, and 3% (w/v sucrose in the dark. The highest concentrations of limonoid aglycone that were obtained were observed in cotyledon cell lines (240 mg/100 g dry weight that were produced on day 21 of culture and hypocotyl cell lines on day 7 (210 mg/100 g dry weight. Explants of different origins under the same culture conditions had different limonoid aglycone content. The present results may suggest strategies for enhancing the productivity of biologically important limonoid aglycones and investigating the complex pathways of these secondary metabolites in plant tissue cultures.

  17. Lethal graft-versus-host disease: modification with allogeneic cultured donor cells

    International Nuclear Information System (INIS)

    Mauch, P.; Lipton, J.M.; Hamilton, B.; Obbagy, J.; Kudisch, M.; Nathan, D.; Hellman, S.

    1984-01-01

    The use of the bone marrow culture technique was studied as a means to prepare donor marrow for bone marrow transplantation to avoid lethal graft-versus-host disease (GVHD). Preliminary experiments demonstrated the rapid loss of theta-positive cells in such cultures, so that theta-positive cells were not detected after 6 days. Initial experiments in C3H/HeJ (H-2k, Hbbd) recipients prepared with 900 rad demonstrated improved survival when 3-day cultured C57BL/6 (H-2b, Hbbs) donor cells were used in place of hind limb marrow for transplantation. However, hemoglobin typing of recipient animals revealed only short-term donor engraftment, with competitive repopulation of recipient marrow occurring. Subsequent experiments were done in 1,200-rad prepared recipients, with long-term donor engraftment demonstrated. The majority of 1,200-rad prepared animals receiving cultured allogeneic cells died of GVHD, but animals receiving 28-day cultured cells had an improved 90-day survival and a delay in GVHD development over animals receiving hind limb marrow or marrow from shorter times in culture. In addition, animals receiving anti-theta-treated, 3-day nonadherent cells had an improved survival (44%) over animals receiving anti-theta-treated hind limb marrow (20%). These experiments demonstrate modest benefit for the use of cultured cells in bone marrow transplantation across major H-2 histocompatibility complex differences

  18. Human mixed lymphocyte cultures. Evaluation of microculture technique utilizing the multiple automated sample harvester (MASH)

    Science.gov (United States)

    Thurman, G. B.; Strong, D. M.; Ahmed, A.; Green, S. S.; Sell, K. W.; Hartzman, R. J.; Bach, F. H.

    1973-01-01

    Use of lymphocyte cultures for in vitro studies such as pretransplant histocompatibility testing has established the need for standardization of this technique. A microculture technique has been developed that has facilitated the culturing of lymphocytes and increased the quantity of cultures feasible, while lowering the variation between replicate samples. Cultures were prepared for determination of tritiated thymidine incorporation using a Multiple Automated Sample Harvester (MASH). Using this system, the parameters that influence the in vitro responsiveness of human lymphocytes to allogeneic lymphocytes have been investigated. PMID:4271568

  19. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  20. Induction of interdigitating cell processes in podocyte culture.

    Science.gov (United States)

    Yaoita, Eishin; Yoshida, Yutaka; Nameta, Masaaki; Takimoto, Hiroki; Fujinaka, Hidehiko

    2018-02-01

    Highly organized cell processes characterize glomerular podocytes in vivo. However, podocytes in culture have a simple morphology lacking cell processes, especially upon reaching confluence. Here, we aimed to establish culture conditions under which cultured podocytes extend cell processes at confluence. Among various culture conditions that could possibly cause phenotypic changes in podocytes, we examined the effects of heparin, all-trans retinoic acid, fetal bovine serum, and extracellular matrices on the morphology of podocytes in rat primary culture. Consequently, long arborized cell processes were observed to radiate extensively from the cell body only when cells were cultured in the presence of heparin and all-trans retinoic acid on laminin-coated dishes with decreasing concentrations of fetal bovine serum. Primary processes branching repeatedly into terminal processes and cell process insertion under adjacent cell bodies were evident by electron microscopy-based analysis. Immunostaining for podocin showed conspicuous elongations of intercellular junctions. Under these conditions, the expression levels of podocyte-specific proteins and genes were markedly upregulated. Thus, we succeeded in establishing culture conditions in which the cultured podocytes exhibit phenotypes similar to those under in vivo conditions. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Viable Cell Culture Banking for Biodiversity Characterization and Conservation.

    Science.gov (United States)

    Ryder, Oliver A; Onuma, Manabu

    2018-02-15

    Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.

  2. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    Science.gov (United States)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  3. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Abe, Yayoi; Tada, Kazuya

    2009-01-01

    Poly(vinyl alcohol), PVA, produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to those of polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion rate of the electrolyte across the PVA film to the indium tin oxide (ITO) electrode. In particular, a solvent with a hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method of forming an electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using the conducting polymer, PPy. Then, by applying a similar technique, we fabricated poly(3,4-ethylenedioxythiophene), PEDOT/PVA, composite films and investigated their basic electrochemical properties. Moreover, in this study, in order to develop a novel cell-culture system which makes it possible to communicate with cultured cells, fibroblasts were cultured on PPy- and PEDOT-coated ITO conductive glass plates for 7 days. The result reveals that the PPy and PEDOT films support the secretory functions of the cells cultured on its surface. The PPy- and PEDOT-coated electrodes may be useful to culture the cells on.

  4. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Mitsuyoshi, E-mail: onoda@eng.u-hyogo.ac.j [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himwji Shosha Campus, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Abe, Yayoi; Tada, Kazuya [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himwji Shosha Campus, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2009-11-30

    Poly(vinyl alcohol), PVA, produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to those of polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion rate of the electrolyte across the PVA film to the indium tin oxide (ITO) electrode. In particular, a solvent with a hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method of forming an electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using the conducting polymer, PPy. Then, by applying a similar technique, we fabricated poly(3,4-ethylenedioxythiophene), PEDOT/PVA, composite films and investigated their basic electrochemical properties. Moreover, in this study, in order to develop a novel cell-culture system which makes it possible to communicate with cultured cells, fibroblasts were cultured on PPy- and PEDOT-coated ITO conductive glass plates for 7 days. The result reveals that the PPy and PEDOT films support the secretory functions of the cells cultured on its surface. The PPy- and PEDOT-coated electrodes may be useful to culture the cells on.

  5. The release of iron by Sertoli cells in culture

    NARCIS (Netherlands)

    Wauben-Penris, P. J.; Veldscholte, J.; van der Ende, A.; van der Donk, H. A.

    1988-01-01

    In seminiferous tubules, iron transport from the blood to the abluminal germinal cells must occur through the Sertoli cell cytoplasm. We investigated the release of previously accumulated iron by cultured Sertoli cells. We found that Sertoli cells contain easily releasable and less easily releasable

  6. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  7. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan Pavel Kucera

    2015-09-01

    Full Text Available Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs. However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands.CV was significantly lower in strands composed purely of SCMs (5.5±1.5 cm/s, n=11 as compared to PCMs (34.9±2.9 cm/s, n=21 at similar refractoriness (100% SCMs: 122±25 ms, n=9; 100% PCMs: 139±67 ms, n=14. In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV.These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  8. Obtaining barley haploid embryos and seedlings using anther culture technique

    International Nuclear Information System (INIS)

    Arabi, M.I.E.; Al-Safadi, B.; Mir Ali, N.

    2000-01-01

    The effect of three barley genotypes (Igri, Arabi abiad, and Taqa 76), three irradiation doses (0, 5, and 10 Gy), and two media (FW, modified FW), on the number of formed embryos, and the ratio between regenerated embryos to green seedlings and albinos, were studied using anther culture. Also the study involved the compatibility between seedling morphology and chromosome number. results indicated significant differences among the genotypes, and media in callus and embryos formation and also in the ratio and albino seedlings. However, the effect of gamma rays dose was significant only on embryos regeneration. A high percentage of compatibility (90%) was obtained between the seedling morphology and chromosome number. (author)

  9. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  10. Degradation of high density lipoprotein in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.J.

    1986-01-01

    In rat ovary luteal cells, degradation of high density lipoprotein (HDL) to tricholoracetic acid (TCA)-soluble products accounts for only a fraction of the HDL-derived cholesterol used for steroidogenesis. In this study the authors have investigated the fate of 125 I]HDL bound to cultured luteal cells using pulse-chase technique. Luteal cell cultures were pulse labeled with [ 125 I]HDL 3 and reincubated in the absence of HDL. By 24 h about 50% of the initallay bound radioactivity was released into the medium, of which 60-65% could be precipitated with 10% TCA. Gel filtration of the chase incubation medium on 10% agarose showed that the amount of TCA-soluble radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity eluted over a wide range of molecular weights (15,000-80,000), and there was very little intact HDL present. Electrophoresis of the chase medium showed that component of the TCA-precipitable portion had mobility similar to apo AI. Lysosomal inhibitors of receptor-mediated endocytosis had no effect on the composition or quantity of radioactivity released during chase incubation. The results show that HDL 3 binding to luteal cells is followed by complete degradation of the lipoprotein, although the TCA-soluble part does not reflect the extent of degradation

  11. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  12. A kinetic model for flavonoid production in tea cell culture.

    Science.gov (United States)

    Shibasaki-Kitakawa, Naomi; Iizuka, Yasuhiro; Takahashi, Atsushi; Yonemoto, Toshikuni

    2017-02-01

    As one of the strategies for efficient production of a metabolite from cell cultures, a kinetic model is very useful tool to predict productivity under various culture conditions. In this study, we propose a kinetic model for flavonoid production in tea cell culture based on the cell life cycle and expression of PAL, the gene encoding phenylalanine ammonia-lyase (PAL)-the key enzyme in flavonoid biosynthesis. The flavonoid production rate was considered to be related to the amount of active PAL. Synthesis of PAL was modelled based on a general gene expression/translation mechanism, including the transcription of DNA encoding PAL into mRNA and the translation of PAL mRNA into the PAL protein. The transcription of DNA was assumed to be promoted at high light intensity and suppressed by a feedback regulatory mechanism at high flavonoid concentrations. In the model, mRNA and PAL were considered to self-decompose and to be lost by cell rupture. The model constants were estimated by fitting the experimental results obtained from tea cell cultures under various light intensities. The model accurately described the kinetic behaviors of dry and fresh cell concentrations, glucose concentration, cell viability, PAL specific activity, and flavonoid content under a wide range of light intensities. The model simulated flavonoid productivity per medium under various culture conditions. Therefore, this model will be useful to predict optimum culture conditions for maximum flavonoid productivity in cultured tea cells.

  13. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  14. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...... tested successfully with brain slices and PC12 cells. The culture substrate can be modified using metal electrodes and/or nanostructures for conducting electrical measurements while culturing and for better mimicking the in vivo conditions.......In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been...

  15. Project 'Use of nuclear techniques in investigation, conservation and management of the cultural historical patrimony

    International Nuclear Information System (INIS)

    Kochmann, Sonnia

    2000-12-01

    This project is aimed at solving problems of conservation of the cultural historical patrimony through the active participation of the member countries of ARCAL by the application of Analytic Nuclear Techniques [es

  16. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  17. Treatment of Mycoplasma Contamination in Cell Cultures with Plasmocin

    OpenAIRE

    Uphoff, Cord C.; Denkmann, Sabine-A.; Drexler, Hans G.

    2012-01-01

    A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of...

  18. Cultural Variations in Mothers' Acceptance of and Intent to Use Behavioral Child Management Techniques

    Science.gov (United States)

    Mah, Janet W. T.; Johnston, Charlotte

    2012-01-01

    We examined cultural differences in mothers' acceptance of and intent to use behavioral parenting techniques for managing disruptive child behavior, and the possible roles of parenting styles and implicit theories in explaining these cultural differences. A community sample of 117 Euro-Canadian and Chinese-immigrant mothers of boys aged 4- to…

  19. Effect of the initial specimen diversion technique on blood culture contamination rates.

    Science.gov (United States)

    Binkhamis, Khalifa; Forward, Kevin

    2014-03-01

    The initial specimen diversion technique (ISDT) was first described by Patton and Schmitt (J. Clin. Microbiol. 48:4501-4503, 2010, doi:10.1128/JCM.00910-10). This study looked at the effect of implementation of the ISDT on blood culture contamination rates at our center. We found a reduction of 30.34% in potential blood culture contaminants.

  20. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  1. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture.

    OpenAIRE

    Tanimizu, Naoki; Miyajima, Atsushi; Mostov, Keith E

    2007-01-01

    Cholangiocytes are cellular components of the bile duct system of the liver, which originate from hepatoblasts during embryonic liver development. Although several transcription factors and signaling molecules have been implicated in bile duct development, its molecular mechanism has not been studied in detail. Here, we applied a three-dimensional (3D) culture technique to a liver progenitor cell line, HPPL, to establish an in vitro culture system in which HPPL acquire differentiated cholangi...

  2. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  3. Establishment of autologous embryonic stem cells derived from preantral follicle culture and oocyte parthenogenesis.

    Science.gov (United States)

    Lee, Seung Tae; Choi, Mun Hwan; Lee, Eun Ju; Gong, Seung Pyo; Jang, Mi; Park, Sang Hyun; Jee, Hyang; Kim, Dae Yong; Han, Jae Yong; Lim, Jeong Mook

    2008-11-01

    To evaluate whether autologous embryonic stem cells can be established without generating clone embryos. Prospective model study. Gamete and stem cell biotechnology laboratory in Seoul National University, Seoul, Korea. F1 hybrid B6D2F1 mice. Preantral follicles were cultured, and oocytes matured in the follicles were parthenogenetically activated. Preimplantation development and stem cell characterization. More intrafollicular oocytes that were retrieved from secondary follicles matured and developed into blastocysts after parthenogenesis than those that were retrieved from primary follicles. Of those 35 blastocysts derived from 193 parthenotes, one line of colony-forming cells was established from the culturing of early secondary follicles. The established cells were positive for embryonic stem cell-specific markers and had normal diploid karyotype and telomerase activity. They differentiated into embryoid bodies in vitro and teratomas in vivo. Inducible differentiation of the established cells into neuronal lineage cells also was possible. Autologous embryonic stem cells can be established by preantral follicle culture and oocyte parthenogenesis. A combined technique of follicle culture and oocyte parthenogenesis that does not use developmentally competent oocytes has the potential to replace somatic cell nuclear transfer for autologous cell therapy.

  4. Development of an Insert Co-culture System of Two Cellular Types in the Absence of Cell-Cell Contact.

    Science.gov (United States)

    Renaud, Justine; Martinoli, Maria-Grazia

    2016-07-17

    The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.

  5. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    Science.gov (United States)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  6. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  7. The ultrastructure of separated and cultured cell of Porphyra yezoensis

    Science.gov (United States)

    Mei, Jun-Xue; Fei, Xiu-Geng

    2001-03-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  8. Monitoring of cell cultures with LTCC microelectrode array.

    Science.gov (United States)

    Ciosek, P; Zawadzki, K; Łopacińska, J; Skolimowski, M; Bembnowicz, P; Golonka, L J; Brzózka, Z; Wróblewski, W

    2009-04-01

    Monitoring of cell cultures in microbioreactors is a crucial task in cell bioassays and toxicological tests. In this work a novel tool based on a miniaturized sensor array fabricated using low-temperature cofired ceramics (LTCC) technology is presented. The developed device is applied to the monitoring of cell-culture media change, detection of the growth of various species, and in toxicological studies performed with the use of cells. Noninvasive monitoring performed with the LTCC microelectrode array can be applied for future cell-engineering purposes.

  9. Nylon-3 polymers that enable selective culture of endothelial cells.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H; Masters, Kristyn S

    2013-11-06

    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.

  10. Comparison of two fecal egg recovery techniques and larval culture for cyathostomins in horses.

    Science.gov (United States)

    Bello, Thomas R; Allen, Tammy M

    2009-05-01

    To compare the McMaster and centrifugal flotation techniques and larval culture for recovery of cyathostomin (small strongyle) eggs from the feces of horses. Fecal samples from 101 horses. In experiment I, homogenized fresh feces from a single horse were randomly subsampled by use of each technique for 10 replicates. In experiment II, samples from 43 horses that had no anthelmintic treatment were analyzed by use of McMaster, centrifugal flotation, and larval culture techniques. In experiment III, 57 horses were treated with an anthelmintic by owners, and fecal samples were analyzed as for experiment II. In experiment I, use of the McMaster technique recovered 72% of the eggs obtained by use of centrifugal flotation from paired subsamples. In experiment II, use of the McMaster technique recovered 81% of the eggs obtained by use of centrifugal flotation. Only cyathostomins resulted from individual larval cultures. In experiment III, 24 samples had negative results for all 3 tests, 18 samples had positive results only with larval cultures, and 15 samples had positive results of centrifugal flotation (only 5 of which had positive results via the McMaster technique). Centrifugal flotation consistently was superior to the McMaster technique, especially at low fecal egg numbers. The combination of centrifugal flotation and larval culture may provide the best accuracy for evaluation of anthelmintic efficacy.

  11. Examining live cell cultures during apoptosis by digital holographic phase imaging and Raman spectroscopy

    Science.gov (United States)

    Khmaladze, Alexander

    2017-11-01

    Cellular apoptosis is a unique, organized series of events, leading to programmed cell death. In this work, we present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy measurements of live cell cultures yield information about cell shape and volume, changes to which are indicative of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopic measurements provide complementary information about cells, such as protein, lipid and nucleic acid content, and the spectral signatures associated with structural changes in molecules. Our work indicates that the chemical changes in proteins, which were detected by Raman measurements, preceded morphological changes, which were seen with digital holographic microscopy.

  12. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  13. Stimulation and support of haemopoietic stem cell proliferation by irradiated stroma cell colonies in bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, Hiroko; Seto, Akira

    1981-01-01

    A culture system was established in which haemopoietic stem cells can undergo a recovery proliferation after a depletion of the stem cells, completely in vitro. To elucidate the source of the stimulatory factors, normal bone marrow cells were overlayed on top of the irradiated adherent 'stromal' cell colonies in the bone marrow cell culture. This stimulated the proliferation of haemopoietic stem cells in the cultured cells in suspension. The present results indicate that the stromal cells produce factors which stimulate stem cell proliferation. Whether the stimulation is evoked by direct cell-cell interactions or by humoral factors is as yet to be studied. (author)

  14. Immunodissection and culture of rabbit cortical collecting tubule cells

    International Nuclear Information System (INIS)

    Spielman, W.S.; Sonnenburg, W.K.; Allen, M.L.; Arend, L.J.; Gerozissis, K.; Smith, W.L.

    1986-01-01

    A mouse monoclonal antibody designated IgG 3 (rct-30) has been prepared that reacts specifically with an antigen on the surface of all cells comprising the cortical and medullary rabbit renal collecting tubule including the arcades. Plastic culture dishes coated with IgG 3 (rct-30) were used to isolate collecting tubule cells from collagenase dispersions of rabbit renal cortical cells by immunoadsorption. Typically, 10 6 rabbit cortical collecting tubule (RCCT) cells were obtained from 5 g of renal cortex (2 kidneys). Between 20 and 30% of the RCCT cells were reactive with peanut lectin suggesting that RCCT cells are a mixture of principal and intercalated cells. Approximately 10 7 RCCT cells were obtained after 4 to 5 days in primary culture. Moreover, RCCT cells continued to proliferate after passaging with a doubling time of ∼32 h. RCCT cells passaged once and then cultured 4-5 days were found 1) to synthesize cAMP in response to arginine vasopressin (AVP), prostaglandin E 2 (PGE 2 ), isoproterenol, and parathyroid hormone, but not calcitonin, prostaglandin D 2 , or prostaglandin I, and 2) to release PGE 2 in response to bradykinin but not arginine vasopressin or isoproterenol. The results indicate that cultured RCCT cells retain many of the hormonal, histochemical, and morphological properties expected for a mixture of principal and intercalated rabbit cortical collecting tubule epithelia. RCCT cells should prove useful both for studying hormonal interactions in the cortical collecting tubule and as a starting population for isolating intercalated collecting tubule epithelia

  15. In vitro production of azadirachtin from cell suspension cultures of ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    to affect the growth and metabolism of cultured cells, and have been studied extensively in different species in .... Specific growth rate of neem cell suspensions in altered nitrate: ammonium ratio. MS, Murashige and Skoog medium; MS medium with .... Stimulated caffeine production has been reported in Coffea arabica cell ...

  16. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Wu Jun; An Rui

    2006-01-01

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  17. Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Duncan Baker

    2016-11-01

    Full Text Available Genetic changes in human pluripotent stem cells (hPSCs gained during culture can confound experimental results and potentially jeopardize the outcome of clinical therapies. Particularly common changes in hPSCs are trisomies of chromosomes 1, 12, 17, and 20. Thus, hPSCs should be regularly screened for such aberrations. Although a number of methods are used to assess hPSC genotypes, there has been no systematic evaluation of the sensitivity of the commonly used techniques in detecting low-level mosaicism in hPSC cultures. We have performed mixing experiments to mimic the naturally occurring mosaicism and have assessed the sensitivity of chromosome banding, qPCR, fluorescence in situ hybridization, and digital droplet PCR in detecting variants. Our analysis highlights the limits of mosaicism detection by the commonly employed methods, a pivotal requirement for interpreting the genetic status of hPSCs and for setting standards for safe applications of hPSCs in regenerative medicine.

  18. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    Science.gov (United States)

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons

  19. Control of fibronectin synthesis by rat granulosa cells in culture

    International Nuclear Information System (INIS)

    Skinner, M.K.; Dorrington, J.H.

    1984-01-01

    The secreted and cellular [ 35 S]methionine-radiolabeled proteins of cultured rat granulosa cells were separated by electrophoresis on sodium dodecylsulfate (SDS) polyacrylamide gradient slab gels. From 24 to 72 h of culture FSH increased the intensity of labeling of most of the secreted proteins. A 220,000-dalton protein, however, increased in intensity only in control cultures and became the major secreted protein after 72 h, comprising 20% of the total radiolabeled proteins. This protein was identified as fibronectin by immunoprecipitation. There was no increase in the secreted or cellular fibronectin in FSH- or testosterone- and insulin-treated cultures. These studies indicate that a component of extracellular matrix is a major secretory product of unstimulated immature granulosa cells. As hormones induce the differentiated functions of granulosa cells in culture, the secretion of fibronectin is inhibited

  20. Characterization of a novel miniature cell culture device

    Science.gov (United States)

    Moore, Sandra K.; Kleis, Stanley J.

    2008-05-01

    Recent advancements in the field of microfluidics have generated much interest in the advent of a miniaturized cell culture device. In this study, we developed a novel miniature culture system (cells, either prokaryotic or eukaryotic in type, for both 1 g and microgravity applications. The miniature culture system may advance the development of microanalytical remote monitoring tools such as biological sentinels, biosensors, and lab-on-a-chip. Integrating the autonomous miniature culture system with a microanalytical device makes a powerful biological tool. Cells can be cultured long-term, harvested, and released directly into an analytical tool without the need for human interaction through fluid dynamic manipulations. This work characterizes the miniature bioreactor system through numerical and experimental proof of concept studies.

  1. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  2. Radiosensitivity of cultured insect cells: II. Diptera

    Energy Technology Data Exchange (ETDEWEB)

    Koval, T.M.

    1983-10-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D/sub 0/ values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells.

  3. Radiosensitivity of cultured insect cells: II. Diptera

    International Nuclear Information System (INIS)

    Koval, T.M.

    1983-01-01

    The radiosensitivity of five dipteran cell lines representing three mosquito genera and one fruit fly genus were examined. These lines are: (1) ATC-10, Aedes aegypti; (2) RU-TAE-14, Toxorhynchites amboinensis; (3) RU-ASE-2A, Anopheles stephensi; (4) WR69-DM-1, Drosophila melanogaster; and (5) WR69-DM-2, Drosophila melanogaster. Population doubling times for these lines range from approximately 16 to 48 hr. Diploid chromosome numbers are six for the mosquito cells and eight for the fruit fly cells D 0 values are 5.1 and 6.5 Gy for the Drosophila cell lines and 3.6, 6.2, and 10.2 Gy for the mosquito cell lines. The results of this study demonstrate that dipteran insect cells are a few times more resistant to radiation than mammalian cells, but not nearly as radioresistant as lepidopteran cells

  4. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  5. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long-te...

  6. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    Science.gov (United States)

    Lestard, Nathalia R; Capella, Marcia A M

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  7. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    Total soluble proteins (TSP) and culture filtrate (CF) proteins were extracted from the cell culture system and solubilised in urea buffer (9 M urea, 2 M thiourea and 4% CHAPS). Both onedimensional (1D) and two-dimensional (2D) gel analysis of these two proteomes show that the TSP and CF proteomes have different ...

  8. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  9. Enhancement of Diosgenin Production in Plantlet and Cell Cultures ...

    African Journals Online (AJOL)

    Enhancement of Diosgenin Production in Plantlet and Cell Cultures of Dioscorea zingiberensis by Palmarumycin C13 from the Endophytic fungus, Berkleasmium sp. Dzf12. Y Mou, K Zhou, D Xu, R Yu, J Li, C Yin, L Zhou ...

  10. Impact of cell culture on recombinant monoclonal antibody product heterogeneity.

    Science.gov (United States)

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2016-09-01

    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  11. Viral risk mitigation for Mammalian cell culture media.

    Science.gov (United States)

    Weaver, Bob; Rosenthal, Scott

    2010-01-01

    Adventitious viral contamination in mammalian cell culture manufacturing facilities can lead to loss of product due to regulatory concerns regarding potential health risks. These events can also result in manufacturing shutdowns for extended periods of time. Numerous measures are currently taken to minimize these risks. Nonetheless, raw materials remain a high-risk entry point for viral contamination of mammalian cell cultures. Two virucidal technologies, ultraviolet radiation in the C band and high-temperature short-time pasteurization, were tested for the treatment of mammalian cell culture media. The results demonstrated no impact to the cell culture process or the quality of the products produced at the chosen dosage while providing robust viral protection.

  12. Elicitation of Diacetylenic Compounds in Suspension Cultured Cells of Eggplant

    Science.gov (United States)

    Imoto, Setsuko; Ohta, Yoshimoto

    1988-01-01

    Induction of stress metabolites in the suspension cultured cells of eggplant (Solanum melongena L.) was examined. When autoclaved RNase A or nigeran, both of which are nonspecific phytoalexin elicitors in bean cells, were added to the cell culture of eggplant, greatly enhanced levels of three compounds were observed. One of them was cis-pentadeca-6-ene-1,3-diyne-5,15-diol, a novel diacetylenic compound. This compound has considerable fungitoxic activity. Also identified was falcarindiol, another fungitoxic diacetylenic compound previously reported as one of the phytoalexins in infected tomato fruits and leaves. Elicited compounds preferentially accumulated in the culture medium rather than in the cells and decreased to original levels during prolonged culturing. The elicitation of these compounds was closely correlated with cellular damage in terms of the decrease of growth rate and was inhibited by 10 micromolar cycloheximide. PMID:16665862

  13. Cell/Tissue Culture Radiation Exposure Facility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  14. AC impedance technique in PEM fuel cell diagnosis - A review

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaozi; Wang, Haijiang; Colin Sun, Jian; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-12-15

    Because the AC impedance technique, also known as electrochemical impedance spectroscopy (EIS), is being utilized by more and more researchers in proton exchange membrane (PEM) fuel cell studies, the technique has developed into a primary tool in such research. In this paper the recent work on PEM fuel cells using the AC impedance technique is reviewed. Both in situ and ex situ impedance measurements are discussed, with primary focus on the in situ measurements. Within the domain of in situ studies, various methods for measuring the impedance of a PEM fuel cell are examined, and typical impedance spectra in several common scenarios are presented. Representative applications of the AC impedance technique in PEM fuel cell research are also discussed. Finally, the necessity of a time domain rapid AC impedance technique is briefly discussed. (author)

  15. Relationship between sensitivity to ultraviolet light and budding in yeast cells of different culture ages

    International Nuclear Information System (INIS)

    Atsuta, J.; Okajima, S.

    1976-01-01

    Subpopulations of yeast cells, consisting of cells of different sizes and different percentages of budding cells, were prepared by centrifugation through sucrose solutions with linear density gradients of cultures at different phases of the growth cycle. Ultraviolet survival of these cells was determined by colony counting, and the survival rate was compared with the cells' respiratory rates. Individual budding cells and interdivisional cells, and also mother cells and daughter cells derived from irradiated budding cells, were isolated by the micromanipulation technique. The number of divisions in each cell was measured during a 21-hr incubation period immediately after irradiation. In the population in the logarithmic phase consisting of homogeneous cells of middle size, no difference in uv sensitivity was observed between mother cells and daughter cells, irrespective of mutual adhesion. Budding cell resistance was observed in the population in the transitional phase; this was due to the lesser uv sensitivity of daughter cells in the fresh medium. In the stationary phase, daughter cells were rather more sensitive than mother cells or interdivisional cells, so there was little difference in uv sensitivity between budding cells and interdivisional cells

  16. Characterization of Tight Junction Proteins in Cultured Human Urothelial Cells

    Science.gov (United States)

    Rickard, Alice; Dorokhov, Nikolay; Ryerse, Jan; Klumpp, David J.; McHowat, Jane

    2010-01-01

    Tight junctions (TJs) are essential for normal function of epithelia, restricting paracellular diffusion and contributing to the maintainance of cell surface polarity. Superficial cells of the urothelium develop TJs, the basis for the paracellular permeability barrier of the bladder against diffusion of urinary solutes. Focusing on the superficial cell layer of stratified cell cultures of an immortalized human ureteral cell line, TEU-2 cells, we have examined the presence of TJ and TJ-associated proteins. TEU-2 cells were treated with calcium chloride and fetal bovine serum culture conditions used to induce stratification that resembles the normal transitional epithelial phenotype. Cultures were examined for TJ and TJ-associated proteins by confocal immuno-fluorescence microscopy and evaluated for TJ mRNA by reverse transcriptase-polymerase chain reaction (RT- PCR). TEU-2 cultures exhibited immunoreactivity at intercellular margins for claudins 1, 4, 5, 7, 14 and 16 whereas claudins 2, 8 and 12 were intracellular. RT-PCR corroborated the presence of these claudins at the mRNA level. The TJ-associated proteins occludin, JAM-1, and zonula occludens (ZO-1, ZO-2 and ZO-3) were localized at cell margins. We have found that numerous TJs and TJ-associated proteins are expressed in stratified TEU-2 cultures. Further, we propose TEU-2s provide a useful ureteral model for future studies on the involvement of TJs proteins in the normal and pathological physiology of the human urinary system. PMID:18553212

  17. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...

  18. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  19. CULTURE OF EMBRYONIC CELLS OF DROSOPHILA MELANOGASTER IN VITRO.

    Science.gov (United States)

    HORIKAWA, M; FOX, A S

    1964-09-25

    Embryonic cells isolated from eggs ofDrosophila melanogasterhave been cultured continuously in a new medium. Generation time for cell division is 30 hours. Chromosome number remains constant for at least 10 days. Cells from embryos of the mutant maroon-like grow at the same rate as those from wild-type embryos, but cells from rosy-2 grow slower and at a lower optimum temperature.

  20. Topological defects control collective dynamics in neural progenitor cell cultures

    Science.gov (United States)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  1. Cell-Detection Technique for Automated Patch Clamping

    Science.gov (United States)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image

  2. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    designed for use as a tool to predict the transport and processing that occurs prior to drug uptake in the central nervous system (CNS), and to predict BBB permeability. Electrochemical techniques and immunohistochemistry were used to validate this model and provide detailed information about cellular organization and function. Electrochemical impedance spectroscopy (EIS) provided evidence that endothelial cells cultured in the presence of astrocytes formed tight junctions capable of occluding the flow of electrical current. In a second series of experiments, a microglia-astrocyte co-culture system was developed to assess the effects of glial cells on electrode impedance recorded from neural prosthetic devices in vitro. Impedance measurements were compared with confocal images to determine the effects of glial cell density and cell type on electrode performance. The results indicate that EIS data can be used to model components of the reactive cell responses in brain tissue, and that impedance measurements recorded in vitro can be compared to measurements recorded in vivo. Taken together, these results demonstrate that alginate hydrogels can be used for the creation of 3-D neural cell scaffolds, and that such cell scaffolds can be used to model a variety of three-dimensional neural tissues in vitro, that cannot be studied in 2-D cultures.

  3. Culturing intestinal stem cells: applications for colorectal cancer research

    Directory of Open Access Journals (Sweden)

    Masayuki eFujii

    2014-06-01

    Full Text Available Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer. The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and colorectal cancer cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture system. Intestinal organoid culture enabled to expand normal or tumor epithelial cells in vitro retaining their stem cell self-renewal and multiple differentiation. Gene manipulation of these cultured cells may provide an attractive tool for investigating genetic events involved in colorectal carcinogenesis.

  4. Production of recombinant proteins in suspension-cultured plant cells.

    Science.gov (United States)

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  5. Determination of thymidine in serum used for cell culture media

    International Nuclear Information System (INIS)

    Schaer, J.C.; Maurer, U.; Schindler, R.

    1978-01-01

    Thymidine concentrations in serum used for cell culture media were determined with an assay based on isotope dilution. In this assay, incorporation of (3H)-thymidine into DNA of cultured cells was measured in the presence of 5 and 20% serum as a function of the concentration of unlabeled thymidine added to the medium. Thymidine concentrations were measured using horse serum as well as fetal calf serum in the culture media. Dialysis of serum resulted in a reduction of thymidine levels by factors of at least 10

  6. Advances in culture and manipulation of human pluripotent stem cells.

    Science.gov (United States)

    Qian, X; Villa-Diaz, L G; Krebsbach, P H

    2013-11-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.

  7. Cell culture supernatants for detection perforin ELISA

    African Journals Online (AJOL)

    Najwa

    2014-02-19

    Feb 19, 2014 ... (2001). The lymphocytes were isolated from the peripheral heap- rinized whole blood as follows: 3 ml of blood was centrifuged at. 1000 rpm for 15 min, buffy coat was collected in a 10 ml centrifuge tubes and diluted with 5 ml RPMI 1640 (cell suspension), 5 ml of the diluted cell suspension was layered on 3 ...

  8. Growth and phenotypic characteristics of human nevus cells in culture.

    Science.gov (United States)

    Mancianti, M L; Herlyn, M; Weil, D; Jambrosic, J; Rodeck, U; Becker, D; Diamond, L; Clark, W H; Koprowski, H

    1988-02-01

    Nevus cells were isolated from the three cutaneous components, epidermis, basal layer, and dermis, of nonmalignant pigmented lesions and were cultured separately in the presence or absence of the phorbol ester 12-0-tetradecanoyl phorbol-13-acetate in medium that supports the rapid proliferation of melanocytic cells. The separation procedure used provided cultures that were essentially free from normal melanocytes (dermis) or fibroblasts (epidermis). In short term culture, nevus cells of all skin compartments expressed markers associated with differentiated melanocytes, such as presence of premelanosomes and melanosomes and elevated tyrosinase levels. Nevus cells also expressed melanoma-associated antigens, such as NGF-receptor, transferrin-related p97, proteoglycan, and HLA-DR as detected with monoclonal antibodies. After several subpassages, cells showed a decreased expression of melanoma-associated antigens, decreased tyrrosinase levels, and melanosomes could no longer be detected. Morphologically, these cells were similar to fibroblasts. The disappearance of melanoma-associated cell surface antigens was concomitant with the appearance of a melanocyte-associated 145 kd protein that might serve as a marker of fibroblast-like differentiation in nevus cells and normal melanocytes. Nevus cell cultures grown in the presence of 12-0-tetradecanoyl phorbol-13-acetate maintained a stable differentiated phenotype throughout their lifespan. As reported earlier, nevus cells in culture, irrespective of the presence or absence of 12-0-tetradecanoyl phorbol-13-acetate, have a finite lifespan in vitro, grow anchorage-independent in soft agar, but do not form tumors when xenografted to nude mice. These studies demonstrate that nevus cells isolated from the epidermal, basal layer, and dermal components of lesional skin can serve as models to characterize the initial steps of tumor progression in a human cell system.

  9. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  10. A novel porcine cell culture based protocol for the propagation of hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Walter Chingwaru

    2016-08-01

    Full Text Available Objective: To present a comprehensive protocol for the processing of hepatitis E virus (HEV infected samples and propagation of the virus in primary cell cultures. Methods: Hepatitis E was extracted from porcine liver and faecal samples following standard protocols. The virus was then allowed to attach in the presence of trypsin to primary cells that included porcine and bovine intestinal epithelial cells and macrophages over a period of up to 3 h. The virus was propagated by rotational passaging through the cell cultures. Propagation was confirmed by immunoblotting. Results: We developed a comprehensive protocol to propagate HEV in porcine cell model that includes (i rotational culturing of the virus between porcine cell types, (ii pre-incubation of infected cells for 210 min, (iii use of a semi-complete cell culture medium supplemented with trypsin (0.33 µg/mL and (iv the use of simple immunoblot technique to detect the amplified virus based on the open reading frame 2/3. Conclusions: This protocol opens doors towards systematic analysis of the mechanisms that underlie the pathogenesis of HEV in vitro. Using our protocol, one can complete the propagation process within 6 to 9 d.

  11. Transcriptome analysis of primary bovine extra-embryonic cultured cells

    Directory of Open Access Journals (Sweden)

    Séverine A. Degrelle

    2015-12-01

    Full Text Available The dataset described in this article pertains to the article by Hue et al. (2015 entitled “Primary bovine extra-embryonic cultured cells: A new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation” [1]. In mammals, extra-embryonic tissues are essential to support not only embryo patterning but also embryo survival, especially in late implanting species. These tissues are composed of three cell types: trophoblast (bTCs, endoderm (bXECs and mesoderm (bXMCs. Until now, it is unclear how these cells interact. In this study, we have established primary cell cultures of extra-embryonic tissues from bovine embryos collected at day-18 after artificial insemination. We used our homemade bovine 10K array (GPL7417 to analyze the gene expression profiles of these primary extra-embryonic cultured cells compared to the corresponding cells from in vivo micro-dissected embryos. Here, we described the experimental design, the isolation of bovine extra-embryonic cell types as well as the microarray expression analysis. The dataset has been deposited in Gene Expression Omnibus (GEO (accession number GSE52967. Finally, these primary cell cultures were a powerful tool to start studying their cellular properties, and will further allow in vitro studies on cellular interactions among extra-embryonic tissues, and potentially between extra-embryonic vs embryonic tissues.

  12. Animal-cell culture in aqueous two-phase systems

    NARCIS (Netherlands)

    Zijlstra, G.M.

    1998-01-01

    In current industrial biotechnology, animal-cell culture is an important source of therapeutic protein products. The conventional animal-cell production processes, however, include many unit operations as part of the fermentation and downstream processing strategy. The research described in

  13. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-...

  14. Development and evaluation of a porcine in vitro colon organ culture technique.

    Science.gov (United States)

    Costa, Matheus O; Harding, John C S; Hill, Janet E

    2016-10-01

    The intestinal mucosa comprises a complex assemblage of specialized tissues that interact in numerous ways. In vitro cell culture models are generally focused on recreating a specific characteristic of this organ and do not account for the many interactions between the different tissues. In vitro organ culture (IVOC) methods offer a way to overcome these limitations, but prolonging cell viability is essential. This study aimed to determine the feasibility and optimal conditions for in vitro culture of swine colonic mucosa for use as an enteric pathogen infection model. Explants (n = 168) from commercial pigs (n = 12), aged 5 to 10 wk, were used to assess the impact of various culture protocols on explant viability. Explants were cultured for up to 5 d and formalin fixed at 24-h intervals. Following establishment of the culture protocol, explants (n = 208) from 13 pigs were evaluated at Day 0 and 5 of culture. Assessment of viability was based on histological changes (tissue architecture evaluated by H&E, immunostaining of cell proliferation marker Ki-67) and expression of genes encoding IL-1α, IL-8, TNF-α, IFN-γ, and e-cadherin. After 5 d in culture, 20% of explants displayed over 80% of epithelial coverage, whereas 31% of explants had more than 50% of their surface covered by columnar epithelium, and 81% had crypts but with a decreased number of Ki-67-positive cells when compared to Day 0. Notably, large variability in explant quality was observed between donor pigs. Best possible explants were obtained from the distal colon of pigs, processed immediately after euthanasia, cultured at the liquid-tissue-gas interface in media supplemented with a mixture of antibiotics and antifungals and an oxygen-rich gas mix.

  15. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Directory of Open Access Journals (Sweden)

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  16. Time evolution of cell size distributions in dense cell cultures

    Science.gov (United States)

    Khain, Evgeniy

    2015-03-01

    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  17. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    Fox, I.H.; Bertorini, T.; Palmieri, G.M.A.; Shefner, R.

    1986-01-01

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  18. Cytopathogenicity of Naegleria for cultured neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fulford, D.E.

    1985-01-01

    The cytopathic activity of live Naegleria amoebae and cell-free lysates of Naegleria for B-103 rat neuroblastoma cells was investigated using a /sup 51/Cr release assay. Live amoebae and cell-free lysates of N. fowleri, N. australiensis, N. lovaniensis, and N. gruberi all induced sufficient damage to radiolabeled B-103 cells to cause a significant release of chromium. The cytotoxic activity present in the cell-free lysates of N. fowleri can be recovered in the supernatant fluid following centrifugation at 100,000xg and precipitation of the 100,000xg supernatant fluid with ammonium sulfate. Initial characterization of the cytotoxic factor indicates that it is a heat labile, pH sensitive, soluble protein. The cytotoxic activity is abolished by either extraction, unaffected by repeated freeze-thawing, and is not sensitive to inhibitors of proteolytic enzymes. Phospholipase A activity was detected in the cytotoxic ammonium sulfate precipitable material, suggesting that this enzyme activity may have a role in the cytotoxic activity of the cell-free lysates.

  19. Improvement of rice anther culture and application of the technique in mutation breeding

    International Nuclear Information System (INIS)

    Chen Qiufang; Wang Cailian; Lu Yimei; Jin Wei

    2001-01-01

    The ability of callus formation and green plant regeneration was very different for different rice type and varieties in anther culture. The differentiation and regeneration of green plants were obviously improved when the rice anthers at about 30 d after culture on induction medium were irradiated with 20 Gy of γ-rays and calli were cultured on the differentiation medium containing 30 mg/L colchicines. The stimulation effect of γ-irradiation combined with colchicines was much better than that of their single use. Mutation frequency and selective efficiency in M 2 were obviously increased by application of the technique

  20. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations.

    Science.gov (United States)

    Kumar, Ashok; Yerneni, Lakshmana K

    2009-01-01

    Mycoplasma contamination in cell culture is a serious setback for the cell-culturist. The experiments undertaken using contaminated cell cultures are known to yield unreliable or false results due to various morphological, biochemical and genetic effects. Earlier surveys revealed incidences of mycoplasma contamination in cell cultures to range from 15 to 80%. Out of a vast array of methods for detecting mycoplasma in cell culture, the cytological methods directly demonstrate the contaminating organism present in association with the cultured cells. In this investigation, we report the adoption of a cytological immunofluorescence assay (IFA), in an attempt to obtain a semi-automated relative quantification of contamination by employing the user-friendly Photoshop-based image analysis. The study performed on 77 cell cultures randomly collected from various laboratories revealed mycoplasma contamination in 18 cell cultures simultaneously by IFA and Hoechst DNA fluorochrome staining methods. It was observed that the Photoshop-based image analysis on IFA stained slides was very valuable as a sensitive tool in providing quantitative assessment on the extent of contamination both per se and in comparison to cellularity of cell cultures. The technique could be useful in estimating the efficacy of anti-mycoplasma agents during decontaminating measures.

  1. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...... a sandwiched membrane. The culture chamber and perfusion chamber are separated by a sandwiched membrane and each chamber has separate inlet/outlets for easy loading/unloading of cells and perfusion of the media. The perfusion of media and exchange of nutrients occur through the sandwiched membrane, which...... was also verified with simulations. Finally, we present the application of this device for cytogenetic sample preparation, whereby we culture and arrest peripheral T-lymphocytes in metaphase and later fix them in the μBR. The expansion of T-lymphocytes from an unknown patient sample was quantified by means...

  2. Hydrodynamic effects on cells in agitated tissue culture reactors

    Science.gov (United States)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  3. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  4. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  5. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types.

  6. Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation.

    Science.gov (United States)

    Feil, Gerhard; Horres, Ralf; Schulte, Julia; Mack, Andreas F; Petzoldt, Svenja; Arnold, Caroline; Meng, Chen; Jost, Lukas; Boxleitner, Jochen; Kiessling-Wolf, Nicole; Serbest, Ender; Helm, Dominic; Kuster, Bernhard; Hartmann, Isabel; Korff, Thomas; Hahne, Hannes

    2017-09-01

    Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K -means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular

  7. Utilisation of a Bioreactor for Culture and Expansion of Epithelial Cells without the use of Trypsin or Enzymes.

    Science.gov (United States)

    Miyazawa, Atsuko; Washington, James; Bingham, Eve L; Kuo, Shiuhyang; Feinberg, Stephen E

    2018-01-01

    To develop a bioreactor for automated culture, maintenance, and collection of normal human keratinocytes using an enzyme-free propagation method. The culture of normal human epithelial keratinocytes was compared in two culture methods - a study team-developed automated bioreactor utilising an enzyme-free passage method, and a manual culture method. Cell size, glucose utilisation, and the proliferative capacity of the two cultures were evaluated. An automated bioreactor, not using enzymes for passage, but instead using the novel Epithelial Pop Up Keratinocytes (ePUK)1 culture technique, resulted in an extended culture longevity and proliferative capacity in normal primary human keratinocytes. Daughter cells were collected up to three times per day utilising the bioreactor. The daughter cells produced by the bioreactor were smaller than daughter cells produced by the manual culture method. The proliferative capacity and health of the parent monolayer within both the bioreactor and the manual culture flask was dependent upon sufficient glucose availability. Due to the contact inhibition nature of epithelial keratinocytes, the bioreactor enabled the study of an adherent cell type soon after cytokinesis and before the cell has integrated as part of an adherent matrix. The study demonstrates that increasing the number of media changes per day as necessary, based on glucose utilisation, is necessary for prolonged longevity and functional productivity of ePUK cultures.

  8. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  9. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  10. Animal-cell culture media: History, characteristics, and current issues.

    Science.gov (United States)

    Yao, Tatsuma; Asayama, Yuta

    2017-04-01

    Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

  11. Dose verification by OSLDs in the irradiation of cell cultures

    International Nuclear Information System (INIS)

    Meca C, E. A.; Bourel, V.; Notcovich, C.; Duran, H.

    2015-10-01

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al 2 O 3 :C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm 3 . Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  12. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  13. Isolation and Culture of Postnatal Stem Cells from Deciduous Teeth

    OpenAIRE

    Olávez, Daniela; Facultad de Odontología Universidad de Los Andes; Salmen, Siham; Instituto de Inmunología Clínica, Universidad de Los Andes.; Padrón, Karla; Facultad de Odontología. Univerisdad de Los Andes.; Lobo, Carmine; Facultad de Odontología. Univerisdad de Los Andes.; Díaz, Nancy; Facultad de Odontología, Universidad de Los Andes.; Berrueta, Lisbeth; Doctora en Inmunología por Instituto Venezolano de Investigaciones Científicas (IVIC). Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Venezuela.; Solorzanio, Eduvigis; Facultad de Odontología, Universidad de Los Andes.

    2014-01-01

    Background: Currently, degenerative diseases represent a public health problem; therefore, the development and implementation of strategies to fully or partially recover of damaged tissues has a special interest in the biomedical field. Therapeutic strategies based on mesenchymal stem cells transplantation from dental pulp have been proposed as an alternative. Purpose: To develop a mesenchymal stem cells culture isolated from dental pulp of deciduous teeth. Methods: The mesenchymal stem cells...

  14. Pluronic polyols in human lymphocyte cell line cultures.

    Science.gov (United States)

    Mizrahi, A

    1975-01-01

    Pluronic polyols markedly improved the growth of two human lymphocyte cell lines when added to the growth medium in concentrations of 0.05 to 0.1%. The results of the current studies suggest that, in addition to the protective effect of polyols against mechanical damage of mammalian cells in submerged cultures, the pluronic compounds may also, by lowering surface tension, facilitate transport of metabolites into cells and thus increase the growth rate. PMID:1063740

  15. Formation and action of oxygen activated species in cell cultures

    International Nuclear Information System (INIS)

    Hoffmann, M.E.; Meneghini, R.

    1982-01-01

    The differences of hydrogen peroxide sensibility of mammal cell lineages (man, mouse, chinese hamster) in culture are studied. The cellular survival and the frequency of DNA induced breaks by hydrogen peroxide are analysed. The efficiency of elimination of DNA breaks by cells is determined. The possible relation between the cell capacity of repair and its survival to hydrogen peroxide action is also discussed. (M.A.) [pt

  16. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  17. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture

    Directory of Open Access Journals (Sweden)

    M Majumdar

    2014-01-01

    Full Text Available The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P < 0.0001, even at a low concentration of 40 picomoles without affecting the cell viability. Centrifugation enhanced transfection (CET technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  18. Single-cell mechanics: the parallel plates technique.

    Science.gov (United States)

    Bufi, Nathalie; Durand-Smet, Pauline; Asnacios, Atef

    2015-01-01

    We describe here the parallel plates technique which enables quantifying single-cell mechanics, either passive (cell deformability) or active (whole-cell traction forces). Based on the bending of glass microplates of calibrated stiffness, it is easy to implement on any microscope, and benefits from protocols and equipment already used in biology labs (coating of glass slides, pipette pullers, micromanipulators, etc.). We first present the principle of the technique, the design and calibration of the microplates, and various surface coatings corresponding to different cell-substrate interactions. Then we detail the specific cell preparation for the assays, and the different mechanical assays that can be carried out. Finally, we discuss the possible technical simplifications and the specificities of each mechanical protocol, as well as the possibility of extending the use of the parallel plates to investigate the mechanics of cell aggregates or tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage...... an optical double-fluorescent probe-system[4]. Currently, we are working on integrating both detection methods into a tissue culture system for immobilised plant tissues....... of electrochemical detection systems is that they can be miniaturized, multiplexed and automated without losing their performance[1,2]. Combining tissue culture with electrochemical and optical detection allows implementation of a wide range of assays for online, real-time, parallel analysis of important parameters...

  20. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1 After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2 Our culture medium is not supplemented with any additional growth factor. (3 Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4 Our method has been carefully tested in several mouse strains and the results are reproducible. (5 We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.

  1. HUMAN CELLS IN CULTURE: REVISlTED*

    African Journals Online (AJOL)

    advantages, e.g. the generation time is reduced to about. 1/10000 that of the ... or less reflects the cellular biology of the donor tissut:'Y .... X-linked. Autosomal recessive. Autosomal recessive. Autosomal recessive mothers of affected males, however, show that only 50% of the cell population is defective, which furnishes an.

  2. Characterization of the Flexcell Uniflex cyclic strain culture system with U937 macrophage-like cells.

    Science.gov (United States)

    Matheson, Loren A; Fairbank, N Jack; Maksym, Geoffrey N; Paul Santerre, J; Labow, Rosalind S

    2006-01-01

    Mechanical forces alter many cell functions in a variety of cell types. It has been recognized that stimulation of cells in culture may be more representative of some physiologic conditions. Although there are commercially available systems for the study of cells cultured in a mechanical environment, very little has been documented on the validation techniques for these devices. In this study, Flexcell's recently introduced Uniflex cyclic strain system was programmed to apply 10% longitudinal sinusoidal strain (0.25 Hz) for 48 h to U937 cells cultured on Uniflex plates. Image analysis was employed to characterize the actual strain field. For a chosen amplitude of 10% the applied strain was highly reproducible and relatively uniform (10.6+/-0.2%) in a central rectangular region of the membrane (dimensions of 9.2+/-2 x 13.6+/-0.8 mm2). The strain increased the release of IL-6, esterase and acid phosphatase activity (p<0.05) from adherent U937 cells. Cells also displayed altered morphology, aligning and lengthening with the direction of strain, whereas static cells maintained a round appearance showing no preferred orientation. These data indicate that cyclic mechanical strain applied by the Uniflex strain system modulates U937 cell function leading to selective increases in enzymatic activities as well as orientation in a favored direction.

  3. Multiweek cell culture project for use in upper-level biology laboratories.

    Science.gov (United States)

    Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D

    2012-06-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.

  4. Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming

    Science.gov (United States)

    Han, Ji Woong

    2011-01-01

    Abstract Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed. Antioxid. Redox Signal. 15, 1799–1820. PMID:21194386

  5. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    Directory of Open Access Journals (Sweden)

    Meyer Ulrich

    2011-07-01

    Full Text Available Abstract Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG. After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin.

  6. Altered eicosanoid production and phospholipid remodeling during cell culture.

    Science.gov (United States)

    Okuno, Toshiaki; Gijón, Miguel A; Zarini, Simona; Martin, Sarah A; Barkley, Robert M; Johnson, Christopher A; Ohba, Mai; Yokomizo, Takehiko; Murphy, Robert C

    2018-03-01

    The remodeling of PUFAs by the Lands cycle is responsible for the diversity of phospholipid molecular species found in cells. There have not been detailed studies of the alteration of phospholipid molecular species as a result of serum starvation or depletion of PUFAs that typically occurs during tissue culture. The time-dependent effect of cell culture on phospholipid molecular species in RAW 264.7 cells cultured for 24, 48, or 72 h was examined by lipidomic strategies. These cells were then stimulated to produce arachidonate metabolites derived from the cyclooxygenase pathway, thromboxane B 2 , PGE 2 , and PGD 2 , and the 5-lipoxygenase pathway, leukotriene (LT)B 4 , LTC 4 , and 5-HETE, which decreased with increasing time in culture. However, the 5-lipoxygenase metabolites of a 20:3 fatty acid, LTB 3 , all trans -LTB 3 , LTC 3 , and 5-hydroxyeicosatrienoic acid, time-dependently increased. Molecular species of arachidonate containing phospholipids were drastically remodeled during cell culture, with a new 20:3 acyl group being populated into phospholipids to replace increasingly scarce arachidonate. In addition, the amount of TNFα induced by lipopolysaccharide stimulation was significantly increased in the cells cultured for 72 h compared with 24 h, suggesting that the remodeling of PUFAs enhanced inflammatory response. These studies supported the rapid operation of the Lands cycle to maintain cell growth and viability by populating PUFA species; however, without sufficient n-6 fatty acids, 20:3 n-9 accumulated, resulting in altered lipid mediator biosynthesis and inflammatory response. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Concordance between nucleic acid amplification technique and culture for the diagnosis of gonorrhoea.

    Science.gov (United States)

    Creighton, S; Revell, B; Barrow, A

    2009-05-01

    The objective of the study was to evaluate the concordance between nucleic acid amplification technique (NAAT) and culture for the diagnosis of Neisseria gonorrhoeae among attendees at a genitourinary medicine clinic in East London. All patients testing positive for N. gonorrhoeae on NAAT and/or culture between 1 April 2007 and 31 August 2008 at the Department of Sexual Health at Homerton University Hospital were included. Male patients had a first void urine sample for NAAT and urethral culture; female patients had a self-taken vulval swab or endocervical sample sent for NAAT and an endocervical culture sample. After interim analysis, discrepant results had both NAAT and culture repeated prior to treatment. Of 159 male patients with a positive NAAT, 22 (13%) had a negative culture. Among 135 female patients with a positive NAAT, 36 (27%) had a negative culture. Three men had a positive culture and negative NAAT. Nineteen of the discrepant samples were retested prior to treatment and 12 (63%) had spontaneously revered to negative. In conclusion, there was concordance in 84% of male and 67% of female samples. In two-thirds of the discrepant cases, the previously positive NAAT had become negative prior to treatment. This study highlights the importance of consideration of the clinical picture when assessing results.

  8. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes.

    Science.gov (United States)

    Lewandowski, Jarosław; Kolanowski, Tomasz J; Kurpisz, Maciej

    2017-05-01

    The derivation of pluripotent stem cells from human embryos and the generation of induced pluripotent stem cells (iPSCs) from somatic cells opened a new chapter in studies on the regeneration of the post-infarction heart and regenerative medicine as a whole. Thus, protocols for obtaining iPSCs were enthusiastically adopted and widely used for further experiments on cardiac differentiation. iPSC-mediated cardiomyocytes (iPSC-CMs) under in vitro culture conditions are generated by simulating natural cardiomyogenesis and involve the wingless-type mouse mammary tumour virus integration site family (WNT), transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) signalling pathways. New strategies have been proposed to take advantage of small chemical molecules, organic compounds and even electric or mechanical stimulation. There are three main approaches to support cardiac commitment in vitro: embryoid bodis (EBs), monolayer in vitro cultures and inductive co-cultures with visceral endoderm-like (END2) cells. In EB technique initial uniform size of pluripotent stem cell (PSC) colonies has a pivotal significance. Hence, some methods were designed to support cells aggregation. Another well-suited procedure is based on culturing cells in monolayer conditions in order to improve accessibility of growth factors and nutrients. Other distinct tactics are using visceral endoderm-like cells to culture them with PSCs due to secretion of procardiac cytokines. Finally, the appropriate purification of the obtained cardiomyocytes is required prior to their administration to a patient under the prospective cellular therapy strategy. This goal can be achieved using non-genetic methods, such as the application of surface markers and fluorescent dyes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Magnetic Macroporous Hydrogels as a Novel Approach for Perfused Stem Cell Culture in 3D Scaffolds via Contactless Motion Control.

    Science.gov (United States)

    Rödling, Lisa; Volz, Esther Magano; Raic, Annamarija; Brändle, Katharina; Franzreb, Matthias; Lee-Thedieck, Cornelia

    2018-01-19

    There is an urgent need for 3D cell culture systems that avoid the oversimplifications and artifacts of conventional culture in 2D. However, 3D culture within the cavities of porous biomaterials or large 3D structures harboring high cell numbers is limited by the needs to nurture cells and to remove growth-limiting metabolites. To overcome the diffusion-limited transport of such soluble factors in 3D culture, mixing can be improved by pumping, stirring or shaking, but this in turn can lead to other problems. Using pumps typically requires custom-made accessories that are not compatible with conventional cell culture disposables, thus interfering with cell production processes. Stirring or shaking allows little control over movement of scaffolds in media. To overcome these limitations, magnetic, macroporous hydrogels that can be moved or positioned within media in conventional cell culture tubes in a contactless manner are presented. The cytocompatibility of the developed biomaterial and the applied magnetic fields are verified for human hematopoietic stem and progenitor cells (HSPCs). The potential of this technique for perfusing 3D cultures is demonstrated in a proof-of-principle study that shows that controlled contactless movement of cell-laden magnetic hydrogels in culture media can mimic the natural influence of differently perfused environments on HSPCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sensitivities, specificities, and predictive values of microbiological culture techniques for the diagnosis of prosthetic joint infection.

    Science.gov (United States)

    Jordan, Robert W; Smith, Nicholas A; Saithna, Adnan; Sprowson, Andrew P; Foguet, Pedro

    2014-01-01

    Identifying the microorganism in a prosthetic joint infection is the key to appropriately targeting antimicrobial treatment. Despite the availability of various techniques, no single test is considered the definitive gold standard. Our aim was to determine the sensitivity, specificity, and positive/negative predictive values for a variety of culture techniques. We performed a retrospective case series of 219 patients undergoing revision surgery of their hip or knee replacement between May 2004 and February 2013. The patients were classified as either infected or noninfected according to criteria set out by the Musculoskeletal Infection Society. The number and type of samples taken intraoperatively varied between cases but included tissue samples and fluid sent in either blood culture vials or sterile containers. The highest sensitivity was found with blood culture vials (0.85) compared to fluid in sterile containers (0.26) and tissues samples (0.32). Blood culture vials also had a better specificity and positive and negative predictive values profile. We conclude that, of the techniques studied, fluid in blood culture vials had the best profile for the correct identification of microorganisms and advocate its use.

  11. Mammary Gland Cell Culture of Macaca fascicularis as a Reservoir for Stem Cells

    Directory of Open Access Journals (Sweden)

    Silmi Mariya

    2017-07-01

    Full Text Available The mammary gland contains adult stem cells that are capable of self-renewal and are likely target for neoplastic transformation leading to breast cancer. In this study, we developed a cell culture derived from the mammary glands of cynomolgus monkeys (Macaca fascicularis (MfMC and furthermore identified the expression of markers for stemness and estrogen receptor-associated activities. We found that the primary culture can be successfully subcultured to at least 3 passages, primarily epithelial-like in morphology, the cultured cells remained heterogenous in phenotype as they expressed epithelial cell markers CD24, CK18, and marker for fibroblast S1004A. Importantly, the cell population also consistently expressed the markers of mammary stem cells (ITGB1 or CD29 and ITGA6 or CD49f, mesenchymal stem cells (CD73 and CD105 and pluripotency (NANOG, OCT4, SOX2. In addition to this, the cells were also positive for Estrogen Receptor (ER, and ER-activated marker Trefoil Factor 1, suggesting an estrogen responsiveness of the culture model. These results indicate that our cell culture model is a reliable model for acquiring a population of cells with mammary stem cell properties and that these cultures may also serve as a reservoir from which more purified populations of stem cell populations can be isolated in the future.

  12. Diffusion chamber culture of human peripheral mononuclear cells in mice

    International Nuclear Information System (INIS)

    Kawakami, Masahito; Shigeta, Chiharu; Enzan, Hideaki; Takahashi, Hiroshi; Ohkita, Takeshi

    1977-01-01

    The mononuclear cells isolated by Isopaque-Ficoll method from blood of three healthy men were cultured in diffusion chambers implanted to peritoneal cavity of mice pretreated by cyclophosphamide 300 mg/kg b. w. or 800 rad of 60 Co γ ray or 500 rad. For two of three men the cell growth was slightly higher in hosts pretreated by cyclophosphamide or 800 rad than in hosts pretreated by 500 rad, but, for another one it was slow in all hosts. Under these conditions the growth potential of mononuclear cells might be different from person to person. A few granulocytes as well as plasma cells, very few megakaryocytes and rare erythroblasts were found in diffusion chamber cultured cells. (auth.)

  13. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays.

    Science.gov (United States)

    Huang, Song-Bin; Wu, Min-Hsien; Wang, Shih-Siou; Lee, Gwo-Bin

    2011-06-01

    This study reports a microfluidic cell culture chip consisting of 48 microbioreactors for high-throughput perfusion 3-dimensional (3-D) cell culture-based assays. Its advantages include the capability for multiplexed and backflow-free medium delivery, and both efficient and high-throughput micro-scale, 3-D cell culture construct loading. In this work, the microfluidic cell culture chip is fabricated using two major processes, specifically, a computer-numerical-controlled (CNC) mold machining process and a polydimethylsiloxane (PDMS) replication process. The chip is composed of micropumps, microbioreactors, connecting microchannels and a cell/agarose scaffold loading mechanism. The performance of the new pneumatic micropumps and the cell/agarose scaffold loading mechanism has been experimentally evaluated. The experimental results show that this proposed multiplexed medium-pumping design is able to provide a uniform pumping rate ranging from 1.5 to 298.3 μl hr(-1) without any fluid backflow and the resultant medium contamination. In addition, the simple cell/agarose loading method has been proven to be able to load the 3-D cell culture construct uniformly and efficiently in all 48 microbioreactors investigated. Furthermore, a micro-scale, perfusion, 3-D cell culture-based assay has been successfully demonstrated using this proposed cell culture chip. The experimental results are also compared to a similar evaluation using a conventional static 3-D cell culture with a larger scale culture. It is concluded that the choice of a cell culture format can influence assay results. As a whole, because of the inherent advantages of a miniaturized perfusion 3-D cell culture assay, the cell culture chip not only can provide a stable, well-defined and more biologically-meaningful culture environment, but it also features a low consumption of research resources. Moreover, due to the integrated medium pumping mechanism and the simple cell/agarose loading method, this chip is

  14. In vitro culture techniques as a tool of sugarcane bud germination ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... and shoot growth under salt stress with different NaCl concentrations (0, 17, 34, 68 and 102 mM) using cultivar NCo310. ... techniques could be used to evaluate salt stress effects in sugarcane at the germination stage. Key words: in vitro culture, .... l'Enseignement Supérieur, de la Formation des Cadres et.

  15. Technique of the 'in vitro' fertilization and the culture of mouse embryos at preimplantation

    International Nuclear Information System (INIS)

    Kikuchi, Olivia Kimiko; Yamada, Takeshi

    1993-03-01

    The mammal embryo is an intensive cellular proliferating system, very radiosensitive and therefore adequate to the study of the biological effects of ionizing radiation. The technique of the in vitro fertilization and the culture of mouse embryos at preimplantation period, modified by Yamada et al (1982) to improve the efficiency of more than 95% of blastocyst formation is described. (author)

  16. Agricultural production - Phase 2. Indonesia. Rice - azolla - fish culture - use of nuclear technique

    International Nuclear Information System (INIS)

    Watanabe, Iwao.

    1991-01-01

    The primary aim of the expert mission was to provide advice on the use of nuclear techniques to study rice-azolla-fish culture. Results of the work performed so far show that basal application of azolla gives similar or better yields of rice than basal application of urea. Fish productivity was also found to be significantly higher when azolla is present. 2 tabs

  17. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  18. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  19. Treatment of mycoplasma contamination in cell cultures with Plasmocin.

    Science.gov (United States)

    Uphoff, Cord C; Denkmann, Sabine-A; Drexler, Hans G

    2012-01-01

    A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of treatment 45 out of 58 (78%) mycoplasma-positive cell lines could be cured. In a second attempt using back-up cryopreserved original cells, four additional cell lines were cured; thus, the overall cure rate was 84%. Even if the mycoplasma contamination was not eradicated by Plasmocin, the parallel treatment with several other antibiotics (Baytril, BM-Cyclin, Ciprobay, MRA, or MycoZap) led to the cure of all 58 cell lines. The successful decontamination was permanent as mycoplasmas were no longer detected at day +14 posttreatment and at later time points as examined by PCR which is the most sensitive and specific mycoplasma detection method. Collectively, our results highlight certain antibiotics as effective antimycoplasma reagents and support the therapeutic rationale for their use in the eradication of this notorious cell culture contaminant.

  20. Treatment of Mycoplasma Contamination in Cell Cultures with Plasmocin

    Directory of Open Access Journals (Sweden)

    Cord C. Uphoff

    2012-01-01

    Full Text Available A high percentage of cell lines are chronically infected with various mycoplasma species. The addition of antibiotics that are particularly effective against these contaminants to the culture medium during a limited period of time is a simple, inexpensive, and very practical approach for decontaminating cell cultures. Here, we examined the effectiveness of the new antimycoplasma compound Plasmocin that has been employed routinely to cleanse chronically infected cell lines. In a first round of treatment 45 out of 58 (78% mycoplasma-positive cell lines could be cured. In a second attempt using back-up cryopreserved original cells, four additional cell lines were cured; thus, the overall cure rate was 84%. Even if the mycoplasma contamination was not eradicated by Plasmocin, the parallel treatment with several other antibiotics (Baytril, BM-Cyclin, Ciprobay, MRA, or MycoZap led to the cure of all 58 cell lines. The successful decontamination was permanent as mycoplasmas were no longer detected at day +14 posttreatment and at later time points as examined by PCR which is the most sensitive and specific mycoplasma detection method. Collectively, our results highlight certain antibiotics as effective antimycoplasma reagents and support the therapeutic rationale for their use in the eradication of this notorious cell culture contaminant.

  1. Bridging the gap between cell culture and live tissue

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-11-01

    Full Text Available Traditional in vitro two-dimensional (2-D culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011. In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease. It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues. In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.

  2. [In vitro cell culture technology in cosmetology research].

    Science.gov (United States)

    Gojniczek, Katarzyna; Garncarczyk, Agnieszka; Pytel, Agata

    2005-01-01

    For ages the humanity has been looking for all kind of active substances, which could be used in improving the health and the appearance of our skin. People try to find out how to protect the skin from harmful, environmental factors. Every year a lot of new natural and synthetic, chemical substances are discovered. All of them potentially could be used as a cosmetic ingredient. In cosmetology research most of new xenobiotics were tested in vivo on animals. Alternative methods to in vivo tests are in vitro tests with skin cell culture system. The aim of this work was to describe two-dimensional and tree-dimensional skin cell cultures. Additionally, in this work we wanted to prove the usefulness of in vitro skin cell cultures in cosmetology research.

  3. Isolation, culture and genetic manipulation of mouse pancreatic ductal cells.

    Science.gov (United States)

    Reichert, Maximilian; Takano, Shigetsugu; Heeg, Steffen; Bakir, Basil; Botta, Gregory P; Rustgi, Anil K

    2013-01-01

    The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles duct cells morphologically and, to some extent, at a molecular level. Recently, genetic-lineage labeling has become popular in the field of tumor biology in order to study cell-fate decisions or to trace cancer cells in the mouse. However, certain biological questions require a nongenetic labeling approach to purify a distinct cell population in the pancreas. Here we describe a protocol for isolating mouse pancreatic ductal epithelial cells and ductlike cells directly in vivo using ductal-specific Dolichos biflorus agglutinin (DBA) lectin labeling followed by magnetic bead separation. Isolated cells can be cultured (in two or three dimensions), manipulated by lentiviral transduction to modulate gene expression and directly used for molecular studies. This approach is fast (~4 h), affordable, results in cells with high viability, can be performed on the bench and is applicable to virtually all genetic and nongenetic disease models of the pancreas.

  4. Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture

    Science.gov (United States)

    Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.

    2018-04-01

    The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.

  5. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture.

    Science.gov (United States)

    Majumdar, M; Ratho, R; Chawla, Y; Singh, M P

    2014-01-01

    The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs) were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA) and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P Centrifugation enhanced transfection (CET) technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  6. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  7. Use of culture and immunochromatographic technique for diagnosis of trichomoniasis in Sri Lanka.

    Science.gov (United States)

    Banneheke, H; Fernandopulle, R; Prathanapan, S; de Silva, G; Fernando, N; Wickremasinghe, R

    2013-09-01

    As a majority of the trichomoniasis patients are asymptomatic, laboratory tests are crucial in case detection. The usefulness of culture and immunochromatographic technique (ICT) compared to microscopy for detection of trichomoniasis in Sri Lanka was assessed. Females (16-45 years) from Colombo district were screened for Trichomonas vaginalis using three laboratory tests namely, microscopy of wet smear, Trichomonas liquid culture and ICT (OSOM® trichomonas rapid test). Trichomoniasis by at least one test being positive was 4.8%. Microscopy, culture and ICT detected 2.8%, 4.2% and 10% cases respectively. Microscopy missed 32% of culture positives. ICT is a simple, practical and reliable alternative to microscopy in laboratory diagnosis of trichomoniasis.

  8. Karyotype changes in cultured human corneal endothelial cells

    OpenAIRE

    Miyai, Takashi; Maruyama, Yoko; Osakabe, Yasuhiro; Nejima, Ryohei; Miyata, Kazunori; Amano, Shiro

    2008-01-01

    Purpose To examine karyotype changes in cultured human corneal endothelial cells (HCECs). Methods HCECs with Descemet’s membrane were removed from 20 donors of various ages (range, 2–77 years; average, 43.7±26.4 years) and cultured on dishes coated with extracellular matrix produced by bovine corneal endothelial cells (BCECs). Karyotype changes were examined by G-band karyotyping of HCECs at the third passage from 12 donors and the fifth passage from 16 donors. The number of chromosomes was a...

  9. Evaluation of bioactivity of octacalcium phosphate using osteoblastic cell aggregates on a spheroid culture device

    Directory of Open Access Journals (Sweden)

    Takahisa Anada

    2016-03-01

    Full Text Available Much attention has been paid to three-dimensional cell culture systems in the field of regenerative medicine, since three-dimensional cellular aggregates, or spheroids, are thought to better mimic the in vivo microenvironments compared to conventional monolayer cultured cells. Synthetic calcium phosphate (CaP materials are widely used as bone substitute materials in orthopedic and dental surgeries. Here we have developed a technique for constructing a hybrid spheroid consisting of mesenchymal stem cells (MSCs and synthetic CaP materials using a spheroid culture device. We found that the device is able to generate uniform-sized CaP/cell hybrid spheroids rapidly and easily. The results showed that the extent of osteoblastic differentiation from MSCs was different when cells were grown on octacalcium phosphate (OCP, hydroxyapatite (HA, or β-tricalcium phosphate (β-TCP. OCP showed the greatest ability to increase the alkaline phosphatase activity of the spheroid cells. The results suggest that the spheroids with incorporated OCP may be an effective implantable hybrid consisting of scaffold material and cells for bone regeneration. It is also possible that this CaP–cell spheroid system may be used as an in vitro method for assessing the osteogenic induction ability of CaP materials.

  10. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-01

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  11. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping, E-mail: fanpinggoodluck@163.com [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China); He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China)

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  12. Cell culture media impact on drug product solution stability.

    Science.gov (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J

    2016-07-08

    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.

  13. Testing of serum atherogenicity in cell cultures: questionable data published

    Directory of Open Access Journals (Sweden)

    Sergei V. Jargin

    2012-01-01

    Full Text Available In a large series of studies was reported that culturing of smooth muscle cells with serum from atherosclerosis patients caused intracellular lipid accumulation, while serum from healthy controls had no such effect. Cultures were used for evaluation of antiatherogenic drugs. Numerous substances were reported to lower serum atherogenicity: statins, trapidil, calcium antagonists, garlic derivatives etc. On the contrary, beta-blockers, phenothiazines and oral hypoglycemics were reported to be pro-atherogenic. Known antiatherogenic agents can influence lipid metabolism and cholesterol synthesis, intestinal absorption or endothelium-related mechanisms. All these targets are absent in cell monocultures. Inflammatory factors, addressed by some antiatherogenic drugs, are also not reproduced. In vivo, relationship between cholesterol uptake by cells and atherogenesis must be inverse rather than direct: in familial hypercholesterolemia, inefficient clearance of LDL-cholesterol by cells predisposes to atherosclerosis. Accordingly, if a pharmacological agent reduces cholesterol uptake by cells in vitro, it should be expected to elevate cholesterol in vivo. Validity of clinical recommendations, based on serum atherogenicity testing in cell monocultures, is therefore questionable. These considerations pertain also to the drugs developed on the basis of the cell culture experiments.

  14. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-01-01

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  15. Scanning electroporation of selected areas of adherent cell cultures.

    Science.gov (United States)

    Olofsson, Jessica; Levin, Mikael; Strömberg, Anette; Weber, Stephen G; Ryttsén, Frida; Orwar, Owe

    2007-06-15

    We present a computer-controlled scanning electroporation method. Adherent cells are electroporated using an electrolyte-filled capillary in contact with an electrode. The capillary can be scanned over a cell culture and locally deliver both an electric field and an electroporation agent to the target area without affecting surrounding cells. The instantaneous size of the targeted area is determined by the dimensions of the capillary. The size and shape of the total electroporated area are defined by these dimensions in combination with the scanning pattern. For example, striped and serpentine patterns of electroporated cells in confluent cultures can be formed. As it is easy to switch between different electroporation agents, the method is suitable for design of cell cultures with complex composition. Finite element method simulations were used to study the spatial distributions of the electric field and the concentration of an electroporation agent, as well as the fluid dynamics related to scanning and flow of electroporation agent from the capillary. The method was validated for transfection by introduction of a 9-base-pair-long randomized oligonucleotide into PC12 cells and a pmaxGFP plasmid coding for green fluorescent protein into CHO and WSS cells.

  16. Schwann Cells Can Be Reprogrammed to Multipotency by Culture

    Science.gov (United States)

    Widera, Darius; Heimann, Peter; Zander, Christin; Imielski, Yvonne; Heidbreder, Meike; Heilemann, Mike; Kaltschmidt, Christian

    2011-01-01

    Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription–polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75NTR, and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions. PMID:21466279

  17. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation.

    Science.gov (United States)

    Qureshi, Ammar T; Chen, Cong; Shah, Forum; Thomas-Porch, Caasy; Gimble, Jeffrey M; Hayes, Daniel J

    2014-01-01

    Annually, more than 200,000 elective liposuction procedures are performed in the United States and over a million worldwide. The ease of harvest and abundance make human adipose-derived stromal/stem cells (hASCs) isolated from lipoaspirates an attractive, readily available source of adult stem cells that have become increasingly popular for use in many studies. Here, we describe common methods for hASC culture, preservation, and osteogenic differentiation. We introduce methods of ceramic, polymer, and composite scaffold synthesis with a description of morphological, chemical, and mechanical characterization techniques. Techniques for scaffold loading are compared, and methods for determining cell loading efficiency and proliferation are described. Finally, we provide both qualitative and quantitative techniques for in vitro assessment of hASC osteogenic differentiation. © 2014 Elsevier Inc. All rights reserved.

  18. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  19. Insights into large-scale cell-culture reactors: I. Liquid mixing and oxygen supply.

    Science.gov (United States)

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael; Lübbert, Andreas

    2011-12-01

    In the pharmaceutical industry, it is state of the art to produce recombinant proteins and antibodies with animal-cell cultures using bioreactors with volumes of up to 20 m(3) . Recent guidelines and position papers for the industry by the US FDA and the European Medicines Agency stress the necessity of mechanistic insights into large-scale bioreactors. A detailed mechanistic view of their practically relevant subsystems is required as well as their mutual interactions, i.e., mixing or homogenization of the culture broth and sufficient mass and heat transfer. In large-scale bioreactors for animal-cell cultures, different agitation systems are employed. Here, we discuss details of the flows induced in stirred tank reactors relevant for animal-cell cultures. In addition, solutions of the governing fluid dynamic equations obtained with the so-called computational fluid dynamics are presented. Experimental data obtained with improved measurement techniques are shown. The results are compared to previous studies and it is found that they support current hypotheses or models. Progress in improving insights requires continuous interactions between more accurate measurements and physical models. The paper aims at promoting the basic mechanistic understanding of transport phenomena that are crucial for large-scale animal-cell culture reactors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...... and a comprehensive fault model that captures permanent faults occurring during chip operation. Using the proposed modeling and simulation framework, we perform an architectural level evaluation of two cell culture chamber implementations. A qualitative success metric is also proposed to evaluate chip performance...

  1. Enhancement effect of shikonin in cell suspension culture and transfermanant culture by radiation application

    International Nuclear Information System (INIS)

    Kim, Jae Sung; Lee, Young Keun; Chung, Byung Yeoup; Lee, Young Bok; Hwang Hye Yeon

    2004-10-01

    The cell lines 679, 679-29 and 622-46 of L. erythrorhizon could be selected on LS agar medium for the production shikonin in cell suspension culture. The shikonin was increased moderately in suspension culture of cell line 622-46 in LS liquid medium containing BA 2 mg·L -1 and IAA 0.2 mg·L -1 in the dark, and was increased by adding 1 μM Cu 2+ and 100 μM methyl jasmonate The accumulation of shikonin in the liquid medium was increased significantly by 2 Gy irradiation to callus of cell line 622-46 and culture in LS liquid medium containing BA 2 mg·L -1 and IAA 0.2 mg·L -1 in the dark and shikonin in cell debris was higher by 16 Gy irradiation. The activity of p-hydroxybenzoate geranyltransferase was increased by irradiation of 2 Gy and 16 Gy of γ radiation. Seedling hypocotyles of L. erythrorhizon were infected with Agrogacterium rhizogenes strain 15834 harboring a binary vector with an intron bearing the GUS (β-glucuronidase) gene driven by cauliflower mosaic virus (CaMV) 35S promotor as well as the HPT (hygromycin phosphotransferase) gene as the selection marker. Hairy roots isolated were hygromycin resistant and had integrated GUS gene in DNA. The root tip grown on M-9 medium showed normal pigment production pattern in border cells and root hairs

  2. Development and evaluation of a porcine in vitro colon organ culture technique

    NARCIS (Netherlands)

    Costa, Matheus O; Harding, John C S; Hill, Janet E

    2016-01-01

    The intestinal mucosa comprises a complex assemblage of specialized tissues that interact in numerous ways. In vitro cell culture models are generally focused on recreating a specific characteristic of this organ and do not account for the many interactions between the different tissues. In vitro

  3. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    OpenAIRE

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-01-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance o...

  4. Cultured meat from stem cells: challenges and prospects.

    Science.gov (United States)

    Post, Mark J

    2012-11-01

    As one of the alternatives for livestock meat production, in vitro culturing of meat is currently studied. The generation of bio-artificial muscles from satellite cells has been ongoing for about 15 years, but has never been used for generation of meat, while it already is a great source of animal protein. In order to serve as a credible alternative to livestock meat, lab or factory grown meat should be efficiently produced and should mimic meat in all of its physical sensations, such as visual appearance, smell, texture and of course, taste. This is a formidable challenge even though all the technologies to create skeletal muscle and fat tissue have been developed and tested. The efficient culture of meat will primarily depend on culture conditions such as the source of medium and its composition. Protein synthesis by cultured skeletal muscle cells should further be maximized by finding the optimal combination of biochemical and physical conditions for the cells. Many of these variables are known, but their interactions are numerous and need to be mapped. This involves a systematic, if not systems, approach. Given the urgency of the problems that the meat industry is facing, this endeavor is worth undertaking. As an additional benefit, culturing meat may provide opportunities for production of novel and healthier products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  6. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures.

    Science.gov (United States)

    Kisselbach, Lynn; Merges, Michael; Bossie, Alexis; Boyd, Ann

    2009-01-01

    Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.

  7. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  8. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Science.gov (United States)

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  9. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    Science.gov (United States)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  10. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    Science.gov (United States)

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  11. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    Science.gov (United States)

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  12. Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy.

    Science.gov (United States)

    Saarinen, Jukka; Sözeri, Erkan; Fraser-Miller, Sara J; Peltonen, Leena; Santos, Hélder A; Isomäki, Antti; Strachan, Clare J

    2017-05-15

    We have used coherent anti-Stokes Raman scattering (CARS) microscopy as a novel and rapid, label-free and non-destructive imaging method to gain structural insights into live intestinal epithelial cell cultures used for drug permeability testing. Specifically we have imaged live Caco-2 cells in (bio)pharmaceutically relevant conditions grown on membrane inserts. Imaging conditions were optimized, including evaluation of suitable membrane materials and media solutions, as well as tolerable laser powers for non-destructive imaging of the live cells. Lipid structures, in particular lipid droplets, were imaged within the cells on the insert membranes. The size of the individual lipid droplets increased substantially over the 21-day culturing period up to approximately 10% of the volume of the cross section of individual cells. Variation in lipid content has important implications for intestinal drug permeation testing during drug development but has received limited attention to date due to a lack of suitable analytical techniques. CARS microscopy was shown to be well suited for such analysis with the potential for in situ imaging of the same individual cell-cultures that are used for permeation studies. Overall, the method may be used to provide important information about cell monolayer structure to better understand drug permeation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tailor-made three-dimensional hybrid scaffolds for cell cultures

    International Nuclear Information System (INIS)

    Psycharakis, Stylianos; Melissinaki, Vasileia; Giakoumaki, Anastasia; Ranella, Anthi; Tosca, Androniki

    2011-01-01

    The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

  14. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    Science.gov (United States)

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Fundamentals of microfluidic cell culture in controlled microenvironments†

    OpenAIRE

    Young, Edmond W. K.; Beebe, David J.

    2010-01-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the...

  16. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2016-01-01

    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  17. In vitro plant regeneration from embryogenic cell suspension culture ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... plasts in A. adsurgens (Luo and Jia, 1998a, b). There are only few reports available on plant regeneration systems via somatic embryogenesis (Luo et al., 1999; Hou and. Jia, 2004). Here, we report a protocol for plant regenera- tion from embryogenic cell suspension culture of endemic. A. chrysochlorus.

  18. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    with MK-801. Whole-cell recordings during wave formation showed cyclic EPSP barrages with an amplitude of 10-20 mV concurrent with wave activity. Local non-propagating putative transglial waves were also present in the cultures, and could be reproduced by pressure application of ATP. We hypothesize...

  19. Plant Cell Cultures as Source of Cosmetic Active Ingredients

    Directory of Open Access Journals (Sweden)

    Ani Barbulova

    2014-04-01

    Full Text Available The last decades witnessed a great demand of natural remedies. As a result, medicinal plants have been increasingly cultivated on a commercial scale, but the yield, the productive quality and the safety have not always been satisfactory. Plant cell cultures provide useful alternatives for the production of active ingredients for biomedical and cosmetic uses, since they represent standardized, contaminant-free and biosustainable systems, which allow the production of desired compounds on an industrial scale. Moreover, thanks to their totipotency, plant cells grown as liquid suspension cultures can be used as “biofactories” for the production of commercially interesting secondary metabolites, which are in many cases synthesized in low amounts in plant tissues and differentially distributed in the plant organs, such as roots, leaves, flowers or fruits. Although it is very widespread in the pharmaceutical industry, plant cell culture technology is not yet very common in the cosmetic field. The aim of the present review is to focus on the successful research accomplishments in the development of plant cell cultures for the production of active ingredients for cosmetic applications.

  20. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of.

  1. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Key words: Sorghum, proteomics, callus, cell suspension cultures, total soluble protein, secretome. INTRODUCTION. Sorghum, a cereal crop native to Africa, is drought- tolerant, surviving periods of water deficit (Rosenow et al., 1983). The crop is grown in the semi-arid regions of. Africa and Asia primarily ...

  2. Test chambers for cell culture in static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Glinka, Marek, E-mail: mag@iq.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Gawron, Stanisław, E-mail: s.gawron@komel.katowice.pl [Research and Development Centre of Electrical Machines. 188 Rozdzienskiego Street, 40-203 Katowice (Poland); Sieroń, Aleksander, E-mail: sieron1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Pawłowska–Góral, Katarzyna, E-mail: kgoral@sum.edu.pl [Department of Food and Nutrition in Sosnowiec. Medical University of Silesia in Katowice. 8 Jednosci Street, 41-200 Sosnowiec (Poland); Cieślar, Grzegorz, E-mail: cieslar1@tlen.pl [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland); Sieroń–Stołtny, Karolina [Department of Internal Diseases, Angiology and Physical Medicine in Bytom. Medical University of Silesia in Katowice. 15 Batorego Street, 41-902 Bytom (Poland)

    2013-04-15

    Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2–4% and 8 to 10% in 3D method (reaching 10% only out of the cells′ cultures margins). -- Highlights: ► We present test chamber to be used for in vitro cell culture in static magnetic field. ► The technical data of the chamber construction was presented. ► 2D versus 3D simulation of static magnetic field distribution in chamber was reported. ► We report the accuracy of 2D calculation than 3D.

  3. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of E. angustifolia was ...

  4. Chloride secretion by cultures of pig tracheal gland cells

    Science.gov (United States)

    Borthwell, Rachel M.; Hajighasemi-Ossareh, Mohammad; Lachowicz-Scroggins, Marrah E.; Finkbeiner, W. E.; Stevens, Jeremy E.; Modlin, Sara

    2012-01-01

    Malfunction of airway submucosal glands contributes to the pathology of cystic fibrosis (CF), and cell cultures of CF human airway glands show defects in Cl− and water transport. Recently, a transgenic pig model of CF (the CF pig) has been developed. Accordingly, we have developed cell cultures of pig airway gland epithelium for use in investigating alterations in gland function in CF. Our cultures form tight junctions (as evidenced by high transepithelial electrical resistance) and show high levels of active anion secretion (measured as amiloride-insensitive short-circuit current). In agreement with recent results on human airway glands, neurohumoral agents that elevate intracellular Ca2+ potently stimulated anion secretion, while elevation of cAMP was comparatively ineffective. Our cultures express lactoferrin and lysozyme (serous gland cell markers) and MUC5B (the main mucin of airway glands). They are, therefore, potentially useful in determining if CF-related alterations in anion transport result in altered secretion of serous cell antimicrobial agents or mucus. PMID:22367783

  5. [Colorectal cancer: tissutal explantation and primary cell culture].

    Science.gov (United States)

    Spisni, Roberto; Failli, Alessandra; Orsini, Giulia; Kastsiuchenka, Olga; Natale, Gianfranco; Castagna, Maura; Legitimo, Annalisa; Aghasbabyan, Alekandr; Ambrosini, Carlo Enrico; Consolini, Rita; Miccoli, Paolo

    2009-01-01

    Setting of cellular cultures extracted from colorectal cancer tissue represents a valid model for in vitro study of biological and molecular characteristics of each single tumor finalized to obtain a tailored chemiotherapy. The end point of this study is to create primary cellular cultures from "fresh" cancer tissue in different stages of evolution. Cancer tissue samples are obtained by means of surgical excisional biopsy or by means of semi-automatic biopsy instrument (Sprig-Cut). After having compared different approaches, two experimental protocols have been selected to have the highest number or intact cells: enzimatic digestion with trypsin and explantation. Primary cell culture free of microbic contamination, obtained mainly by means of Spring-Cut methods, underwent immunohistochemical analysis to evaluate what kind of cell have been grown in vitro by measuring the expression of CK20 and GFAP both resulted positive. The possibility of setting a primary cell culture which represents the cancer of each patient allows a pharmacologic and biomolecular study which can contribute to the development of a tailored adjuvant therapy with many advantages for the patient in terms of positive answer to the treatment and reduced toxicity.

  6. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  7. CYTOTOXICITY TESTING OF WOUND DRESSINGS USING METHYLCELLULOSE CELL-CULTURE

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; JONKMAN, MF

    1992-01-01

    Wound dressings may induce cytotoxic effects. In this study, we check several, mostly commercially available, wound dressings for cytotoxicity. We used our previously described, newly developed and highly sensitive 7 d methylcellulose cell culture with fibroblasts as the test system. Cytotoxicity is

  8. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  9. Mefloquine damage vestibular hair cells in organotypic cultures.

    Science.gov (United States)

    Yu, Dongzhen; Ding, Dalian; Jiang, Haiyan; Stolzberg, Daniel; Salvi, Richard

    2011-07-01

    Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.

  10. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi

    Science.gov (United States)

    Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause

    1990-01-01

    Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....

  11. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...... a protein with an apparent molecular mass of 70 kDa and an isoelectric pH of 7.0 as early as 3 h after the initial hyperthermal treatment....

  12. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  13. Rapid Detection of Apoptosis in Cultured Mammalian Cells.

    Science.gov (United States)

    Kudryavtsev, Igor; Serebryakova, Maria; Solovjeva, Liudmila; Svetlova, Maria; Firsanov, Denis

    2017-01-01

    Flow cytometry is a powerful tool for the analysis of apoptosis, the process that directly determines cell fate after the action of different stresses. Here, we describe a flow cytometry method for the assessment of early and late stages of apoptosis in non-fixed cultured cells using SYTO16, DRAQ7, and PO-PRO1 dyes simultaneously. This multicolor flow cytometry procedure requires 45 min for completion and provides a quantitative assessment of cell viability. It can be useful in evaluating the cytotoxic properties of new drugs, and antitumor interventions.

  14. CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy

    Directory of Open Access Journals (Sweden)

    Pieter Bellens

    2009-01-01

    Full Text Available Cell Superscalar's (CellSs main goal is to provide a simple, flexible and easy programming approach for the Cell Broadband Engine (Cell/B.E. that automatically exploits the inherent concurrency of the applications at a task level. The CellSs environment is based on a source-to-source compiler that translates annotated C or Fortran code and a runtime library tailored for the Cell/B.E. that takes care of the concurrent execution of the application. The first efforts for task scheduling in CellSs derived from very simple heuristics. This paper presents new scheduling techniques that have been developed for CellSs for the purpose of improving an application's performance. Additionally, the design of a new scheduling algorithm is detailed and the algorithm evaluated. The CellSs scheduler takes an extension of the memory hierarchy for Cell/B.E. into account, with a cache memory shared between the SPEs. All new scheduling practices have been evaluated showing better behavior of our system.

  15. Endothelial cell density after deep anterior lamellar keratoplasty (Melles technique)

    NARCIS (Netherlands)

    van Dooren, Bart T. H.; Mulder, Paul G. H.; Nieuwendaal, Carla P.; Beekhuis, W. Houdijn; Melles, Gerrit R. J.

    2004-01-01

    To measure the recipient endothelial cell loss after the Melles technique for deep anterior lamellar keratoplasty. In 21 eyes of 21 patients, a deep anterior lamellar keratoplasty procedure was performed. Before surgery and at 6, 12, and 24 months after surgery, specular microscopy was performed to

  16. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells

    Science.gov (United States)

    Martell, Jeffrey D; Deerinck, Thomas J; Lam, Stephanie S; Ellisman, Mark H; Ting, Alice Y

    2018-01-01

    Electron microscopy (EM) is the premiere technique for high-resolution imaging of cellular ultrastructure. Unambiguous identification of specific proteins or cellular compartments in electron micrographs, however, remains challenging because of difficulties in delivering electron-dense contrast agents to specific subcellular targets within intact cells. We recently reported enhanced ascorbate peroxidase 2 (APEX2) as a broadly applicable genetic tag that generates EM contrast on a specific protein or subcellular compartment of interest. This protocol provides guidelines for designing and validating APEX2 fusion constructs, along with detailed instructions for cell culture, transfection, fixation, heavy-metal staining, embedding in resin, and EM imaging. Although this protocol focuses on EM in cultured mammalian cells, APEX2 is applicable to many cell types and contexts, including intact tissues and organisms, and is useful for numerous applications beyond EM, including live-cell proteomic mapping. This protocol, which describes procedures for sample preparation from cell monolayers and cell pellets, can be completed in 10 d, including time for APEX2 fusion construct validation, cell growth, and solidification of embedding resins. Notably, the only additional steps required relative to a standard EM sample preparation are cell transfection and a 2- to 45-min staining period with 3,3′-diaminobenzidine (DAB) and hydrogen peroxide (H2O2). PMID:28796234

  17. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  18. Mutation breeding through in vitro culture techniques for resistance to cocoa swollen shoot virus disease

    International Nuclear Information System (INIS)

    Adu Ampomah, Y.

    1993-01-01

    The Cocoa Swollen Shoot Virus (CSSV) disease is epidemic in cocoa (Theobroma cacao) in Ghana, but there is no resistant material in the genetic resources available. In order to widen the genetic variability in this crop, efforts were made to apply conventional mutation breeding and in combination with in vitro culture technique. Gamma irradiation with doses less than 100 Gy were applied to pollen, beans and vegetative buds, and more than 1,000 M 2 /F 1 or M 1 V 3 plants for each experiments were screened for CSSV resistance by patch grafting method. The results indicated that it is feasible to use vegetative buds and in vitro culture to generate the desired variation. Some promising CSSV resistant clones are under further testing. In vitro culture conditions are also reported. (author). 7 refs, 7 tabs

  19. Infrared thermographic assessment of materials and techniques for the protection of cultural heritage

    Science.gov (United States)

    Moropoulou, Antonia; Avdelidis, Nicolas P.; Koui, Maria; Delegou, Ekaterini T.; Tsiourva, Theodora

    2001-09-01

    In this work, infrared thermography was applied and investigated as a non-destructive tool in the assessment of materials and techniques for the protection of cultural heritage. Diagnostic studies on monuments and historic buildings, situated in Greece, were performed. Long wave infrared thermography was used on restoration and traditional - historic materials concerning architectural surfaces and historic structures for research purposes such as: the assessment of moisture impact to porous stone masonries and the evaluation of conservation interventions (materials and techniques) regarding, consolidation interventions on porous stone masonries, restoration of masonries by repair mortars, and cleaning of facades. The results of this work indicate that thermography can be considered as a powerful diagnostic nondestructive tool for the preservation and protection of cultural heritage.

  20. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding......' bioactivity, defining the lowest toxic level of tested substances etc....

  1. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...

  2. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  3. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  4. Cell Migration in Tissues: Explant Culture and Live Imaging.

    Science.gov (United States)

    Staneva, Ralitza; Barbazan, Jorge; Simon, Anthony; Vignjevic, Danijela Matic; Krndija, Denis

    2018-01-01

    Cell migration is a process that ensures correct cell localization and function in development and homeostasis. In disease such as cancer, cells acquire an upregulated migratory capacity that leads to their dissemination throughout the body. Live imaging of cell migration allows for better understanding of cell behaviors in development, adult tissue homeostasis and disease. We have optimized live imaging procedures to track cell migration in adult murine tissue explants derived from: (1) healthy gut; (2) primary intestinal carcinoma; and (3) the liver, a common metastatic site. To track epithelial cell migration in the gut, we generated an inducible fluorescent reporter mouse, enabling us to visualize and track individual cells in unperturbed gut epithelium. To image intratumoral cancer cells, we use a spontaneous intestinal cancer model based on the activation of Notch1 and deletion of p53 in the mouse intestinal epithelium, which gives rise to aggressive carcinoma. Interaction of cancer cells with a metastatic niche, the mouse liver, is addressed using a liver colonization model. In summary, we describe a method for long-term 3D imaging of tissue explants by two-photon excitation microscopy. Explant culturing and imaging can help understand dynamic behavior of cells in homeostasis and disease, and would be applicable to various tissues.

  5. De novo identification of viral pathogens from cell culture hologenomes

    Directory of Open Access Journals (Sweden)

    Patowary Ashok

    2012-01-01

    Full Text Available Abstract Background Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes. Findings We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and de-novo assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to Japanese encephalitis virus. The genome of the virus was also independently de-novo assembled. The presence of the virus was in addition, verified using standard molecular biology techniques. Conclusions Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.

  6. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system

    DEFF Research Database (Denmark)

    Østergaard, Lars; Traulsen, J; Birkelund, Svend

    1991-01-01

    the two test systems were compared, the overall sensitivity of the polymerase chain reaction was 96% and the specificity 94% when compared to the cell culture technique. By use of a closed system for DNA extraction and sample transfer for the polymerase chain reaction, contamination of the samples......Two hundred and fifty-four specimens from males and females consulting a clinic for sexually transmitted diseases were analyzed for genital Chlamydia trachomatis infection. Each clinical sample was tested by the cell culture technique and the polymerase chain reaction using a closed system. When...... not detect Chlamydia trachomatis after sufficient antibiotic treatment of the chlamydial infections....

  7. Evaluation of urogenital Chlamydia trachomatis infections by cell culture and the polymerase chain reaction using a closed system

    DEFF Research Database (Denmark)

    Østergaard, Lars; Traulsen, J; Birkelund, Svend

    1993-01-01

    the two test systems were compared, the overall sensitivity of the polymerase chain reaction was 96% and the specificity 94% when compared to the cell culture technique. By use of a closed system for DNA extraction and sample transfer for the polymerase chain reaction, contamination of the samples......Two hundred and fifty-four specimens from males and females consulting a clinic for sexually transmitted diseases were analyzed for genital Chlamydia trachomatis infection. Each clinical sample was tested by the cell culture technique and the polymerase chain reaction using a closed system. When...... not detect Chlamydia trachomatis after sufficient antibiotic treatment of the chlamydial infections....

  8. Three-dimensional cell culture model utilization in cancer stem cell research.

    Science.gov (United States)

    Bielecka, Zofia F; Maliszewska-Olejniczak, Kamila; Safir, Ilan J; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Three-dimensional (3D) cell culture models are becoming increasingly popular in contemporary cancer research and drug resistance studies. Recently, scientists have begun incorporating cancer stem cells (CSCs) into 3D models and modifying culture components in order to mimic in vivo conditions better. Currently, the global cell culture market is primarily focused on either 3D cancer cell cultures or stem cell cultures, with less focus on CSCs. This is evident in the low product availability officially indicated for 3D CSC model research. This review discusses the currently available commercial products for CSC 3D culture model research. Additionally, we discuss different culture media and components that result in higher levels of stem cell subpopulations while better recreating the tumor microenvironment. In summary, although progress has been made applying 3D technology to CSC research, this technology could be further utilized and a greater number of 3D kits dedicated specifically to CSCs should be implemented. © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  9. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.

    2013-01-01

    rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino......Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only...... developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein...

  10. [The effect of Solcoseryl on in-vitro cultured cells].

    Science.gov (United States)

    Lindner, G; Grosse, G; Lehmann, A

    1977-01-01

    Explants of peripherical nervous system (PNS), skin and ventriculus cordis from chick embryo were cultivated in Maximow chambers and the effect of Solcoseryl, Fa. Solco Basel AG, on some morphological parameters was tested. 1. The growth of tissue cultures is influenced by Solcoseryl in relation to concentration and time of application. The index of area in cultures of PNS and cor increased within the first days. By long time application up to 6 days in vitro the index of area decreased and the index was the same than in controls. Explants of skin showed no essential stimulation of growth. 2. The number of cells per unit of culture in the outgrowth of PNS, cor and skin was different influenced. The density of cells in cultures of PNS and skin decreased (signif. difference). In explants of heart we could not observe a difference between the inside and outside of the outgrowth. An influence of Solcoseryl on the degree of migration is discussed. 3. The area of cell nuclei from heartcells was observed. The area decreased under the influence of Solcoseryl. The difference is significant. 4. The mitotic index of heart cells increased by application of Solcoseryl within the first 2 and 3 days in vitro. 5. The number of nucleoli per nucleus of heart cells under experimental conditions increased significant. It is discussed, Solcoseryl influenced in vitro metabolic processes in suitable systems; stimulation of cell proliferation and migration and rns-synthesis was observed within the first days of cultivation. In-vitro-systems are important objects and they are suitable for tests of pharmaca in vitro.

  11. Examination, characterisation and analysis techniques for the knowledge and the conservation / restoration of cultural heritage - importance of ionising radiation techniques

    International Nuclear Information System (INIS)

    Boutaine; J. L.

    2004-01-01

    For the examination, characterisation and analysis of cultural heritage artefacts or art objects and their component materials, the conservation scientist needs a palette of non destructive and non invasive techniques, in order to improve our knowledge concerning their elaboration, their evolution and/or degradation during time, and to give rational basis for their restoration and conservation. A general survey and illustrations showing the usefulness of these techniques will be presented. Among these methods, many are based on the use of ionising radiation. 1. Radiography (using X-rays, gamma rays, beta particles, secondary electrons, neutrons), electron emission radiography, tomodensimetry, 2. Scanning electron microscope associated with X-ray spectrometry, 3. X-ray diffraction, 4. Synchrotron radiation characterisation, 5. X-ray fluorescence analysis, 6. Activation analysis, 7. Ion beam analysis (PIXE, PIGE, RBS, secondary X-ray fluorescence), 8. Thermoluminescence dating, 9. Carbon-14 dating. These methods are used alone or in connection with other analytical methods. Any kind of materials can be encountered, for instance: i. stones, gems, ceramics, terracotta, enamels, glasses, i i. wood, paper, textile, bone, ivory, i i i. metals, jewellery, i v. paint layers, canvas and wooden backings, pigments, dyers, oils, binding media, varnishes, glues. Some examples will be taken, among recent work done at the Centre of Research and Restoration of the Museums of France (C2RMF), from various geographical origins, various ages and different art disciplines. This will illustrate the kind of assistance that science and technology can provide to a better knowledge of mankind's cultural heritage and also to the establishment of rational basis for its better conservation for the future generations. (Author)

  12. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells.

    Science.gov (United States)

    Conceição, M M; Tonso, A; Freitas, C B; Pereira, C A

    2007-11-07

    Viral antigens can be obtained from infected mammalian cells cultivated on microcarriers. We have worked out parameters for the production of bovine parainfluenza 3 (PI-3) virus by Mandin-Darby Bovine Kidney (MDBK) cells cultivated on Cytodex 1 microcarriers (MCs) in spinners flasks and bioreactor using fetal bovine serum (FBS) supplemented Eagle minimal essential medium (Eagle-MEM). Medium renewal during the cell culture was shown to be crucial for optimal MCs loading (>90% MCs with confluent cell monolayers) and cell growth (2.5 x 10(6)cells/mL and a micro(x) (h(-1)) 0.05). Since cell cultures performed with lower amount of MCs (1g/L), showed good performances in terms of cell loading, we designed batch experiments with a lower concentration of MCs in view of optimizing the cell growth and virus production. Studies of cell growth with lower concentrations of MCs (0.85 g/L) showed that an increase in the initial cell seeding (from 7 to 40 cells/MC) led to a different kinetic of initial cell growth but to comparable final cell concentrations ((8-10)x10(5)cells/mL at 120 h) and cell loading (210-270 cells/MC). Upon infection with PI-3 virus, cultures showed a decrease in cell growth and MC loading directly related to the multiplicity of infection (moi) used for virus infection. Infected cultures showed also a higher consumption of glucose and production of lactate. The PI-3 virus and PI-3 antigen production among the cultures was not significantly different and attained values ranging from, respectively, 7-9 log(10) TCID(50)/mL and 1.5-2.2 OD. The kinetics of PI-3 virus production showed a sharp increase during the first 24h and those of PI-3 antigen increased after 24h. The differential kinetics of PI-3 virus and PI-3 antigen can be explained by the virus sensitivity to temperature. In view of establishing a protocol of virus production and based on the previous experiments, MDBK cell cultures performed under medium perfusion in a bioreactor of 1.2L were infected

  13. Microchip-based 3D-Cell Culture Using Polymer Nanofibers Generated by Solution Blow Spinning.

    Science.gov (United States)

    Chen, Chengpeng; Townsend, Alexandra D; Sell, Scott A; Martin, R Scott

    2017-06-14

    Polymer nano/micro fibers have found many applications including 3D cell culture and the creation of wound dressings. The fibers can be produced by a variety of techniques that include electrospinning, the primary disadvantage of which include the requirement for a high voltage supply (which may cause issues such as polymer denaturation) and lack of portability. More recently, solution blow spinning, where a high velocity sheath gas is used instead of high voltage, has been used to generate polymer fibers. In this work, we used blow spinning to create nano/microfibers for microchip-based 3D cell culture. First, we thoroughly investigated fiber generation from a 3D printed gas sheath device using two polymers that are amenable to cell culture (polycaprolactone, PCL and polystyrene, PS) as well as the parameters that can affect PCL and PS fiber quality. Using the 3D printed sheath device, it was found that the pressure of the sheath N 2 and the concentration of polymer solutions determine if fibers can be produced as well as the resulting fiber morphology. In addition, we showed how these fibers can be used for 3D cell culture by directly depositing PCL fibers in petri dishes and well plates. It is shown the fibers have good compatibility with RAW 264.7 macrophages and the PCL fiber scaffold can be as thick as 178 ± 14 μm. PCL fibers created from solution blow spinning (with the 3D printed sheath device) were then integrated with a microfluidic device for the first time to fabricate a 3D cell culture scaffold with a flow component. After culturing and stimulating macrophages on the fluidic device, it was found that the integrated 3D fibrous scaffold is a better mimic of the extracellular matrix (as opposed to a flat, 2D substrate), with enhanced nitrite accumulation (product of nitric oxide release) from macrophages stimulated with lipopolysaccharide. PS fibers were also made and integrated in a microfluidic device for 3D culture of endothelial cells, which stayed

  14. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  15. Aging and senescence of skin cells in culture

    DEFF Research Database (Denmark)

    Rattan, Suresh

    2015-01-01

    Studying age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. The three main cell types that have been studied extensively with respect to cellular...... aging in vitro are dermal fibroblasts, epidermal keratinocytes, and melanocytes. Serial subcultivation of normal diploid skin cells can be performed only a limited number of times, and the emerging senescent phenotype can be categorized into structural, physiological, biochemical, and molecular...... phenotypes, which can be used as biomarkers of cellular aging in vitro. The rate and phenotype of aging are different in different cell types. There are both common features and specific features of aging of skin fibroblasts, keratinocytes, melanocytes, and other cell types. A progressive accumulation...

  16. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  17. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-01-01

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  18. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  19. Radiation response of cultured human cells is unaffected by Johrei.

    Science.gov (United States)

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  20. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    Directory of Open Access Journals (Sweden)

    Zach Hall

    2007-01-01

    Full Text Available Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment for each of 4 doses of X-rays (0, 2, 4 and 8 Gy. Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  1. Effect of low dose laser on the chorioallantoic culture of retinal pigment cells

    International Nuclear Information System (INIS)

    Yew, D.T.; Lam, S.T.L.; Chan, Y.W.

    1982-01-01

    Low dose laser effects were analysed in chorioallantoic cultures of retinal pigment cells. Decrease in cell sizes and increase in number of mitosis were observed in the experimental cultures. On the other hand, pyknosis did not change significantly following irradiation. Most cells in the control and experimental cultures formed groups. However, 2 types of detached cells were evident. The percentage of detached cells was higher in the experimental culture. (Auth.)

  2. Preparation of cultured and isolated cells for X-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zierold, K.; Schaefer, D.

    1988-09-01

    Various electron microscopical preparation techniques are compared with regard to the preservation of the intracellular element distribution as determined by X-ray microanalysis in scanning and scanning transmission electron microscopy. By use of chemical agents for fixation and dehydration ions are redistributed and washed out. This is also true for freeze-substitution. Whole cells are prepared by cryofixation followed by freeze-drying. Interference of intracellular measurements by extracellular elements can be avoided by appropriate washing the cells before cryofixation. The washing medium has to be carefully selected in order to avoid distortions of the original intracellular element content. These problems are circumvented by the preparation of freeze-dried cryosections from cryofixed cells. This is demonstrated by data of the intracellular elemental composition in cultured cells (fibroblasts, Staphylococcus aureus bacteria) and in cells isolated from rat tissue (kidney papillary collecting duct and liver). Cryofixation of a single cell in a defined functional state is illustrated by results obtained from streaming Amoeba proteus cells, cryofixed under light microscopical control. The main conclusion is that X-ray microanalysis of cells in functional states requires cryofixation and cryopreparation techniques which have to be adapted to the particular cell biological problem to be investigated.

  3. Scale-up of cell culture bioreactors using biomechatronic design.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2012-08-01

    Scale-up of cell culture bioreactors is a challenging engineering work that requires wide competence in cell biology, mechanical engineering and bioprocess design. In this article, a new approach for cell culture bioreactor scale-up is suggested that is based on biomechatronic design methodology. The approach differs from traditional biochemical engineering methodology by applying a sequential design procedure where the needs of the users and alternative design solutions are systematically analysed. The procedure is based on the biological and technical functions of the scaled-up bioreactor that are derived in functional maps, concept generation charts and scoring and interaction matrices. Basic reactor engineering properties, such as mass and heat transfer and kinetics are integrated in the procedure. The methodology results in the generation of alternative design solutions that are thoroughly ranked with help of the user needs. Examples from monoclonal antibodies and recombinant protein production illuminate the steps of the procedure. The methodology provides engineering teams with additional tools that can significantly facilitate the design of new production methods for cell culture processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3D Cell Culture Imaging with Digital Holographic Microscopy

    Science.gov (United States)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  5. Individualized medicine for renal cell carcinoma: establishment of primary cell line culture from surgical specimens.

    Science.gov (United States)

    Kim, Fernando J; Campagna, Adriano; Khandrika, Lakshmipathi; Koul, Sweaty; Byun, Seok-Soo; vanBokhoven, Adrie; Moore, Ernest E; Koul, Hari

    2008-10-01

    The lack of effective "in vivo" and "in vitro" models to predict success of pharmacological therapy for patients with renal cell carcinoma, as well as, the variety of cancer cell types demands the development of better experimental models to understand the pathophysiology of the disease and evaluate drug sensitivity in vitro. To develop primary renal cancer cell culture irrespective of tumor grade and tumor type, harvested from the patient's pathological specimen immediately after the laparoscopic radical nephrectomy to study potential "in vivo" pharmacological sensitivity. A total of 24 patients (17 males and 7 females). Mean age of 63.1+/-3.1 y.o. The mean size of the renal masses was 7.56+/-3.1 cm. Normal and pathological renal tissue was collected immediately after the specimen was extracted and submitted to enzymatic digestion for 16-24 hours. Clear cell carcinoma cells were selected through multiple passages in DMEM medium supplemented with glucose and antibiotics. Establishment of cell line culture from all the patients' specimens irrespective of tumor grade and tumor type was achieved successfully. In addition to the tumor cell line culture, normal parenchyma tissue yielded primary cell lines to allow testing the response of tumor types to various pharmacological therapeutic agents and toxicity of such treatments to healthy tissue. From the initial collection of the specimens obtained after the removal of the kidney to the development of cell lines took occurred in average 32+6 hrs. The cells in culture showed characteristics of epithelial cells; like expression on cytokeratin and were maintained in culture for more than 20 passages. The development of renal cancer cell cultures in vitro is labor intense but may yield a more realistic model to tailor pharmacological therapies and predict therapeutic success prior to "in vivo" application-a step in the direction of individualized medicine for RCC.

  6. Cell division in Escherichia coli cultures monitored at single cell resolution

    Directory of Open Access Journals (Sweden)

    Luidalepp Hannes

    2008-04-01

    Full Text Available Abstract Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular

  7. Proteomic characterization of golgi membranes enriched from Arabidopsis suspension cell cultures

    DEFF Research Database (Denmark)

    Hansen, Sara Fasmer; Ebert, Berit; Rautengarten, Carsten

    2016-01-01

    The plant Golgi apparatus has a central role in the secretory pathway and is the principal site within the cell for the assembly and processing of macromolecules. The stacked membrane structure of the Golgi apparatus along with its interactions with the cytoskeleton and endoplasmic reticulum has...... from an Arabidopsis cell suspension culture that can be used to investigate the proteome of this organelle. We also provide a useful workflow for the examination of proteomic data as the result of multiple analyses. Finally, we highlight a simple technique to validate the subcellular localization...

  8. Experimental techniques for single cell and single molecule biomechanics

    International Nuclear Information System (INIS)

    Lim, C.T.; Zhou, E.H.; Li, A.; Vedula, S.R.K.; Fu, H.X.

    2006-01-01

    Stresses and strains that act on the human body can arise either from external physical forces or internal physiological environmental conditions. These biophysical interactions can occur not only at the musculoskeletal but also cellular and molecular levels and can determine the health and function of the human body. Here, we seek to investigate the structure-property-function relationship of cells and biomolecules so as to understand their important physiological functions as well as establish possible connections to human diseases. With the recent advancements in cell and molecular biology, biophysics and nanotechnology, several innovative and state-of-the-art experimental techniques and equipment have been developed to probe the structural and mechanical properties of biostructures from the micro- down to picoscale. Some of these experimental techniques include the optical or laser trap method, micropipette aspiration, step-pressure technique, atomic force microscopy and molecular force spectroscopy. In this article, we will review the basic principles and usage of these techniques to conduct single cell and single molecule biomechanics research

  9. Calcium exchange, structure, and function in cultured adult myocardial cells

    International Nuclear Information System (INIS)

    Langer, G.A.; Frank, J.S.; Rich, T.L.; Orner, F.B.

    1987-01-01

    Cells digested from adult rat heart and cultured for 14 days demonstrate all the structural elements, in mature form, associated with the process of excitation-contraction (EC) coupling. The transverse tubular (TT) system is well developed with an extensive junctional sarcoplasmic reticulum (JSR). In nonphosphate-containing buffer contraction of the cells is lost as rapidly as zero extracellular Ca concentration ([Ca] 0 ) solution is applied and a negative contraction staircase is produced on increase of stimulation frequency. Structurally and functionally the cells have the characteristics of adult cells in situ. 45 Ca exchange and total 45 Ca measurement in N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES)-buffered perfusate define three components of cellular Ca: 1) a rapidly exchangeable component accounting for 36% of total Ca, 2) a slowly exchangeable component (t/sub 1/2/ 53 min) accounting for 7% total Ca, and 3) the remaining 57% cellular Ca is inexchangeable (demonstrates no significant exchange within 60 min). The slowly exchangeable component can be increased 10-fold within 60 min by addition of phosphate to the perfusate. The Ca distribution and exchange characteristics are little different from those of 3-day cultures of neonatal rat heart previously studied. The results suggest that the cells are representative of adult cells in situ and that both sarcolemmal-bound and sarcoplasmic reticular Ca contribute to the component of Ca that is rapidly exchangeable

  10. Diffusion chamber culture of mouse bone marrow cells, (1)

    International Nuclear Information System (INIS)

    Sigeta, Chiharu; Tanaka, Kimio; Kawakami, Masahito; Takahashi, Hiroshi; Ohkita, Takeshi

    1980-01-01

    Mouse bone marrow cells were cultured in diffusion chambers (DC) implanted in the peritoneal cavity of host mice. Host mice were subjected to (1) irradiation ( 60 Co 800 rad) and/or (2) phenylhydrazine induced anemia and then receiving irradiation ( 60 Co 600 rad). After culture periods of 3-7 days, the total number of cells in DC was increased. A marked increase in DC is due to the proliferation of granulocyte series. When host mice were subjected to anemia and irradiation, the start of cell proliferation in DC was delay about two days. On the whole, anemia and irradiation host reduced a little cell growth in DC. The number of immature granulocytes grown in DC in irradiated hosts or anemia and irradiated hosts increased and reached a plateu at day 5. During the plateu period, the proportions between immature and mature granulocytes in DC were kept constantly. The number of macrophages showed a two-phase increasing. Erythroid cells and lymphocytes rapidly disappeared from the chambers during 3 days. The number of erythroid cells was not significantly influenced even in anemia and irradiation hosts. (author)

  11. Ultrathin Metal Films with Defined Topographical Structures as In Vitro Cell Culture Platforms for Unveiling Vascular Cell Behaviors.

    Science.gov (United States)

    Jun, Indong; Chung, Yong-Woo; Park, Jimin; Han, Hyung-Seop; Park, Jaeho; Kim, Saeromi; Lee, Hyunjung; Kim, Sang Hoon; Han, Jun-Hyun; Kim, Hyunjung; Seok, Hyun-Kwang; Kim, Yu-Chan; Jeon, Hojeong

    2016-09-01

    Implanted material surfaces make direct contact with body tissues to work on its own purpose. Therefore, studies of the surface properties of implantable materials that determine cell fate are very important for successful implantation. Although numerous studies have addressed the relationship between cells and material surfaces, nonmetallic surfaces and metallic surfaces likely produce different cellular responses because of their intrinsic differences in surface energy, roughness, and chemical composition. Moreover, given the nontransparent property of metal materials, which hampers the real-time imaging of cellular behavior, a detailed cellular-level analysis at the metal-tissue interface has not been performed. In this study, metal-based cell culture platforms (MCPs) with defined microscale topographical patterns are developed using a combination of photolithography and direct current magnetron sputtering techniques. The MCPs allow to observe vascular cells on metals in real time and identify the selective regulation of human aortic smooth muscle cells and Human umbilical vein endothelial cells (HUVECs) by metallic surface topography. Additionally, atomic force microscopy, contact angles, and energy-dispersive X-ray spectroscopy analyses show that the MCPs exhibit nearly identical chemical properties with their bulk counterparts, demonstrating that MCPs can be utilized as an in vitro cell culture platform system for understanding the cellular behavior on metal substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cell separation technique in dilectrophoretic chip with bulk electrode

    Science.gov (United States)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  13. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  14. Proliferation and differentiation potential of mouse adult hepatic progenitor cells cultured in vitro.

    Science.gov (United States)

    Song, Lujun; Wang, Hongshan; Gao, Xiaodong; Shen, Kuntang; Niu, Weixin; Qin, Xinyu

    2010-02-01

    This study aimed to isolate the stem cells or progenitors, if exist, from normal adult mouse liver and investigate their potential of proliferation and differentiation. Hepatocytes were isolated by modified two-step liver perfusion method and centrifugation, and then cultured in modified serumcontaining DMEM for observation more than 60 days. Immunofluorescence technique was applied to check the hepatocytes and to examine the formation of colonies with albumin, alpha-fetoprotein (AFP) and cytokeratin 19 (CK19). Results showed that some hepatocytes that were strongly positive for hepatocyte specific markers albumin on Day 1 in culture, could be activated at Days 2-3, followed by rapid proliferation and formation of colonies. The colonies could expand continually for more than 60 days. On Day 5, all the cells in the colony expressed hepatic stem cell (HSC) markers AFP. With the time of culture, some cells in colonies lost ability to divide at Days 13-15, and differentiated into cells which had a large cytoplasm and some two nuclei, similar to the appearance of mature hepatocytes morphologically. These differentiated cells demonstrated strong expression of albumin. Around Day 30, some big cells appeared in colonies and expressed bile duct cell marker CK19. Therefore, this subpopulation of mouse hepatocytes could acquire some characteristics of immature hepatocytes and showed the profile of hepatic progenitor cells with a high proliferating ability and bi-potential of differentiation. They were isolated from normal adult mouse, hence, named adult hepatic progenitor cells (AHPCs). Mouse AHPCs may be used as an HSC model for hepatocytes transplantation and hepatopathy study.

  15. Neutralization sensitivity of cell culture-passaged simian immunodeficiency virus.

    Science.gov (United States)

    Means, R E; Greenough, T; Desrosiers, R C

    1997-10-01

    CEMx174- and C8166-45-based cell lines which contain a secreted alkaline phosphatase (SEAP) reporter gene under the control of a tat-responsive promoter derived from either SIVmac239 or HIV-1(NL4-3) were constructed. Basal levels of SEAP activity from these cell lines were low but were greatly stimulated upon transfection of tat expression plasmids. Infection of these cell lines with simian immunodeficiency virus (SIV) or human immunodeficiency virus type 1 (HIV-1) resulted in a dramatic increase in SEAP production within 48 to 72 h that directly correlated with the amount of infecting virus. When combined with chemiluminescent measurement of SEAP activity in the cell-free supernatant, these cells formed the basis of a rapid, sensitive, and quantitative assay for SIV and HIV infectivity and neutralization. Eight of eight primary isolates of HIV-1 that were tested induced readily measurable SEAP activity in this system. While serum neutralization of cloned SIVmac239 was difficult to detect with other assays, neutralization of SIVmac239 was readily detected at low titers with this new assay system. The neutralization sensitivities of two stocks of SIVmac251 with different cell culture passage histories were tested by using sera from SIV-infected monkeys. The primary stock of SIVmac251 had been passaged only twice through primary cultures of rhesus monkey peripheral blood mononuclear cells, while the laboratory-adapted stock had been extensively passaged through the MT4 immortalized T-cell line. The primary stock of SIVmac251 was much more resistant to neutralization by a battery of polyclonal sera from SIV-infected monkeys than was the laboratory-adapted virus. Thus, SIVmac appears to be similar to HIV-1 in that extensive laboratory passage through T-cell lines resulted in a virus that is much more sensitive to serum neutralization.

  16. Radiation-induced bystander effects in cultured human stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    2010-12-01

    Full Text Available The radiation-induced "bystander effect" (RIBE was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR. RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed.Human bone-marrow mesenchymal stem cells (hMSC and embryonic stem cells (hESC were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05. A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05.These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.

  17. Isolation and culture of Celosia cristata L cell suspension protoplasts

    Directory of Open Access Journals (Sweden)

    Retno Mastuti

    2003-06-01

    Full Text Available Developmental competence of Celosia cristata L. cell suspension-derived protoplasts was investigated. The protoplasts were isolatedfrom 3- to 9-d old cultures in enzyme solution containing 2% (w/v Cellulase YC and 0.5% (w/v Macerozyme R-10 which was dissolvedin washing solution (0.4 M mannitol and 10 mM CaCl2 at pH 5.6 for 3 hours. The highest number of viable protoplasts was releasedfrom 5-d old culture of a homogenous cell suspension. Subsequently, three kinds of protoplast culture media were simultaneously examinedwith four kinds of concentration of gelling agent. Culturing the protoplasts on KM8p medium solidified with 1.2% agarose significantlyenhanced plating efficiency as well as microcolony formation. Afterwards, the microcalli actively proliferated into friable watery calluswhen they were subcultured on MS medium supplemented with 0.3 mg/l 2,4-D and 1.0 mg/l kinetin. Although the plant regenerationfrom the protoplasts-derived calli has not yet been obtained, the reproducible developmental step from protoplasts to callus in thisstudy may facilitate the establishment of somatic hybridization using C. cristata as one parent.

  18. Genotoxic activity of caramel on Salmonella and cultured mammalian cells.

    Science.gov (United States)

    Yu, Y N; Chen, X R; Ding, C; Cai, Z N; Li, Q G

    1984-04-01

    The genetic activity of 2 commercial caramel preparations, manufactured either by heating the malt sugar solution directly (non-ammoniated caramel) or by heating it with ammonia (ammoniated caramel) was studied in the Salmonella mutagenicity test and UDS assay in cultured mammalian cells. The non-ammoniated caramel was found to be mutagenic to S. typhimurium TA100, while the ammoniated one was genetically active in all the tester strains used, namely TA100, TA97 and TA98. It was also demonstrated that non-ammoniated caramel was capable of inducing UDS in cultured human amnion FL cells, but for the ammoniated one, no such activity was observed. Furthermore, based on the results obtained in the DNA synthesis inhibition assay, it was suggested that the DNA synthesis inhibition seen in our experiments with the ammoniated caramel was probably not of DNA damage in origin. These data indicate that the mutagenic fractions formed during ammoniated and non-ammoniated caramelization were quite different.

  19. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... to be simple duplicates for testing the effect of two induced factors-apical or basolateral addition of radioactive precursors and different apical media-on the incorporation of 14C-acetate and 32Pphosphate intotissue lipids. Unfortunately, they did not altogether give the same result. By accepting this fact...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...

  20. Microphotographs of cyanobacteria documenting the effects of various cell-lysis techniques

    Science.gov (United States)

    Rosen, Barry H.; Loftin, Keith A.; Smith, Christopher E.; Lane, Rachael F.; Keydel, Susan P.

    2011-01-01

    Cyanotoxins are a group of organic compounds biosynthesized intracellularly by many species of cyanobacteria found in surface water. The United States Environmental Protection Agency has listed cyanotoxins on the Safe Drinking Water Act's Contaminant Candidate List 3 for consideration for future regulation to protect public health. Cyanotoxins also pose a risk to humans and other organisms in a variety of other exposure scenarios. Accurate and precise analytical measurements of cyanotoxins are critical to the evaluation of concentrations in surface water to address the human health and ecosystem effects. A common approach to total cyanotoxin measurement involves cell membrane disruption to release the cyanotoxins to the dissolved phase followed by filtration to remove cellular debris. Several methods have been used historically, however no standard protocols exist to ensure this process is consistent between laboratories before the dissolved phase is measured by an analytical technique for cyanotoxin identification and quantitation. No systematic evaluation has been conducted comparing the multiple laboratory sample processing techniques for physical disruption of cell membrane or cyanotoxins recovery. Surface water samples collected from lakes, reservoirs, and rivers containing mixed assemblages of organisms dominated by cyanobacteria, as well as laboratory cultures of species-specific cyanobacteria, were used as part of this study evaluating multiple laboratory cell-lysis techniques in partnership with the U.S. Environmental Protection Agency. Evaluated extraction techniques included boiling, autoclaving, sonication, chemical treatment, and freeze-thaw. Both treated and untreated samples were evaluated for cell membrane integrity microscopically via light, epifluorescence, and epifluorescence in the presence of a DNA stain. The DNA stain, which does not permeate live cells with intact membrane structures, was used as an indicator for cyanotoxin release into the

  1. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  2. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  3. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement....... The cells have the potential of long-term culture and the ability to differentiate into neural and glial cells....

  4. Mesenchymal stem cells cultured on magnetic nanowire substrates

    Science.gov (United States)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  5. Mesenchymal stem cells cultured on magnetic nanowire substrates

    KAUST Repository

    Perez, Jose E.

    2016-12-28

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  6. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii.

    Science.gov (United States)

    Farkas, Joel; Chung, Daehwan; Cha, Minseok; Copeland, Jennifer; Grayeski, Philip; Westpheling, Janet

    2013-01-01

    Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD(680)) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.

  7. Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits.

    Science.gov (United States)

    Braendlein, Marcel; Pappa, Anna-Maria; Ferro, Marc; Lopresti, Alexia; Acquaviva, Claire; Mamessier, Emilie; Malliaras, George G; Owens, Róisín M

    2017-04-01

    A biosensing platform based on an organic transistor circuit for metabolite detection in highly complex biological media is introduced. The sensor circuit provides inherent background subtraction allowing for highly specific, sensitive lactate detection in tumor cell cultures. The proposed sensing platform paves the way toward rapid, label-free, and cost-effective clinically relevant in vitro diagnostic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. UV Inactivation of Cryptosporidium hominis as Measured in Cell Culture

    OpenAIRE

    Johnson, Anne M.; Linden, Karl; Ciociola, Kristina M.; De Leon, Ricardo; Widmer, Giovanni; Rochelle, Paul A.

    2005-01-01

    The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be ...

  9. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  10. The use of the Meek technique in conjunction with cultured epithelial autograft in the management of major paediatric burns.

    Science.gov (United States)

    Menon, Seema; Li, Zhe; Harvey, John G; Holland, Andrew J A

    2013-06-01

    The management of major paediatric burns remains challenging, in part due to limited donor sites. Skin graft expansion facilitates rapid closure of the burn wound, reducing the risk of sepsis. We reviewed our unit's experience with a combined modified Meek technique and cultured epithelial autograft (CEA). A retrospective chart review over a seven year period from April 2004 to April 2011 was conducted of patients whose burns were treated with Meek and CEA. The Meek technique was combined with meshed split skin grafts and CEA to either donor, graft site or both in 7 cases. One case had Meek skin grafts alone with cultured cells applied to both donor and graft sites. There were two scald burns and five flame burns, with total body surface area ranging from 30% to 70%. Mean length of stay was 51 days (range 41-74 days). The average number of surgical procedures undergone to obtain good coverage was 3.3. There were small (1-3%) areas of breakdown in six cases which received regrafting. Two of these patients had confirmed wound infections. All patients had varying degrees of hypertrophic scarring (HTS) but remained well at follow up. The Meek technique facilitates high expansion ratios, allowing for a greater area of skin coverage. Epithelialisation in the burn wound appeared to be enhanced by the application of CEA. The Meek technique in combination with CEA would appear a useful additional option in achieving wound closure in the severely burned paediatric patient. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Optimized exosome isolation protocol for cell culture supernatant and human plasma

    Directory of Open Access Journals (Sweden)

    Richard J. Lobb

    2015-07-01

    Full Text Available Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a

  12. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells.

    Directory of Open Access Journals (Sweden)

    Ramaschandra G Sharathchandra

    Full Text Available BACKGROUND: This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. CONCLUSIONS: The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks

  13. Reduction of fatal graft-versus-host disease by 3H--thymidine suicide of donor cells cultured with host cells

    International Nuclear Information System (INIS)

    Cheever, M.A.; Einstein, A.B. Jr.; Kempf, R.A.; Fefer, A.

    1977-01-01

    The effect of the tritiated thymidine ( 3 H-TdR) suicide technique on the ability of donor cells to induce fatal graft-versus-host disease (GVHD) was studied. C57BL/6 (H-2/sup b/) spleen cells were stimulated in vitro with irradiated BALB/c (H-2/sup d/) Moloney lymphoma cells in mixed culture and 3 H-TdR of high-specific activity added to eliminate proliferating cells. The ability of such cells to induce fatal GVHD was assayed by injecting them i.v. into adult BALB/c mice immunosuppressed with cyclophosphamide (180 mg/kg). These cells induced fatal GVHD in fewer mice (52 percent) than did C57BL/6 cells cultured with BALB/c lymphoma cells but without 3 H-TdR (87 percent) and C57BL/6 cells cultured with irradiated C57BL/6 cells with (95 percent) or without 3 H-TdR (86 percent). Thus, the 3 H-TdR suicide technique greatly diminished the ability of cells to induce lethal GVHD

  14. Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon.

    Science.gov (United States)

    Sogutmaz Ozdemir, Bahar; Budak, Hikmet

    2018-01-01

    Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.

  15. Characterization of conditioned medium of cultured bone marrow stromal cells.

    Science.gov (United States)

    Nakano, Norihiko; Nakai, Yoshiyasu; Seo, Tae-Boem; Yamada, Yoshihiro; Ohno, Takayuki; Yamanaka, Atsuo; Nagai, Yoji; Fukushima, Masanori; Suzuki, Yoshiyuki; Nakatani, Toshio; Ide, Chizuka

    2010-10-08

    It has been recognized that bone marrow stromal cell (BMSC) transplantation has beneficial effects on spinal cord injury in animal models and therapeutic trials. It is hypothesized that BMSCs provide microenvironments suitable for axonal regeneration and secrete some trophic factors to rescue affected cells from degeneration. However, the molecular and cellular mechanisms of the trophic factors involved remain unclear. In the present study, we examined the effects of trophic factors secreted by rat BMSCs using bioassays involving cultured hippocampal neurons. The conditioned medium (CM) as well as non-contact co-culture of BMSCs promoted neurite outgrowth and suppressed TUNEL-positive cells compared to serum-free D-MEM. Protein analyses of the CM by antibody-based protein array analysis and ELISA revealed that the CM contained insulin-like growth factor (IGF)-1, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-beta1. DNA microarray analysis revealed that neurons highly expressed receptors of IGF-1 and TGF-beta1. However, their expression indices remained unchanged even after the CM treatment. The individual trophic factors mentioned above or their combinations were less effective at promoting neuronal survival and neurite outgrowth than the CM. The present study showed that BMSCs secreted various kinds of molecules into the culture medium including trophic factors to promote neuronal survival and neurite outgrowth. The main trophic factors responsible remain to be elucidated. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  16. In Vitro Cell Culture Infectivity Assay for Human Noroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin A.; Orosz Coghlan, Patricia A.; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza; Nickerson, Cheryl A.

    2007-01-30

    Human noroviruses (NoV) cause severe, self-limiting gastroenteritis that typically lasts 24 - 48 hours. The true nature of NoV pathogenesis remains unknown due to the lack of suitable tissue culture or animal models. Here we show, for the first time, that NoV can infect and replicate in an organoid, three-dimensional (3-D) model of human small intestinal epithelium (INT-407). Cellular differentiation for this model was achieved by growing the cells in 3-D on porous collagen I-coated microcarrier beads under conditions of physiological fluid shear in rotating wall vessel bioreactors. Microscopy, PCR, and fluorescent in-situ hybridization were employed to provide evidence of NoV infection. CPE and norovirus RNA was detected at each of the five cell passages for both genogroup I and II viruses. Our results demonstrate that the highly differentiated 3-D cell culture model can support the natural growth of human noroviruses, whereas previous attempts using differentiated monolayer cultures failed.

  17. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    Science.gov (United States)

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic s