WorldWideScience

Sample records for cell culture model

  1. Cell culture models using rat primary alveolar type I cells.

    Science.gov (United States)

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  2. [Effect evaluation of three cell culture models].

    Science.gov (United States)

    Wang, Aiguo; Xia, Tao; Yuan, Jing; Chen, Xuemin

    2003-11-01

    Primary rat hepatocytes were cultured using three kinds of models in vitro and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH in the medium decreased over time in the period of culture. However, on 5 days, LDH showed a significant increase in monolayer culture (MC) while after 8 days LDH was not detected in sandwich culture (SC). The levels of AST and ALT in the medium did not change significantly over the investigated time. The basic CYP 1A activity gradually decreased with time in MC and SC. The decline of CYP 1A in rat hepatocytes was faster in MC than that in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducers such as omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than that in SC. Basic CYP 1A activity in bioreactor was keeped over 2 weeks and the highest albumin production was observed in bioreactor, and next were SC and MC. In conclusion, our results clearly indicated that there have some advantages and disadvantages in each of models in which can address different questions in metabolism of toxicants and drugs. PMID:14963896

  3. Cell culture models for study of differentiated adipose cells

    OpenAIRE

    Clynes, Martin

    2014-01-01

    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  4. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan;

    2010-01-01

    -defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed as a...

  5. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  6. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  7. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models.

    Directory of Open Access Journals (Sweden)

    Efstathia Papafragkou

    Full Text Available Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407 or human epithelial colorectal adenocarcinoma cells (Caco-2 growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe the efforts from two independent laboratories to implement this three dimensional (3D cell culture system for the replication of norovirus. Int-407 and Caco-2 were grown in a rotating bioreactor for up to 28 days. Prior to infection, cells were screened for the presence of microvilli by electron microscopy and stained for junction proteins (zonula occludens-1, claudin-1, and β-catenin. Differentiated 3D cells were transferred to 24-well plates and infected with bacteria-free filtrates of various norovirus genotypes (GI.1, GI.3, GI.8, GII.2, GII.4, GII.7, and GII.8. At 12 h, 24 h, and 48 h post inoculation, viral RNA from both cells and supernatants were collected and analyzed for norovirus RNA by real-time reverse transcription PCR. Despite observations of high expression of junction proteins and microvilli development in stained thin sections, our data suggest no significant increase in viral titer based on norovirus RNA copy number during the first 48 h after inoculation for the different samples and virus culture conditions tested. Our combined efforts demonstrate that 3D cell culture models using Int-407 or Caco-2 cells do not support norovirus replication and highlight the complexity and difficulty of developing a reproducible in vitro cell culture system for human norovirus.

  8. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    OpenAIRE

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan; Hemmingsen, Mette; Dufva, Martin

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chi...

  9. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    Science.gov (United States)

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  10. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells

    Science.gov (United States)

    Drummond, Coyne G.

    2015-01-01

    ABSTRACT Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and

  11. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  12. THE STUDY OF VIRUSES REPRODUCTION IN CELL CULTURES BY THE METHOD OF MATHEMATICAL MODELING

    OpenAIRE

    N. A. Kontarov; S. A. Grishunina; N. V. Balaev; N. V. Yuminova; V. V. Zverev

    2014-01-01

    Abstract. In the study the mathematical analysis of viruses reproduction in cell culture using the Marchuk’ mathematical model to predict  reproduction of virus in one or another cell cultures has been conducted. The obtained theoretical results are corresponded to the experimental data on reproduction of rubella virus in cell cultures RK-13 and BHK-21. The sum of theoretical and experimental results can be used to select the optimal cell cultures for virus cumulation.

  13. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    Directory of Open Access Journals (Sweden)

    Claudia González

    2013-01-01

    Full Text Available Background. Mucociliary transport (MCT is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms.

  14. Phase-segregated model for plant cell culture: The effect of cell volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [Univ. of Adelaide, Adelaide (Australia). Dept. of Chemical Engineering]|[Tokyo Univ. (Japan)hinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Furusaki, S. [Tokyo Univ. (Japan)] Middelberg, A. [Univ. of Adelaide, Adelaide (Australia). Dept. of Chemical Engineering

    1998-06-01

    Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases. Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus. Large errors in the simulated results were observed if the phase-segregation was not considered. 12 refs., 3 figs.

  15. Multifunction Co-culture Model for Evaluating Cell–Cell Interactions

    OpenAIRE

    Bogdanowicz, Danielle R.; Lu, Helen H.

    2014-01-01

    Interactions within the same cell population (homotypic) and between different cell types (heterotypic) are essential for tissue development, repair, and homeostasis. To elucidate the underlying mechanisms of these cellular interactions, co-culture models have been used extensively to investigate the role of cell–cell physical contact, autocrine and/or paracrine interactions on cell function, as well as stem cell differentiation. Specifically, the mixed co-culture model is often optimal for i...

  16. Gill cell culture systems as models for aquatic environmental monitoring.

    Science.gov (United States)

    Bury, Nic R; Schnell, Sabine; Hogstrand, Christer

    2014-03-01

    A vast number of chemicals require environmental safety assessments for market authorisation. To ensure acceptable water quality, effluents and natural waters are monitored for their potential harmful effects. Tests for market authorisation and environmental monitoring usually involve the use of large numbers of organisms and, for ethical, cost and logistic reasons, there is a drive to develop alternative methods that can predict toxicity to fish without the need to expose any animals. There is therefore a great interest in the potential to use cultured fish cells in chemical toxicity testing. This review summarises the advances made in the area and focuses in particular on a system of cultured fish gill cells grown into an epithelium that permits direct treatment with water samples. PMID:24574380

  17. Establishment and Molecular Cytogenetic Characterization of a Cell Culture Model of Head and Neck Squamous Cell Carcinoma (HNSCC)

    OpenAIRE

    Horst Zitzelsberger; Axel Walch; Johannes Weber; Herbert Braselmann; Reinhard Huber; Ludwig Hieber; Quirin Schaeffner; Bauer, Verena L.

    2010-01-01

    Cytogenetic analysis of head and neck squamous cell carcinoma (HNSCC) established several biomarkers that have been correlated to clinical parameters during the past years. Adequate cell culture model systems are required for functional studies investigating those potential prognostic markers in HNSCC. We have used a cell line, CAL 33, for the establishment of a cell culture model in order to perform functional analyses of interesting candidate genes and proteins. The cell line was cytogeneti...

  18. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    Science.gov (United States)

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  19. [Development of three-dimensional breast cancer cell culture drug resistance model].

    Science.gov (United States)

    Xu, Hong; Liu, Wei; Zhang, Xiu-Zhen; Hou, Liang; Lu, Ying-Jin; Chen, Pei-Pei; Zhang, Can; Feng, Di; Kong, Li; Wang, Xiu-Li

    2016-04-25

    The aim of the present study was to develop three-dimensional (3D) culture model, a more pathologically relevant model, of human breast cancer for drug resistance study. MCF-7 cells were embedded within collagen gel to establish 3D culture model. Cellular morphology was observed using Carmine and HE staining. Cell proliferation was evaluated by CCK-8 assay, and cell activity was detected by Live/Dead staining kit. Drug sensitivities of the 3D culture to doxorubicin, carboplatin, 5-fluorouracil were assayed and compared with those of monolayer (2D) culture. In addition, the levels of drug resistance-related genes P-glycoprotein (P-gp), mrp2 mRNA expressions were detected by real time RT-PCR. Expression level of P-gp protein was detected by Western blot. The results showed that MCF-7 cells in 3D culture formed a number of cell aggregates, and most of them displayed good cell viability. The IC50 values of doxorubicin, carboplatin, 5-fluorouracil were all increased significantly in 3D culture compared with those in 2D culture. Moreover, compared with MCF-7 cells in 2D culture, the cells in 3D culture showed increased mRNA levels of P-gp and mrp2, as well as up-regulated protein expression of P-gp. These results suggest that in vitro collagen-embedded culture system of human breast cancer cells represents an improved pathologically relevant 3D microenvironment for breast cancer cells, providing a robust tool to explore the mechanism of drug resistance of cancer cells. PMID:27108905

  20. The Effect of Primary Cancer Cell Culture Models on the Results of Drug Chemosensitivity Assays: The Application of Perfusion Microbioreactor System as Cell Culture Vessel

    OpenAIRE

    Chia-Hsun Hsieh; Yi-Dao Chen; Shiang-Fu Huang; Hung-Ming Wang; Min-Hsien Wu

    2015-01-01

    To precisely and faithfully perform cell-based drug chemosensitivity assays, a well-defined and biologically relevant culture condition is required. For the former, a perfusion microbioreactor system capable of providing a stable culture condition was adopted. For the latter, however, little is known about the impact of culture models on the physiology and chemosensitivity assay results of primary oral cavity cancer cells. To address the issues, experiments were performed. Results showed that...

  1. Cells and Culture Systems Used to Model the Small Airway Epithelium.

    Science.gov (United States)

    Bhowmick, Rudra; Gappa-Fahlenkamp, Heather

    2016-06-01

    The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air-liquid interface. However, these 2-dimensional cultures lack a three dimension-a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems. PMID:27071933

  2. A novel stem cell culture model of recurrent glioblastoma.

    Science.gov (United States)

    Qazi, Maleeha A; Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Subapanditha, Minomi K; Murty, Naresh K; Hassell, John A; Hallett, Robin M; Singh, Sheila K

    2016-01-01

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with average disease relapse at 9 months and median survival rarely extending beyond 15 months. Brain tumor stem cells (BTSCs) have been implicated in not only initiating GBM but also conferring resistance to therapy. However, it is not clear whether the BTSC population that initiates tumor growth is also responsible for GBM recurrence. In this study, we have developed a novel in vitro treatment model to profile the evolution of primary treatment-naïve GBM BTSCs through chemoradiotherapy. We report that our in vitro model enriched for a CD15+/CD133- BTSC population, mirroring the phenotype of BTSCs in recurrent GBM. We also show that in vitro treatment increased stem cell gene expression as well as self-renewal capacity of primary GBMs. In addition, the chemoradiotherapy-refractory gene signature obtained from gene expression profiling identified a hyper-aggressive subtype of glioma. The delivery of in vitro chemoradiotherapy to primary GBM BTSCs models several aspects of recurrent GBM biology, and could be used as a discovery and drug-screening platform to uncover new biological drivers and therapeutic targets in GBM. PMID:26498281

  3. [Metabolic characteristics and kinetic model of recombinant CHO cells in serum-free suspension batch culture].

    Science.gov (United States)

    Liu, Xingmao; Liu, Hong; Ye, Lingling; Li, Shichong; Wu, Benchuan; Wang, Haitao; Xie, Jing; Chen, Zhaolie

    2010-01-01

    By using the cell density, cell viability, Pro-UK activity, specific consumption rate of glucose (q(glc)), specific production rate of lactate (q(lac)), yield of lactate to glucose (Y(lac/glc)) and as the evaluation indexes, the growth and metabolism characteristics of pro-urokinase (Pro-UK) expressing CHO cells in serum-free suspension batch culture were examined and compared to those in serum-containing suspension batch culture. We observed hardly differences in growth and metabolism characteristics between the CHO cell populations grown in serum-free suspension batch culture and serum-containing suspension batch culture. The optimal mathematical model parameters for the CHO cells grown in suspension batch culture were obtained by non-linear programming of data representing the growth, substrate consumption and product formation of the CHO cells during logarithmic growth phase using MATLAB software, and the kinetic model of the cell growth and metabolism in serum-free culture were established. PMID:20353097

  4. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hanne Mørck; Rassing, Margrethe Rømer

    2002-01-01

    concentrations of nicotine, the P(app) values decreased, which can partly be explained by an effect on the paracellular pathway. Similar results were also obtained when using the models for bi-directional as well as for uni-directional studies. The TR146 cell culture model may be used as model for buccal...

  5. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  6. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    Science.gov (United States)

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  7. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins.

    Science.gov (United States)

    Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F; Moin, Kamiar

    2012-12-01

    The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer.To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyper plasia(MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L,reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression. PMID:23667900

  8. Establishment and Molecular Cytogenetic Characterization of a Cell Culture Model of Head and Neck Squamous Cell Carcinoma (HNSCC

    Directory of Open Access Journals (Sweden)

    Horst Zitzelsberger

    2010-11-01

    Full Text Available Cytogenetic analysis of head and neck squamous cell carcinoma (HNSCC established several biomarkers that have been correlated to clinical parameters during the past years. Adequate cell culture model systems are required for functional studies investigating those potential prognostic markers in HNSCC. We have used a cell line, CAL 33, for the establishment of a cell culture model in order to perform functional analyses of interesting candidate genes and proteins. The cell line was cytogenetically characterized using array CGH, spectral karyotyping (SKY and fluorescence in situ hybridization (FISH. As a starting point for the investigation of genetic markers predicting radiosensitivity in tumor cells, irradiation experiments were carried out and radiation responses of CAL 33 have been determined. Radiosensitivity of CAL 33 cells was intermediate when compared to published data on tumor cell lines.

  9. Characterization of Caco-2 and HT29-MTX co-cultures in an in vitro digestion/cell culture model used to predict iron bioavailability

    Science.gov (United States)

    Co-cultures of two human cell lines, Caco-2 and HT29-MTX mucus producing cells, have been incorporated into an in vitro digestion/cell culture model used to predict iron bioavailability. A range of different foods were subjected to in vitro digestion and iron bioavailability from digests was assesse...

  10. [The potential of three-dimensional tumor models and cell culturing in cancer research and diagnostics].

    Science.gov (United States)

    Alföldi, Róbert; Szebeni, János Gábor; Puskás, G László

    2015-12-01

    In vitro testing of antitumor agents on human cancer cell lines has become essential in pharmaceutical research and in clinical practice. Although the most widely used technique is the two-dimensional cell growing protocol (in tissue culture plates), the new three-dimensional methods are becoming more and more popular as their structure and complexity is more similar to the microenvironment of the real tumor. The aim of the present study is to describe the most widely used in vitro three-dimensional tumor models and to compare a RAFT(TM) three dimensional in vitro tumor model with the traditional two-dimensional tumor cell cultures. In the study, the viability and the enzyme activity of cultured A549 non-small cell lung cancer (NSCLC) cells under different conditions were compared. The results show that while the number of necrotic cells increased significantly (20-fold; 2D/A549 T75 conventional tissue culture flask 1.6%; 2D/A549-collagen coated T75 tissue culture flask 1.45%, RAFT(TM) 22.11%) during long culturing period in the RAFT(TM) three-dimensional in vitro tumor model, there was no significant difference during the conventional antitumor screening period (3-5 day) compared to the traditional two-dimensional cell cultures. The structure of the tumor cell islets grown with RAFT(TM) is much more complex than that of the traditional two-dimensional cultures. Thus, similarly to the in vivo tumor microenvironment, there is also a collagen matrix in the extracellular space which can have significant effect on the diffusion of the antitumor agents to cells. In conclusion, it can be stated that testing of antitumor agents on tumor cells cultured in three-dimensional systems can be an important complementary method to the traditional two-dimensional in vitro analyses. The results of the new three-dimensional method can be more easily applied in the in vivo analysis and translated into clinical practice. PMID:26665190

  11. Three-Dimensional Cell Culture Models for Infectious Disease and Drug Development

    Science.gov (United States)

    Nickerson, Cheryl A.; Honer zu Bentrup, Kerstin; Ott, C. Mark

    2005-01-01

    Three-dimensional (3-D) cell cultures hold enormous potential to advance our understanding of infectious disease and to effectively translate basic cellular research into clinical applications. Using novel NASA bioreactor technology, the rotating wall vessel (RWV), we have engineered physiologically relevant 3-D human tissue culture models for infectious disease studies. The design of the RWV is based on the understanding that organs and tissues function in a 3-D environment, and that this 3-D architecture is critical for the differentiated form and function of tissues in vivo. The RWV provides large numbers of cells which are amenable to a wide variety of experimental manipulations and provides an easy, reproducible, and cost-effective approach to enhance differentiated features of cell culture models.

  12. A co-cultured skin model based on cell support membranes

    International Nuclear Information System (INIS)

    Tissue engineering of skin based on collagen: PCL biocomposites using a designed co-culture system is reported. The collagen: PCL biocomposites having collagen: PCL (w/w) ratios of 1:4, 1:8, and 1:20 have been proven to be biocompatible materials to support both adult normal human epidermal Keratinocyte (NHEK) and mouse 3T3 fibroblast growth in cell culture, respectively, by Dai, Coombes, et al. in 2004. Films of collagen: PCL biocomposites were prepared using non-crosslinking method by impregnation of lyophilized collagen mats with PCL/dichloromethane solutions followed by solvent evaporation. To mimic the dermal/epidermal structure of skin, the 1:20 collagen: PCL biocomposites were selected for a feasibility study of a designed co-culture technique that would subsequently be used for preparing fibroblast/biocomposite/keratinocyte skin models. A 55.3% increase in cell number was measured in the designed co-culture system when fibroblasts were seeded on both sides of a biocomposite film compared with cell culture on one surface of the biocomposite in the feasibility study. The co-culture of human keratinocytes and 3T3 fibroblasts on each side of the membrane was therefore studied using the same co-culture system by growing keratinocytes on the top surface of membrane for 3 days and 3T3 fibroblasts underneath the membrane for 6 days. Scanning electron microscopy (SEM) and immunohistochemistry assay revealed good cell attachment and proliferation of both human keratinocytes and 3T3 fibroblasts with these two types of cells isolated well on each side of the membrane. Using a modified co-culture technique, a co-cultured skin model presenting a confluent epidermal sheet on one side of the biocomposite film and fibroblasts populated on the other side of the film was developed successfully in co-culture system for 28 days under investigations by SEM and immunohistochemistry assay. Thus, the design of a co-culture system based on 1:20 (w/w) collagen: PCL biocomposite

  13. Low-level laser therapy in 3D cell culture model using gingival fibroblasts.

    Science.gov (United States)

    Basso, Fernanda G; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-07-01

    Besides extensive data about the effects of low-level laser therapy (LLLT) on different cell types, so far, these results were obtained from monolayer cell culture models, which have limitations in terms of cell morphology and phenotype expression. Therefore, for better in vitro evaluation of the effects of LLLT, this study was performed with a 3D cell culture model, where gingival fibroblasts were seeded in collagen matrix. Cells isolated from a healthy patient were seeded in wells of 24-well plates with culture medium (DMEM) supplemented with 10 % fetal bovine serum and collagen type I solution. After 5 days, a serum-free DMEM was added to the matrices with cells that were subjected or not to three consecutive irradiations of LLLT by means of the LaserTABLE diode device (780 nm, 25 mW) at 0.5, 1.5, and 3 J/cm(2). Twenty-four hours after the last irradiation, cell viability and morphology as well as gene expression of growth factors were assessed. Histological evaluation of matrices demonstrated uniform distribution and morphology of gingival fibroblasts within the collagen matrix. LLLT at 3 J/cm(2) increased gingival fibroblast viability. Enhanced gene expression of hCOL-I and hEGF was observed for 0.5 J/cm(2), while no significant changes were detected for the other irradiation densities tested. In conclusion, LLLT promoted biostimulation of gingival fibroblasts seeded in a 3D cell culture model, demonstrating that this model can be applied for phototherapy studies and that LLLT could penetrate the collagen matrix to increase cell functions related to tissue repair. PMID:27126408

  14. Protective effect of sodium butyrate on the cell culture model of Huntington disease

    Institute of Scientific and Technical Information of China (English)

    Zhang Baorong; Tian Jun; Yin Xinzhen; Luo Wei; Xia Kun

    2007-01-01

    This study aimed to develop a cell culture model of Huntington disease and observe the effect of sodium butyrate on this cell culture model. Exon 1 of both a wild type and a mutant IT15 gene from the genomic DNA of a healthy adult and a patient with Huntington disease was amplified and cloned into the eukaryotic expression vector pEGFP-C1. Human neuroblastoma SH-SYSY cells were transiently transfected with these recombinant plasmids in the absence and presence of sodium butyrate (0.1, 0.2, 0.5, 1.0 mmol/L). The MTT assay was used to measure cell viability. The results indicated that the N-terminal fragment of mutant huntingtin formed perinuclear and intranuclear aggregates and caused a decrease of SH-SY5Y cell viability. Sodium butyrate inhibited the decrease of SH-SYSY cell viability caused by the N-terminal fragment of mutant huntingtin. This suggests that sodium butyrate has a protective effect on this cell culture model of Huntington disease.

  15. Human cell culture models for investigating molecular and cytogenetic changes in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Primary cultures of human epithelial cells have proved difficult to transform because of the inherent short duration that these cells can be cultured. However, primary cultures of human cells can be immortalised using the catalytic sub-unit of telomerase (hTERT). Radiation carcinogenesis has been investigated using a human retinal pigment epithelial cell line (340RPE-T53 hTERT). Transformants can be selected using anchorage independent growth and cell lines derived from these are tumourigenic in immunosupressed mice. Molecular cytogenetic changes using CGH, SKY and FISH with breakpoint-specific YAC- and BAC- probes revealed a high level amplification on 10p11.2 in several clones which has been identified as an atypical protein kinase C binding protein using FISH gene-specific PCR products. Patterns of gene expression were studied using HuGen Human cDNA arrays using indirect labelling. The control parent RPE cell line could then be compared with cloned radiation-induced tumour cell lines derived from it following fractionated doses of gamma irradiation. Osteonectin was down regulated in 4 different tumour lines. This gene maps to a region of chromosome 5q that is commonly deleted in leukaemia. Nexin and p105 were down regulated in 3 lines and tumour suppressing subtransferable candidate 1 in I line. Further hTERT immortalised cell lines have been derived from primary cultures of human mammary epithelial cells. The breast epithelium contains a number of different cell types and the lines have been characterised using immunocytochemical techniques. The cells are cytokeratin 19 negative but CD10, cytokeratin 5 and p63 positive indicating a basal cell phenotype. Following exposure to fractionated doses of gamma irradiation anchorage independent colonies are formed. Thus human cell lines immortalised with hTERT are providing a useful model system for investigating radiation carcinogenesis and the molecular and cytogenetic changes induced. Supported by EC Nuclear Fission

  16. Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens.

    Science.gov (United States)

    Iles, LaKesla R; Bartholomeusz, Geoffrey A

    2016-01-01

    The intrinsic limitations of 2D monolayer cell culture models have prompted the development of 3D cell culture model systems for in vitro studies. Multicellular tumor spheroid (MCTS) models closely simulate the pathophysiological milieu of solid tumors and are providing new insights into tumor biology as well as differentiation, tissue organization, and homeostasis. They are straightforward to apply in high-throughput screens and there is a great need for the development of reliable and robust 3D spheroid-based assays for high-throughput RNAi screening for target identification and cell signaling studies highlighting their potential in cancer research and treatment. In this chapter we describe a stringent standard operating procedure for the use of MCTS for high-throughput RNAi screens. PMID:27581289

  17. Microglial responses to dopamine in a cell culture model of Parkinson’s disease

    OpenAIRE

    Mastroeni, Diego; Grover, Andrew; Leonard, Brian; Joyce, Jeffrey N.; Coleman, Paul D.; Kozik, Brooke; Bellinger, Denise L.; Rogers, Joseph

    2008-01-01

    Activated microglia appear to selectively attack dopamine (DA) neurons in the Parkinson’s disease (PD) substantia nigra. We investigated potential mechanisms using culture models. As targets, human SH-SY5Y cells were left undifferentiated, or were differentiated with retinoic acid (RA) or RA plus brain-derived neurotrophic factor (RA/BDNF). RA/BDNF-treated cells were immunoreactive for tyrosine hydroxylase and the DA transporter, took up exogenous DA, and released DA after K+ stimulation. Und...

  18. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  19. Basis study on the model of hepatitis B-Vitro cell culture

    Institute of Scientific and Technical Information of China (English)

    Zheng-mingHUANG; Xin-boYANG; Wen-binCAO; Hong-yanCHEN; He-zhiLIU; ZhuangLI

    2004-01-01

    AIM: To explore and set up many kinds of experimental model of hepatitis B in order to provide varies methods for application study on drugs to prevent and to cure hepatitis B. METHODS: According to the disorder and characters of hepatitis B, we used the models of duck primary hepatocytes which were infected duck hepatitis B virus (DHBV), the human hepatocellular carcinoma (cell 2215, Hep G2) which was transferred with hepatitis Bvirus and rats primary hepatocytes cultured with CCl4 in vitro

  20. Renal mesangial cell cultures as a model for study of erythropoietin production.

    OpenAIRE

    Kurtz, Armin; Jelkmann, W; Sinowatz, F.; Bauer, Christian

    1983-01-01

    Mesangial cells derived from isolated glomeruli of rat kidney were grown as homogeneous cell lines in culture. They released, into the culture medium, erythropoietin that had free terminal galactosyl residues and was therefore not active in vivo. The production of erythropoietin by these cells was significantly enhanced by either lowering the PO2 in the incubation atmosphere or by adding cobalt chloride to the culture medium. Therefore, mesangial cells in culture may be considered as an in vi...

  1. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model

    Science.gov (United States)

    Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.

    1993-01-01

    During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.

  2. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Dan Selişteanu

    2015-01-01

    Full Text Available Monoclonal antibodies (mAbs are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  3. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation.

    Science.gov (United States)

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  4. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models

    OpenAIRE

    HogenEsch, Harm; Yu Nikitin, Alexander

    2012-01-01

    Experiments with cultures of human tumor cell lines, xenografts of human tumors into immunodeficient mice, and mouse models of human cancer are important tools in the development and testing of anti-cancer drugs. Tumors are complex structures composed of genetically and phenotypically heterogeneous cancer cells that interact in a reciprocal manner with the stromal microenvironment and the immune system. Modeling the complexity of human cancers in cell culture and in mouse models for preclinic...

  5. Role of Microfluidics in Blood-Brain Barrier Permeability Cell Culture Modeling: Relevance to CNS Disorders.

    Science.gov (United States)

    Rusanov, Alexander L; Luzgina, Natalia G; Barreto, George E; Aliev, Gjumrakch

    2016-01-01

    In vitro modeling of the human blood-brain barrier (BBB) is critical for pre-clinical evaluation and predicting the permeability of newly developed potentially neurotoxic and neurotrophic drugs. Here we summarize the specific structural and functional features of endothelial cells as a key component of the BBB and compare analysis of different cell culture models in reflecting these features. Particular attention is paid to cellular models of the BBB in microfluidic devices capable of circulating nutrient media to simulate the blood flow of the brain. In these conditions, it is possible to reproduce a number of factors affecting endothelial cells under physiological conditions, including shear stress. In comparison with static cell models, concentration gradients, which determine the velocity of transport of substances, reproduce more accurately conditions of nutrient medium flow, since they eliminate the accumulation of substances near the basal membrane of cells, not typical for the situation in vivo. Co-cultivation of different types of cells forming the BBB, in separate cell chambers connected by microchannels, allows to evaluate the mutual influences of cells under normal conditions and when exposed to the test substance. New experimental possibilities that can be achieved through modeling of BBB in microfluidic devices determine the feasibility of their use in the practice for pre-clinical studies of novel drugs against neurodegenerative diseases. PMID:26831260

  6. A population balance equation model of aggregation dynamics in Taxus suspension cell cultures.

    Science.gov (United States)

    Kolewe, Martin E; Roberts, Susan C; Henson, Michael A

    2012-02-01

    The nature of plant cells to grow as multicellular aggregates in suspension culture has profound effects on bioprocess performance. Recent advances in the measurement of plant cell aggregate size allow for routine process monitoring of this property. We have exploited this capability to develop a conceptual model to describe changes in the aggregate size distribution that are observed over the course of a Taxus cell suspension batch culture. We utilized the population balance equation framework to describe plant cell aggregates as a particulate system, accounting for the relevant phenomenological processes underlying aggregation, such as growth and breakage. We compared model predictions to experimental data to select appropriate kernel functions, and found that larger aggregates had a higher breakage rate, biomass was partitioned asymmetrically following a breakage event, and aggregates grew exponentially. Our model was then validated against several datasets with different initial aggregate size distributions and was able to quantitatively predict changes in total biomass and mean aggregate size, as well as actual size distributions. We proposed a breakage mechanism where a fraction of biomass was lost upon each breakage event, and demonstrated that even though smaller aggregates have been shown to produce more paclitaxel, an optimum breakage rate was predicted for maximum paclitaxel accumulation. We believe this is the first model to use a segregated, corpuscular approach to describe changes in the size distribution of plant cell aggregates, and represents an important first step in the design of rational strategies to control aggregation and optimize process performance. PMID:21910121

  7. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium

    DEFF Research Database (Denmark)

    Portero, Ana; Remuñán-López, Carmen; Nielsen, Hanne Mørck

    2002-01-01

    To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used.......To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used....

  8. Optimizing stem cell culture.

    Science.gov (United States)

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  9. Mathematical modeling of perifusion cell culture experiments on GnRH signaling.

    Science.gov (United States)

    Temamogullari, N Ezgi; Nijhout, H Frederik; C Reed, Michael

    2016-06-01

    The effects of pulsatile GnRH stimulation on anterior pituitary cells are studied using perifusion cell cultures, where constantly moving culture medium over the immobilized cells allows intermittent GnRH delivery. The LH content of the outgoing medium serves as a readout of the GnRH signaling pathway activation in the cells. The challenge lies in relating the LH content of the medium leaving the chamber to the cellular processes producing LH secretion. To investigate this relation we developed and analyzed a mathematical model consisting of coupled partial differential equations describing LH secretion in a perifusion cell culture. We match the mathematical model to three different data sets and give cellular mechanisms that explain the data. Our model illustrates the importance of the negative feedback in the signaling pathway and receptor desensitization. We demonstrate that different LH outcomes in oxytocin and GnRH stimulations might originate from different receptor dynamics and concentration. We analyze the model to understand the influence of parameters, like the velocity of the medium flow or the fraction collection time, on the LH outcomes. We show that slow velocities lead to high LH outcomes. Also, we show that fraction collection times, which do not divide the GnRH pulse period evenly, lead to irregularities in the data. We examine the influence of the rate of binding and dissociation of GnRH on the GnRH movement down the chamber. Our model serves as an important tool that can help in the design of perifusion experiments and the interpretation of results. PMID:27067630

  10. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  11. RCCS Bioreactor-Based Modelled Microgravity Induces Significant Changes on In Vitro 3D Neuroglial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Caterina Morabito

    2015-01-01

    Full Text Available We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates and cocultures (heterotypic aggregates were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43 and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation. In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.

  12. Characterization of a novel rat cholangiocarcinoma cell culture model-CGCCA

    Institute of Scientific and Technical Information of China (English)

    Chun-Nan Yeh; Kun-Ju Lin; Tsung-Wen Chen; Ren-Ching Wu; Lee-Cheng Tsao; Ying-Tzu Chen; Wen-Hui Weng; Miin-Fu Chen

    2011-01-01

    AIM: To characterize a culture model of rat CCA cells, which were derived from a transplantable TTA-induced CCA and designated as Chang Gung CCA (CGCCA). METHODS: The CGCCA cells were cultured at in vitro passage 12 times on a culture dish in DMEM medium. To measure the doubling time, 103 cells were plated in a 96-well plate containing the growth medium. The cells were harvested 4 to 10 d after seeding, and a standard MTT assay was used to measure the growth. The phenotype of CACCA cell and xenograft was determined by immunohistochemical study. We also determine the chromosomal alterations of CGCCA, G-banding and spectral karyotyping studies were performed. The CGCCA cell line was transplanted into the nude mice for examining its tumorigenicity. 2-Deoxy-2-(18F)fluoro-Dglucose (FDG) autoradiography was also performed to evaluate the FDG uptake of the tumor xenograft. RESULTS: The doubling time for the CGCCA cell line was 32 h. After transplantation into nude mice, FDG autoradiography showed that the tumors formed at the cell transplantation site had a latency period of 4-6 wk with high FDG uptake excluding necrosis tissue. Moreover, immunohistochemical staining revealed prominent cytoplasmic expression of c-erb-B2, CK19, c-Met, COX-Ⅱ, EGFR, MUC4, and a negative expression of K-ras. All data confirmed the phenotypic features of the CGCCA cell line coincide with the xenograft mice tumors, indicating cells containing the tumorigenicity of CCA originated from CCA. In addition, karyotypic banding analysis showed that the diploid (2n) cell status combines with ring and giant rod marker chromosomes in these clones; either both types simultaneously appeared or only one type of marker chromosome in a pair appeared in a cell. The major materials contained in the marker chromosome were primarily identified from chromosome 4. CONCLUSION: The current CGCCA cell line may be used as a non-K-ras effect CCA model and to obtain information and reveal novel pathways for CCA. Further

  13. Assessing Drug Efficacy in a Miniaturized Pancreatic Cancer In Vitro 3D Cell Culture Model.

    Science.gov (United States)

    Shelper, Todd B; Lovitt, Carrie J; Avery, Vicky M

    2016-09-01

    Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay. PMID:27552143

  14. Damaging effects of gliadin on three-dimensional cell culture model

    Institute of Scientific and Technical Information of China (English)

    Ersilia Dolfini; Maria Letizia Falini; Maria Teresa Bardella; Luca Elli; Leda Roncoroni; Barbara Costa; Maria Pia Colleoni; Vito Lorusso; Simona Ramponi; Paola Braidotti; Stefano Ferrero

    2005-01-01

    AIM: To evaluate the effects of gliadin on the oxidative environment in the"in vivo-like" model of a three-dimensional cell culture system.METHODS: LoVo cell line (intestinal adenocarcinoma)multicellular spheroids were treated with digested gliadin (with albumin used as a control). Spheroid volumes, cell viability and morphology, lactate dehydrogenase (LDH)release, content of reduced glutathione (GSH) and activity of GSH-related enzymes were examined. The data were statistically analyzed using the Student's t-test (P<0.05).was considered statistically significant.RESULTS: Gliadin reduced cell viability (from 20% to 60%)and led to morphological alterations characterized by apoptotic findings and cytoskeletal injuries. LDH activity increased. The content of GSH reduced (-20% vs controls),and activity of GSH-related enzymes was significantly inhibited.CONCLUSION: Gliadin treatment induces an imbalance in the antioxidative mechanism of cells cultured by the three-dimensional technique. This alteration may explain the cell damage directly caused by gliadin and the subsequent morphological abnormalities.

  15. Development and validation of primary human myometrial cell culture models to study pregnancy and labour

    Directory of Open Access Journals (Sweden)

    Mosher Andrea A

    2013-01-01

    Full Text Available Abstract Background The development of the in vitro cell culture model has greatly facilitated the ability to study gene expression and regulation within human tissues. Within the human uterus, the upper (fundal segment and the lower segment may provide distinct functions throughout pregnancy and during labour. We have established primary cultured human myometrial cells, isolated from both upper and lower segment regions of the pregnant human uterus, and validated them for the purpose of studying human pregnancy and labour. The specific objectives of this study were to monitor the viability and characterize the expression profile using selected cellular, contractile and pregnancy associated markers in the primary cultured human myometrial cells. Labour has been described as an inflammatory process; therefore, the ability of these cells to respond to an inflammatory stimulus was also investigated. Methods Myometrial cells isolated from paired upper segment (US and lower segment (LS biopsies, obtained from women undergoing Caesarean section deliveries at term prior to the onset of labour, were used to identify expression of; α smooth muscle actin, calponin, caldesmon, connexin 43, cyclo-oxygenase-2 (COX-2, oxytocin receptor, tropomyosin and vimentin, by RT-PCR and/or immunocytochemistry. Interleukin (IL-1β was used to treat cells, subsequently expression of COX-2 mRNA and release of interleukin-8 (CXCL8, were measured. ANOVA followed by Bonferroni’s multiple comparisons test was performed. Results We demonstrate that US and LS human myometrial cells stably express all markers examined to at least passage ten (p10. Connexin 43, COX-2 and vimentin mRNA expression were significantly higher in LS cells compared to US cells. Both cell populations respond to IL-1β, demonstrated by a robust release of CXCL8 and increased expression of COX-2 mRNA from passage one (p1 through to p10. Conclusions Isolated primary myometrial cells maintain expression of

  16. A novel cell culture model for studying differentiation and apoptosis in the mouse mammary gland

    International Nuclear Information System (INIS)

    This paper describes the derivation and characterization of a novel, conditionally immortal mammary epithelial cell line named KIM-2. These cells were derived from mid-pregnant mammary glands of a mouse harbouring one to two copies of a transgene comprised of the ovine β-lactoglobulin milk protein gene promoter, driving expression of a temperature-sensitive variant of simian virus-40 (SV40) large T antigen (T-Ag). KIM-2 cells have a characteristic luminal epithelial cell morphology and a stable, nontransformed phenotype at the semipermissive temperature of 37°C. In contrast, at the permissive temperature of 33°C the cells have an elongated spindle-like morphology and become transformed after prolonged culture. Differentiation of KIM-2 cells at 37°C, in response to lactogenic hormones, results in the formation of polarized dome-like structures with tight junctions. This is accompanied by expression of the milk protein genes that encode β-casein and whey acidic protein (WAP), and activation of the prolactin signalling molecule, signal transducer and activator of transcription (STAT)5. Fully differentiated KIM-2 cultures at 37°C become dependent on lactogenic hormones for survival and undergo extensive apoptosis upon hormone withdrawal, as indicated by nuclear morphology and flow cytometric analysis. KIM-2 cells can be genetically modified by stable transfection and clonal lines isolated that retain the characteristics of untransfected cells. KIM-2 cells are a valuable addition, therefore, to currently available lines of mammary epithelial cells. Their capacity for extensive differentiation in the absence of exogenously added basement membrane, and ability to undergo apoptosis in response to physiological signals will provide an invaluable model system for the study of signal transduction pathways and transcriptional regulatory mechanisms that control differentiation and involution in the mammary gland

  17. Development and characterization of a three-dimensional co-culture model of tumor T cell infiltration.

    Science.gov (United States)

    Alonso-Nocelo, M; Abuín, C; López-López, R; de la Fuente, M

    2016-01-01

    Tumor growth and metastasis entangle the alteration and recruitment of non-malignant cells to the primary tumor, among them immune cells, constituting the tumor microenvironment (TME). Communication between tumor cells and their stroma has been shown as a fundamental driving force of the tumoral process. A great deal of effort has been focused on depicting their specific interactions and crosstalk. However, most research has been carried out in 2D conventional cultures that alter cell morphology and intracellular signaling processes. Considering these premises, we have developed a 3D cell co-culture model to mimic T cell infiltration into the tumor mass and explore tumor-immune cells interactions in the TME. Expression of specific cell markers and assessment of cell proliferation were carried out to characterize the proposed 3D co-culture model. Additionally, the study and profiling of the secretome revealed a subset of particular cancer-related inflammation proteins prompted upon 3D cultivation of tumor cells in presence of lymphocytes, pointing out an intercellular communication. Altogether, these results suggest that our 3D cell co-culture model can be a useful tool to identify and study critical factors mediating the crosstalk between tumor and immune cells in the TME. Finally, the potential of this model as a drug-screening platform has been explored using docetaxel as a model antitumoral compound. PMID:27078888

  18. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    OpenAIRE

    Alves, S. G.; M. L. Martins

    2010-01-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and \\textit{in vitro} drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simula...

  19. Choroid plexus epithelial monolayers – a cell culture model from porcine brain

    Directory of Open Access Journals (Sweden)

    Reichel Valeska

    2006-12-01

    Full Text Available Abstract Background The goal of the present study was to develop an in vitro choroid plexus (CP epithelial cell culture model for studying transport of protein-mediated drug secretion from blood to cerebrospinal fluid (CSF and vice versa. Methods Cells were isolated by mechanical and enzymatic treatment of freshly isolated porcine plexus tissue. Epithelial cell monolayers were grown and CSF secretion and transepithelial resistance were determined. The expression of f-actin as well as the choroid plexus marker protein transthyretin (TTR, were assessed. The expression of the export proteins p-glycoprotein (Pgp, Abcb1 and multidrug resistance protein 1 (Mrp1, Abcc1 was studied by RT-PCR, Western-blot and immunofluorescence techniques and their functional activity was assessed by transport and uptake experiments. Results Choroid plexus epithelial cells were isolated in high purity and grown to form confluent monolayers. Filter-grown monolayers displayed transendothelial resistance (TEER values in the range of 100 to 150 Ωcm2. Morphologically, the cells showed the typical net work of f-actin and expressed TTR at a high rate. The cultured cells were able to secrete CSF at a rate of 48.2 ± 4.6 μl/cm2/h over 2–3 hours. The ABC-export protein Mrp1 was expressed in the basolateral (blood-facing membranes of cell monolayers and intact tissue. P-glycoprotein showed only low expression within the apical (CSF directed membrane but was located more in sub-apical cell compartments. This finding was paralleled by the lack of directed excretion of p-glycoprotein substrates, verapamil and rhodamine 123. Conclusion It was demonstrated that CP epithelium can be isolated and cultured, with cells growing into intact monolayers, fully differentiating and with properties resembling the tissue in vivo. Thus, the established primary porcine CP model, allowing investigation of complex transport processes, can be used as a reliable tool for analysis of xenobiotic

  20. Synchronous cultures from the baby machine. A model for animal cells.

    Science.gov (United States)

    Grover, N B; Eward, K L; Helmstetter, C E

    2004-07-01

    A baby-machine system that produces newborn Escherichia coli cells from cultures immobilised on a membrane was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth, and a model designed to characterise the nature and quality of the synchrony of such cells in a quantitative manner has been published. The baby machine has now been adapted for animal cells, and the present article is an attempt to modify the model to include these cells as well. The model consists of five elements, giving rise to five adjustable parameters (and a proportionality constant): a major, essentially synchronous group of cells with ages distributed normally about zero; a minor, random component from a steady-state population on the membrane that had undergone only very little age selection during the elution process; a fixed background count, to allow for the signals recorded by the electronic particle counter produced by debris and electronic noise; a time-shift, to account for differences between time of cell division and end of sample collection; and the coefficient of variation of the interdivision-time distribution, taken to be reciprocal-normal. It is this last feature, a reciprocal-normal rather than a Pearson type III interdivision-time distribution, that distinguishes this version of the model from its predecessor. The model is fitted by unconstrained non-linear least-squares to data from three different leukemia cell lines. The standard errors of the parameters are quite small in all cases, making their estimates highly significant; the quality of the fit is striking. The five parameters of the model can be divided into two nuisance parameters, two that are associated with the methodology and one that describes an inherent property of the cell itself; it turns out that both methodology parameters are zero in all three data sets studied. We also discuss the partition of the transition-time dispersion between the age

  1. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  2. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    Science.gov (United States)

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. PMID:24636868

  3. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  4. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model.

    Science.gov (United States)

    Toropainen, Elisa; Ranta, Veli-Pekka; Vellonen, Kati-Sisko; Palmgrén, Joni; Talvitie, Anu; Laavola, Mirka; Suhonen, Pekka; Hämäläinen, Kaisa Mari; Auriola, Seppo; Urtti, Arto

    2003-09-01

    A cell culture model of human corneal epithelium (HCE-model) was recently introduced [Invest. Ophthalmol. Vis. Sci. 42 (2001) 2942] as a tool for ocular drug permeation studies. In this study, passive permeability and esterase activity of the HCE-model were characterised. Immortalised human corneal epithelial cells were grown on collagen coated filters under air-lift. The sensitivity of transcellular permeability to lipophilicity was tested in studies using nine beta-blockers. The size selectivity of the paracellular route was investigated using 16 polyethylene glycol oligomers (PEG). An effusion-like approach was used to estimate porosity and pore sizes of the paracellular space in HCE membrane. Permeability and degradation of fluorescein diacetate to fluorescein in HCE-cells was used to probe the esterase activity of the HCE-model. Drug concentrations were analyzed using HPLC (beta-blockers), LC-MS (PEGs), and fluorometry (fluorescein). Permeabilities were compared to those in the excised rabbit cornea. Penetration of beta-blockers increased with lipophilicity according to a sigmoidal relationship. This was almost similar to the profile in excised cornea. No apical to basolateral directionality was seen in the permeation of beta-blockers. Paracellular permeability of the HCE-model was generally slightly higher than that of the excised rabbit cornea. The HCE-model has larger paracellular pores, but lower pore density than the excised cornea, but the overall paracellular space was fairly similar in both models. The HCE-model shows significant esterase activity (i.e. fluorescein diacetate was converted to free fluorescein). These data on permeability of 27 compounds demonstrate that the barrier of the HCE-model closely resembles that of the excised rabbit cornea. Therefore, the HCE-model is a promising alternative corneal substitute for ocular drug delivery studies. PMID:13678798

  5. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  6. A critical review of cell culture strategies for modelling intracortical brain implant material reactions.

    Science.gov (United States)

    Gilmour, A D; Woolley, A J; Poole-Warren, L A; Thomson, C E; Green, R A

    2016-06-01

    The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches. PMID:26994876

  7. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  8. Digital Microfluidic Cell Culture.

    Science.gov (United States)

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  9. Modeling Cultural Dynamics

    OpenAIRE

    Gabora, Liane

    2008-01-01

    EVOC (for EVOlution of Culture) is a computer model of culture that enables us to investigate how various factors such as barriers to cultural diffusion, the presence and choice of leaders, or changes in the ratio of innovation to imitation affect the diversity and effectiveness of ideas. It consists of neural network based agents that invent ideas for actions, and imitate neighbors’ actions. The model is based on a theory of culture according to which what evolves through culture is not meme...

  10. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Laura Zambonin

    2012-01-01

    Full Text Available Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL, whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach.

  11. Mycoplasmas detection in cells cultures

    OpenAIRE

    Rivera-Tapia José Antonio; Castillo-Viveros Linda Valeria; Sánchez-Hernández José Antonio

    2010-01-01

    INTRODUCTION. Cells cultures are widely used in both biomedical and biotechnological research centers and industry, as well as for diagnostic test in hospitals. Contaminations of cells cultures with microbial organisms as well as with virus or other eukaryotic cell lines are a major problem in cell culture related research.OBJECTIVE. Mycoplasmas detection in cells cultures came from biomedical laboratories.MATERIAL AND METHODS. The cells cultures screened for mycoplasmas by using of microbiol...

  12. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    Science.gov (United States)

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  13. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  14. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Science.gov (United States)

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  15. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures and ti...

  16. SYNERGETIC MODEL OF CULTURE

    OpenAIRE

    Sanzheeva, Larisa

    2014-01-01

    In article the analysis of synergetic model of culture is carried out. The ontology of sense of life and semantic interrelations of subject and subject and object elements of culture as systems are considered. Need of designing of culture model, for identification of synergetic mechanisms of fluctuations and transformations of multipurpose systems of the person, society and the nature is proved. The synergetic model of culture, its design, structural forms, and levels in complete system of li...

  17. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.

    Science.gov (United States)

    LaPlaca, Michelle C; Cullen, D Kacy; McLoughlin, Justin J; Cargill, Robert S

    2005-05-01

    The fidelity of cell culture simulations of traumatic brain injury (TBI) that yield tolerance and mechanistic information relies on both the cellular models and mechanical insult parameters. We have designed and characterized an electro-mechanical cell shearing device in order to produce a controlled high strain rate injury (up to 0.50 strain, 30 s(-1) strain rate) that deforms three-dimensional (3-D) neural cultures (neurons or astrocytes in an extracellular matrix scaffold). Theoretical analysis revealed that these parameters generate a heterogeneous 3-D strain field throughout the cultures that is dependent on initial cell orientation within the matrix, resulting in various combinations of normal and shear strain. The ability to create a linear shear strain field over a range of input parameters was verified by tracking fluorescent microbeads in an acellular matrix during maximal displacement for a range of strains and strain rates. In addition, cell death was demonstrated in rat cortical astrocytes and neurons in response to high rate, high magnitude shear strain. Furthermore, cell response within the 3-D neuronal cultures depended on orientation, with higher predicted shear strain correlating with an increased loss of neurites, indicating that culture configuration may be an important factor in the mechanical, and hence cellular, response to traumatic insults. Collectively, these results suggest that differential responses exist within a 3-D culture subjected to mechanical insult, perhaps mimicking the in vivo environment, and that this new model can be used to investigate the complex cellular mechanisms associated with TBI. PMID:15797591

  18. Immortalization protocols used in cell culture models of human breast morphogenesis

    DEFF Research Database (Denmark)

    Gudjonsson, T; Villadsen, R; Rønnov-Jessen, L;

    2004-01-01

    breast cells in culture and optimizing a relevant microenvironment, which may help to define the niche that regulates breast differentiation and morphogenesis. In contrast to the general property of cancer, normal human cells have a finite lifespan. After a defined number of population doublings, normal...

  19. Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC)

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Herre, Angela; Fahr, Alfred;

    2013-01-01

    SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as it can be obtained under overall rather straightforward cell culture conditions and thus low assay costs.......Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum...... barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence...

  20. Increased GFAP immunoreactivity by astrocytes in response to contact with dorsal root ganglia cells in a 3D culture model

    OpenAIRE

    East, Emma; Golding, Jon; Phillips, James

    2007-01-01

    Failure of repair mechanisms in the injured CNS is widely attributed to the inhibitory environment of the lesion site, most notably the formation of the glial scar which forms a physical and physiological barrier to axon regeneration. We developed an in vitro 3D cell culture model to investigate the response of astrocytes to cells found at the inhibitory interfaces formed following damage to the spinal cord. CellTrackerTM labelled dissociated DRGs were seeded onto astrocy...

  1. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  2. Geometry optimization of a fibrous scaffold based on mathematical modelling and CFD simulation of adynamic cell culture

    DEFF Research Database (Denmark)

    Tajsoleiman, Tannaz; J. Abdekhodaie, Mohammad; Gernaey, Krist;

    2016-01-01

    the main bottlenecks in this type of processes. In this regard, mathematical modelling and computational fluid dynamics simulation (CFD) are powerful tools to identify an efficient and optimized design by providing reliable insights of the process. This study presents a mathematical model and CFD...... simulation of cartilage cell culture under a perfusion flow, which allows not only to characterize the supply of nutrients and metabolic products inside a fibrous scaffold, but also to assess the overall culture condition and predict the cell growth rate. Afterwards, the simulation results supported finding...

  3. Radiation damage, repopulation and cell recovery analysis of in vitro tumour cell megacolony culture data using a non-Poissonian cell repopulation TCP model

    International Nuclear Information System (INIS)

    The effects of radiation damage, tumour repopulation and cell sublethal damage repair and the possibility of extracting information about the model parameters describing them are investigated in this work. Previously published data on two different cultured cell lines were analysed with the help of a tumour control probability (TCP) model that describes tumour cell dynamics properly. Different versions of a TCP model representing the cases of full or partial cell recovery between fractions of radiation, accompanied by repopulation or no repopulation were used to fit the data and were ranked according to statistical criteria. The data analysis shows the importance of the linear-quadratic mechanism of cell damage for the description of the in vitro cell dynamics. In a previous work where in vivo data were analysed, the employment of the single hit model of cell kill and cell repopulation produced the best fit, while ignoring the quadratic term of cell damage in the current analysis leads to poor fits. It is also concluded that more experiments using different fractionation regimes producing diverse data are needed to help model analysis and better ranking of the models

  4. PRIMARY CULTURE OF CHOROIDAL EPITHELIAL CELLS: CHARACTERIZATION OF AN IN VITRO MODEL OF BLOOD-CSF BARRIER

    Science.gov (United States)

    ZHENG, WEI; ZHAO, QIUQU; GRAZIANO, JOSEPH H.

    2016-01-01

    Summary A primary rat choroidal epithelial cell culture system was developed to investigate mechanisms of heavy metal toxicity on the blood-cerebrospinal fluid (CSF) barrier. Epithelial cells were dissociated from choroidal tissue by pronase digestion and cultured in standard DMEM culture media supplemented with 10% fetal bovine serum and 10 ng epithelial growth factor per ml. The procedure yielded 2–5 × 104 cells from pooled plexuses of three to four rats, and a viability of 77–85%. The cultures displayed a dominant polygonal type of epithelial cells, with a population doubling time of 2–3 d. The cultures were of distinct choroidal epithelial origins. For example, immunocytochemical studies using monospecific rabbit anti-rat TTR polyclonal antibody revealed a strong positive stain of transthyretin (TTR), a thyroxine transport protein exclusively produced by the choroidal epithelia. Also, reverse-transcriptase polymerase chain reaction (PCR) confirmed the presence of specific TTR mRNA in the cultures. The cultures were further adapted to grow on a freely permeable membrane sandwiched between two culture chambers. The formation of an impermeable confluent monolayer occurred within 5 d after seeding and was verified by the presence of a steady electrical resistance across the membrane (80 ± 10 ohm per cm2). The epithelial barriers appeared to actively transport [125I]-thyroxine from the basal to apical chamber. These results suggest that this primary cell culture system possesses typical choroidal epithelial characteristics and appears to be a suitable model for in vitro mechanistic investigations of blood–CSF barrier. PMID:9542634

  5. Physical modeling of animal cell damage by hydrodynamic forces in suspension cultures.

    Science.gov (United States)

    Lu, G Z; Gray, M R; Thompson, B G

    1992-12-01

    Physical damage of animal cells in suspension culture, due to stirring and sparging, is coupled with complex metabolic responses. Nylon microcapsules, therefore, were used as a physical model to study the mechanisms of damage in a stirred bioreactor and in a bubble column. Microcapsule breaskage folowed first-order kinetices in all experiments Entrainment of bubbles into the liquid phase in the stirred bioreactor gave more microcapsule breakage. In the bubble column, the bubble bursting zone at gas-liquid interface was primarily responsible for microcapsule breakage. The forces on the microcapsules were equivalent to an external pressure of approximately 4 x 10(4) N. m(-2), based on the critical microcapsule diameter for survival of 190 microm. A stable foam layer, however, was found to be effective in protecting microcapsules from damage. The microcapsule transport to the gas-liquid interface and entrainment into the foam phase was consistent with flotation by air bubbles. This result implies that additives and operation of bioreactors should be selected to minimize flotation of cells. PMID:18601080

  6. Dynamized Preparations in Cell Culture

    OpenAIRE

    Girija Kuttan; Korengath Chandran Preethi; Ramadasan Kuttan; Ellanzhiyil Surendran Sunila

    2009-01-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The ...

  7. AlgiMatrix™ Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies

    OpenAIRE

    Godugu, Chandraiah; Patel, Apurva R.; Desai, Utkarsh; Andey, Terrick; Sams, Alexandria; Singh, Mandip

    2013-01-01

    Background Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. Methods Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without co...

  8. Differences in sensitivity to mTHPC-mediated photodynamic therapy of neurons, glial cells and MCF7 cells in a 3-dimensional cell culture model

    OpenAIRE

    Wright, K E; MacRobert, A J; Phillips, J. B.

    2008-01-01

    The effect of photodynamic therapy (PDT) on the cells of the nervous system is an important consideration in the treatment of tumours that are located within or adjacent to the brain, spinal cord and peripheral nerves. Previous studies have reported the sparing of nerves during PDT using meta-tetrahydroxyphenylchlorin (mTHPC, Foscan®) in patients and in animal models. The aim of this study was to investigate the effects of mTHPC on key nervous system cells using a 3-dimensional cell culture s...

  9. Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures – Part I: Idealized Axisymmetric Swirling Flow

    Science.gov (United States)

    Vasquez, Paula A.; Jin, Yuan; Palmer, Erik; Hill, David; Forest, M. Gregory

    2016-01-01

    A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number. PMID:27494700

  10. Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Janse, Arnout; Merema, M.T.; Groothuis, Geny M. M.; Verpoorte, Elisabeth

    2012-01-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision cut

  11. Estimation of digestive stability and bioavailability of chlorophylls by an in vitro digestion/Caco-2 cell culture model

    OpenAIRE

    Gallardo Guerrero, Lourdes; Gandul-Rojas, Beatriz; Mínguez Mosquera, María Isabel

    2006-01-01

    The aim of this work was to study the effect of food matrix both on the chlorophyll pigment transformations and on their micellarization as a measure of bioavailability, using an two-stage in vitro digestion model. We also validate the above mentioned bioavailability measurement by evaluating the absorption of the micellarized chlorophyll pigments by Caco-2 human intestinal cell cultures.

  12. Modulation of Programmed Cell Death in a Model System of Xylogenic Zinnia (Zinnia Elegans) Cell Culture

    NARCIS (Netherlands)

    Yakimova, E.T.; Woltering, E.J.

    2009-01-01

    Programmed cell death is an integral part of the latest stage of differentiation of the tracheary elements of plant xylem vascular system. In this study, by applying a pharmacological approach with specific peptide inhibitors, we have elucidated the involvement of plant caspase-like proteases in cel

  13. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  14. Studying cell-cell communication in co-culture

    OpenAIRE

    Bogdanowicz, Danielle R.; Lu, Helen H.

    2013-01-01

    Heterotypic and homotypic cellular interactions are essential for biological function, and co-culture models are versatile tools for investigating these cellular interactions in vitro. Physiologically relevant co-culture models have been used to elucidate the effects of cell-cell physical contact and/or secreted factors, as well as the influence of substrate geometry and interaction scale on cell response. Identifying the relative contribution of each cell population to co-culture is often ex...

  15. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available BACKGROUND: Three-dimensional (3D in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. METHODS: Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100-300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin and nanoparticle (NLC were done using spheroids. RESULTS: IC(50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro. CONCLUSION: The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.

  16. Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells

    International Nuclear Information System (INIS)

    The inflammatory response clinically observed after radiation has been described to correlate with elevated expression of cytokines and adhesion molecules by endothelial cells. Therapeutic compensation for this microvascular compromise could be an important approach in the treatment of irradiated wounds. Clinical reports describe the potential of adipose-derived stem cells to enhance wound healing, but the underlying cellular mechanisms remain largely unclear. Human dermal microvascular endothelial cells (HDMEC) and human adipose-derived stem cells (ASC) were cultured in a co-culture setting and irradiated with sequential doses of 2 to 12 Gy. Cell count was determined 48 h after radiation using a semi-automated cell counting system. Levels of interleukin-6 (IL-6), basic fibroblast growth factor (FGF), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the supernatants using enzyme-linked immunosorbent assay (ELISA). Irradiated HDMEC and ASC as well as non-irradiated co-cultures, HDMEC or ASC respectively were used as controls. Cell count was significantly reduced in irradiated co-cultures of HDMEC and ASC compared to non-irradiated controls. Levels of IL-6, FGF, ICAM-1 and VCAM-1 in the supernatants of the co-cultures were significantly less affected by external radiation in comparison to HDMEC. The increased expression of cytokines and adhesion molecules by HDMEC after external radiation is mitigated in the co-culture setting with ASC. These in vitro changes seem to support the clinical observation that ASC may have a stabilizing effect when injected into irradiated wounds

  17. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    Science.gov (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  18. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  19. Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development.

    Science.gov (United States)

    Chen, Aaron; Chitta, Rajesh; Chang, David; Amanullah, Ashraf

    2009-01-01

    Increasing the throughput and efficiency of cell culture process development has become increasingly important to rapidly screen and optimize cell culture media and process parameters. This study describes the application of a miniaturized bioreactor system as a scaled-down model for cell culture process development using a CHO cell line expressing a recombinant protein. The microbioreactor system (M24) provides non-invasive online monitoring and control capability for process parameters such as pH, dissolved oxygen (DO), and temperature at the individual well level. A systematic evaluation of the M24 for cell culture process applications was successfully completed. Several challenges were initially identified. These included uneven gas distribution in the wells due to system design and lot to lot variability, foaming issues caused by sparging required for active DO control, and pH control limitation under conditions of minimal dissolved CO2. A high degree of variability was found which was addressed by changes in the system design. The foaming issue was resolved by addition of anti-foam, reduction of sparge rate, and elimination of DO control. The pH control limitation was overcome by a single manual liquid base addition. Intra-well reproducibility, as indicated by measurements of process parameters, cell growth, metabolite profiles, protein titer, protein quality, and scale-equivalency between the M24 and 2 L bioreactor cultures were very good. This evaluation has shown feasibility of utilizing the M24 as a scale-down tool for cell culture application development under industrially relevant process conditions. PMID:18683260

  20. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-01-01

    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for...... pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes....... 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different...

  1. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Directory of Open Access Journals (Sweden)

    Bridget S Fisher

    Full Text Available Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  2. Organizational culture modeling

    OpenAIRE

    Valentina Mihaela GHINEA; Constantin BRĂTIANU

    2012-01-01

    The purpose of this paper is to present a conceptual analysis of organizational culture modeling in the framework of system dynamics. Tom Peters and Robert Waterman demonstrated through their seminal research that organizational culture constitutes one of the most important key success factors in any company trying to achieve excellence in its business. Organizational culture is a strong nonlinear integrator of the organizational intellectual capital acting especially on the emotional knowled...

  3. Physiologically Based Pharmacokinetic Models: Integration of In Silico Approaches with Micro Cell Culture Analogues

    OpenAIRE

    Chen, A.; Yarmush, M L; Maguire, T.

    2012-01-01

    There is a large emphasis within the pharmaceutical industry to provide tools that will allow early research and development groups to better predict dose ranges for and metabolic responses of candidate molecules in a high throughput manner, prior to entering clinical trials. These tools incorporate approaches ranging from PBPK, QSAR, and molecular dynamics simulations in the in silico realm, to micro cell culture analogue (CCAs)s in the in vitro realm. This paper will serve to review these a...

  4. Plant cell culture as a model for study of degradation of TNT

    Czech Academy of Sciences Publication Activity Database

    Podlipná, Radka; Nepovím, Aleš; Zeman, S.; Vágner, Martin; Vaněk, Tomáš

    Chania : Technical University of Crete, 2001, s. 540-542. [European Bioremediation Conference /1./. Chania (GR), 02.07.2001-05.07.2001] R&D Projects: GA ČR GA206/99/1252; GA ČR GA206/99/P034; GA MŠk OC 837.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : plant cell culture Subject RIV: CE - Biochemistry

  5. Two- and three-dimensional co-culture models of soft tissue healing: pericyte-endothelial cell interaction.

    Science.gov (United States)

    Jennewein, Martina; Bubel, Monika; Guthörl, Silke; Metzger, Wolfgang; Weigert, Martin; Pohlemann, Tim; Oberringer, Martin

    2016-08-01

    The demographic change in western countries towards an older population is being shadowed by an increased appearance of chronic diseases influencing soft tissue healing in a negative manner. Although various promising therapeutic approaches are available for treating chronic wounds, no in vitro model exists that successfully allows the analysis of interacting cells and of the effect of therapeutic drugs within a wound. Granulation tissue assures wound stability, neo-angiogenesis and revascularization finally leading to functional soft tissue repair. As one of the first steps in developing a model for human granulation tissue, we examined microvascular endothelial cells and pericytes in conventional 2D and in 3D spheroid co-cultures. We determined which parameters could be used in a standardized manner and whether the cultures were responsive to hypoxia and to erythropoietin supplementation. The read-out parameters of cell migration, cell density, rate of apoptotic cells, spatial cell distribution in the spheroid and spheroid volume were shown to be excellent analytic measures. In addition, quantification of hypoxia-related genes identified a total of 13 genes that were up-regulated in spheroids after hypoxia. As these parameters delivered reliable results in the present approach and as the general morphological distribution of pericytes and endothelial cells within the spheroid occurred in a typical manner, we believe that this basic in vitro model will serve for the future study of diverse aspects of soft tissue healing. PMID:27026609

  6. Modeling Cultural Dynamics

    CERN Document Server

    Gabora, Liane

    2008-01-01

    EVOC (for EVOlution of Culture) is a computer model of culture that enables us to investigate how various factors such as barriers to cultural diffusion, the presence and choice of leaders, or changes in the ratio of innovation to imitation affect the diversity and effectiveness of ideas. It consists of neural network based agents that invent ideas for actions, and imitate neighbors' actions. The model is based on a theory of culture according to which what evolves through culture is not memes or artifacts, but the internal models of the world that give rise to them, and they evolve not through a Darwinian process of competitive exclusion but a Lamarckian process involving exchange of innovation protocols. EVOC shows an increase in mean fitness of actions over time, and an increase and then decrease in the diversity of actions. Diversity of actions is positively correlated with population size and density, and with barriers between populations. Slowly eroding borders increase fitness without sacrificing diver...

  7. Macroscopic modelling of hybridoma cell fed-batch cultures with overflow metabolism: model-based optimization and state estimation

    OpenAIRE

    Amribt, Zakaria

    2014-01-01

    Monoclonal antibodies (MAbs) have an expanding market for use in diagnostic and therapeutic applications. Industrial production of these biopharmaceuticals is usually achieved based on fed-batch cultures of mammalian cells in bioreactors (Chinese hamster ovary (CHO) and Hybridoma cells), which can express different kinds of recombinant proteins. In order to reach high cell densities in these bioreactors, it is necessary to carry out an optimization of their production processes. Hence, macros...

  8. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis.

    Science.gov (United States)

    Berry, Brandon; Moretto, Justin; Matthews, Thomas; Smelko, John; Wiltberger, Kelly

    2015-01-01

    Multi-component, multi-scale Raman spectroscopy modeling results from a monoclonal antibody producing CHO cell culture process including data from two development scales (3 L, 200 L) and a clinical manufacturing scale environment (2,000 L) are presented. Multivariate analysis principles are a critical component to partial least squares (PLS) modeling but can quickly turn into an overly iterative process, thus a simplified protocol is proposed for addressing necessary steps including spectral preprocessing, spectral region selection, and outlier removal to create models exclusively from cell culture process data without the inclusion of spectral data from chemically defined nutrient solutions or targeted component spiking studies. An array of single-scale and combination-scale modeling iterations were generated to evaluate technology capabilities and model scalability. Analysis of prediction errors across models suggests that glucose, lactate, and osmolality are well modeled. Model strength was confirmed via predictive validation and by examining performance similarity across single-scale and combination-scale models. Additionally, accurate predictive models were attained in most cases for viable cell density and total cell density; however, these components exhibited some scale-dependencies that hindered model quality in cross-scale predictions where only development data was used in calibration. Glutamate and ammonium models were also able to achieve accurate predictions in most cases. However, there are differences in the absolute concentration ranges of these components across the datasets of individual bioreactor scales. Thus, glutamate and ammonium PLS models were forced to extrapolate in cases where models were derived from small scale data only but used in cross-scale applications predicting against manufacturing scale batches. PMID:25504860

  9. Cluster–cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    International Nuclear Information System (INIS)

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster–cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture

  10. More Novel Hantaviruses and Diversifying Reservoir Hosts — Time for Development of Reservoir-Derived Cell Culture Models?

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle

    2014-02-01

    Full Text Available Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.

  11. A Multilayered Cell Culture Model for Transport Study in Solid Tumors: Evaluation of Tissue Penetration of Polyethyleneimine Based Cationic Micelles

    OpenAIRE

    Miura, Seiji; Suzuki, Hidenori; Bae, You Han

    2014-01-01

    Limited drug distribution is partially responsible for the efficacy gap between preclinical and clinical studies of nano-sized drug carriers for cancer therapy. In this study, we examined the transport behavior of cationic micelles formed from a triblock copolymer of poly(D,L-lactide-co-glycolide)-block-branched polyethyleneimine-block-poly(D,L-lactide-co-glycolide) using a unique in vitro tumor model composed of a multilayered cell culture (MCC) and an Ussing chamber system. The Cy3-labeled ...

  12. Heart cells in culture: a model of myocardial iron overload and chelation

    International Nuclear Information System (INIS)

    The effect of iron loading and chelation was studied in heart cell cultures obtained from newborn rats. Radioactive iron uptake per 2 X 10(6) cells/24 hr was 3.8% for 59Fe-transferrin, 15.8% for 59Fe-ferric ammonium citrate (FeAC) at 20 micrograms Fe/ml in 20% serum, and 37.1% for 59FeAC at 20 micrograms Fe/ml in serum-free medium. About one third of the cellular radioactive iron was in ferritin and the rest in an insoluble lysosomal fraction. Iron uptake was almost completely inhibited by reducing the incubation temperature from 37 degrees C to 10 degrees C. Intracellular concentrations of malonyldialdehyde (MDA) were doubled after 15 minutes of iron loading and reached maximal concentrations at 3 hours. Conversely, iron mobilization by deferoxamine at concentrations ranging from 0.025 mmol/L to 0.3 mmol/L resulted in normalization of cellular MDA concentrations, in direct proportion to the amounts of iron removed. These findings indicate that cultured myocardial cells are able to assimilate large amounts of nontransferrin iron and that iron uptake and mobilization are associated with striking changes in lipid peroxidation as manifested by the respective increase and decrease in cellular MDA concentrations

  13. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.

    Science.gov (United States)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-07-01

    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0 CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. PMID:25847186

  14. A Cultural Market Model

    CERN Document Server

    Herdagdelen, Amac

    2008-01-01

    Social interactions and personal tastes shape our consumption behavior of cultural products. In this study, we present a computational model of a cultural market and we aim to analyze the behavior of the consumer population as an emergent phenomena. Our results suggest that the final market shares of cultural products dramatically depend on consumer heterogeneity and social interaction pressure. Furthermore, the relation between the resulting market shares and social interaction is robust with respect to a wide range of variation in the parameter values and the type of topology.

  15. a Cultural Market Model

    Science.gov (United States)

    HerdaǦDELEN, Amaç; Bingol, Haluk

    Social interactions and personal tastes shape our consumption behavior of cultural products. In this study, we present a computational model of a cultural market and we aim to analyze the behavior of the consumer population as an emergent phenomena. Our results suggest that the final market shares of cultural products dramatically depend on consumer heterogeneity and social interaction pressure. Furthermore, the relation between the resulting market shares and social interaction is robust with respect to a wide range of variation in the parameter values and the type of topology.

  16. The Culture Based Model: Constructing a Model of Culture

    Science.gov (United States)

    Young, Patricia A.

    2008-01-01

    Recent trends reveal that models of culture aid in mapping the design and analysis of information and communication technologies. Therefore, models of culture are powerful tools to guide the building of instructional products and services. This research examines the construction of the culture based model (CBM), a model of culture that evolved…

  17. Radiation induced secretion of surfactant from cell cultures of type II pneumocytes: an in vitro model of radiation toxicity

    International Nuclear Information System (INIS)

    The pathogenesis of pneumonitis and fibrosis secondary to lung irradiation is incompletely understood. The role of the type II alveolar epithelial pneumocyte in these processes has been under investigation. The type II pneumocyte has been shown in vivo to respond to radiation induced injury with release of pulmonary surfactant. The effect of irradiation on cell cultures of type II pneumocytes was studied to determine if this could be reproduced in vitro. Type II pneumocytes were found to release surfactant material with a threshold of radiation dose between 1000 and 1500 rad. This is similar to the dosage range over which the same effect has been demonstrated in vivo. Experimental results support the concept that the release of surfactant is not due to either cell disruption or non-specific release of phospholipid from cell membranes. Irradiation appears to trigger membrane receptor mediated surfactant release. In addition, irradiation abolishes the ability of cells to subsequently respond to a physiologic agonist, suggesting radiation induced damage to the secretory mechanism. These studies establish that surfactant release in response to irradiation in vivo is a direct effect on type II pneumocytes. Cell cultures of type II pneumocytes can serve as a laboratory model of lung cell radiation toxicity

  18. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    Science.gov (United States)

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  19. Risk culture - a descriptive model

    OpenAIRE

    Paalanen, Anssi

    2013-01-01

    The term risk culture means how people in organisations understand risk. Risk culture influences all risk management related aspects. The term risk culture is relatively new. No comprehensive descriptive model of risk culture can be found in the literature. To understand risk culture better a descriptive model is needed. This thesis aims to answer the following research questions: How risk culture can be described, how different culture types can be classified, and what risk management me...

  20. Three dimensional neuronal cell cultures more accurately model voltage gated calcium channel functionality in freshly dissected nerve tissue.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG were cultured on two dimensional (2D flat surfaces and in three dimensional (3D synthetic poly-L-lactic acid (PLLA and polystyrene (PS polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K(+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells' functionality, transcriptase expression and related membrane protein distributions (caveolin-1 were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns.

  1. Huanglongbing and psyllid cell cultures

    Science.gov (United States)

    We successfully established cell cultures of the Asian citrus psyllid, Diaphorina citri (Psyllidae: Hemiptera), DcHH-1. The cell culture also supported growth of Candidatus Liberibacter asiaticus. This bacterial pathogen is associated with Huanglongbing, known as citrus greening disease. Research on...

  2. Experimental model for collagen estimation in cell culture Modelo experimental para avaliação do colágeno em cultura de células

    OpenAIRE

    Sidney Mamoru Keira; Lydia Masako Ferreira; Alfredo Gragnani; Ivone da Silva Duarte; José Barbosa

    2004-01-01

    In the study of Plastic Surgery, cell culture may be used at experimental level in researches concerning biosynthesis functions of skin cells such as fibroblasts, keratinocytes, adipocytes, chondrocytes and osteocytes. The present study reports an experimental model for estimation of collagen in cell cultures using chromogenic precipitation reaction with an especific dye (Sirius Red).Dentro do estudo da Cirurgia Plástica, a cultura de células pode ser utilizada em experimentos relativos às fu...

  3. Elucidating the Uptake and Distribution of Nanoparticles in Solid Tumors via a Multilayered Cell Culture Model

    Institute of Scientific and Technical Information of China (English)

    Darren Yohan; Charmainne Cruje; Xiaofeng Lu; Devika Chithrani

    2015-01-01

    Multicellular layers (MCLs) have previously been used to determine the pharmacokinetics of a variety of different cancer drugs including paclitaxel, doxorubicin, methotrexate, and 5-fluorouracil across a number of cell lines. It is not known how nanoparticles (NPs) navigate through the tumor microenvironment once they leave the tumor blood vessel. In this study, we used the MCL model to study the uptake and penetration dynamics of NPs. Gold nanoparticles (GNPs) were used as a model system to map the NP distribution within tissue-like structures. Our results show that NP uptake and transport are dependent on the tumor cell type. MDA-MB-231 tissue showed deeper penetration of GNPs as compared to MCF-7 one. Intracellular and extracellular distributions of NPs were mapped using CytoViva imaging. The ability of MCLs to mimic tumor tissue characteristics makes them a useful tool in assessing the efficacy of particle distribution in solid tumors.

  4. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  5. Agent-Based Computational Modeling of Cell Culture: Understanding Dosimetry In Vitro as Part of In Vitro to In Vivo Extrapolation

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assu...

  6. High density cell culture system

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  7. Elimination of Enhanced Thermal Resistance of Spheroid Culture Model of Prostate Carcinoma Cell Line by Inhibitors of Hsp70 Induction

    Directory of Open Access Journals (Sweden)

    Samideh Khoei

    2010-01-01

    Full Text Available AbstractObjective: The purpose of this study was to investigate the enhanced thermal resistancemechanism of the DU145 tumor spheroid cultures as compared to the prostate carcinomacell line's monolayer cultures.Materials and Methods: DU145 cells were cultured either as spheroids or monolayers.Cultures were treated with hyperthermia in a precision water bath (at 43°C for 60 minutesand/or quercetin (50 and 500 μM for monolayer and spheroid cultures respectively. Afterhyperthermic treatment, the cell viability colony forming ability, and the expression of heatshock protein 70 (Hsp70 were examined in both culture systems. Hsp70 expression wasstudied using the western blot method.Results: Our results showed that the DU145 monolayer and spheroid cell culture treatmentwith hyperthermia alone resulted in a marked survival inhibition. Furthermore, thespheroids showed a more significant resistance to hyperthermia compared to the monolayercultures (p = 0.01. They also produced more Hsp70 than the monolayer cultures.Treatment of cells with quercetin reduced the Hsp70 level in both culture systems. However,with the reduced Hsp70 levels, thermal resistance of the spheroids showed a greaterdecrease in relation to that of the monolayers.Conclusion: The results suggest that the enhanced hyperthermia resistance mechanismof the spheroid cultures compared to that of the monolayer cultures can be attributed tospheroids' Hsp70 production.

  8. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    displaying folds that closely resembled the intestinal villi and formation of a tight barrier. Furthermore, the microelectrodes embedded in the microchip also allow real-time monitoring of the barrier integrity by means of measuring the trans-epithelial electrical resistance. Demonstrations of transport...... enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... without compromising the epithelial cell viability and barrier function. Such a platform paves the way towards an alternative in vitro intestinal model for high throughput screening of drugs, chemicals, pathogens, intestinal diseases as well as toxicological studies....

  9. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    Directory of Open Access Journals (Sweden)

    Johan Jaime Medina Benavente

    Full Text Available Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  10. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity.

    Science.gov (United States)

    Astashkina, Anna; Mann, Brenda; Grainger, David W

    2012-04-01

    Drug candidate and toxicity screening processes currently rely on results from early-stage in vitro cell-based assays expected to faithfully represent essential aspects of in vivo pharmacology and toxicology. Several in vitro designs are optimized for high throughput to benefit screening efficiencies, allowing the entire libraries of potential pharmacologically relevant or possible toxin molecules to be screened for different types of cell signals relevant to tissue damage or to therapeutic goals. Creative approaches to multiplexed cell-based assay designs that select specific cell types, signaling pathways and reporters are routine. However, substantial percentages of new chemical and biological entities (NCEs/NBEs) that fail late-stage human drug testing, or receive regulatory "black box" warnings, or that are removed from the market for safety reasons after regulatory approvals all provide strong evidence that in vitro cell-based assays and subsequent preclinical in vivo studies do not yet provide sufficient pharmacological and toxicity data or reliable predictive capacity for understanding drug candidate performance in vivo. Without a reliable translational assay tool kit for pharmacology and toxicology, the drug development process is costly and inefficient in taking initial in vitro cell-based screens to in vivo testing and subsequent clinical approvals. Commonly employed methods of in vitro testing, including dissociated, organotypic, organ/explant, and 3-D cultures, are reviewed here with specific focus on retaining cell and molecular interactions and physiological parameters that determine cell phenotypes and their corresponding responses to bioactive agents. Distinct advantages and performance challenges for these models pertinent to cell-based assay and their predictive capabilities required for accurate correlations to in vivo mechanisms of drug toxicity are compared. PMID:22252140

  11. Cell culture purity issues and DFAT cells

    International Nuclear Information System (INIS)

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture

  12. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.

    Science.gov (United States)

    van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth

    2012-05-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments. PMID:22444457

  13. Regeneration of skeletal muscle fibers from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity

    International Nuclear Information System (INIS)

    An experimental model used to test in vivo myogenicity of autologous satellite cells multiplied in vitro is described. Free muscle autotransplantation served as the basis and was combined with x-irradiation. Administration of 1500, 2500, and 3500 rad doses 24 hours before or after ischemia showed that inhibition of spontaneous regeneration is dose dependent and more efficient when irradiation was applied before injury. A single dose of 2500 rad before injury resulted in the formation of a cystic structure ideal for cell implantation. FITC-latex beads and/or carbocyanine dyes were internalized by mononucleated satellite cells in vitro. Labeling did not affect survival or development of these cells. No sign of marker release or spreading from labeled to unlabeled cells was detectable unless by the fusion process. These labels were retained for several weeks. Grafting of labeled dense cellular suspensions into x-irradiated ischemic muscles indicated that satellite cells retain their myogenic characteristic and are able to reform fully differentiated muscle fibers. 55 references

  14. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H;

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of...... amino acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27m......M (logKm is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting that...

  15. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease

    International Nuclear Information System (INIS)

    Disrupted iron metabolism and excess iron accumulation has been reported in the brains of Parkinson's disease (PD) patients. Because excessive iron can induce oxidative stress subsequently causing degradation of nigral dopaminergic neurons in PD, we determined the protective effect of a naturally occurring iron chelator, phytic acid (IP6), on 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in immortalized rat mesencephalic/dopaminergic cells. Cell death was induced with MPP+ in normal and iron-excess conditions and cytotoxicity was measured by thiazolyl blue tetrazolium bromide (MTT assay) and trypan blue staining. Apoptotic cell death was also measured with caspase-3 activity, DNA fragmentation, and Hoechst nuclear staining. Compared to MPP+ treatment, IP6 (30 μmol/L) increased cell viability by 19% (P + treatment was decreased by 55% (P < 0.01) and 52% (P < 0.05), respectively with IP6. Cell survival was increased by 18% (P < 0.05) and 42% (P < 0.001) with 30 and 100 μmol/L of IP6, respectively in iron-excess conditions. A 40% and 52% (P < 0.001) protection was observed in caspase-3 activity with 30 and 100 μmol/L IP6, respectively in iron-excess condition. Similarly, a 45% reduction (P < 0.001) in DNA fragmentation was found with 100 μmol/L IP6. In addition, Hoechst nuclear staining results confirmed the protective effect of IP6 against apoptosis. Similar protection was also observed with the differentiated cells. Collectively, our results demonstrate a significant neuroprotective effect of phytate in a cell culture model of PD

  16. Development of a simulation tool based on a segregated model to optimize the design and the scale up of animal cell culture in fixed-bed bioreactor [abstract

    OpenAIRE

    Gelbgras, V.; Drugmand, JC.; Haut, B

    2010-01-01

    The fixed-bed bioreactor is a promising system for the process intensification of the adherent animal cell culture. Nevertheless the fixed-bed bioreactor presents heterogeneity of the cell and the species concentrations which can complicate its optimization and its scale-up. The aim of this work is to develop a mathematical model of the evolution of the cell concentration and the species concentrations to study the process optimization and the bioreactor scale-up. The developed model is used ...

  17. Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: A rapid screening model for differentiation studies

    Directory of Open Access Journals (Sweden)

    Josué Kunjom Mfopou

    2014-01-01

    Full Text Available Definitive endoderm (DE differentiation from mouse embryonic stem cell (mESC monolayer cultures has been limited by poor cell survival or low efficiency. Recently, a combination of TGFβ and Wnt activation with BMP inhibition improved DE induction in embryoid bodies cultured in suspension. Based on these observations we developed a protocol to efficiently induce DE cells in monolayer cultures of mESCs. We obtained a good cell yield with 54.92% DE induction as shown by Foxa2, Sox17, Cxcr4 and E-Cadherin expression. These DE-cells could be further differentiated into posterior foregut and pancreatic phenotypes using a culture protocol initially developed for human embryonic stem cell (hESC differentiation. In addition, this mESC-derived DE gave rise to hepatocyte-like cells after exposure to BMP and FGF ligands. Our data therefore indicate a substantial improvement of monolayer DE induction from mESCs and support the concept that differentiation conditions for mESC-derived DE are similar to those for hESCs. As mESCs are easier to maintain and manipulate in culture compared to hESCs, and considering the shorter duration of embryonic development in the mouse, this method of efficient DE induction on monolayer will promote the development of new differentiation protocols to obtain DE-derivatives, like pancreatic beta-cells, for future use in cell replacement therapies.

  18. In-depth evaluation of Gly-Sar transport parameters as a function of culture time in the Caco-2 cell model

    DEFF Research Database (Denmark)

    Bravo, Silvina A.; Nielsen, Carsten Uhd; Amstrup, Jan; Frokjaer, Sven; Brodin, Birger

    2004-01-01

    The aim of the present study was to investigate the influence of culture time on hPEPT1-mediated transport in Caco-2 cell monolayers. Peptide transport activity in Caco-2 cells grown in standard media and in a "rapid" 4-day model was first compared. The rapid 4-day Caco-2 cell model, cultured using...... a cocktail of growth factors and agonists, displayed lower peptide uptake capacity than Caco-2 cells grown for 4 days in conventional media, and was judged to be unsuitable for peptide transport studies. Peptide transport activity as well as monolayer integrity and tissue morphology were evaluated...... in the standard >21 days model as a function of the culture time. Peptide transport activity was studied using [14C]-glycylsarcosine ([ 14C]-Gly-Sar). Monolayer integrity was evaluated by transepithelial electrical resistance (TEER) measurements and [3H]-mannitol permeabilities. Tissue morphology and...

  19. Laser-assisted blastocyst dissection and subsequent cultivation of embryonic stem cells in a serum/cell free culture system: applications and preliminary results in a murine model

    Directory of Open Access Journals (Sweden)

    Sills Eric

    2006-05-01

    Full Text Available Abstract Background To evaluate embryonic stem cell (ESC harvesting methods with an emphasis on derivation of ESC lines without feeder cells or sera. Using a murine model, laser-assisted blastocyst dissection was performed and compared to conventional immunosurgery to assess a novel laser application for inner cell mass (ICM isolation. Methods Intact blastocysts or isolated ICMs generated in a standard mouse strain were plated in medium with or without serum to compare ESC harvesting efficiency. ESC derivation was also undertaken in a feeder cell-free culture system. Results Although ICM growth and dissociation was comparable irrespective of the media components, an enhanced ESC harvest was observed in our serum-free medium (p Conclusion Achieving successful techniques for human ESC research is fundamentally dependent on preliminary work using experimental animals. In this study, all experimentally developed ESC lines manifested similar features to ESCs obtained from intact blastocysts in standard culture. Cell/sera free murine ESC harvest and propagation are feasible procedures for an embryology laboratory and await refinements for translation to human medical research.

  20. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P export mediated by ferroportin 1. PMID:27298749

  1. Aseptic technique for cell culture.

    Science.gov (United States)

    Coté, R J

    2001-05-01

    This unit describes some of the ways that a laboratory can deal with the constant threat of microbial contamination in cell cultures. A protocol on aseptic technique is described first. This catch-all term universally appears in any set of instructions pertaining to procedures in which noncontaminating conditions must be maintained. In reality, aseptic technique encompasses all aspects of environmental control, personal hygiene, equipment and media sterilization, and associated quality control procedures needed to ensure that a procedure is, indeed, performed with aseptic, noncontaminating technique. Although cell culture can theoretically be carried out on an open bench in a low-traffic area, most cell culture work is carried out using a horizontal laminar-flow clean bench or a vertical laminar-flow biosafety cabinet. Both are described here. PMID:18228291

  2. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  3. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  4. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  5. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  6. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    Science.gov (United States)

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  7. Structured modeling of recombinant protein production in batch and fed-batch culture of baculovirus-infected insect cells

    OpenAIRE

    Jang, J. D.; Sanderson, C.S.; Chan, L. C. L.; Barford, J. P.; Reid, S

    2000-01-01

    The infection of insect cells with baculovirus was described in a mathematical model as a part of the structured dynamic model describing whole animal cell metabolism. The model presented here is capable of simulating cell population dynamics, the concentrations of extracellular and intracellularviral components, and the heterologous product titers. The model describes the whole processes of viral infection and theeffect of the infection on the host cell metabolism. Dynamic simulation of the ...

  8. EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2015-01-01

    Full Text Available Background. Parkinson’s disease (PD is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (−-epigallocatechin-3-gallate (EGCG against 6-hydroxydopamine- (6-OHDA- induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protection by EGCG in N27 cells was assessed by SYTOX green assay, MTT, and caspase-3 activity. Iron regulatory gene and protein expression were measured by RT-PCR and Western blotting. Intracellular iron uptake was measured using 55Fe. The EGCG protection was further tested in primary mesencephalic dopaminergic neurons by immunocytochemistry. Results. EGCG protected against 6-OHDA-induced cell toxicity. 6-OHDA treatment significantly (p<0.05 increased divalent metal transporter-1 (DMT1 and hepcidin and decreased ferroportin 1 (Fpn1 level, whereas pretreatment with EGCG counteracted the effects. The increased 55Fe (by 96%, p<0.01 cell uptake confirmed the iron burden by 6-OHDA and was reduced by EGCG by 27% (p<0.05, supporting the DMT1 results. Pretreatment with EGCG and 6-OHDA significantly increased (p<0.0001 TH+ cell count (~3-fold and neurite length (~12-fold compared to 6-OHDA alone in primary mesencephalic neurons. Conclusions. Pretreatment with EGCG protected against 6-OHDA-induced neurotoxicity by regulating genes and proteins involved in brain iron homeostasis, especially modulating hepcidin levels.

  9. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  10. Evaluation of eukaryotic cultured cells as a model to study extracellular DNA / D.L. Peters

    OpenAIRE

    Peters, Dimetrie Leslie

    2011-01-01

    The diagnostic value of extracellular occurring DNA (eoDNA) is limited by our lack of understanding its biological function. eoDNA exists in a number of forms, namely vesicle bound DNA, histone/DNA complexes or nucleosomes and virtosomes. These forms of DNA can also be categorized under the terms circulating DNA, cell free DNA, free DNA and extracellular DNA. The DNA can be released by means of form–specific mechanisms and seem to be governed by cell cycle phases and apoptosis....

  11. New Strategy in Spinal Cord Repair with Cryofrozen Primary Cell Cultures in Model In Vivo

    Directory of Open Access Journals (Sweden)

    Rosa Margarita Gomez Bello

    2015-02-01

    The results as show evidence that when evaluating the locomotor recuperation, after a medullar section in rats through the implantation of OECs of cryopreserved cells combined with aFGF + FG. In addition, the conclusion it is potencial use in reparative phenomena in the injured medullar tissue but making further studies necessary before considering their use.

  12. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: 'the race to the surface' studied in vitro.

    Science.gov (United States)

    McConda, David B; Karnes, Jonathan M; Hamza, Therwa; Lindsey, Brock A

    2016-07-01

    Infection is a major cause of orthopedic implant failure. There are few studies assessing both tissue cell and bacterial adherence on common orthopedic implant materials in a co-culture environment. An in vitro co-culture model was created using K12 osteosarcoma cells and Staphylococcus aureus in a medium incubated over metal disks for 48 h. The results showed that, in the presence of S. aureus, there were fewer osteosarcoma cells attached to the disks for all substrata tested. There were significantly more osteosarcoma cells adhering to the cobalt chrome than the stainless steel and titanium disks. Overall, in the presence of osteosarcoma cells, there were more bacteria adhering to the disks for all the substrata tested, with significantly more bacteria adhering to the stainless steel disks compared to cobalt chrome and titanium disks. Scanning electron microscopy verified that osteosarcoma cells and bacteria were adherent to the metal disks after incubation for 48 h. Furthermore, the observation that more bacteria were in the co-culture than in the control sample suggests that the osteosarcoma cells serve as a nutrient source for the bacteria. Future models assessing the interaction of osteogenic cells with bacteria on a substratum would be improved if the model accounted for the role of the immune system in secondary bone healing. PMID:27142312

  13. Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models

    Science.gov (United States)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2015-12-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organson- a-chip", which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass based devices have long been utilised in the field of microfluidics but the integration of alternative functional elements within multi-layered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimised on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650 °C) and quartz/fused silica bonding (1050 °C) processes, this method maintains the integrity and functionality of the membrane (Tg 150 °C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 hours, indicating sufficient bond strength for long term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  14. Co-culture of placental explants with isolated CD4 and CD8 T cells: a functional model to define the consequences of placental inflammation

    Directory of Open Access Journals (Sweden)

    Hayley Derricott

    2015-11-01

    Full Text Available Appropriate placental function is essential for successful pregnancy and placental dysfunction is associated with fetal growth restriction (FGR and stillbirth. Villitis of unknown etiology (VUE and chronic intervillositis of unknown etiology (CIUE are immune-mediated conditions characterised by placental infiltrates of macrophages, CD4 and CD8 T cells. VUE and CIUE occur more frequently in the placentas of pregnancies complicated by FGR. The mechanisms by which this inflammation induces placental dysfunction are yet to be defined. We aimed to develop an in vitro model of placental inflammation to investigate functional consequences of immune cells in the placental environment. Fragments of placental tissue were co-cultured with CD4 and CD8 T cells isolated from whole blood. CellTrackerTM fluorescence was used to identify T cells in cultured explants. Tissue histology, endocrine and nutrient transport function was assessed using established methods. This novel preparation will enable future investigations into immune cell interactions with placenta.

  15. Integrated biosensors for cell culture monitoring

    OpenAIRE

    De Micheli, Giovanni; Boero, Cristina; Olivo, Jacopo; Carrara, Sandro

    2014-01-01

    Biosensors for endogenous compounds, such as glucose and lactate, are applied to monitor cell cultures. Cells can be cultivated for several purposes, such as understanding and modeling some biological mechanisms, the development of new drugs and therapies, and in the field of regenerative medicine. We have realized a self-contained monitoring system with remote readout. Metabolite detection is based on oxidases immobilized onto carbon nanotubes. We calibrate the system for glucose and lactate...

  16. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  17. Activation of CFTR-mediated CI-Transport by Capsaicinoids in Cell Culture Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xue-liang; HOU Ting-ting; GE Hong; SUN Juan-juan; YANG Hong; MA Tong-hui

    2009-01-01

    Previous studies reported that capsaicin potentiates ΔF508 mutant cystic fibrosis transmembrane conductance regulator(CFTR) channel gating defect by transfected cell-based assays.It has been postulated that orally ingested capsaicin may conceptually be used to develop a therapeutic strategy to treat gastrointestinal disorders in CF patients.We tried to reproduce and extend those pre-clinical data of previous studies.Cell-based fluorescence functional measurements in Fischer thyroid epithelial cells(FRT) expressing CFTR showed no effect of capsaicin on potentiating ΔF508-CFTR.while genistein showed a strongly positive activity.Studies show that capsaicin and dihydrocapsaicin activated cAMP-prestimulated wild-type CFTR in a dose-dependent manner with a maximal response of 70% of that activated by genistein,thus gave an apparent EC50 of (40.4±6.8)μmol/L and (150.2±7.4) μmol/L respectively.Preliminary study shows that the binding sites for capsaicin and dihydrocapsaicin may be probably partially overlapped with that for genistein because the maximal activation of wild-type CFTR with genistein is partially blocked by capsaicin and dihydrocapsaicin.

  18. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-01-01

    Full Text Available Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson’s disease (PD. However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P<0.0001 upregulated ferroportin 1 expression and significantly (P<0.05 decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P<0.05 and DNA fragmentation by 29% (P=0.086 and increased cell viability by 22% (P<0.05. In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P<0.05 and intracellular iron by 28% (P<0.01, indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

  19. IRON BIOAVAILABILITY FROM COMMON RAISIN-CONTAINING FOODS ASSESSED WITH AN IN VITRO DIGESTION/CACO-2 CELL CULTURE MODEL: EFFECTS OF RAISINS

    Science.gov (United States)

    The effects of raisins on iron bioavailability from wheat bran cereal, bread, rice pudding, and granola bars were studied. Iron bioavailability was assessed with an in vitro digestion/Caco-2 cell culture model. Raisins reduced iron bioavailability from all foods, except granola bars. Raisins also...

  20. Saposin B-dependent reconstitution of arylsulfatase A activity in vitro and in cell culture models of metachromatic leukodystrophy.

    Science.gov (United States)

    Matzner, Ulrich; Breiden, Bernadette; Schwarzmann, Günter; Yaghootfam, Afshin; Fluharty, Arvan L; Hasilik, Andrej; Sandhoff, Konrad; Gieselmann, Volkmar

    2009-04-01

    Arylsulfatase A (ASA) catalyzes the intralysosomal desulfation of 3-O-sulfogalactosylceramide (sulfatide) to galactosylceramide. The reaction requires saposin B (Sap B), a non-enzymatic proteinaceous cofactor which presents sulfatide to the catalytic site of ASA. The lack of either ASA or Sap B results in a block of sulfatide degradation, progressive intralysosomal accumulation of sulfatide, and the fatal lysosomal storage disease metachromatic leukodystrophy. We studied the coupled Sap B-ASA reaction in vitro using detergent-free micellar and liposomal assay systems and in vivo using cell culture models of metachromatic leukodystrophy. Under in vitro conditions, the reaction had a narrow pH optimum around pH 4.3 and was inhibited by mono- and divalent cations, phosphate and sulfite. Bis(monoacylglycero) phosphate and phosphatidic acid were activators of the reaction, underscoring a significant role of acidic phosphoglycerolipids in sphingolipid degradation. Desulfation was negligible when Sap B was substituted by Sap A, C, or D. Up to a molar ratio between Sap B and sulfatide of 1:5, an elevation of Sap B concentrations caused a sharp increase of sulfatide hydrolysis, indicating the requirement of unexpected high Sap B levels for maximum turnover. Feeding of ASA-deficient, sulfatide-storing primary mouse kidney cells with ASA caused partial clearance of sulfatide. Co-feeding of Sap B or its precursor prosaposin resulted in the lysosomal uptake of the cofactor but did not promote ASA-catalyzed sulfatide hydrolysis. This suggests that Sap B is not a limiting factor of the coupled Sap B-ASA reaction in mouse kidney cells even if sulfatide has accumulated to unphysiologically high levels. PMID:19224915

  1. Saposin B-dependent Reconstitution of Arylsulfatase A Activity in Vitro and in Cell Culture Models of Metachromatic Leukodystrophy*

    Science.gov (United States)

    Matzner, Ulrich; Breiden, Bernadette; Schwarzmann, Günter; Yaghootfam, Afshin; Fluharty, Arvan L.; Hasilik, Andrej; Sandhoff, Konrad; Gieselmann, Volkmar

    2009-01-01

    Arylsulfatase A (ASA) catalyzes the intralysosomal desulfation of 3-O-sulfogalactosylceramide (sulfatide) to galactosylceramide. The reaction requires saposin B (Sap B), a non-enzymatic proteinaceous cofactor which presents sulfatide to the catalytic site of ASA. The lack of either ASA or Sap B results in a block of sulfatide degradation, progressive intralysosomal accumulation of sulfatide, and the fatal lysosomal storage disease metachromatic leukodystrophy. We studied the coupled Sap B-ASA reaction in vitro using detergent-free micellar and liposomal assay systems and in vivo using cell culture models of metachromatic leukodystrophy. Under in vitro conditions, the reaction had a narrow pH optimum around pH 4.3 and was inhibited by mono- and divalent cations, phosphate and sulfite. Bis(monoacylglycero) phosphate and phosphatidic acid were activators of the reaction, underscoring a significant role of acidic phosphoglycerolipids in sphingolipid degradation. Desulfation was negligible when Sap B was substituted by Sap A, C, or D. Up to a molar ratio between Sap B and sulfatide of 1:5, an elevation of Sap B concentrations caused a sharp increase of sulfatide hydrolysis, indicating the requirement of unexpected high Sap B levels for maximum turnover. Feeding of ASA-deficient, sulfatide-storing primary mouse kidney cells with ASA caused partial clearance of sulfatide. Co-feeding of Sap B or its precursor prosaposin resulted in the lysosomal uptake of the cofactor but did not promote ASA-catalyzed sulfatide hydrolysis. This suggests that Sap B is not a limiting factor of the coupled Sap B-ASA reaction in mouse kidney cells even if sulfatide has accumulated to unphysiologically high levels. PMID:19224915

  2. Three-Dimensional Cell Culture: A Breakthrough in Vivo

    Directory of Open Access Journals (Sweden)

    Delphine Antoni

    2015-03-01

    Full Text Available Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment. Cells grown in a 3D model have proven to be more physiologically relevant and showed improvements in several studies of biological mechanisms like: cell number monitoring, viability, morphology, proliferation, differentiation, response to stimuli, migration and invasion of tumor cells into surrounding tissues, angiogenesis stimulation and immune system evasion, drug metabolism, gene expression and protein synthesis, general cell function and in vivo relevance. 3D culture models succeed thanks to technological advances, including materials science, cell biology and bioreactor design.

  3. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G.; Jin, Huajun; Reddy, Manju B.

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  4. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    Science.gov (United States)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    Mechanical loading helps define the architecture of weight-bearing bone via the tightly regulated process of skeletal turnover. Turnover occurs by the concerted activity of osteoblasts, responsible for bone formation. and osteoclasts, responsible for bone resorption. Osteoclasts are specialized megakaryon macrophages, which differentiate from monocytes in response to resorption stimuli, such as reduced weight-bearing. Habitation in space dramatically alters musculoskeletal loading, which modulates both cell function and bone structure. Our long-term objective is to define the molecular and cellular mechanisms that mediate skeletal adaptations to altered gravity environments. Our experimental approach is to apply hypergravity loads by centrifugation to rodents and cultured cells. As a first step, we examined the influence of centrifugation on the structure of cancellous bone in rats to test the ability of hypergravity to change skeletal architecture. Since cancellous bone undergoes rapid turnover we expected the most dramatic structural changes to occur in the shape of trabeculae of weight-bearing, cancellous bone. To define the cellular responses to hypergravity loads, we exposed cultured osteoblasts and macrophages to centrifugation. The intraosseous and intramedullary pressures within long bones in vivo reportedly range from 12-40 mm Hg, which would correspond to 18-59 gravity (g) in our cultures. We assumed that hydrostatic pressure from the medium above the cell layer is at least one major component of the mechanical load generated by centrifuging cultured cells. and therefore we exposed the cells to 10-50g. In osteoblasts, we examined the structure of their actin and microtubule networks, production of prostaglandin E2 (PGE2), and cell survival. Analysis of the shape of the cytoskeletal networks provides evidence for the ability of centrifugation to affect cell structure, while the production of PGE2 serves as a convenient marker for mechanical stimulation. We

  5. Utility and translatability of mathematical modeling, cell culture and small and large animal models in magnetic nanoparticle hyperthermia cancer treatment research

    Science.gov (United States)

    Hoopes, P. J.; Petryk, Alicia A.; Misra, Adwiteeya; Kastner, Elliot J.; Pearce, John A.; Ryan, Thomas P.

    2015-03-01

    For more than 50 years, hyperthermia-based cancer researchers have utilized mathematical models, cell culture studies and animal models to better understand, develop and validate potential new treatments. It has been, and remains, unclear how and to what degree these research techniques depend on, complement and, ultimately, translate accurately to a successful clinical treatment. In the past, when mathematical models have not proven accurate in a clinical treatment situation, the initiating quantitative scientists (engineers, mathematicians and physicists) have tended to believe the biomedical parameters provided to them were inaccurately determined or reported. In a similar manner, experienced biomedical scientists often tend to question the value of mathematical models and cell culture results since those data typically lack the level of biologic and medical variability and complexity that are essential to accurately study and predict complex diseases and subsequent treatments. Such quantitative and biomedical interdependence, variability, diversity and promise have never been greater than they are within magnetic nanoparticle hyperthermia cancer treatment. The use of hyperthermia to treat cancer is well studied and has utilized numerous delivery techniques, including microwaves, radio frequency, focused ultrasound, induction heating, infrared radiation, warmed perfusion liquids (combined with chemotherapy), and, recently, metallic nanoparticles (NP) activated by near infrared radiation (NIR) and alternating magnetic field (AMF) based platforms. The goal of this paper is to use proven concepts and current research to address the potential pathobiology, modeling and quantification of the effects of treatment as pertaining to the similarities and differences in energy delivered by known external delivery techniques and iron oxide nanoparticles.

  6. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays

    Directory of Open Access Journals (Sweden)

    Zhao Lue

    2007-01-01

    Full Text Available Abstract Background Genome-wide mutant strain collections have increased demand for high throughput cellular phenotyping (HTCP. For example, investigators use HTCP to investigate interactions between gene deletion mutations and additional chemical or genetic perturbations by assessing differences in cell proliferation among the collection of 5000 S. cerevisiae gene deletion strains. Such studies have thus far been predominantly qualitative, using agar cell arrays to subjectively score growth differences. Quantitative systems level analysis of gene interactions would be enabled by more precise HTCP methods, such as kinetic analysis of cell proliferation in liquid culture by optical density. However, requirements for processing liquid cultures make them relatively cumbersome and low throughput compared to agar. To improve HTCP performance and advance capabilities for quantifying interactions, YeastXtract software was developed for automated analysis of cell array images. Results YeastXtract software was developed for kinetic growth curve analysis of spotted agar cultures. The accuracy and precision for image analysis of agar culture arrays was comparable to OD measurements of liquid cultures. Using YeastXtract, image intensity vs. biomass of spot cultures was linearly correlated over two orders of magnitude. Thus cell proliferation could be measured over about seven generations, including four to five generations of relatively constant exponential phase growth. Spot area normalization reduced the variation in measurements of total growth efficiency. A growth model, based on the logistic function, increased precision and accuracy of maximum specific rate measurements, compared to empirical methods. The logistic function model was also more robust against data sparseness, meaning that less data was required to obtain accurate, precise, quantitative growth phenotypes. Conclusion Microbial cultures spotted onto agar media are widely used for genotype

  7. Techniques for mammalian cell tissue culture.

    Science.gov (United States)

    Phelan, Mary C

    2006-05-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  8. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis

    OpenAIRE

    Lambros, Maria P.; DeSalvo, Michael K.; Jonathan Moreno; Hari Chandana Mulamalla; Lavanya Kondapalli

    2015-01-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD) of N-acetyl cystein...

  9. Development of a simulation tool based on a segregated model to optimize the design and the scale up of animal cell culture in fixed-bed bioreactor [abstract

    Directory of Open Access Journals (Sweden)

    Gelbgras, V.

    2010-01-01

    Full Text Available The fixed-bed bioreactor is a promising system for the process intensification of the adherent animal cell culture. Nevertheless the fixed-bed bioreactor presents heterogeneity of the cell and the species concentrations which can complicate its optimization and its scale-up. The aim of this work is to develop a mathematical model of the evolution of the cell concentration and the species concentrations to study the process optimization and the bioreactor scale-up. The developed model is used as a simulation tool to study the influence of different phenomena on the cell heterogeneity. In this work, the importance of the adherent phase is investigated. This phase takes place in the beginning of the process. To realize a good implementation of the process, it is important to control the adherent cell concentration and to minimize the heterogeneity during this phase. If cell concentration heterogeneity appears, it will have repercussions during the whole process. In the model, four cell populations are considered: the viable cells in suspension in the medium, the captured cells by the fixed-bed in suspension in the medium, the adherent cells on the fixed-bed and the dead cells in suspension in the medium. Five extracellular species are considered: glucose, glutamine, oxygen, ammonia and lactate. Five phenomena are modeled: the culture medium flow through the fixed-bed (with axial convection, radial dispersion and axial dispersion, the cell capture by the fixed-bed, the cell adherence on the fixed-bed, the cell growth with a maximal cell concentration imposed by the specific area of the fixed-bed and the cell death. The interaction between cells and species is modeled by a Monod equation for the specific growth rate. The model equations are solved with a routine developed with Matlab 6.5. This routine used the Finite Volume Method coupled with a Newton-Raphson algorithm. The model parameters are experimentally identified by cell cultures in a pilot

  10. Neuroglial cells in long-term primary cultures from the gilthead sea bream (Sparus aurata L.: new functional in vitro model from bony fish brain

    Directory of Open Access Journals (Sweden)

    Gerardo Centoducati

    2013-01-01

    Full Text Available Neuroglia has been historically considered the “glue” of the nervous system, as the ancient Greek name suggests, being simply referred as non-neuronal cells, with supporting functions for neurons in the CNS of mammalian and lower vertebrates. All around the world, approximately 283 cell lines were obtained from fish, yet none of these was from the brain of Sparus aurata, neither in cell lines nor as primary culture. Here we describe a novel in vitro reproducible neuroglial marine model for establishing primary neuroglial cell cultures, by dissociating the whole brain of seabream juveniles. We showed that proliferating neural stem cells produced alongside three generating lineages, such as neuronal precursor cells, astroglial precursor cells and oligodendroglia precursor cells, which developed respectively neurons, astrocytes and oligodendrocytes. The radial glia, finely described by morphological studies and immunochemical antigen expression, showed a peculiar spatial distribution, giving rise simultaneously both to astrocytes and neuronal precursors within a highly proliferative assemblate. Radial glia cells were assessed by glial fibrillary acidic protein (GFAP and vimentin reactivity, astrocytes by GFAP, neurons by the neuron-specific markers for ubiquitin carboxy-terminal hydrolase 1 (UCHL1 and intermediate filament associated protein (NF, whereas myelinating oligodendrocytes were immunostained with anti-myelin basic protein (MBP and anti-O4. Our findings suggest that seabream neuroglial cells gain in 3-4 weeks of culturing proliferation, neuroglial differentiation, and oligodendrocyte maturation with myelination, thus disclosing on the possibility that mixed neuroglial cultures can accelerate the maturation of oligodendrocytes and the regeneration of CNS injury in fish.

  11. Potential Mechanisms of an Antiadenomyosis Chinese Herbal Formula Shaoyao-Gancao Decoction in Primary Cell Culture Model

    OpenAIRE

    2014-01-01

    Background. Shaoyao-Gancao Decoction (SGD), a well-known traditional Chinese medicine prescription, has been widely used to treat adenomyosis, dysmenorrhea, abdominal pain, and inflammation in Asia. However, the mechanism underlying the effectiveness of SGD in the treatment of adenomyosis still remains elusive. The present study aimed to investigate the bioactivity of SGD and its underlying molecular mechanisms using cultured human adenomyosis-derived cells. Methods. Human adenomyosis-derived...

  12. A human hepatoma cell line FLC4 cultured on the radial flow bioreactor as a model for human hepatocytes

    Institute of Scientific and Technical Information of China (English)

    LiYW; BabuE

    2002-01-01

    Hepatocytes play central roles in the metabolism and excretion of drugs and xenobiovics.For this purpose,hepatocytes were endowed with high levels of enzyme activity for the phase I and phase Ⅱ metabolism as well as high levels of transmembrane transport activity which enables the entrance and the exit of drugs and xenobiotics and their metabolites through the plasma membrane of the hepatocytes.They include the transporters in the canalicular and sinusoidal membrane.Although a lot of cell lines were established from hepatoma cells or normal hepatocytes,none of them are fully satisfactory in the expression of the enzymes and transportens.We have established and characterized a hepatoma cell line designated FLC4 and found that this cell line exhibits properties quite similar to those of the normal hepatocytes in the light of enzymes and transporters for drug metabolism and transkport when they are cultured on the radial flow bioreactors.Using FLC4 cells cultured on the radial flow bioreactors,we are developing in vitro systems to evaluate the interaction of drugs with liver transporters and drug-drug interaction through the hepa tocyte transporters.

  13. ORGANISATIONAL CULTURE ANALYSIS MODEL

    OpenAIRE

    Mihaela Simona Maracine

    2012-01-01

    The studies and researches undertaken have demonstrated the importance of studying organisational culture because of the practical valences it presents and because it contributes to increasing the organisation’s performance. The analysis of the organisational culture’s dimensions allows observing human behaviour within the organisation and highlighting reality, identifying the strengths and also the weaknesses which have an impact on its functionality and development. In this paper, we try to...

  14. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    Science.gov (United States)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  15. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  16. Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model.

    Science.gov (United States)

    Silva, Aleidy; Lee, Bai-Yu; Clemens, Daniel L; Kee, Theodore; Ding, Xianting; Ho, Chih-Ming; Horwitz, Marcus A

    2016-04-12

    Tuberculosis (TB) remains a major global public health problem, and improved treatments are needed to shorten duration of therapy, decrease disease burden, improve compliance, and combat emergence of drug resistance. Ideally, the most effective regimen would be identified by a systematic and comprehensive combinatorial search of large numbers of TB drugs. However, optimization of regimens by standard methods is challenging, especially as the number of drugs increases, because of the extremely large number of drug-dose combinations requiring testing. Herein, we used an optimization platform, feedback system control (FSC) methodology, to identify improved drug-dose combinations for TB treatment using a fluorescence-based human macrophage cell culture model of TB, in which macrophages are infected with isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible green fluorescent protein (GFP)-expressing Mycobacterium tuberculosis (Mtb). On the basis of only a single screening test and three iterations, we identified highly efficacious three- and four-drug combinations. To verify the efficacy of these combinations, we further evaluated them using a methodologically independent assay for intramacrophage killing of Mtb; the optimized combinations showed greater efficacy than the current standard TB drug regimen. Surprisingly, all top three- and four-drug optimized regimens included the third-line drug clofazimine, and none included the first-line drugs isoniazid and rifampin, which had insignificant or antagonistic impacts on efficacy. Because top regimens also did not include a fluoroquinolone or aminoglycoside, they are potentially of use for treating many cases of multidrug- and extensively drug-resistant TB. Our study shows the power of an FSC platform to identify promising previously unidentified drug-dose combinations for treatment of TB. PMID:27035987

  17. Differentiated adipose-derived stem cells act synergistically with RGD-modified surfaces to improve neurite outgrowth in a co-culture model.

    Science.gov (United States)

    de Luca, A C; Faroni, A; Downes, S; Terenghi, G

    2016-08-01

    Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23950058

  18. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    Science.gov (United States)

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  19. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  20. Induced engulfment of Neisseria gonorrhoeae by tissue culture cells.

    OpenAIRE

    Richardson, W P; Sadoff, J C

    1988-01-01

    Engulfment of gonococci by mammalian tissue culture cells was examined as a model of the penetration of host cells in gonorrhea. Engulfment required viable organisms; killing the gonococci with heat or refrigeration abolished the process. Engulfment also required tissue culture cell microtubule- and microfilament-dependent movement; treating the cells with cytochalasin B (0.5 micrograms/ml) or demecolcine (Colcemid; Ciba-Geigy AG, Basel, Switzerland) (10 micrograms/ml) also prevented his proc...

  1. EFFECT OF FUROSTANOL GLYCOSIDES FROM CULTURED DIOSCOREA DELTOIDEA CELLS ON REGULATORY FUNCTION OF ENDOTHELIUM IN A RAT MODEL OF HYPOESTROGEN-INDUCED ENDOTHELIAL DYSFUNCTION

    OpenAIRE

    E. B. Artyushkova; N. G. Gumanova; V. A. Metelskaya; T. G. Pokrovskaya; V. I. Kochkarov; M. V. Korokin; M. V. Pokrovsky; L. V. Korokina; A. M. Nosov; M. M. Korneev

    2016-01-01

    Aim. To study the effects of furostanol glycosides from cultured Dioscorea Deltoidea cells (DM-05, Institute of Plant Physiology, RAS) on physiological and biochemical markers of endothelial function in rats with hypoestrogen-induced endothelial dysfunction.Material and methods. 10 female rats of Wistar line, with body mass 200-300 g have been included in the experiment. The bilateral ovariectomy was performed in rats to produce the model of hypoestrogen-induced endothelial dysfunction. Rats ...

  2. Optimization of High Grade Glioma Cell Culture from Surgical Specimens for Use in Clinically Relevant Animal Models and 3D Immunochemistry

    OpenAIRE

    Hasselbach, Laura A.; Susan M. Irtenkauf; Lemke, Nancy W.; Nelson, Kevin K.; Artem D. Berezovsky; Carlton, Enoch T.; Andrea D. Transou; Mikkelsen, Tom; deCarvalho, Ana C.

    2014-01-01

    Glioblastomas, the most common and aggressive form of astrocytoma, are refractory to therapy, and molecularly heterogeneous. The ability to establish cell cultures that preserve the genomic profile of the parental tumors, for use in patient specific in vitro and in vivo models, has the potential to revolutionize the preclinical development of new treatments for glioblastoma tailored to the molecular characteristics of each tumor. Starting with fresh high grade astrocytoma tumors dissociated i...

  3. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  4. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-01-01

    Full Text Available Drugs for the treatment and prevention of nervous system diseases must permeate the blood-brain barrier to take effect. In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms. However, to date, no unified method has been described for establishing a blood-brain barrier model. Here, we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-µm pores, and conducted transepithelial electrical resistance measurements, leakage tests and assays for specific blood-brain barrier enzymes. We show that the permeability of our model is as low as that of the blood-brain barrier in vivo. Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs.

  5. Cell Culture as an Alternative in Education.

    Science.gov (United States)

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  6. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.

    Directory of Open Access Journals (Sweden)

    Julita Stadnicka-Michalak

    Full Text Available Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii derive a predictive model for toxicokinetics in the in vitro test system, (iii test the hypothesis that internal effect concentrations in fish (in vivo and fish cell lines (in vitro correlate, and (iv develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1 and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test. This ratio can be predicted from the log KOW of the chemical (77% of variance explained, comprising a promising model to predict lethal effects on fish based on in vitro data.

  7. In vitro culture of human thyroid cells

    International Nuclear Information System (INIS)

    Procedures for establishing primary cultures of human thyroid tissue are described. Tissues removed surgically from patients with papillary carcinoma (PC), follicular adenoma (FA), or hyperthyroidism were grown in culture. In addition, normal cells were separated from the margins of excised tumors and were also cultured. For each gram of thyroid tissue cultured, more than 1 x 105 cells attached to culture dishes. A mixture of 2.5 % fetal bovine serum supplemented with insulin, hydrocortisone, transferrin, glycl-1-histidyl-L-lysine acetate, somatostatin and epidermal growth factor was added to nutrient media containing equal parts of Ham's F-12 and minimum essential medium (αMEM). Complete medium selectively supported epithelial cell growth while restricting fibroblast cell growth, especially during the first two weeks of the primary culture. Cells were stimulated with thyroid stimulating hormone (TSH) and produced raised levels of cAMP and thyroid hormone (T3). Culture conditions that affected the response of cells to X-rays were identified. During the culture period, first and second passage cells were compared for differences in their radiosensitivities. In all cases, cells showed differences in their responses to radiation depending on the cell passage number. However, results of replicate experiments of first passage cells that were exposed to X-rays showed good agreement between experiments. This technique makes it possible to quantitate the effects of chemical and physical cytotoxic agents on proliferating human thyroid epithelial cells. (author)

  8. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions

    OpenAIRE

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M.; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C.; Alexander, Morgan R.; Langer, Robert; Anderson, Daniel G.; Jaenisch, Rudolf

    2011-01-01

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell...

  9. Sodium 22+ washout from cultured rat cells

    International Nuclear Information System (INIS)

    The washout of Na+ isotopes from tissues and cells is quite complex and not well defined. To further gain insight into this process, we have studied 22Na+ washout from cultured Wistar rat skin fibroblasts and vascular smooth muscle cells (VSMCs). In these preparations, 22Na+ washout is described by a general three-exponential function. The exponential factor of the fastest component (k1) and the initial exchange rate constant (kie) of cultured fibroblasts decrease in magnitude in response to incubation in K+-deficient medium or in the presence of ouabain and increase in magnitude when the cells are incubated in a Ca++-deficient medium. As the magnitude of the kie declines (in the presence of ouabain) to the level of the exponential factor of the middle component (k2), 22Na+ washout is adequately described by a two-exponential function. When the kie is further diminished (in the presence of both ouabain and phloretin) to the range of the exponential factor of the slowest component (k3), the washout of 22Na+ is apparently monoexponential. Calculations of the cellular Na+ concentrations, based on the 22Na+ activity in the cells at the initiation of the washout experiments, and the medium specific activity agree with atomic absorption spectrometry measurements of the cellular concentration of this ion. Thus, all three components of 22Na+ washout from cultured rat cells are of cellular origin. Using the exponential parameters, compartmental analyses of two models (in parallel and in series) with three cellular Na+ pools were performed. The results indicate that, independent of the model chosen, the relative size of the largest Na+ pool is 92-93% in fibroblasts and approximately 96% in VSMCs. This pool is most likely to represent the cytosol

  10. Culture of Cells from Amphibian Embryos.

    Science.gov (United States)

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  11. Three-Dimensional Cancer-Bone Metastasis Model Using Ex-Vivo Co-Cultures of Live Calvarial Bones and Cancer Cells

    OpenAIRE

    Curtin, Paul; Youm, Helen; Salih, Erdjan

    2011-01-01

    One of the major limitations of studying cancer-bone metastasis has been the lack of an appropriate ex-vivo model which can be used under defined conditions that simulates closely the in vivo live bone microenvironment in response to cancer-bone interactions. We have developed and utilized a three-dimensional (3D) cancer-bone metastasis model using free floating live mouse calvarial bone organs in the presence of cancer cells in a roller-tube system. In such co-cultures under hypoxia and a sp...

  12. SPONTANEOUS TRANSFORMATION OF CULTURED PORCINE BONE MARROW STROMAL CELLS

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Li, Haisheng;

    -term culture are transformed into malignant cells. MATERIAL AND METHODS BMSC from 6 pigs were isolated and propagated continuously. Cell morphology was observed. Transformation properties were evaluated by means of serum dependence assay, Ki- 67 immunostaining, soft agar colony assay, karyotyping, telomerase...... was increased and TGF‚ signaling pathway was upregulated. However, telomerase activity maintained negative during culture. CONCLUSION Porcine BMSC can undergo spontaneous transformation, which provides a useful model to study the mechanisms associated with the tumorigenic potential of adult stem cells....

  13. Chemotherapy in heterogeneous cultures of cancer cells with interconversion

    International Nuclear Information System (INIS)

    Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data. (paper)

  14. Advantages of embryogenic cell cultures of Gramineae

    International Nuclear Information System (INIS)

    Immature embryos and/or explants from very young leaves and inflorescences of 13 species and over 75 cultivars of Gramineae - including wheat, maize, rye, pearl millet, sugar-cane, Napier grass, Guinea grass, etc. - were used to initiate callus cultures. The cultures are white to yellowish white in colour, compact and contain small and thin-walled meristematic cells which are richly cytoplasmic, non-vacuolated and contain prominent starch grains. These embryogenic tissue cultures provide a long-term, highly reliable and efficient means of rapid mass clonal propagation by the formation of somatic embryos that arise from single cells. The cultures consist largely of cytologically normal diploid cells. During the process of plant regeneration via somatic embryogenesis, there is strong selection in favour of normal cells, so that plants recovered from such cultures neither exhibit any morphological abnormalities nor show any evidence of cytological changes in the number or structure of chromosomes. Embryogenic callus cultures have been used successfully to establish highly dispersed and friable cell-suspension cultures. These fast-growing cultures comprise groups of 2-6 embryogenic cells, which adhere together to form larger unorganized aggregates of up to about 75 cells, but do not contain any organized meristems or callus tissues. Plants were regenerated by somatic embryogenesis from embryogenic cell-suspension cultures of pearl millet, Guinea grass, sugar-cane and maize. Finally, embryogenic cell-suspension cultures are the only current source of totipotent protoplasts in Gramineae. Protoplasts isolated from such cultures have been successfully cultured to produce somatic embryos and plants in pearl millet, Guinea grass, Napier grass and sugar-cane. (author)

  15. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream

    DEFF Research Database (Denmark)

    Tanvig, Mette; Blaabjerg, Morten; Andersen, Rikke K;

    2009-01-01

    The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone (SVZ) cells reach the olfactory bulb (OB) in rodents. This migration has been well studied in vivo, but an organotypic in vitro model would facilitate more experimental investigations. Here we introduce...

  16. Cell Suspension Culture of Neem Tree

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The establishment of suspension culture system for neem (Azadirachta indica A. Juss) cells and the suspension culture condition was studied. It shows that the neem cell suspension culture system was best in B5 liquid medium, 2.0~4.0mg/L NAA with direct spill method. Based on the integrated analysis of cell biomass, Azadirachtin content and productivity, the optimum culture conditions were B5 liquid medium, 2.0-4.0 mg/L NAA, 3% sucrose at 25 ℃. The optimum rotating speed of the shaker and broth content d...

  17. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference...

  18. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    . Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  19. Influence of Dental Alloys and an All-Ceramic Material on Cell Viability and Interleukin-1beta Release in a Three-Dimensional Cell Culture Model

    OpenAIRE

    ÖZEN, Jülide; Ural, Ali Uğur; Dalkiz, Mehmet; BEYDEMİR, Bedri

    2005-01-01

    The purpose of this study was to determine the influence of various types of dental casting alloys and ceramic upon cell viability and the synthesis of IL-1beta (b) in a three-dimensional cell culture system consisting of human gingival fibroblast, and to determine their effect in gingival inflammation. Au-Pt-In alloy (Pontostar), Ni-Cr-Mo alloy (Remanium-CS), a titanium alloy (Ti-6Al-4V), copper (Cu), and an all ceramic (In-Ceram) were used as test materials. The materials were exposed to a ...

  20. Plant cell cultures and their biotechnological potential

    Energy Technology Data Exchange (ETDEWEB)

    Barz, W.; Ellis, B.E.

    1981-01-01

    The potential of plant cell suspension cultures for the biotechnological production of high-cost, plant-specific compounds is critically evaluated. The basic roles of nutrient media and phytohormones are described followed by a description of the recent progress in mass cultivation of plant cell cultures as measured by biomass and doubling time. The accumulation of secondary constituents in cell cultures is reviewed and methods for the selection of high-producing strains are described. The essential features of the selection strategy are the establishment of cell cultures from high-producing plants and a sensitive assay (e.g. radio-immunoassay) for the screening of microcolonies grown on petri dishes. The accumulation of biosynthetic intermediates of secondary constituents in cell culture strains will possibly lead to the isolation of novel compounds.

  1. 8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Cell culture and murine model

    International Nuclear Information System (INIS)

    The major component in the pathogenesis of oral radiation-induced mucositis is progressive epithelial hypoplasia and eventual ulceration. Irradiation inhibits cell proliferation, while cell loss at the surface continues. We conceived to slow down this desquamation by increasing intercellular adhesion, regulated by the E-cadherin/catenin complex. We investigated if 8-prenylnaringenin (8-PN) or tamoxifen (TAM) decrease the shedding of irradiated human buccal epithelial cells in vitro and thus delay the ulcerative phase of radiation-induced mucositis in vivo. In vitro, aggregates of buccal epithelial cells were irradiated and cultured in suspension for 11 days. 8-PN or TAM were investigated regarding their effect on cell shedding. In vivo, the lower tongue surface of mice was irradiated with graded single doses of 25 kV X-rays. The incidence, latency, and duration of the resulting mucosal ulcerations were analyzed after topical treatment with 8-PN, TAM or solvent. 8-PN or TAM prevented the volume reduction of the irradiated cell aggregates during the incubation period. This was the result of a higher residual cell number in the treated versus the untreated irradiated aggregates. In vivo, topical treatment with 8-PN or TAM significantly increased the latency of mucositis from 10.9 to 12.1 and 12.4 days respectively, while the ulcer incidence was unchanged. 8-PN and TAM prevent volume reduction of irradiated cell aggregates in suspension culture. In the tongues of mice, these compounds increase the latency period. This suggests a role for these compounds for the amelioration of radiation-induced mucositis in the treatment of head and neck tumors. (orig.)

  2. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease

    Directory of Open Access Journals (Sweden)

    Zippelius Annette

    2009-06-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons (MN in the brain stem and spinal cord. Intracellular disruptions of cytosolic and mitochondrial calcium have been associated with selective MN degeneration, but the underlying mechanisms are not well understood. The present evidence supports a hypothesis that mitochondria are a target of mutant SOD1-mediated toxicity in familial amyotrophic lateral sclerosis (fALS and intracellular alterations of cytosolic and mitochondrial calcium might aggravate the course of this neurodegenerative disease. In this study, we used a fluorescence charged cool device (CCD imaging system to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations in individual cells in an established cellular model of ALS. Results To gain insights into the molecular mechanisms of SOD1G93A associated motor neuron disease, we simultaneously monitored cytosolic and mitochondrial calcium concentrations in individual cells. Voltage – dependent cytosolic Ca2+ elevations and mitochondria – controlled calcium release mechanisms were monitored after loading cells with fluorescent dyes fura-2 and rhod-2. Interestingly, comparable voltage-dependent cytosolic Ca2+ elevations in WT (SH-SY5YWT and G93A (SH-SY5YG93A expressing cells were observed. In contrast, mitochondrial intracellular Ca2+ release responses evoked by bath application of the mitochondrial toxin FCCP were significantly smaller in G93A expressing cells, suggesting impaired calcium stores. Pharmacological experiments further supported the concept that the presence of G93A severely disrupts mitochondrial Ca2+ regulation. Conclusion In this study, by fluorescence measurement of cytosolic calcium and using simultaneous [Ca2+]i and [Ca2+]mito measurements, we are able to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations

  3. Integrated Safety Culture Model and Application

    Institute of Scientific and Technical Information of China (English)

    汪磊; 孙瑞山; 刘汉辉

    2009-01-01

    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  4. Feline Foamy Virus Adversely Affects Feline Mesenchymal Stem Cell Culture and Expansion: Implications for Animal Model Development

    OpenAIRE

    Arzi, Boaz; Kol, Amir; Murphy, Brian; Walker, Naomi J.; Wood, Joshua A.; Clark, Kaitlin; Verstraete, Frank J.M.; Borjesson, Dori L.

    2014-01-01

    Mesenchymal stem cells (MSCs) are a promising therapeutic option for various immune-mediated and inflammatory disorders due to their potent immunomodulatory and trophic properties. Naturally occurring diseases in large animal species may serve as surrogate animal models of human disease, as they may better reflect the complex genetic, environmental, and physiologic variation present in outbred populations. We work with naturally occurring diseases in large animal species to better understand ...

  5. Cell Culture for Production of Insecticidal Viruses.

    Science.gov (United States)

    Reid, Steven; Chan, Leslie C L; Matindoost, Leila; Pushparajan, Charlotte; Visnovsky, Gabriel

    2016-01-01

    While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20-500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line. PMID:27565495

  6. Multizone paper platform for 3D cell cultures.

    Directory of Open Access Journals (Sweden)

    Ratmir Derda

    Full Text Available In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc. The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously ("cells-in-gels-in-paper" or CiGiP, this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, "sections" all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures.

  7. Emulsions Containing Perfluorocarbon Support Cell Cultures

    Science.gov (United States)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  8. Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 In Vitro cell culture model, and multiple human tissues

    OpenAIRE

    Herrera-Ruiz, Dea; Wang, Qing; Cook, Thomas J.; Knipp, Gregory T.; Gudmundsson, Olafur S.; Ronald L. Smith; Teresa N. Faria

    2001-01-01

    This study sought to identify the spatial patterns of expression of peptide transporter 1 (PepT1), peptide transporter 3 (PTR3), peptide/histidine transporter 1 (PHT1), and the human peptide transporter 1 (HPT-1) mRNA in complementary DNA (cDNA) libraries of the human and rat gastrointestinal tracts (GIT), Caco-2 in vitro cell culture model, and in a human multiple tissue panel. Human PTR3 and PHT1 are putative peptide transporters recently discovered. Using sequence-specific primers designed...

  9. Constructing a High Density Cell Culture System

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  10. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  11. Co-culture of adipose-derived stem cells and endothelial cells in fibrin induces angiogenesis and vasculogenesis in a chorioallantoic membrane model.

    Science.gov (United States)

    Strassburg, Sandra; Nienhueser, Henrik; Björn Stark, G; Finkenzeller, Günter; Torio-Padron, Nestor

    2016-06-01

    Neovascularization of adipose tissue equivalents is a crucial step in successful adipose tissue engineering, since insufficient vascularization results in graft resorption in an in vivo situation. A possible cellular approach to overcome this limitation is the co-implantation of adipose-derived stem cells (ASCs) with endothelial cells to stimulate the formation of a vascular network. We investigated the potential of ASCs derived from human abdominal fat tissue co-cultured with endothelial progenitor cells (EPCs) from human peripheral blood to stimulate neovascularization of fibrin constructs on the chorioallantoic membrane (CAM) of fertilized chicken eggs, in direct comparison to human umbilical vein endothelial cells (HUVECs). After 9 days of incubation, cell-fibrin constructs were explanted and histologically evaluated with respect to ingrowth of avian blood vessels into the construct and formation of human blood vessels by co-implanted endothelial cells. When administered on the CAM, ASCs successfully guided host vasculature into the construct (angiogenesis) and guided formation of capillary-like structures by co-implanted human endothelial cells (vasculogenesis), with HUVECs being superior to EPCs, leading to a perfused avian and human capillary network within the fibrin construct. However, the results also showed that perfused human blood vessels were only observed near the CAM compared to unperfused capillary-like structures near the top of the construct, indicating that perfusion of the cell-fibrin construct takes longer than 9 days. In conclusion, as blood vessel formation is an essential step during adipogenic differentiation, the data support our hypothesis that cellular communication between transplanted ASCs and endothelial cells is beneficial for vasculogenesis. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23712963

  12. Microglial cells in astroglial cultures: a cautionary note

    Directory of Open Access Journals (Sweden)

    Saura Josep

    2007-10-01

    Full Text Available Abstract Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS induces nitric oxide (NO production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.

  13. Viral epidemics in a cell culture: novel high resolution data and their interpretation by a percolation theory based model

    CERN Document Server

    Gönci, Balázs; Balogh, Emeric; Szabó, Bálint; Dénes, Ádám; Környei, Zsuzsanna; Vicsek, Tamás

    2010-01-01

    Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model ...

  14. Establishment of an interleukin-1β-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis.

    Science.gov (United States)

    Li, Yujie; Guo, Yan; Chen, Ying; Wang, Yajie; You, Yun; Yang, Qing; Weng, Xiaogang; Li, Qi; Zhu, Xiaoxin; Zhou, Bingbing; Liu, Xucen; Gong, Zaipeng; Zhang, Ruijie

    2015-08-01

    Increasing evidence supports the hypothesis that inflammatory reactions serves an important function in the formation, progression and plaque rupture of atherosclerosis. Interleukin (IL)-1 primarily induces inflammation and is closely associated with the inflammatory environment and the formation of atherosclerosis. The present study aimed to establish an in vitro model for the evaluation of drug efficacy in the intervention of atherosclerosis from the inflammatory perspective, and to observe the anti-inflammatory effects of tanshinone IIA and andrographolide on atherosclerosis. The IL-1β-induced inflammation-activated endothelial cell (EC)-smooth muscle cell (SMC)-mononuclear cell (MC) co-culture model was established, based on the changes in a series of atherosclerosis-associated inflammatory markers secreted by ECs and SMCs. The expression of connexin in ECs, adhesion of MCs and changes in inflammatory signalling molecules were selected as evaluation indices for the inflammatory microenvironment of atherosclerosis. The use of this model revealed that tanshinone IIA exhibited significant efficacy against atherosclerosis and its inflammatory reactions. Inflammatory reactions were regarded as the primary mechanism underlying atherosclerosis. The established model simulated a series of relevant changes in the arterial wall under the inflammatory cytokines with oxidized low-density lipoprotein during the atherosclerotic process. The present study presented a reliable method for the identification of drugs with potential anti-inflammatory activity in atherosclerosis, for investigating the mechanisms of action, considering the improvement of the inflammatory state and the increase in plaque stability observed. PMID:25936371

  15. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long......-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures. Other protocols provide PCR...

  16. Methods for Maintaining Insect Cell Cultures

    OpenAIRE

    Dwight E. Lynn

    2002-01-01

    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes methods that are effective for maintaining various insect cell lines. The procedures are differentiated between loosely or non-attached cell strains, attached cell strains, and strongly adherent cell strains.

  17. Experimental model for collagen estimation in cell culture Modelo experimental para avaliação do colágeno em cultura de células

    Directory of Open Access Journals (Sweden)

    Sidney Mamoru Keira

    2004-12-01

    Full Text Available In the study of Plastic Surgery, cell culture may be used at experimental level in researches concerning biosynthesis functions of skin cells such as fibroblasts, keratinocytes, adipocytes, chondrocytes and osteocytes. The present study reports an experimental model for estimation of collagen in cell cultures using chromogenic precipitation reaction with an especific dye (Sirius Red.Dentro do estudo da Cirurgia Plástica, a cultura de células pode ser utilizada em experimentos relativos às funções de biossíntese de células relacionadas com a pele tais como fibroblastos, queratinócitos, adipócitos, condrócitos e osteócitos. O presente estudo relata modelo experimental para a mensuração estimada do colágeno em cultura de células utilizando-se uma reação de precipitação cromogênica com um corante específico (Sirius Red.

  18. Experimental Measurements and Mathematical Modeling of Cytosolic Ca2+ Signatures upon Elicitation by Penta-N-acetylchitopentaose Oligosaccharides in Nicotiana tabacum Cell Cultures

    Directory of Open Access Journals (Sweden)

    Kalina Mrozek

    2013-11-01

    Full Text Available Plants have developed sophisticated recognition systems for different kinds of pathogens. Pathogen-associated molecular patterns (PAMPs can induce various defense mechanisms, e.g., the production of reactive oxygen species (ROS as an early event. Plant defense reactions are initiated by a signal transduction cascade involving the release of calcium ions (Ca2+ from both external and internal stores to the plant cytoplasm. This work focuses on the analysis of cytosolic Ca2+ signatures, experimentally and theoretically. Cytosolic Ca2+ signals were measured in Nicotiana tabacum plant cell cultures after elicitation with penta-N-acetylchitopentaose oligosaccharides (Ch5. In order to allow a mathematical simulation of the elicitor-triggered Ca2+ release, the Li and Rinzel model was adapted to the situation in plants. The main features of the Ca2+ response, like the specific shape of the Ca2+ transient and the dose-response relationship, could be reproduced very well. Repeated elicitation of the same cell culture revealed a refractory behavior with respect to the Ca2+ transients for this condition. Detailed analysis of the obtained data resulted in further modifications of the mathematical model, allowing a predictive simulation of Ch5-induced Ca2+ transients. The promising results may contribute to a deeper understanding of the underlying mechanisms governing plant defense.

  19. Viral epidemics in a cell culture: novel high resolution data and their interpretation by a percolation theory based model.

    Directory of Open Access Journals (Sweden)

    Balázs Gönci

    Full Text Available Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation.

  20. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  1. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    Callus cultures of carnation, Dianthus caryophyllus L. ev. G. J. Sim, were grown on a synthetic medium of half strength Murashige and Skoog salts, 3 % sucrose, 100 mg/l of myo-inositol, 0.5 mg/l each of thiamin, HCl, pyridoxin, HCl and nicotinic acid and 10 g/l agar. Optimal concentrations of....... Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  2. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis.

    Science.gov (United States)

    Lambros, Maria P; DeSalvo, Michael K; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-12-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC-QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  3. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D human cell culture model of oral mucositis

    Directory of Open Access Journals (Sweden)

    Maria P. Lambros

    2015-12-01

    Full Text Available Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD of N-acetyl cysteine (NAC and a traditional Chinese medicine, Qingre Liyan decoction (QYD, prevented radiation damage (Lambros et al., 2014. Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO: GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention.

  4. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models

    OpenAIRE

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; GAO, ZHANCHENG; Wang, Qi

    2015-01-01

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation...

  5. Benchmarking of commercially available CHO cell culture media for antibody production

    OpenAIRE

    Reinhart, David; Damjanovic, Lukas; Kaisermayer, Christian; Kunert, Renate

    2015-01-01

    In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but hi...

  6. A novel in vitro co-culture model comprised of Caco-2/RBL-2H3 cells to evaluate anti-allergic effects of food factors through the intestine.

    Science.gov (United States)

    Yamashita, Sae; Yokoyama, Yuki; Hashimoto, Takashi; Mizuno, Masashi

    2016-08-01

    The prevalence of type I allergic diseases such as food allergy and allergic rhinitis has increased. Therefore, many studies have focused on food factors with anti-allergic activities in recent years. In order to investigate the effect of food factors on mast cell activation, a RBL-2H3 cell monoculture system has been widely used, in which various food factors have been reported to inhibit degranulation of RBL-2H3 cells. However, some orally administered food factors do not interact directly with immune cells but do so indirectly through intestinal epithelial cells. In this report, we established a novel in vitro co-culture model to evaluate anti-allergic effects of orally administered food factors. The co-culture system, comprised of Caco-2 cells (apical component) and RBL-2H3 cells (basolateral component), was able to evaluate the effects of two flavonoids that are known to have the inhibitory effects on mast cell degranulation. Moreover, we evaluated the anti-allergic effects of Enterococcus faecalis strains that are not absorbed through the intestine. We identified two strains of lactic acid bacteria that had inhibitory effects on mast cell degranulation using this co-culture system and possessed anti-allergic properties in a passive cutaneous anaphylaxis model mouse. This novel in vitro co-culture model was applicable for finding food factors with anti-allergic effects and might be useful for examining its anti-allergic mechanisms. PMID:27131754

  7. New model of cultural center

    OpenAIRE

    Klimenta, Vojtěch

    2010-01-01

    Culture and Art have, without a doubt, always been major development factors for people and the society as a whole. However, there is no effortless access for everyone or everywhere. This Thesis is focused on the phenomenon of the multifunctional cultural center as an institution developing and initiating cultural and communal life in a region or in a smaller regional city with no cultural infrastructure or background. The first part deals with the discursus of the contemporary cultural cente...

  8. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  9. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  10. A fetal whole ovarian culture model for the evaluation of CrVI-induced developmental toxicity during germ cell nest breakdown.

    Science.gov (United States)

    Stanley, Jone A; Arosh, Joe A; Burghardt, Robert C; Banu, Sakhila K

    2015-11-15

    Prenatal exposure to endocrine disrupting chemicals (EDCs), including bisphenol A, dioxin, pesticides, and cigarette smoke, has been linked to several ovarian diseases such as premature ovarian failure (POF) and early menopause in women. Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries. As one of the world's leading producers of Cr compounds, the U.S. is facing growing challenges in protecting human health against adverse effects of CrVI. Our recent findings demonstrated that in vivo CrVI exposure during gestational period caused POF in F1 offspring. Our current research focus is three-fold: (i) to identify the effect of CrVI on critical windows of great vulnerability of fetal ovarian development; (ii) to understand the molecular mechanism of CrVI-induced POF; (iii) to identify potential intervention strategies to mitigate or inhibit CrVI effects. In order to accomplish these goals we used a fetal whole ovarian culture system. Fetuses were removed from the normal pregnant rats on gestational day 13.5. Fetal ovaries were cultured in vitro for 12 days, and treated with or without 0.1 ppm potassium dichromate (CrVI) from culture day 2-8, which recapitulated embryonic day 14.5-20.5, in vivo. Results showed that CrVI increased germ cell/oocyte apoptosis by increasing caspase 3, BAX, p53 and PUMA; decreasing BCL2, BMP15, GDF9 and cKIT; and altering cell cycle regulatory genes and proteins. This model system may serve as a potential tool for high throughput testing of various drugs and/or EDCs in particular to assess developmental toxicity of the ovary. PMID:26348139

  11. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC12, one being increased in amount while the other was reduced to an insignificant level. In ZnC12-treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC12-treated cells. While ZnC12 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC12-treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC12-treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  12. 8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Cell culture and murine model

    Energy Technology Data Exchange (ETDEWEB)

    Ryck, Tine de; Impe, Annouchka van; Bracke, Marc E. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Vanhoecke, Barbara W. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), Ghent (Belgium); Heyerick, Arne [Ghent University, Laboratory of Pharmacognosy and Phytochemistry, Ghent (Belgium); Vakaet, Luc; Neve, Wilfried de [Ghent University Hospital, Department of Radiation Oncology, Ghent (Belgium); Mueller, Doreen [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Schmidt, Margret [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK) partner site Dresden and German Cancer Center (DKFZ), Heidelberg (Germany); Doerr, Wolfgang [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Medical University, Department of Radiation Oncology, CCC, and CD-Laboratory RadOnc, Vienna (Austria)

    2015-05-01

    The major component in the pathogenesis of oral radiation-induced mucositis is progressive epithelial hypoplasia and eventual ulceration. Irradiation inhibits cell proliferation, while cell loss at the surface continues. We conceived to slow down this desquamation by increasing intercellular adhesion, regulated by the E-cadherin/catenin complex. We investigated if 8-prenylnaringenin (8-PN) or tamoxifen (TAM) decrease the shedding of irradiated human buccal epithelial cells in vitro and thus delay the ulcerative phase of radiation-induced mucositis in vivo. In vitro, aggregates of buccal epithelial cells were irradiated and cultured in suspension for 11 days. 8-PN or TAM were investigated regarding their effect on cell shedding. In vivo, the lower tongue surface of mice was irradiated with graded single doses of 25 kV X-rays. The incidence, latency, and duration of the resulting mucosal ulcerations were analyzed after topical treatment with 8-PN, TAM or solvent. 8-PN or TAM prevented the volume reduction of the irradiated cell aggregates during the incubation period. This was the result of a higher residual cell number in the treated versus the untreated irradiated aggregates. In vivo, topical treatment with 8-PN or TAM significantly increased the latency of mucositis from 10.9 to 12.1 and 12.4 days respectively, while the ulcer incidence was unchanged. 8-PN and TAM prevent volume reduction of irradiated cell aggregates in suspension culture. In the tongues of mice, these compounds increase the latency period. This suggests a role for these compounds for the amelioration of radiation-induced mucositis in the treatment of head and neck tumors. (orig.) [German] Die wesentliche Komponente in der Pathogenese der radiogenen Mukositis ist eine progressive epitheliale Hypoplasie und letztendlich Ulzeration. Die Bestrahlung hemmt die Zellproliferation, waehrend der Zellverlust an der Oberflaeche fortbesteht. Wir versuchten, diese Desquamation durch eine Stimulation der

  13. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  14. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  15. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV.

    Science.gov (United States)

    Ron-Doitch, Sapir; Sawodny, Beate; Kühbacher, Andreas; David, Mirjam M Nordling; Samanta, Ayan; Phopase, Jaywant; Burger-Kentischer, Anke; Griffith, May; Golomb, Gershon; Rupp, Steffen

    2016-05-10

    Cationic antimicrobial peptides (AMPs) are part of the innate immunity, and act against a wide variety of pathogenic microorganisms by perturbation of the microorganism's plasma membrane. Although attractive for clinical applications, these agents suffer from limited stability and activity in vivo, as well as non-specific interaction with host biological membranes, leading to cytotoxic adverse effects. We hypothesized that encapsulation of AMPs within liposomes could result in reduced cytotoxicity, and with enhanced stability as well as bioactivity against herpes simplex virus 1 (HSV-1). We formulated nano-sized liposomal formulations of LL-37 and indolicidin, and their physicochemical properties, cellular uptake, in vitro cytotoxicity and antiviral efficacy have been determined. Lower cytotoxicity of LL-37 liposomes was found in comparison to indolicidin liposomes attributed to the superior physicochemical properties, and to the different degree of interaction with the liposomal membrane. The disc-like shaped LL-37 liposomes (106.8±10.1nm, shelf-life stability of >1year) were taken up more rapidly and to a significantly higher extent than the free peptide by human keratinocyte cell line (HaCaT), remained intact within the cells, followed by release of the active peptide within the cytoplasm and migration of the vesicles' lipids to the plasma membrane. LL-37 liposomes were found significantly less toxic than both the free agent and liposomal indolicidin. In the new 3D epidermis model (immortalized primary keratinocytes) liposomal LL-37 treatment (>20μM), but not free LL-37, efficiently protected the epidermis, inhibiting HSV-1 infection. This positive antiviral effect was obtained with no cytotoxicity even at very high concentrations (400μM). Thus, the antiviral activity of encapsulated LL-37 was significantly improved, expanding its therapeutic window. Liposomal LL-37 appears to be a promising delivery system for HSV therapy. PMID:27012977

  16. [CO-CULTURE OF BOAR SPERMATOGONIAL CELLS WITH SERTOLI CELLS].

    Science.gov (United States)

    Savchenkova, I P; Vasil'eva, S A

    2016-01-01

    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  17. Isolation, culture and characterization of primary mouse RPE cells.

    Science.gov (United States)

    Fernandez-Godino, Rosario; Garland, Donita L; Pierce, Eric A

    2016-07-01

    Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD). PMID:27281648

  18. Organizational culture diagnosis - a new model

    OpenAIRE

    Ph. D. Ionuţ Constantin; Ph. D. Doru Curteanu

    2011-01-01

    Organizational culture is a key source of competitive advantage. There is a demonstrated relation between organizational culture and organizational performance. This paper reviews previous research in the field and introduce a new model for understanding, diagnosing and changing organizational culture. The main advantage of the new model is based on regarding culture as the management and work practices that are either hindering or helping an organization's bottom line performance.

  19. Safety Cultural Competency Modeling in Nuclear Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Oh, Yeon Ju; Luo, Meiling; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics.

  20. Organizational culture diagnosis - a new model

    Directory of Open Access Journals (Sweden)

    Ph. D. Ionuţ Constantin

    2010-05-01

    Full Text Available Organizational culture is a key source of competitive advantage. There is a demonstrated relation between organizational culture and organizational performance. This paper reviews previous research in the field and introduce a new model for understanding, diagnosing and changing organizational culture. The main advantage of the new model is based on regarding culture as the management and work practices that are either hindering or helping an organization's bottom line performance.

  1. Safety Cultural Competency Modeling in Nuclear Organizations

    International Nuclear Information System (INIS)

    The nuclear safety cultural competency model should be supplemented through a bottom-up approach such as behavioral event interview. The developed model, however, is meaningful for determining what should be dealt for enhancing safety cultural competency of nuclear organizations. The more details of the developing process, results, and applications will be introduced later. Organizational culture include safety culture in terms of its organizational characteristics

  2. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  3. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model

    Directory of Open Access Journals (Sweden)

    Ni Xiao

    2012-12-01

    Full Text Available Abstract Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h. Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV. Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS; and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC. Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more

  4. Culturing intestinal stem cells: applications for colorectal cancer research

    OpenAIRE

    Fujii, Masayuki; Sato, Toshiro

    2014-01-01

    Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer (CRC). The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and CRC cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture...

  5. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.; Lopacinska, Joanna M.; Skolimowski, Maciej; Chudy, M.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding....... The human lung carcinoma cells (A549) were cultured in the microdevice for several days. The growth and proliferation of cells was monitored using an inverted fluorescence microscope. After the cells' confluence was achieved in the microchambers, the novel method of cells' passaging in the designed...... microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent...

  6. The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells

    NARCIS (Netherlands)

    Lammers, A.; Vorstenbosch, van C.J.; Erkens, J.H.F.; Smith, H.E.

    2001-01-01

    We previously showed that Staphylococcus aureus cells adhered mainly to an elongated cell type, present in cultures of bovine mammary gland cells. Moreover. we showed that this adhesion was mediated by binding to fibronectin. The same in vitro model was used here, to study adhesion of other importan

  7. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.T.; Borchardt, R.T.

    1987-05-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of (/sup 125/I)-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23/sup 0/C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37/sup 0/C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37/sup 0/C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation.

  8. Metabolism Kinetics of Glucose in Anchorage-dependent Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    孙祥明; 张元兴

    2001-01-01

    The kinetic model of glucose metabolism was established and successfully applied to batchcultures of rCHO and rBHK cells. It was found that a large amount of glucose was utilized for cellmaintenance, and the overwhelming majority of maintenance energy from glucose was by its anaerobicmetabolism in both rBHK and rCHO cell cultures. The overall maintenance coefficients from aerobicmetabolism were 1.9×10-13 mmol/(cell.h) for rCHO cells and 7×10-13 mmol/(cell.h) for rBHK cells. Inaddition, all Go/T and Eo/T gradually increased with the same trend as the cell growth in the culture ofboth rCHO and rBHK cells. The overall molecule yield coefficients of lactate to glucose were 1.61 for rCHO cells and 1.38 for rBHK cells. The yield coefficients of cell to glucose were 4.5×108 cells/mmol for rCHO cells and 1.9 × 108 cells/mmol for rBHK cells, respectively.

  9. From Three-Dimensional Cell Culture to Organs-on-Chips

    OpenAIRE

    Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.

    2011-01-01

    Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue inter...

  10. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael;

    2006-01-01

    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled...... cells cultured in the culture flask. In the current study, gene expression profiles of cells cultured in the chip were compared with gene expression profiles of cells cultured in culture flasks. The results showed that there were only two genes that were differently expressed in cells grown in the cell...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  11. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M;

    2006-01-01

    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled...... cells cultured in the culture flask. In the current study, gene expression profiles of cells cultured in the chip were compared with gene expression profiles of cells cultured in culture flasks. The results showed that there were only two genes that were differently expressed in cells grown in the cell...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  12. Modeling culture in intelligent virtual agents

    OpenAIRE

    Mascarenhas, S.; Degens, N.; Paiva, A; Prada, R.; Hofstede, G.J.; Beulens, A.J.M.; Aylett, R.

    2015-01-01

    This work addresses the challenge of creating virtual agents that are able to portray culturally appropriate behavior when interacting with other agents or humans. Because culture influences how people perceive their social reality it is important to have agent models that explicitly consider social elements, such as existing relational factors. We addressed this necessity by integrating culture into a novel model for simulating human social behavior. With this model, we operationalized a par...

  13. An animal cell culture: Advance technology for modern research

    OpenAIRE

    Sarita Khare; Rajeev Nema

    2012-01-01

    At the present time animal cell culture is more significant and multifarious application tool for current research streams. A lot of field assorted from animal cell culture such: stem cell biology, IVF technology, cancer cell biology, monoclonal antibody production, recombinant protein production, gene therapy, vaccine manufacturing, novel drug selection and improvement. In this review conclude animal cell culture as well as its requirements

  14. Human neuronal cells in culture: from concepts to basic methodology.

    Science.gov (United States)

    Silani, V; Pizzuti, A; Donato, M F; Falini, A; Bassani, R; Strada, O; Causarano, R I; Mariani, D; Villani, R M; Scarlato, G

    1990-01-01

    The paper reviews some conceptual and methodological aspects of the tissue culture models which, during the past three decades, demonstrated a remarkable mimicry of many important structures and functions of the mammalian Central Nervous System (CNS) and related peripheral sensory and motor elements. Emphasis is placed on an original human neuronal tissue culture model obtained from selective CNS areas. The different cell types were identified and the neurotrophic interactions preliminary characterized. Neuropathological findings suggest hypothesis that can be fully tested using in vitro human models of affected cerebral specific areas. PMID:2102114

  15. Huh-7 cell line as an alternative cultural model for the production of human like erythropoietin (EPO

    Directory of Open Access Journals (Sweden)

    Kausar Humera

    2011-11-01

    Full Text Available Abstract Background and Aims Erythropoietin (EPO is a glycoprotein hormone which is required to regulate the production of red blood cells. Deficiency of EPO is known to cause anemia in chronically infected renal patients and they require regular blood transfusion. Availability of recombinant EPO has eliminated the need for blood transfusion and now it is extensively used for the treatment of anemia. Glycosylation of erythropoietin is essential for its secretion, stability, protein conformation and biological activity. However, maintenance of human like glycosylation pattern during manufacturing of EPO is a major challenge in biotechnology. Currently, Chinese hamster ovary (CHO cell line is used for the commercial production of erythropoietin but this cell line does not maintain glycosylation resembling human system. With the trend to eliminate non-human constituent from biopharmaceutical products, as a preliminary approach, we have investigated the potential of human hepatoma cell line (Huh-7 to produce recombinant EPO. Materials and methods Initially, the secretory signal and Kozak sequences was added before the EPO mature protein sequence using overlap extension PCR technique. PCR-amplified cDNA fragments of EPO was inserted into mammalian expression vector under the control of the cytomegalovirus (CMV promoter and transiently expressed in CHO and Huh-7 cell lines. After RT-PCR analysis, ELISA and Western blotting was performed to verify the immunochemical properties of secreted EPO. Results Addition of secretory signal and Kozak sequence facilitated the extra-cellular secretion and enhanced the expression of EPO protein. Significant expression (P Conclusion Huh-7 cell line has a great potential to produce glycosylated EPO, suggesting the use of this cell line to produce glycoproteins of the therapeutic importance resembling to the natural human system.

  16. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  17. Development of an in vitro cell culture model to study milk to plasma ratios of therapeutic drugs

    Directory of Open Access Journals (Sweden)

    Maithili A Athavale

    2013-01-01

    Conclusion: Our preliminary effort to develop an in vitro physiological model showed promising results. Transfer rate of the drugs using the developed model compared well with the transfer potential seen in vivo except for salicylic acid, which was transferred in far lower concentration in vitro. The model has a potential to be developed as a non-invasive alternative to the in vitro technique for determining the transfer of therapeutic drugs into breast milk.

  18. Cell culture from sponges: pluripotency and immortality

    NARCIS (Netherlands)

    Caralt Bosch, de S.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a

  19. THE METHODS FOR MAINTAINING INSECT CELL CULTURES

    Science.gov (United States)

    Insect cell cultures are now commonly used in insect physiology, developmental biology, pathology, and molecular biology. As the field has advanced from a methods development to a standard procedure, so has the diversity of scientists using the technique. This paper describes techniques that are e...

  20. ANTHOCYANIN (ACN) STABILITY IN CELL CULTURE MEDIA

    Science.gov (United States)

    Anthocyanins (ACNs) are potential oxygen radical scavengers that have coronary vasoactive and vasoprotective properties. Cell or tissue culture systems have been used to examine the bioactivity and mechanisms of action of ACNs on the vascular system. However, due to their unique chemical structure, ...

  1. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan;

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... Annealing metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  2. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  3. High cell density culture with S. cerevisiae CEN.PK113-5D for IL-1β production: optimization, modeling, and physiological aspects.

    Science.gov (United States)

    Landi, Carmine; Paciello, Lucia; de Alteriis, Elisabetta; Brambilla, Luca; Parascandola, Palma

    2015-02-01

    Saccharomyces cerevisiae CEN.PK113-5D, a strain auxotrophic for uracil belonging to the CEN.PK family of the yeast S. cerevisiae, was cultured in aerated fed-batch reactor as such and once transformed to express human interleukin-1β (IL-1β), aiming at obtaining high cell densities and optimizing IL-1β production. Three different exponentially increasing glucose feeding profiles were tested, all of them "in theory" promoting respiratory metabolism to obtain high biomass/product yield. A non-structured non-segregated model was developed to describe the performance of S. cerevisiae CEN.PK113-5D during the fed-batch process and, in particular, its capability to metabolize simultaneously glucose and ethanol which derived from the precedent batch growth. Our study showed that the proliferative capacity of the yeast population declined along the fed-batch run, as shown by the exponentially decreasing specific growth rates on glucose. Further, a shift towards fermentative metabolism occurred. This shift took place earlier the higher was the feed rate and was more pronounced in the case of the recombinant strain. Determination of some physiological markers (acetate production, intracellular ROS accumulation, catalase activity and cell viability) showed that neither poor oxygenation nor oxidative stress was responsible for the decreased specific growth rate, nor for the shift to fermentative metabolism. PMID:25106469

  4. Measured and Modeled Toxicokinetics in Cultured Fish Cells and Application to In Vitro - In Vivo Toxicity Extrapolation

    OpenAIRE

    Julita Stadnicka-Michalak; Katrin Tanneberger; Kristin Schirmer; Roman Ashauer

    2014-01-01

    Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were ...

  5. Modeling Long-Term Host Cell-Giardia lamblia Interactions in an In Vitro Co-Culture System

    OpenAIRE

    Fisher, Bridget S.; Estraño, Carlos E.; Cole, Judith A

    2013-01-01

    Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propri...

  6. Inferring cultural models from corpus data

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2015-01-01

    into the possibility of inferring cultural models from naturally occurring verbal behavior as documented in language corpora. Even rarer are such corpus-based studies of the interaction between cultural models and constructions. Exploring the usability of corpus data and methodology in the observation...

  7. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  8. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  9. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices

    OpenAIRE

    Halldórsson, Skarphédinn; Lucumi Moreno, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan MT

    2015-01-01

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dis...

  10. Characterization of the inflammatory phenotype of Mycobacterium avium subspecies paratuberculosis using a novel cell culture passage model

    Science.gov (United States)

    Understanding the pathogenic mechanisms and host responses to Johne’s disease, a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP), is complicated by the multifaceted disease progression, late-onset host reaction, and the lack of ex vivo infection models ...

  11. Seed coat removal improves Fe bioavailability in cooked lentils: studies using an in vitro digestion/Caco-2 cell culture model

    Science.gov (United States)

    This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...

  12. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics

    OpenAIRE

    Pomo, Joseph M.; Taylor, Robert M; Gullapalli, Rama R

    2016-01-01

    Background Spheroid based culture methods are gaining prominence to elucidate the role of the microenvironment in liver carcinogenesis. Additionally, the phenomenon of epithelial-mesenchymal transition also plays an important role in determining the metastatic potential of liver cancer. Tumor spheroids are thus important models to understand the basic biology of liver cancer. Methods We cultured, characterized and examined the formation of compact 3-D micro-tumor spheroids in five hepatocellu...

  13. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    Directory of Open Access Journals (Sweden)

    Parvaneh Farzaneh

    2012-01-01

    Full Text Available One of the main problems in cell culture is mycoplasma infection. It can extensively affectcell physiology and metabolism. As the applications of cell culture increase in research,industrial production and cell therapy, more concerns about mycoplasma contaminationand detection will arise. This review will provide valuable information about: 1. the waysin which cells are contaminated and the frequency and source of mycoplasma species incell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importanceof mycoplasma tests in cell culture; 4. different methods to identify mycoplasmacontamination; 5. the consequences of mycoplasma contamination in cell culture and 6.available methods to eliminate mycoplasma contamination. Awareness about the sourcesof mycoplasma and pursuing aseptic techniques in cell culture along with reliable detectionmethods of mycoplasma contamination can provide an appropriate situation to preventmycoplasma contamination in cell culture.

  14. Modulation of polyamine metabolism as a chemopreventive strategy of phytochemicals in a cell culture model of colorectal cancers

    OpenAIRE

    Ulrich, Sandra

    2007-01-01

    Resveratrol a natural occuring polyphenol present in red wine, peanuts and grapes, has been reported to exhibit a wide range of biological and pharmacological properties. In addition to cardioprotective and antiinflammatory effects, potent chemopreventive activities of resveratrol and its analogs in various carcinogenesis models are described and there has been a great deal of experimental effort directed toward defining these effects. We and others could previously demonstrate that resveratr...

  15. Cell culture: Progenitor cells from human brain after death

    Science.gov (United States)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  16. Darwinian Evolution of Prions in Cell Culture*

    OpenAIRE

    Li, Jiali; Browning, Shawn; Mahal, Sukhvir P.; Oelschlegel, Anja M.; Weissmann, Charles

    2009-01-01

    Prions are infectious proteins consisting mainly of PrPSc, a β sheet-rich conformer of the normal host protein PrPC, and occur in different strains. Strain identity is thought to be encoded by PrPSc conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating “mutants”, and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, ...

  17. Bioactive sugar surfaces for hepatocyte cell culture

    OpenAIRE

    Ambury, Rachael

    2010-01-01

    The primary objective of this study was to identify, develop and characterise a novel bioactive surface capable of binding hepatocytes and enabling the retention of hepatocyte-specific cell function during in-vitro culture. The materials were designed to exploit a unique characteristic of hepatocyte biology, with β-galactose moieties displayed to allow cellular adhesion via the specific asialoglycoprotein receptors (ASGP-R) found on hepatocytes. Hydrogels were created by modifying a commercia...

  18. Degradation of TNT by plant cell cultures

    Czech Academy of Sciences Publication Activity Database

    Podlipná, Radka; Nepovím, Aleš; Zeman, S.; Vágner, Martin; Vaněk, Tomáš

    Smolenice, 2003, s. 78-79. [Xenobiochemické sympózium /22./. Smolenice (SK), 09.06.2003-11.06.2003] R&D Projects: GA ČR GP206/02/P065; GA MŠk OC 837.10 Institutional research plan: CEZ:AV0Z5038910; CEZ:AV0Z4055905 Keywords : degradation * plant cell cultures Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides

  19. EFFECT OF FUROSTANOL GLYCOSIDES FROM CULTURED DIOSCOREA DELTOIDEA CELLS ON REGULATORY FUNCTION OF ENDOTHELIUM IN A RAT MODEL OF HYPOESTROGEN-INDUCED ENDOTHELIAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    E. B. Artyushkova

    2016-01-01

    Full Text Available Aim. To study the effects of furostanol glycosides from cultured Dioscorea Deltoidea cells (DM-05, Institute of Plant Physiology, RAS on physiological and biochemical markers of endothelial function in rats with hypoestrogen-induced endothelial dysfunction.Material and methods. 10 female rats of Wistar line, with body mass 200-300 g have been included in the experiment. The bilateral ovariectomy was performed in rats to produce the model of hypoestrogen-induced endothelial dysfunction. Rats were treated with the injections of DM-05 during 6 weeks. False ovariectomy was performed in rats of control group (n=10.Results. DM-05 restored the levels of stable metabolites of nitric oxide (NO which reflex endothelial NO-synthase activity. Besides DM-05 corrected blood pressure and endothelial function. Experiments on open heart showed that DM-05 protects the cardiac tissue from hypoestrogen-induced hyperadrenoreactivity.Conclusion. Treatment with plant origin substances with estrogen-like activity can be a perspective approach to the correction of endothelial function and decrease in cardiovascular risk in menopause women.

  20. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    OpenAIRE

    Parvaneh Farzaneh; Laleh Nikfarjam

    2011-01-01

    One of the main problems in cell culture is mycoplasma infection. It can extensively affect cell physiology and metabolism. As the applications of cell culture increase in research, industrial production and cell therapy, more concerns about mycoplasma contamination and detection will arise. This review will provide valuable information about: 1. the ways in which cells are contaminated and the frequency and source of mycoplasma species in cell culture; 2. the ways to prevent mycoplasma conta...

  1. 小鼠棕色脂肪原代培养模型的建立%Establishment of culture model for primary mouse brown adipocyte precursor cells

    Institute of Scientific and Technical Information of China (English)

    刘娟; 王龙; 胡淼; 丁国宪

    2011-01-01

    目的:探索小鼠棕色脂肪细胞原代培养的方法.方法:取C57BL/6J小鼠棕色脂肪组织,采用胶原酶消化过滤法获得梭形细胞,对培养出来的细胞进行形态学观察,诱导分化后用油红O染色法染色定性,荧光定量PCR检测棕色脂肪标志基因表达情况.结果:培养出的梭形细胞成分均一,增殖旺盛,诱导分化后分化率高,经油红O染色证实为脂肪细胞,荧光定量PCR检测棕色脂肪标志基因UCP-1表达量明显升高.结论:从C57BL/6J小鼠棕色脂肪组织中可以分离出具有很强增殖、分化能力的前棕色脂肪细胞,这种棕色脂肪细胞原代培养模型的建立为在体外进一步研究棕色脂肪的功能提供了良好的基础.%Objective: To establish a culture method for primary mouse brown adipocyte precursor cells. Methods:Fibroblast-like cells were collected from C57BL/6J mice brown adipose tissue. The morphological changes of the cultured cells were observed, the in-tracytoplasmic lipid of the culture cells was determined using oil red 0 staining,and the expression of the brown adipocyte specific gene was determined by real time PCR. Results: The cultured fibroblast-like cells showed highly homogeneous appearance with ac tive proliferation and differentiate into mature adipocytes. Oil red 0 staining, morphological observation, and expression of brown adipocyte specific gene UCP-1 verified these cells as brown adipocyte. Conclusion: Brown adipocyte precursor cells are present in C57BL/6J mice brown adipose tissue and possess the potential to proliferate and differentiate into mature brown adipocyte. The estab lishment of primary culture of mouse brown adipocyte precursor cells is important for furth studies of the function of brown adipocyte in vitro.

  2. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  3. Qualitative study of three cell culture methods.

    Science.gov (United States)

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K

    2002-01-01

    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions. PMID:12674760

  4. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Science.gov (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  5. The bio-oscillator: A circuit for cell-culture assays

    OpenAIRE

    Huertas, Gloria; Maldonado, Andrés; Yúfera, A.; Rueda, Adoración; Huertas-Díaz, J. L.

    2015-01-01

    A system for cell-culture real-time monitoring using an oscillation-based approach is proposed. The system transforms a cell culture under test into a suitable “biological” oscillator, without needing complex circuitry for excitation and measurement. The obtained oscillation parameters are directly related to biological test, owed to an empirically extracted cell–electrode electrical model. A discrete prototype is proposed and experimental results with living cell culture are presented, achie...

  6. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation

    Directory of Open Access Journals (Sweden)

    OLESIA O. GRYGORIEVA

    2015-05-01

    Full Text Available Abstract. Grygorieva OO, Berezovsjka MA, Dacenko OI. 2015. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation. Nusantara Bioscience 7: 38-42. Two cultures of Chlamydomonas actinochloris Deason et Bold in the lag-phase were exposed to the microwave irradiation. One of them (culture 1 was not treated beforehand, whereas the other (culture 2 was irradiated by microwaves 2 years earlier. The measurement of cell quantity as well as measurement of change of intensities and spectra of cultures photoluminescence (PL in the range of chlorophyll a emission was regularly conducted during the cell cultures development. Cell concentration of culture 1 exposed to the microwave irradiation for the first time has quickly restored while cell concentration of culture 2 which was irradiated repeatedly has fallen significantly. The following increasing of cell concentration of culture 2 is negligible. Cell concentration reaches the steady-state level that is about a half of the cell concentration of control culture. Initially the PL efficiency of cells of both cultures decreases noticeable as a result of irradiation. Then there is the monotonic increase to the values which are significantly higher than the corresponding values in the control cultures. The ratio of the intensities at the maxima of the main emission bands of chlorophyll for control samples of both cultures remained approximately at the same level. At the same time effect of irradiation on the cell PL spectrum appears as a temporary reduction of this magnitude.

  7. The cell-surface proteome of cultured adipose stromal cells.

    Science.gov (United States)

    Donnenberg, Albert D; Meyer, E Michael; Rubin, J Peter; Donnenberg, Vera S

    2015-07-01

    In this technical note we describe a method to evaluate the cell surface proteome of human primary cell cultures and cell lines. The method utilizes the BD Biosciences lyoplate, a system covering 242 surface proteins, glycoproteins, and glycosphingolipids plus relevant isotype controls, automated plate-based flow cytometry, conventional file-level analysis and unsupervised K-means clustering of markers on the basis of percent of positive events and mean fluorescence intensity of positive and total clean events. As an example, we determined the cell surface proteome of cultured adipose stromal cells (ASC) derived from 5 independent clinical isolates. Between-sample agreement of very strongly expressed (n = 32) and strongly expressed (n =16) markers was excellent, constituting a reliable profile for ASC identification and determination of functional properties. Known mesenchymal markers (CD29, CD44, CD73, CD90, CD105) were among the identified strongly expressed determinants. Among other strongly expressed markers are several that are potentially immunomodulatory including three proteins that protect from complement mediated effects (CD46, CD55, and CD59), two that regulate apoptosis (CD77 and CD95) and several with ectoenzymatic (CD10, CD26, CD13, CD73, and CD143) or receptor tyrosine kinase (CD140b (PDGFR), CD340 (Her-2), EGFR) activity, suggesting mechanisms for the anti-inflammatory and tissue remodeling properties of ASC. Because variables are standardized for K-means clustering, results generated using this methodology should be comparable between instrumentation platforms. It is widely generalizable to human primary explant cultures and cells lines and will prove useful to determine how cell passage, culture interventions, and gene expression and silencing affect the cell-surface proteome. PMID:25929697

  8. Cross-Cultural Impression Management: A Cultural Knowledge Audit Model

    Science.gov (United States)

    Spong, Abigail; Kamau, Caroline

    2012-01-01

    Purpose: Many people moving into a new culture for work or study do so without prior cross-cultural training, yet successful cultural adaptation has important ramifications. The purpose of this paper is to focus on cross-cultural impression management as an element of cultural adaptation. Does cultural adaptation begin by paying strong attention…

  9. In Vitro Cell Culture Infectivity Assay for Human Noroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin A.; Orosz Coghlan, Patricia A.; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza; Nickerson, Cheryl A.

    2007-01-30

    Human noroviruses (NoV) cause severe, self-limiting gastroenteritis that typically lasts 24 - 48 hours. The true nature of NoV pathogenesis remains unknown due to the lack of suitable tissue culture or animal models. Here we show, for the first time, that NoV can infect and replicate in an organoid, three-dimensional (3-D) model of human small intestinal epithelium (INT-407). Cellular differentiation for this model was achieved by growing the cells in 3-D on porous collagen I-coated microcarrier beads under conditions of physiological fluid shear in rotating wall vessel bioreactors. Microscopy, PCR, and fluorescent in-situ hybridization were employed to provide evidence of NoV infection. CPE and norovirus RNA was detected at each of the five cell passages for both genogroup I and II viruses. Our results demonstrate that the highly differentiated 3-D cell culture model can support the natural growth of human noroviruses, whereas previous attempts using differentiated monolayer cultures failed.

  10. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    OpenAIRE

    Azarin, Samira M.; Palecek, Sean P.

    2010-01-01

    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and su...

  11. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Directory of Open Access Journals (Sweden)

    Anthony Finoli

    2016-01-01

    Full Text Available Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  12. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  13. Rotating bio-reactor cell culture apparatus

    Science.gov (United States)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  14. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    Directory of Open Access Journals (Sweden)

    KOMAR RUSLAN

    2011-01-01

    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  15. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  16. Modeling Demic and Cultural Diffusion: An Introduction.

    Science.gov (United States)

    Fort, Joaquim; Crema, Enrico R; Madella, Marco

    2015-07-01

    Identifying the processes by which human cultures spread across different populations is one of the most topical objectives shared among different fields of study. Seminal works have analyzed a variety of data and attempted to determine whether empirically observed patterns are the result of demic and/or cultural diffusion. This special issue collects articles exploring several themes (from modes of cultural transmission to drivers of dispersal mechanisms) and contexts (from the Neolithic in Europe to the spread of computer programming languages), which offer new insights that will augment the theoretical and empirical basis for the study of demic and cultural diffusion. In this introduction we outline the state of art in the modeling of these processes, briefly discuss the pros and cons of two of the most commonly used frameworks (equation-based models and agent-based models), and summarize the significance of each article in this special issue. PMID:26932566

  17. Culture in Transition: A learning model

    DEFF Research Database (Denmark)

    Baca, Susan

    2010-01-01

    This paper addresses the problem of resistance to attempted changes in organizational culture, particularly those involving diversity, by 1) identifying precisely what is meant by organizational as opposed to societal culture, 2) developing a theoretical model of learning useful in contexts of...... organizational transition, and 3) demonstrating the efficacy of the model by using it to explain empirical research findings. It is argued that learning new cultural currency involves the use of active intelligence to locate and answer relevant questions, and further that this process requires the interplay of...... spare capacity, desire, focus, and information. By integrating the element of culture, both in the organizational sense and that pertaining to diversity, otherwise overseen aspects of transition are brought into view, with the potential of reducing stress and increasing job satisfaction. The model is...

  18. Renotropic stimulation in rat kidney cell culture

    International Nuclear Information System (INIS)

    A circulating renotropic factor specific for renal cells has been described in rats. The addition of sera obtained from unilaterally nephrectomized (uni) rats 24h after operation compared to sham-operated (sham) rats augments 3H-thymidine incorporation into the DNA of incubating kidney slices approximately 10% - 30%. Attempting to amplify the sensitivity of the assay for this renotropic agent, the authors replaced slices with primary rat kidney cultures. The assay system was based on one previously used for rabbits. The cultured cells were synchronized in their growth phase by a period of protein-free starvation. Compared to sera from sham rats, sera from uni rats showed significant stimulation of thymidine incorporation into DNA, 35.5% +/- 9.3 (SEM), p < .0001, at 16 h; 63.3% +/- 10.0 (SEM), p < .001, at 24 h; and 19.5% +/- 6.5 (SEM), p < .01, at 48 h post operation. Accordingly, the maximal stimulation at 24 h was greater than that previously found using the kidney slice assay. Measurable renotropic activity occurred earlier and over a shorter duration than in rabbits. Stimulation was similar when a D-valine medium, relatively specific for renal epithelial cells, replaced DME medium

  19. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture

    OpenAIRE

    Grist, Samantha M.; Lukas Chrostowski; Cheung, Karen C.

    2010-01-01

    The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternat...

  20. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  1. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  2. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  3. Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture

    OpenAIRE

    Song-Bin Huang; Dean Chou; Yu-Han Chang; Ke-Cing Li; Tzu-Keng Chiu; Yiannis Ventikos; Min-Hsien Wu

    2015-01-01

    Before microfluidic-based cell culture models can be practically utilized for bioassays, there is a need for a transitional cell culture technique that can improve conventional cell culture models. To address this, a hybrid cell culture system integrating an active cover lid and a multi-well microplate was proposed to achieve perfusion 3-D cell culture. In this system, a microfluidic-based pneumatically-driven liquid transport mechanism was integrated into the active cover lid to realize 6-un...

  4. Culture Model of Rat Portal Myofibroblasts.

    Science.gov (United States)

    El Mourabit, Haquima; Loeuillard, Emilien; Lemoinne, Sara; Cadoret, Axelle; Housset, Chantal

    2016-01-01

    Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4-5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in

  5. Culture Model of Rat Portal Myofibroblasts

    Science.gov (United States)

    El Mourabit, Haquima; Loeuillard, Emilien; Lemoinne, Sara; Cadoret, Axelle; Housset, Chantal

    2016-01-01

    Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4–5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in

  6. Equipment for large-scale mammalian cell culture.

    Science.gov (United States)

    Ozturk, Sadettin S

    2014-01-01

    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed. PMID:24429549

  7. Development of primary cell culture from Scylla serrata: Primary cell cultures from Scylla serrata

    OpenAIRE

    Sashikumar, Anu; Desai, P. V.

    2008-01-01

    This paper reports for the first time, the Primary cell culture of hepatopancreas from edible crab Scylla serrata using crab saline, L-15 (Leibovitz), 1 × L-15 + crab saline, 2 × L-15 + crab saline, 3 × L-15 and citrate buffer without any serum. We could isolate and maintain E (Embryonalzellen), F (Fibrenzellen), B (Blasenzellen), R (Restzellen) and G (Granular cells). Upon seeding the hepatopancreatic E, F, B, and R cells showed different survival pattern over time than granular cells. A mod...

  8. Phosphatidylinositol species of suspension cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Heim, S.; Wagner, K.G.

    Suspension cultured Nicotiana tabacum and Catharanthus roseus cells were labeled with (/sup 3/H)inositol, the phospholipid fraction extracted and separated by thin layer chromatography. Three different solvent systems and reference compounds were used to assign the different /sup 3/H-labeled species by autoradiography. The ratio of (/sup 3/H)inositol incorporation into PI, PIP and PIP/sub 2/ was found to be 95:4:1; with some preparations a lyso-PI band was obtained which incorporated about a tenth of the label of the PIP band. With Catharanthus roseus cells a very faint band between PI and lyso-PI was detected which could not be assigned to a reference compound.

  9. Metabolic flux rewiring in mammalian cell cultures.

    Science.gov (United States)

    Young, Jamey D

    2013-12-01

    Continuous cell lines (CCLs) engage in 'wasteful' glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  10. Evaluation of osteogenic cell culture and osteogenic/peripheral blood mononuclear human cell co-culture on modified titanium surfaces

    International Nuclear Information System (INIS)

    This study aimed to determine the effect of a bioactive ceramic coating on titanium in the nanothickness range on human osteogenic cells, peripheral blood mononuclear cells (PBMC) and on osteogenic cells co-cultured with PBMC without exogenous stimuli. Cell viability, proliferation, adhesion, cytokine release (IL1β, TGFβ1, IL10 and IL17) and intracellular stain for osteopontin and alkaline phosphatase were assessed. Morphologic evaluation showed smaller and less spread cell aspects in co-culture relative to osteogenic cell culture. Cell viability, proliferation and adhesion kinetics were differently influenced by surface texture/chemistry in culture versus co-culture. Cytokine release was also influenced by the interaction between mononuclear and osteogenic cells (mediators released by mononuclear cells acted on osteogenic cells and vice versa). In general, ‘multi-cell type’ interactions played a more remarkable role than the surface roughness or chemistry utilized on the in vitro cellular events related to initial stages of bone formation. (paper)

  11. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  12. A mouse 3T6 fibroblast cell culture model for the study of normal and protein-engineered collagen synthesis and deposition into the extracellular matrix.

    Science.gov (United States)

    Lamandé, S R; Bateman, J F

    1993-07-01

    Mouse 3T6 fibroblasts deposited an organized collagenous extracellular matrix during long-term culture in the presence of ascorbic acid. The matrix produced by the cells had a similar distribution of collagen types as the mouse dermal matrix, comprising predominantly type I with smaller amounts of types III and V collagens. By day 8 of culture more than 70% of the collagen in the 3T6 matrix was involved in covalent crosslinkages and required pepsin digestion for extraction. Incorporation of NaB3H4 into reducible crosslinks and aldehydes directly demonstrated the involvement of the alpha 1 (I)CB6 and alpha 2(I)CB3.5 in crosslinks. The pattern of reducible crosslinks in the in vitro 3T6 matrix was similar to that in mouse skin suggesting a comparable fibril organization. Processing of procollagen to collagen occurred efficiently throughout the culture period and the rate of collagen production was unaltered during 15 days of culture, indicating that the development of a collagenous matrix does not directly play a role in procollagen processing or biosynthetic regulation. The existence of a preformed matrix did however, increase the efficiency with which newly synthesised collagen was incorporated into the pericellular matrix. At day 0, when there was no measurable matrix present, 29% of the collagen synthesised was deposited, while by day 15, 88% of the collagen was laid down in the matrix. The development of this 3T6 culture system, where collagen is efficiently incorporated into an organized extracellular matrix, will facilitate detailed studies on matrix organization and regulation and provide a system in which protein-engineered mutant collagens can be expressed to determine their effects on the production of a functional extracellular matrix. PMID:8412990

  13. Assessment of developmental cardiotoxic effects of some commonly used phytochemicals in mouse embryonic D3 stem cell differentiation and chick embryonic cardiomyocyte micromass culture models.

    Science.gov (United States)

    Mohammed, Omar J; McAlpine, Roseanna; Chiewhatpong, Phasawee; Latif, Muhammad Liaque; Pratten, Margaret K

    2016-09-01

    Pregnant women often use herbal medicines to alleviate symptoms of pregnancy. The active phytochemicals eugenol (from holy basil) and α-bisabolol (from chamomile) are recommended to promote calmness and reduce stress. There is evidence that both eugenol and α-bisabolol possess pro-apoptotic and anti-proliferative effects and induce reactive oxygen species. The potential effect was examined by monitoring cardiomyocyte contractile activity (differentiation), cell activity, protein content and ROS production for mouse D3 embryonic stem cell and ‎chick embryonic micromass culture. The results showed that eugenol (0.01-80μM) demonstrated effects on cell activity (both systems) and ROS production (stem cell system only), as well as decreasing the contractile activity and protein content at high concentrations in both systems. Additionally, α-bisabolol (0.01-80μM) at high concentrations decreased the contractile activity and cell activity and in the stem cell system induced ROS production and decreased protein content. The results suggest only low concentrations should be ingested in pregnancy.‎. PMID:27105832

  14. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi

    1997-06-01

    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  15. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models

    Science.gov (United States)

    Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-01-01

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis. PMID:25823926

  16. Production of putative virulence factors by Renibacterium salmoninarum grown in cell culture.

    Science.gov (United States)

    McIntosh, D; Flaño, E; Grayson, T H; Gilpin, M L; Austin, B; Villena, A J

    1997-10-01

    A cell culture system, employing the fish cell line Epithelioma papillosum cyprini (EPC), was developed to study the synthesis of intracellular antigen and the expression of putative virulence factors by Renibacterium salmoninarum. EPC cultures infected with R. salmoninarum could be maintained for 7 weeks, during which the pathogen multiplied intracellularly. Immunohistochemical examination of infected cultures revealed the production of the p57 antigen, haemolysin and cytolysin. The intracellular nature of the infection was confirmed by transmission electron microscopic examination of EPC monolayers. A comparison of the relative virulence of bacterial cells cultured in EPC cells and on agar plates revealed that the former were markedly more virulent in challenge experiments with juvenile rainbow trout (Oncorhynchus mykiss Walbaum). The EPC cell culture model provided a system for the study of R. salmoninarum under more natural conditions than those achieved with plate culture techniques. PMID:9353936

  17. Model of sepsis (Caecal Ligation and Puncture) in rats caused by mixed and pure bacterial cultures and changes in white blood cell counts

    OpenAIRE

    Stojanović Dragica; Ašanin Ružica; Maličević Živorad; Vidić Branka M.

    2004-01-01

    The number of leucocytes and immunocompetent cells, was investigated during a clinical form of sepsis in rats. The experiments were carried out on 104 male rats, Wistar strain, of body weight 190 to 240 g. The rats were divided into four groups: three with 28 animals and one control group with 20 animals. The animals were killed 12, 24, 72 or 120 hours after surgical intervention. This consisted of caecal ligation and puncture (CLP), with inoculation of mixed bacteria or pure cultures of Esch...

  18. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  19. Cell cultures derived from early zebrafish embryos differentiate in vitro into neurons and astrocytes

    OpenAIRE

    Ghosh, Chandramallika; Liu, Yi; Ma, Chunguang; Collodi, Paul

    1997-01-01

    The zebrafish is a polular nonmammalian model for studies of neural development. We have derived cell cultures, initiated from blastula-stage zebrafish embryos, that differentiate in vitro into neurons and astrocytes. Cultures were initiated in basal nutrient medium supplemented with bovine insulin, trout serum, trout embryo extract and fetal bovine serum. After two weeks in culture the cells exhibited extensive neurite outgrowth and possessed elevated levels of acetylcholinesterase enzyme ac...

  20. Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber.

    Science.gov (United States)

    Lei, Kin Fong; Huang, Chia-Hao; Tsang, Ngan-Ming

    2016-01-15

    Recently, 3D cell culture technique was proposed to provide a more physiologically-meaningful environment for cell-based assays. With the development of microfluidics technology, cellular response can be quantified by impedance measurement technique in a real-time and non-invasive manner. However, handling of these microfluidic systems requires a trained engineering personnel and the operation is not compatible to traditional biological research laboratories. In this work, we incorporated the impedance measurement technique to paper-based 3D cell culture model and demonstrated non-invasive quantification of cells encapsulated in hydrogel during the culture course. A cellulose filter paper was patterned with an array of circular microchambers. Cells were encapsulated in hydrogel and loaded to the microchambers for culturing cells in 3D environment. At the preset schedule during the culture course, the paper was placed on a glass substrate with measurement electrodes for the impedance measurement. Cells in each microchamber was represented by impedance magnitude and cell proliferation could be studied over time. Also, conventional bio-assay was performed to further confirm the feasibility of the impedimetric quantification of cells encapsulated in hydrogel cultured in the paper-based microchamber. This technique provides a convenient, fast, and non-invasive approach to monitor cells cultured in 3D environment. It has potential to be developed for routine 3D cell culture protocol in biological research laboratories. PMID:26592655

  1. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    Directory of Open Access Journals (Sweden)

    Bentolhoda Fereydouni

    2016-01-01

    Full Text Available We use the common marmoset monkey (Callithrix jacchus as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia expressing pluripotent stem cell markers including OCT4A (POU5F1. This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs. OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes.

  2. Determining Cell Number During Cell Culture using the Scepter Cell Counter

    OpenAIRE

    Ongena, Kathleen; Das, Chandreyee; Smith, Janet L.; Gil, Sónia; Johnston, Grace

    2010-01-01

    Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measuremen...

  3. Affective Robotics: Modelling and Testing Cultural Prototypes.

    Science.gov (United States)

    A Wilson, Paul; Lewandowska-Tomaszczyk, Barbara

    2014-01-01

    If robots are to successfully interact with humans, they need to measure, quantify and respond to the emotions we produce. Similar to humans, the perceptual cue inputs to any modelling that allows this will be based on behavioural expression and body activity features that are prototypical of each emotion. However, the likely employment of such robots in different cultures necessitates the tuning of the emotion feature recognition system to the specific feature profiles present in these cultures. The amount of tuning depends on the relative convergence of the cross-cultural mappings between the emotion feature profiles of the cultures where the robots will be used. The GRID instrument and the cognitive corpus linguistics methodology were used in a contrastive study analysing a selection of behavioural expression and body activity features to compare the feature profiles of joy, sadness, fear and anger within and between Polish and British English. The intra-linguistic differences that were found in the profile of emotion features suggest that weightings based on this profile can be used in robotic modelling to create emotion-sensitive socially interacting robots. Our cross-cultural results further indicate that this profile of features needs to be tuned in robots to make them emotionally competent in different cultures. PMID:25484993

  4. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.

  5. Aquaporin-1 Expressed in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Mingkai Lin; Jian Ge; Yehong Zhuo; Yuqing Lan; Keming Yu; Jianliang Zheng

    2002-01-01

    Objective:To determine if aquaporin-1 could be detected in cultures of human trabecularshwork cells. Methods: Using primers specific for aquaporin-1, reverse transcription combined withpolymerase chain reaction (RT-PCR) yielded a product and its size with total RNAprepared from the human trabecular meshwork cells. SDS-PAGE and immunoblottingwere also used in this study to detect the specific water channel.Results: The presence of this product and its size (298 base pairs) are consistent withthat of an aquaporin-1 message in these cells. A band of 28 kD in agreement with themolecular size of aquaporin-1 was showed in a film by immunoblotting.Conclusion: The presence of aquaporin-1 in human trabecular meshwork cells, thepredominant cell-type of the primary outflow region of the human eye, suggests that waterchannels may be involved in the movement of aqueous fluid out of the eye. In addition,the existence of aquaporin-1 on cultures of human trabecular meshwork cells provides anin vitro model to study the endogenous expression of aquaporin-1 and its possible role inthe regulation of aqueous outflow.

  6. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  7. Model of sepsis (Caecal Ligation and Puncture in rats caused by mixed and pure bacterial cultures and changes in white blood cell counts

    Directory of Open Access Journals (Sweden)

    Stojanović Dragica

    2004-01-01

    Full Text Available The number of leucocytes and immunocompetent cells, was investigated during a clinical form of sepsis in rats. The experiments were carried out on 104 male rats, Wistar strain, of body weight 190 to 240 g. The rats were divided into four groups: three with 28 animals and one control group with 20 animals. The animals were killed 12, 24, 72 or 120 hours after surgical intervention. This consisted of caecal ligation and puncture (CLP, with inoculation of mixed bacteria or pure cultures of Escherichia coli or Staphylococcus aureus. They induced similar changes in the total leukocyte counts and percentages of different white blood cells. The significant leucopenia in the first half (early sepsis of the examined period preceded significant leukosis in the rats with sepsis in the second half of the experiment (late sepsis. Also there were significant alterations in the numbers of granulocytes and agranulocytes. Neutrophilia and lymphopenia dominated during the whole period.

  8. In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells

    OpenAIRE

    Yan Wang; Ning Wang; Biao Cai; Guang-yun Wang; Jing Li; Xing-xing Piao

    2015-01-01

    Drugs for the treatment and prevention of nervous system diseases must permeate the blood-brain barrier to take effect. In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms. However, to date, no unified method has been described for establishing a blood-brain barrier model. Here, we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyest...

  9. Low-Shear Modelled Microgravity Environment Maintains Morphology and Differentiated Functionality of Primary Porcine Hepatocyte Cultures

    OpenAIRE

    Nelson, Leonard J; Walker, Simon W.; Peter C. Hayes; Plevris, John N

    2010-01-01

    Hepatocytes cultured in conventional static culture rapidly lose polarity and differentiated function. This could be explained by gravity-induced sedimentation, which prevents formation of complete three-dimensional (3D) cell-cell/cellmatrix interactions and disrupts integrin-mediated signals (including the most abundant hepatic integrin alpha(5)beta(1)), important for cellular polarity and differentiation. Cell culture in a low fluid shear modelled microgravity (about 10(-2) g) environment p...

  10. Development and application of a high-throughput platform for perfusion-based cell culture processes.

    Science.gov (United States)

    Villiger-Oberbek, Agata; Yang, Yang; Zhou, Weichang; Yang, Jianguo

    2015-10-20

    A high-throughput (HT) cell culture model has been established for the support of perfusion-based cell culture processes operating at high cell densities. To mimic perfusion, the developed platform takes advantage of shake tubes and operates them in a batch-refeed mode with daily medium exchange to supply the cultures with nutrients and remove toxic byproducts. By adjusting the shaking parameters, such as the speed and setting angle, we have adapted the shake tubes to a semi-continuous production of a recombinant enzyme in a perfusion-like mode. We have demonstrated that the developed model can be used to select clones and cell culture media ahead of process optimization studies in bioreactors and confirmed the applicability of shake tubes to a perfusion-like cell culture reaching ∼50E6 viable cells/mL. Furthermore, through regular cell mass removal and periodic medium exchange we have successfully maintained satellite cultures of bench-top perfusion bioreactors, achieving a sustainable cell culture performance at ≥30E6 viable cells/mL and viabilities >80% for over 58 days. The established HT model is a unique and powerful tool that can be used for the development and screening of media formulations, or for testing selected process parameters during both process optimization and manufacturing support campaigns. PMID:26197419

  11. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  12. Organ culture-cell culture system for studying multistage carcinogenesis in respiratory epithelium. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Vernon E.; Marchok, Ann C.; Nettesheim, Paul

    1977-01-01

    An organ culture-cell culture system was used to demonstrate carcinogen dose-dependent transformation of tracheal epithelial cells in vitro. Tracheal explants were exposed to MNNG (N-methyl-N/sup 1/-nitro-N-nitrosoguanidine) in organ culture. Outgrowths from these explants provided epithelial cell cultures. The numbers of long term epithelial cell cultures and cell lines that were established per explant increased as MNNG exposure concentration increased. At the present time, more cell lines derived from explants exposed to the highest MNNG concentration have produced palpable tumors than cell lines derived from explants exposed to lower MNNG concentrations. No cell lines were established from primaries derived from control explants. TPA (12-0-tetradecanoyl-phorbol-13-acetate), stimulates DNA synthesis in tracheal epithelium in organ culture in a manner simular to that described for mouse skin. Short exposures to TPA not only stimulated DNA synthesis earlier, but the stimulation was greater than that obtained with continuous exposure. At the present time, exposure of tracheal organ cultures to MNNG followed by TPA has resulted in an enhanced production of morphologically altered cells in primary epithelial cell cultures, than exposure to either agent alone.

  13. Electrospinning of microbial polyester for cell culture

    International Nuclear Information System (INIS)

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture

  14. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  15. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  16. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs, these...... shown to be needed. This is possibly one of the reasons for the lack of implementation of microfluidic cell culture systems into biological research laboratories. Procedures to perform long-term microfluidic perfusion cell culture experiments have been established. Furthermore, successful application of...

  17. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    Science.gov (United States)

    Kim, Youn-Kyu; Park, Seul-Hyun; Lee, Joo-Hee; Choi, Gi-Hyuk

    2015-03-01

    In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  18. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models

    Directory of Open Access Journals (Sweden)

    Sun Z

    2013-03-01

    Full Text Available Zhizhi Sun,1 Vinith Yathindranath,2 Matthew Worden,3 James A Thliveris,4 Stephanie Chu,1 Fiona E Parkinson,1 Torsten Hegmann,1–3 Donald W Miller1 1Department of Pharmacology and Therapeutics, 2Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; 3Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA; 4Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada  Background: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3 and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater

  19. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Byron Deorosan

    2011-01-01

    factors in the metabolic response of the cells. However, cells cultured in low density collagen exhibited considerable cell death, likely because of physical contraction of the collagen hydrogel which was not observed in the higher density collagen. These findings will be useful to the development of in vitro cell culture models that properly mimic in vivo physiological processes.

  20. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    International Nuclear Information System (INIS)

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  1. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  2. Investigating Effects of Gelatin-Chitosan Film on Culture of Bone Marrow Stromal Cells in Rat

    Directory of Open Access Journals (Sweden)

    A Karami joyani

    2015-02-01

    Conclusion: Results of proliferation,differentiation and apoptosis cultured BMSCs on a gelatin-chitosan film showed that gelatin-chitosan film can be used as a good model of a biodegradable scaffold in tissue engineering and cell therapy.

  3. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    Science.gov (United States)

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction. PMID:25270685

  4. Cell Cycle Synchrony in Giardia intestinalis Cultures Achieved by Using Nocodazole and Aphidicolin▿

    OpenAIRE

    Poxleitner, Marianne K.; Dawson, Scott C.; Cande, W. Zacheus

    2008-01-01

    Giardia intestinalis is a ubiquitous intestinal protozoan parasite and has been proposed to represent the earliest diverging lineage of extant eukaryotes. Despite the importance of Giardia as a model organism, research on Giardia has been hampered by an inability to achieve cell cycle synchrony for in vitro cultures. This report details successful methods for attaining cell cycle synchrony in Giardia cultures. The research presented here demonstrates reversible cell cycle arrest in G1/S and G...

  5. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap)

    International Nuclear Information System (INIS)

    We report on the impedance mapping of in vitro cellular morphology by electrical impedance spectroscopy, using microelectrodes. A micro multielectrode system was designed, fabricated, assembled, tested and demonstrated for the monitoring of anchorage-dependent cell behavior and morphology. This system allowed continuous, label-free, quantitative monitoring and visualization of cell adhesion, spreading, proliferation and detachment due to cell cycle processes as well as cell–drug interaction, with spatio-temporal resolution. OvCa429 ovarian cancer cells were monitored in vitro over a period of 70 hours by inoculating the cell suspension directly on the multielectrode device. The phase angle of impedance was observed to develop a distinctive shape as a result of cell attachment and proliferation. The shape of the phase angle curve reverted back to the pre-attachment shape upon detachment of cells from the substrate, caused by the addition of trypsin to the cell culture medium. The impedance data of the cell culture were then successfully modeled as a multi-parametric equivalent circuit. The model incorporated both interfacial and cell-layer impedance parameters. Upon addition of trypsin, the cell-layer parameters showed a marked decline and were eventually eliminated from the multi-parametric model, confirming the correlation of the model to the electrode–cell–electrolyte system. These experiments demonstrate the applicability of the impedance mapping technique in visualizing and quantifying physiological changes in the cell layer due to cellular processes as well as the effect of external chemical stimulus on cells (cell–drug interaction)

  6. THE ALKALOID CYTISINE IN THE CELL CULTURE

    Directory of Open Access Journals (Sweden)

    Gazaliev A.M.

    2012-08-01

    Full Text Available Alkaloids are vegetative establishments of complex and original structure with nitrous heterocycles in the basis. For a long time they drew researchers’ attention because of their unique and specific physiological effect on alive organisms. Not all the representatives of the globe’s flora contain these unique substances. Alkaloid cytisine is to be found mainly in the plants of the fabaceous family - Fabaceae. For the cytisine production the seeds of Thermopsis lanceolata R.Br (T. lanceolata R.Br and Cytisus laburnum (C. laburnum are used as a raw material. The object of the research is T. lanceolata cell culture. Sterile sprouts are used at the first stage of the experiment. Callus genesis is accompanied with dedifferentiation. It leads to the cellular organization simplification. Based on an important property of a plant cell, such as totipotency, there appears the formation of the “de novo” biosynthetic device. The cultivation algorithm consists of two basic stages: (i the cultivation conditions optimization of callus with a high level of the primary metabolites biosynthesis (Aspartat – lysine; (ii the research of cultivation chemical and physical factors influence on the secondary metabolite (cytisine biosynthesis and accumulation. During the cultivation the Murashige and Skoog classical recipe of nutrient medium will be used. Optimization of the cultivation conditions will concern the phytohormones, macro- and micronutrients content, as the purpose of optimization is the production of the determined high-level competence embriogenical callus. The main problem is genetic heterogeneity of a cellular population and instability of morpho-physiological processes. The correct management of higher plants cells population is possible at the synchronization of a cellular cycle phases. The references analysis has shown that it is almost impossible to synchronize cellular cycles in the culture of plant tissue. The application of chemical

  7. Physiological properties of vertebrate nerve cells in tissue culture.

    Science.gov (United States)

    Dichter, M A

    1975-01-01

    Vertebrate neurons in tissue culture are providing us with a new model system for studying the complex events which occur during neuronal differentiation, synaptogenesis, and neural network formation. It is already apparent that dissociated embryo neurons are capable of differentiating both morphologically and physiologically along predetermined lines in the absence of external influences. These neurons can form new connections with one another but retain some specificity in their selections. Both simple and complex neural networks can be seen. At the present time, the development of the invitro model system is just being explored. The potential value of a system of this kind at a variety of investigative levels should be appreciated. Questions of a fundamental nature in neurobiology, such as how synapses form, what rules govern such interaction, how cells recognize one another, and the nature of the basic two-, three-, or four-cell circuits that comprise the more complex neurons tissue can be approached with this system. Studies of the neurons and synapses themselves can lead to a more basic understanding of vertebrate nervous system functioning. The development of certain pathophysiological processes and the effects of neuroactive drugs on vertebrate neurons may be studied at the cellular level. Finally, the basic mechanism of some genetic abnormalities which produce abnormal nervous structure and function may be more easily determined in a simplified in vitro model than in the intact central nervous system. The value of any model is not inherent in the elegance of the model itseld, but only in its ability to suggest answers to fundamental questions about the system being modeled. Many fundamental questions about brain mechanisms in mental retardation remain unanswered. Perhaps some day the model of nerve cells in tissue culture will bring us closer to the answers to these questions. PMID:173059

  8. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  9. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  10. 细胞共培养模型在口服药物吸收研究中的应用%Application of cell co-culture models in absorption of oral drug

    Institute of Scientific and Technical Information of China (English)

    黎迎; 朱春燕

    2015-01-01

    细胞共培养体系能很好地模拟人体小肠生理环境,准确预测药物在肠道内的转运和代谢情况,增强体外细胞模型与整体动物实验研究之间的相关性,近年来在评价口服药物吸收方面发挥着越发重要的作用,已成为新药研发过程中评价药物口服吸收的热点。综述体外模拟肠道环境的细胞共培养模型,并对其应用于口服药物研发的体外评价吸收做出展望。%Cell co-culture system can better simulate the inner environment of human body ,predict drug transport and metabolism in intestinal environment and increase the relation between in vitro cell model and integral animal test .In recent years ,co-culture cell model plays an increasingly important role in evaluating the absorption of oral drugs ,which becomes the highlight in the evaluation of drug oral absorption during new drug discovery .This essay summarized co-culture cell model which simulates intestinal environment and their application ,and looked into the future of their application in evaluating oral drug intestinal absorption during oral drug discovery .

  11. A cultural model of household energy consumption

    International Nuclear Information System (INIS)

    In this paper, we consider the development of demand-side research, from an early interest in conservation behavior to a later focus on physical, economic, psychological and social models of energy consumption. Unfortunately, none of these models account satisfactorily for measured energy consumption in the residential sector. Growing interest in the end-uses of energy (e.g. in support of load forecasting, demand-side management and least-cost utility planning), increasing international studies of energy use, and continuing work in the energy and lifestyles research tradition now support an emerging cultural perspective on household energy use. The ecological foundations of the cultural model and its applications in energy research are discussed, along with some of the analytic consequences of this approach. (author)

  12. Increased exosome production from tumour cell cultures using the Integra CELLine Culture System.

    Science.gov (United States)

    Mitchell, J Paul; Court, Jacqueline; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled

    2008-06-01

    Exosomes are nanometer-sized vesicles, secreted from most cell types, with documented immune-modulatory functions. Exosomes can be purified from cultured cells but to do so effectively, requires maintenance of cells at high density in order to obtain sufficient accumulation of exosomes in the culture medium, prior to purification. Whilst high density cultures can be achieved with cells in suspension, this remains difficult with adherent cells, resulting in low quantity of exosomes for subsequent study. We have used the Integra CELLine culture system, originally designed for hybridoma cultures, to achieve a significant increase in obtainable exosomes from adherent and non-adherent tumour cells. Traditional cultures of mesothelioma cells (cultured in 75 cm(2) flasks) gave an average yield of 0.78 microg+/-0.14 microg exosome/ml of conditioned medium. The CELLine Adhere 1000 (CLAD1000) flask, housing the same cell line, increased exosome yield approximately 12 fold to 10.06 microg+/-0.97 microg/ml. The morphology, phenotype and immune function of these exosomes were compared, and found to be identical in all respects. Similarly an 8 fold increase in exosome production was obtained from NKL cells (a suspension cell line) using a CELLine 1000 (CL1000) flask. The CELLine system also incurred ~5.5 fold less cost and reduced labour for cell maintenance. This simple culture system is a cost effective, useful method for significantly increasing the quantity of exosomes available from cultured cells, without detrimental effects. This tool should prove advantageous in future studies of exosome-immune modulation in cancer and other settings. PMID:18423480

  13. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models

    Directory of Open Access Journals (Sweden)

    Kung PJ

    2014-10-01

    Full Text Available Pin-Jui Kung,1,* Yu-Chen Tao,1,* Ho-Chiang Hsu,1 Wan-Ling Chen,1 Te-Hsien Lin,1 Donala Janreddy,2 Ching-Fa Yao,2 Kuo-Hsuan Chang,3 Jung-Yaw Lin,1 Ming-Tsan Su,1 Chung-Hsin Wu,1 Guey-Jen Lee-Chen,1 Hsiu-Mei Hsieh-Li1 1Department of Life Science, 2Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan; 3Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan *These authors contributed equally to this work Abstract: In spinocerebellar ataxia type 17 (SCA17, the expansion of a translated CAG repeat in the TATA box binding protein (TBP gene results in a long polyglutamine (polyQ tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment. Keywords: spinocerebellar ataxia type 17, TATA box binding protein, polyQ aggregation, indole and derivative, therapeutics

  14. Induction of IL-8(CXCL8) and MCP-1(CCL2) with oxidative stress and its inhibition with N-acetyl cysteine (NAC) in cell culture model using HK-2 cell.

    Science.gov (United States)

    Kumar, Avneesh; Shalmanova, Liliana; Hammad, Abdul; Christmas, Stephen E

    2016-03-01

    Renal transplantation can often be complicated due to delayed graft function, which is a direct sequel of ischaemia reperfusion injury. The adverse outcome of delayed graft function is not only short term but the long-term function of the graft is also affected. Therefore, it is important to understand the mechanisms of ischaemia reperfusion injury. Reactive oxygen species are the key mediators in ischaemia reperfusion injury causing direct cell damage which also initiate inflammation by inducing chemokines. The presence of inflammation is a marker of severe delayed graft function. However, the effect of oxidative stress on the expression of key chemokines has not been fully established yet. Therefore, the aim of this study was to measure the oxidative stress response and the secretion of chemokines in a cell culture model that mimics the effects of ischaemia reperfusion injury in immortalised human renal proximal tubular epithelial cells, HK-2. Cells were treated with varying concentrations of hydrogen peroxide and markers of oxidative stress response and chemokine release were measured. Exposure to hydrogen peroxide induced a significant increase in the activity of the antioxidant enzyme glutathione peroxidase and the levels of the chemokines Interleukin-8 (IL-8; CXCL8) and MCP-1 (CCL2). A dose related increase of chemokine secretion was also observed. The cytokine Interleukin-1β (IL-1β) at 1ng/ml significantly potentiated the expression of both IL-8 (CXCL8) and MCP-1 (CCL2) which showed synergistic response in the presence of hydrogen peroxide. Pre-incubation of the cells with the anti-oxidant N-acetyl cysteine (NAC) strongly suppressed the induction of both IL-8 and MCP-1 when stimulated with hydrogen peroxide and IL-1β. This study demonstrates the potential of anti-oxidants like N-acetyl cysteine in ameliorating the effects of ischaemia reperfusion injury thus suggesting a new therapeutic approach in renal transplantation. These findings can have potential

  15. High-Aspect-Ratio Rotating Cell-Culture Vessel

    Science.gov (United States)

    Wolf, David A.; Sams, Clarence; Schwarz, Ray P.

    1992-01-01

    Cylindrical rotating cell-culture vessel with thin culture-medium layer of large surface area provides exchange of nutrients and products of metabolism with minimal agitation. Rotation causes averaging of buoyant forces otherwise separating components of different densities. Vessel enables growth of cells in homogeneous distribution with little agitation and little shear stress.

  16. Detecting mycoplasma contamination in cell cultures by polymerase chain reaction.

    Science.gov (United States)

    Uphoff, Cord C; Drexler, Hans G

    2011-01-01

    The detection of mycoplasmas in human and animal cell cultures is mandatory for every cell culture laboratory, because these bacteria are common contaminants, persist unrecognized in cell cultures for many years, and affect research results as well as the purity of cell culture products. The reliability of the mycoplasma detection depends on the sensitivity and specificity of the method and should also be convenient to be included in the basic routine of cell culture quality assessment. Polymerase chain reaction (PCR) detection is one of the acknowledged methodologies to detect mycoplasmas in cell cultures and cell culture products. Although the PCR offers a fast and simple technique to detect mycoplasmas, the method is also susceptible to errors and can produce false positive as well as false-negative results. Thus, the establishment and the routine application of the PCR assay require optimization and the inclusion of the appropriate control reactions. The presented protocol describes sample preparation, DNA extraction, PCR run, the analysis of the PCR products, and speciation of the contaminant. It also provides detailed information on how to avoid artifacts produced by the method. Established properly, PCR is a reliable, fast, and sensitive method and should be applied regularly to monitor the contamination status of cell cultures. PMID:21516400

  17. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    ammonium malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities...

  18. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed to be...

  19. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section 864.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products §...

  20. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    OpenAIRE

    Akopian, Veronika; Andrews, Peter W.; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B; Ludwig, Tenneille E; Ronald D G McKay

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with pr...

  1. Autophagic response to cell culture stress in pluripotent stem cells.

    Science.gov (United States)

    Gregory, Siân; Swamy, Sushma; Hewitt, Zoe; Wood, Andrew; Weightman, Richard; Moore, Harry

    2016-05-01

    Autophagy is an important conserved cellular process, both constitutively as a recycling pathway for long lived proteins and as an upregulated stress response. Recent findings suggest a fundamental role for autophagic processes in the maintenance of pluripotent stem cell function. In human embryonic stem cells (hESCS), autophagy was investigated by transfection of LC3-GFP to visualize autophagosomes and with an antibody to LC3B protein. The presence of the primary cilium (PC) in hESCs as the site of recruitment of autophagy-related proteins was also assessed. HESCs (mShef11) in vitro displayed basal autophagy which was upregulated in response to deprivation of culture medium replacement. Significantly higher levels of autophagy were exhibited on spontaneous differentiation of hESCs in vitro. The PC was confirmed to be present in hESCs and therefore may serve to coordinate autophagy function. PMID:26385182

  2. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    Science.gov (United States)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  3. Biona-C Cell Culture pH Monitoring System

    Science.gov (United States)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  4. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    International Nuclear Information System (INIS)

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time

  5. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  6. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Marisa Ojala

    Full Text Available Human pluripotent stem cells (hPSCs, including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs, are capable of differentiating into any cell type in the human body and thus can be used in studies of early human development, as cell models for different diseases and eventually also in regenerative medicine applications. Since the first derivation of hESCs in 1998, a variety of culture conditions have been described for the undifferentiated growth of hPSCs. In this study, we cultured both hESCs and hiPSCs in three different culture conditions: on mouse embryonic fibroblast (MEF and SNL feeder cell layers together with conventional stem cell culture medium containing knockout serum replacement and basic fibroblast growth factor (bFGF, as well as on a Matrigel matrix in mTeSR1 medium. hPSC lines were subjected to cardiac differentiation in mouse visceral endodermal-like (END-2 co-cultures and the cardiac differentiation efficiency was determined by counting both the beating areas and Troponin T positive cells, as well as studying the expression of OCT-3/4, mesodermal Brachyury T and NKX2.5 and endodermal SOX-17 at various time points during END-2 differentiation by q-RT-PCR analysis. The most efficient cardiac differentiation was observed with hPSCs cultured on MEF or SNL feeder cell layers in stem cell culture medium and the least efficient cardiac differentiation was observed on a Matrigel matrix in mTeSR1 medium. Further, hPSCs cultured on a Matrigel matrix in mTeSR1 medium were found to be more committed to neural lineage than hPSCs cultured on MEF or SNL feeder cell layers. In conclusion, culture conditions have a major impact on the propensity of the hPSCs to differentiate into a cardiac lineage.

  7. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  8. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    Science.gov (United States)

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. PMID:26287450

  9. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  10. Culturing of PC12 Cells, Neuronal Cells, Astrocytes Cultures and Brain Slices in an Open Microfluidic System

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Rømer Sørensen, Ane;

    culturing PC12 cells, neuronal cells, astrocytes cultures and brain slices. The microfluidic system provides efficient nutrient delivery, waste removal, access to oxygen, fine control over the neurochemical environment and access to modern microscopy. Additionally, the setup consists of an in vitro...

  11. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.

    OpenAIRE

    O'Driscoll, Lorraine

    2016-01-01

    PUBLISHED 2016 Jun 10. doi: 10.18632/oncotarget.9935. [Epub ahead of print] Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing c...

  12. Metabolic Activation of the Organic Fraction Coated Onto Air Pollution PM2.5 and its Genotoxicity in a Co Culture Model of Human Lung Cells

    International Nuclear Information System (INIS)

    Air pollution Particulate Matter (PM2.5) is described as one of the major risk factors affecting human health. Hence, the objective of our research project was to evaluate the lung toxicity of PM2.5 collected in Dunkerque (France), through the study of the metabolic activation of its organic fraction (e.g. Polycyclic Aromatic Hydrocarbons, PAHs; Volatile Organic Compounds, VOCs) and its genotoxicity in two human cell models: embryonic lung epithelial L132 cells and Alveolar Macrophages (AM) isolated from bronchiolo-alveolar lavages of healthy outpatients, in mono- and/or coculture. The coculture system we used allowed the direct exposure of AM to PM2.5, and the interaction between the two cell types only through soluble factor diffusion. Exposure to Dunkerque City's PM2.5 induced the gene expression of phase I and phase II enzymes (e.g. CYP1A1, CYP2E1, CYP2F1, NQO1, GSTπ1, GSTμ3) involved in the metabolic activation of PAHS and/or VOCS, in AM, in mono- and coculture, and in L132 cells, only in monoculture. Taken together, these results reinforced the key role of AM in lung defenses, and indicated that particles, as physical vector of the penetration and retention of coated-PAHS and/or VOCS within cells, enabled them to exert a durable toxicity. DNA bulky adduct formation was also reported not only in Dunkerque City's PM2.5-exposed AM, in mono- and coculture, but also in L132 cells from PAH-exposed coculture. Loss of Heterozygosity (LOH) and/or MicroSatellite Instability (MSI) of some MicroSatellites (MS) located in multiple critical regions of chromosome 3 were reported in L132 cells from Dunkerque City's PM2.5-exposed mono- or cocultures. (author)

  13. Isolation, Culture, and Maintenance of Mouse Intestinal Stem Cells

    Science.gov (United States)

    O’Rourke, Kevin P.; Ackerman, Sarah; Dow, Lukas E; Lowe, Scott W

    2016-01-01

    In this protocol we describe our modifications to a method to isolate, culture and maintain mouse intestinal stem cells as crypt-villus forming organoids. These cells, isolated either from the small or large intestine, maintain self-renewal and multilineage differentiation potential over time. This provides investigators a tool to culture wild type or transformed intestinal epithelium, and a robust assay for stem cell tissue homeostasis in vitro.

  14. Effects of methyl isocyanate on rat brain cells in culture.

    Science.gov (United States)

    Anderson, D; Goyle, S; Phillips, B J; Tee, A; Beech, L; Butler, W H

    1990-09-01

    Since the disaster in Bhopal, India, people exposed to methyl isocyanate (MIC) have complained of various disorders including neuromuscular dysfunction. In an attempt to get information about such dysfunction we have previously shown that MIC can affect muscle cells in culture. The present communication reports investigations into the effect of MIC on brain cells in culture. MIC was toxic to brain cells and the response was dose related. The observations were supported by light and electron microscopy. PMID:2207030

  15. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  16. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  17. Mammosphere culture of cancer stem cells in a microfluidic device

    Science.gov (United States)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  18. Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion

    DEFF Research Database (Denmark)

    Petronis, Sarunas; Stangegaard, Michael; Christensen, C.;

    2006-01-01

    Modern microfabrication and microfluidic technologies offer new opportunities in the design and fabrication of miniaturized cell culture systems for online monitoring of living cells. We used laser micromachining and thermal bonding to fabricate an optically transparent, low-cost polymeric chip for...... long-term online cell culture observation under controlled conditions. The chip incorporated a microfluidic flow equalization system, assuring uniform perfusion of the cell culture media throughout the cell culture chamber. The integrated indium-tin-oxide heater and miniature temperature probe linked...... to an electronic feedback system created steady and spatially uniform thermal conditions with minimal interference to the optical transparency of the chip. The fluidic and thermal performance of the chip was verified by finite element modeling and by operation tests under fluctuating ambient...

  19. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures.

    Science.gov (United States)

    Huang, Lijia; van Loveren, Cor; Ling, Junqi; Wei, Xi; Crielaard, Wim; Deng, Dong Mei

    2016-04-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions. PMID:26963862

  20. [Continuous perfusion culture hybridoma cells for production of monoclonal antibody].

    Science.gov (United States)

    Mi, Li; Li, Ling; Feng, Qiang; Yu, Xiao-Ling; Chen, Zhi-Nan

    2002-05-01

    Hybridoma cells were cultured by continuous perfusion in Fibra-Cel of 5L packed-bed bioreactor for 22 days in low serum or serum-free media. The corresponded amino acids were fed and serum concentration was decreased by analyzing glucose concentration, oxygen uptake rate, secretary antibody amount and amino acids concentration in culture supernatant. Comparing with continuous perfusion culture that amino acids were not fed, antibody amount of production was increased about 2-3 times. The inoculated cell density was 2.5 x 10(5) cells/mL, while the final cell density was 8.79 x 10(8) cells/mL. Antibody production was reached 295 mg/L/d at average level, and the highest level was reached 532 mg/L/d. These results provided a primary mode of enlarge culture for monoclonal antibody industralization. PMID:12192875

  1. A practical guide to hydrogels for cell culture.

    Science.gov (United States)

    Caliari, Steven R; Burdick, Jason A

    2016-04-28

    There is growing appreciation of the role that the extracellular environment plays in regulating cell behavior. Mechanical, structural, and compositional cues, either alone or in concert, can drastically alter cell function. Biomaterials, and particularly hydrogels, have been developed and implemented to present defined subsets of these cues for investigating countless cellular processes as a means of understanding morphogenesis, aging, and disease. Although most scientists concede that standard cell culture materials (tissue culture plastic and glass) do a poor job of recapitulating native cellular milieus, there is currently a knowledge barrier for many researchers in regard to the application of hydrogels for cell culture. Here, we introduce hydrogels to those who may be unfamiliar with procedures to culture and study cells with these systems, with a particular focus on commercially available hydrogels. PMID:27123816

  2. THE ULTRASTRUCTURE OF SEPARATED AND CULTURED CELL OF PORPHYRA YEZOENSIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  3. AUDITORY HAIR CELL EXPLANT CO-CULTURES PROMOTE THE DIFFERENTIATION OF STEM CELLS INTO BIPOLAR NEURONS

    OpenAIRE

    Coleman, B.; Fallon, J. B.; Gillespie, L.N.; Silva, M.G.; Shepherd, R.K.

    2006-01-01

    Auditory neurons, the target neurons of the cochlear implant, degenerate following a sensorineural hearing loss. The goal of this research is to direct the differentiation of embryonic stem cells (SCs) into bipolar auditory neurons that can be used to replace degenerating neurons in the deafened mammalian cochlea. Successful replacement of auditory neurons is likely to result in improved clinical outcomes for cochlear implant recipients. We examined two post-natal auditory co-culture models w...

  4. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  5. 3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes

    Science.gov (United States)

    Kim, Yeonhee; Rajagopalan, Padmavathy

    2010-01-01

    Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and

  6. Modelling the evolution and diversity of cumulative culture

    OpenAIRE

    Enquist, Magnus; Ghirlanda, Stefano; Eriksson, Kimmo

    2011-01-01

    Previous work on mathematical models of cultural evolution has mainly focused on the diffusion of simple cultural elements. However, a characteristic feature of human cultural evolution is the seemingly limitless appearance of new and increasingly complex cultural elements. Here, we develop a general modelling framework to study such cumulative processes, in which we assume that the appearance and disappearance of cultural elements are stochastic events that depend on the current state of cul...

  7. Mathematical model for aerobic culture of a recombinant yeast

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Scharer, J.M.; Moo-Young, M. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering

    1997-09-01

    A mathematical model was formulated to simulate cell growth, plasmid loss and recombinant protein production during the aerobic culture of a recombinant yeast S. cerevisiae. Model development was based on three simplified metabolic events in the yeast: glucose fermentation, glucose oxidation and ethanol oxidation. Cell growth was expressed as a composite of these metabolic events. Their contributions to the total specific growth rate depended on the activities of the pacemaker enzyme pools of the individual pathways. The pacemaker enzyme pools were regulated by the specific glucose uptake rate. The effect of substrate concentrations on the specific growth rate was described by a modified Monod equation. It was assumed that recombinant protein formation is only associated with oxidative pathways. Plasmid loss kinetics was formulated based on segregational instability during cell division by assuming constant probability of plasmid loss. Experiments on batch fermentation of recombinant S. cerevisiae C468/pGAC9 (ATCC 20690), which expresses Aspergillus awamori glucoamylase gene and secretes glucoamylase into the extracellular medium, were carried out in an airlift bioreactor in order to evaluate the proposed model. The model successfully predicted the dynamics of cell growth, glucose consumption, ethanol metabolism, glucoamylase production and plasmid instability. Excellent agreement between model simulations and our experimental data was achieved. Using published experimental data, model agreement was also found for other recombinant yeast strains. In general, the proposed model appears to be useful for the design, scale-up, control and optimization of recombinant yeast bioprocesses. (orig.) With 3 figs., 1 tab., 15 refs.

  8. Three-dimensional cultures of human endometrial cells on Matrigel mimic in vivo morphology

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-yan; WANG Jun-xia; TONG Xiao-mei; XU Wei-hai; JIANG Ling-ying; JING Xiao-ying; YANG Ling-yun; ZHOU Feng; ZHANG Song-ying

    2012-01-01

    Background The regulation of endometrial physiology and morphogenesis by the paracrine effectors has been well established using in vivo studies.A more complete understanding of the endometrial function has been delayed due,in part,to a lack of appropriate culture models.In this study,we aimed to simulate the in vivo three-dimensional (3-D) growth pattern of endometrial cells using a 3-D in vitro culture system.Methods Isolated endometrial epithelial cells,stromal cells and RL95-2 cells were seeded into culture chambers coated with the extracellular matrix Matrigel and observed using light microscopy.Fluorescence staining and immunohistochemistry were used to assess the morphology.Results Depending on the culture conditions,epithelial cells and RL95-2 cells formed multicellular structures on Matrigel; stromal cells remained individually distinguishable or grew together to form 3-D lattice-like structures.Conclusions Matrigel provided a good microenvironment for culturing endometrial cells.The cells cultured in the Matrigel-coated chambers closely resembled those seen in vivo.

  9. Crystal Violet Assay for Determining Viability of Cultured Cells.

    Science.gov (United States)

    Feoktistova, Maria; Geserick, Peter; Leverkus, Martin

    2016-01-01

    Adherent cells detach from cell culture plates during cell death. This characteristic can be used for the indirect quantification of cell death and to determine differences in proliferation upon stimulation with death-inducing agents. One simple method to detect maintained adherence of cells is the staining of attached cells with crystal violet dye, which binds to proteins and DNA. Cells that undergo cell death lose their adherence and are subsequently lost from the population of cells, reducing the amount of crystal violet staining in a culture. This protocol describes a quick and reliable screening method that is suitable for the examination of the impact of chemotherapeutics or other compounds on cell survival and growth inhibition. However, characterization of the cause of reduced crystal violet staining requires additional methods detailed elsewhere. PMID:27037069

  10. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  11. Endothelial invasive response in a co-culture model with physically-induced osteodifferentiation.

    Science.gov (United States)

    Traphagen, Samantha B; Titushkin, Igor; Sun, Shan; Wary, Kishore K; Cho, Michael

    2013-08-01

    Manipulation of stem cells using physicochemical stimuli has emerged as an important tool in regenerative medicine. While 2D substrates with tunable elasticity have been studied for control of stem cell differentiation, we recently developed a stratified co-culture model of angiogenesis of human mesenchymal stem cells (hMSCs) that differentiate on a tunable polydimethylsiloxane (PDMS) substrate, thereby creating a physiologic context for elasticity-induced differentiation. Endothelial cells (EC) were cultured on top of the hMSC construct on a collagen gel to monitor network formation. Media composition influenced EC invasion due to the conditioning media, the reduction of serum and supplemental growth factors, and the addition of recombinant growth factors. Conditioned media, recombinant growth factors and direct co-culture were compared for endothelial cell invasive response using quantitative image analysis. As anticipated, use of recombinant vascular endothelial growth factor (VEGF) induced the deepest EC invasions while direct co-culture caused shallow invasions compared to other conditions. However, endothelial cells displayed lumen-like morphology, suggesting that cell-cell interaction in the co-culture model could mimic sprouting behaviour. In summary, an engineered suitable biochemical and physical environment facilitated endothelial cells to form 3D vessel structures onto hMSCs. These structures were plated on a stiff surface known to induce osteodifferentiation of stem cells. This low cost co-culture system, with its minimal chemical supplementation and physically controllable matrix, could potentially model in vivo potential in engineered and pre-vascularized bone grafts. PMID:22696416

  12. Cystine uptake by cultured cells originating from dog proximal tubule segments

    International Nuclear Information System (INIS)

    Large numbers of kidney epithelial cells were cultured successfully from isolated dog proximal tubule segments. Cells in primary culture and in first passage retained the cystine-dibasic amino acid co-transporter system which is found in vivo and in freshly isolated proximal tubule segments. In contrast to other cultured cells, the cystine-glutamate anti-porter was absent in primary cultures. However, this anti-porter system seemed to be developing in cells in first passage. The intracellular ratio of cysteine:reduced glutathione (CSH:GSH) was maintained at 1:36 in both primary cultures and in low passage cells. Incubation of cells in primary culture for 5 min at 37 degrees C with 0.025 mM [35S]L-cystine resulted in incorporation of approximately 36 and 8.5% of the label into intracellular CSH and GSH, respectively. These cultured cells, therefore, seem to be an excellent model system for the eventual elucidation of (a) the inticacies of cystine metabolism and (b) regulation of (1) the cystine-dibasic amino acid co-transporter system and (2) the development of the cysteine-glutamate anti-porter system

  13. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  14. A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures

    OpenAIRE

    Mark Weingarten; Nathan Akhavan; Joshua Hanau; Yakov Peter

    2015-01-01

    Pluripotent stem cells (PSCs) have the power to revolutionize the future of cell-based therapies and regenerative medicine. However, stem/progenitor cell use in the clinical arsenal has been hampered by discrepancies resulting from stem cell engineering and expansion, as well as in their (mass) differentiation in culture. Moreover, the manner in which external conditions affect PSC and induced-pluripotent stem cell lineage establishment as well as maturation remains controversial. In this rev...

  15. Air pollutant production by algal cell cultures

    Science.gov (United States)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  16. Insect cell culture and applications to research and pest management

    Science.gov (United States)

    Building on earlier research, insect cell culture began with the successful establishment of one cell line from pupal ovarian tissue. The field has grown to the extent that now over 500 insect cell lines have been established from many insect species representing numerous insect Orders and from seve...

  17. Culture-Specific Counseling: An Alternative Training Model.

    Science.gov (United States)

    Nwachuku, Uchenna T.; Ivey, Allen E.

    1991-01-01

    Promotes culture-specific counseling approach, which starts with the culture and its people and searches out natural helping styles. Uses case model drawn from African-Igbo culture and applies anthropological constructs that seek to discover more culturally sensitive approach to counseling theory, to training in counseling skills and knowledge,…

  18. Amino acid consumption in naïve and recombinant CHO cell cultures: producers of a monoclonal antibody

    OpenAIRE

    Carrillo-Cocom, L. M.; Genel-Rey, T.; Araíz-Hernández, D.; López-Pacheco, F.; López-Meza, J.; Rocha-Pizaña, M. R.; Ramírez-Medrano, A.; Alvarez, M. M.

    2014-01-01

    Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naïve and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration prof...

  19. Studying neurodegenerative diseases in culture models

    Directory of Open Access Journals (Sweden)

    Johannes C.M. Schlachetzki

    2013-01-01

    Full Text Available Neurodegenerative diseases are pathological conditions that have an insidious onset and chronic progression. Different models have been established to study these diseases in order to understand their underlying mechanisms and to investigate new therapeutic strategies. Although various in vivo models are currently in use, in vitro models might provide important insights about the pathogenesis of these disorders and represent an interesting approach for the screening of potential pharmacological agents. In the present review, we discuss various in vitro and ex vivo models of neurodegenerative disorders in mammalian cells and tissues.

  20. Detection and Treatment of Mycoplasma Contamination in Cultured Cells

    Directory of Open Access Journals (Sweden)

    Hsuan Jung

    2003-04-01

    Full Text Available Background: Mycoplasmas, the smallest and simplest prokaryotes that reside in endosomesof mammalian cells, are widespread contaminants found in cell cultures.About 30% of all cell cultures, varying from 15 to 80%, are reportedlycontaminated with mycoplasmas. Here, we present our experience in successfullydetecting and treating mycoplasmal infection in various cell lines.Methods: The nested polymerase chain reaction (PCR detection and microscopicexamination, including phase-contrast, fluorescent, as well as differentialinterference contrast, were used for detecting potential mycoplasma contaminationof cell lines used in our laboratory. As soon as mycoplasma was identified,antibiotic treatment was initiated.Results: Mycoplasmal contamination was detected in six of 15 cell lines using thenested PCR amplification of mycoplasma DNA, which was further demonstratedusing 4, 6-Diamidino-2-phenylindole (DAPI staining and fluorescentmicroscopy. Alternate treatment with two antibiotics, macrolide (tiamulinand tetracycline (minocycline, effectively eliminated mycoplasma, whichwas validated by both PCR and microscopic studies.Conclusions: The nested PCR using genomic DNA extracted from cultured cells as templatesis a rapid and sensitive method for detecting mycoplasma contamination.Treatment with combined antibiotics can completely eradicatemycoplasmal infection from cultured cells. For the ease of use, PCR and/orDAPI staining appear suitable for detecting potential mycoplasmal contaminationin laboratories that rely heavily on the cell culture system.

  1. The effects of glucocorticoids on cultured human endothelial cells.

    Science.gov (United States)

    Maca, R D; Fry, G L; Hoak, J C

    1978-04-01

    The effects of hydrocortisone, dexamethasone and prednisone on the morphology, replication, DNA synthesis, cell protein content and protein synthesis of cultured, human endothelial cells were evaluated. After culturing the cells with these glucocorticoids for 24-48 h, the cells covered a greater portion of the culture surface area. The mean surface area of the individual endothelial cell treated with glucocorticoids was 1.53 times greater than that of the untreated control endothelial cell. When compared with controls, the endothelial cover provided by the cells treated with glucocorticoids was more extensive and in many instances covered the entire culture surface. The change in morphology was associated with an increase in protein synthesis and protein content of the cells without an increase in DNA synthesis or cellular replication. Dexamethasone was approximately 10-fold more effective than hydrocortisone, while prednisone was the least effective. Aldosterone, DOCA, testosterone, progesterone, oestradiol and oestriol were ineffective. These studies indicate that glucocorticoids can alter the morphology and biochemistry of cultured endothelial cells and may have implications for the effects of steroids in the treatment of thrombocytopenic states and vascular disorders in man. PMID:646949

  2. Novel culturing platform for brain slices and neuronal cells

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya;

    2015-01-01

    In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been te...

  3. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells

    International Nuclear Information System (INIS)

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two-dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extracellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three-dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D versus 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ∼4-fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures.

  4. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Science.gov (United States)

    Liebmann, Thomas; Rydholm, Susanna; Akpe, Victor; Brismar, Hjalmar

    2007-01-01

    Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology. PMID:18070345

  5. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Directory of Open Access Journals (Sweden)

    Akpe Victor

    2007-12-01

    Full Text Available Abstract Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.

  6. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  7. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  8. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yan [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Li, Yuan [Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Chen, Chao; Stoelzel, Katharina [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Kaufmann, Andreas M. [Clinic for Gynecology CCM/CBF, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Albers, Andreas E., E-mail: andreas.albers@charite.de [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany)

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  9. The influence of micronutrients in cell culture: a reflection on viability and genomic stability.

    Science.gov (United States)

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Machado, Miriana; Bordin, Diana Lilian; Bergter, Lothar; Prá, Daniel; Henriques, João Antonio Pêgas

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed. PMID:23781504

  10. ANALYSIS OF ORGANIZATIONAL CULTURE WITH SOCIAL NETWORK MODELS

    OpenAIRE

    Titov, S.

    2015-01-01

    Organizational culture is nowadays an object of numerous scientific papers. However, only marginal part of existing research attempts to use the formal models of organizational cultures. The lack of organizational culture models significantly limits the further research in this area and restricts the application of the theory to practice of organizational culture change projects. The article consists of general views on potential application of network models and social network analysis to th...

  11. A Socio-Cultural Model Based on Empirical Data of Cultural and Social Relationship

    DEFF Research Database (Denmark)

    Lipi, Afia Akhter; Nakano, Yukiko; Rehm, Matthias

    2010-01-01

    The goal of this paper is to integrate culture and social relationship as a computational term in an embodied conversational agent system by employing empirical and theoretical approach. We propose a parameter-based model that predicts nonverbal expressions appropriate for specific cultures in di...... empirical data, we establish a parameterized network model that generates culture specific non-verbal expressions in different social relationships.......The goal of this paper is to integrate culture and social relationship as a computational term in an embodied conversational agent system by employing empirical and theoretical approach. We propose a parameter-based model that predicts nonverbal expressions appropriate for specific cultures in...... different social relationship. So, first, we introduce the theories of social and cultural characteristics. Then, we did corpus analysis of human interaction of two cultures in two different social situations and extracted empirical data and finally, by integrating socio-cultural characteristics with...

  12. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    Directory of Open Access Journals (Sweden)

    Maria P. Lambros

    2015-01-01

    Full Text Available Qingre Liyan decoction (QYD, a Traditional Chinese medicine, and N-acetyl cysteine (NAC have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1, protective genes (EGFR and PPARD, and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs. NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors.

  13. A comprehensive characterization of cell cultures and xenografts derived from a human verrucous penile carcinoma

    DEFF Research Database (Denmark)

    Muñoz, Juan J; Drigo, Sandra A; Kuasne, Hellen;

    2016-01-01

    This study aimed to establish and characterize primary cell cultures and xenografts derived from penile carcinoma (PeCa) in order to provide experimental models for cellular processes and efficacy of new treatments. A verrucous squamous cell carcinoma (VSCC) was macrodissected, dissociated, and c...

  14. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination

    Science.gov (United States)

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-01

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural ``prototypes'' shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  15. Convoluted cells as a marker for maternal cell contamination in CVS cultures

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P K; Therkelsen, A J

    1987-01-01

    In order to identify cells of maternal origin in CVS cultures, tissue from 1st trimester abortions were cultivated and the cultures stained in situ for X-chromatin. Convoluted cells and maternal fibroblasts were found to be positive. By chromosome analysis of cultures from 105 diagnostic placenta...... biopsies, obtained by the transabdominal route, metaphases of maternal origin were found in nine cases. In eight of these cases colonies of convoluted cells were observed. We conclude that convoluted cells are of maternal origin and are a reliable marker for maternal cell contamination in CVS cultures....

  16. Molecular and cellular mechanisms of cadmium resistance in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.L.; Moyzis, R.K.; Hildebrand, C.E.

    1985-01-01

    Heavy metal induction of the synthesis of metallothioneins (MTs) provides an ideal model system for basic mechanistic studies of gene expression. Cell lines varying in their resistance to heavy metals have been isolated through a regime of exposure to serially increasing levels of Cd followed by clonal isolation. These cell lines have been used to examine the role of methylation and amplification in the Cd-resistant (Cd/sup r/) phenotype. It is suggested that regulation of expression of the MT genes in Cd/sup r/ Chinese hamster cells is modulated at both the transcriptional and translational levels. An analysis of the MT2 gene sequence has uncovered a potential alternative splice site in the first intron. Usage of this site would insert 3 or 12 additional amino acids between amino acids 9 and 10. Analysis of the splicing pattern of the MT2 gene transcript in cultured cells has indicated that the second intron is preferentially removed prior to first intron excision. 34 refs., 2 figs., 1 tab.

  17. Inhibition of mast cell-dependent conversion of cultured macrophages into foam cells with antiallergic drugs.

    Science.gov (United States)

    Ma, H; Kovanen, P T

    2000-12-01

    Degranulation of isolated, rat peritoneal mast cells in the presence of low density lipoprotein (LDL) induces cholesteryl ester accumulation in cocultured macrophages with ensuing foam cell formation. This event occurs when the macrophages phagocytose LDL particles that have been bound to the heparin proteoglycans of exocytosed granules. In an attempt to inhibit such foam cell formation pharmacologically, rat peritoneal mast cells that had been passively sensitized with anti-ovalbumin-IgE were treated with 2 mast cell-stabilizing antianaphylactic drugs, MY-1250 or disodium cromoglycate (DSCG). Both drugs were found to inhibit antigen (ovalbumin)-triggered release of histamine from the mast cells, revealing mast cell stabilization. In cocultures of rat peritoneal macrophages and passively sensitized mast cells, addition of MY-1250 before addition of the antigen resulted in parallel reductions in histamine release from mast cells, uptake of [(14)C]sucrose-LDL, and accumulation of LDL-derived cholesteryl esters in the cocultured macrophages. Similarly, when passively sensitized mast cells were stimulated with antigen in the presence of DSCG and the preconditioned media containing all substances released from the drug-treated mast cells were collected and added to macrophages cultured in LDL-containing medium, uptake and esterification of LDL cholesterol by the macrophages were inhibited. The inhibitory effects of both drugs were mast cell-specific because neither drug inhibited the ability of macrophages to take up and esterify LDL cholesterol. Analysis of heparin proteoglycan contents of the incubation media revealed that both drugs had inhibited mast cells from expelling their granule remnants. Thus, both MY-1250 and DSCG prevent mast cells from releasing the heparin proteoglycan-containing vehicles that bind LDL and carry it into macrophages. This study suggests that antiallergic pharmacological agents could be used in animal models to prevent mast cell

  18. Effects of UVC-irradiation on cultured mouse embryonic cells

    International Nuclear Information System (INIS)

    Effects of UVC-irradiation on the cultured differentiating mouse embryonic cells were investigated. Embryonic mesenchymal cells, isolated from fore-and hind-limbs or mid brain of Day 11 mouse embryos, and 3T3 cells, a reference mouse fibroblast cell line, were irradiated with UVC at a dose range of 0∼30 J/m2. Dose-dependent inhibition was found for both cellular proliferation and differentiation, dose-dependent induction of DNA cyclobutane pyrimidine dimers and (6-4) photoproducts were found in the embryonic cells. Mesenchymal chondrogenesis was more sensitive to the UVC than proliferation, and the UVC-induced DNA damage and their repair kinetics in the cultured embryonic cells were similar to those in mouse 3T3 cells. No effects of treatments by the fluorescent light pre or post UVC-irradiation were found on the repair kinetics of DNA damage in all of the cells

  19. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Science.gov (United States)

    Lestard, Nathalia R.

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  20. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture.

    Science.gov (United States)

    Lestard, Nathalia R; Capella, Marcia A M

    2016-01-01

    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells. PMID:27478480

  1. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  2. Secretion of hyaluronic acid by mucosal and submucosal gland epithelial cell cultures derived from human trachea

    International Nuclear Information System (INIS)

    The respiratory epithelium is a target tissue for numerous airborne toxicants. We have established epithelial cell cultures form the mucosa and submucosal glands of human trachea. These epithelial cells exhibit numerous microvilli, desmosomes, and secretory granules. The objective of this study was to characterize the secretory products of these cell cultures. Neat confluent cultures at third passage were labeled with 10 μCi/ml tritiated glucosamine for 20 hours. The culture media was collected, adjusted to 5 mm DTT, and spun at 800 x g for 10 minutes to remove cellular debris. Aliquots were run on a Sepharose CL-4B column in PBS, 1 mm DTT, and 0.02% sodium azide. Void volume fractions were collected and counted by liquid scintillation. The void volume material was found to be susceptible to degradation by bovine testicular and Streptomyces Hyaluronidase. This indicates that hyaluronic acid is the major secretory product (>95%) of these cells. Submucosal gland cell secretion of hyaluronic acid was 175-200% greater than that of mucosal cells. Secretion of hyaluronic acid by the cultured cells indicates that HA may be one of the major secretory products of tracheal epithelial cells in vivo. This model provides an excellent opportunity for studying the affects of environmental agents on the target cell population

  3. Nuclear safety culture evaluation model based on SSE-CMM

    International Nuclear Information System (INIS)

    Safety culture, which is of great significance to establish safety objectives, characterizes level of enterprise safety production and development. Traditional safety culture evaluation models emphasis on thinking and behavior of individual and organization, and pay attention to evaluation results while ignore process. Moreover, determining evaluation indicators lacks objective evidence. A novel multidimensional safety culture evaluation model, which has scientific and completeness, is addressed by building an preliminary mapping between safety culture and SSE-CMM's (Systems Security Engineering Capability Maturity Model) process area and generic practice. The model focuses on enterprise system security engineering process evaluation and provides new ideas and scientific evidences for the study of safety culture. (authors)

  4. Learning about Cells as Dynamic Entities: An Inquiry-Driven Cell Culture Project

    Science.gov (United States)

    Palombi, Peggy Shadduck; Jagger, Kathleen Snell

    2008-01-01

    Using cultured fibroblast cells, undergraduate students explore cell division and the responses of cultured cells to a variety of environmental changes. The students learn new research techniques and carry out a self-designed experiment. Through this project, students enhance their creative approach to scientific inquiry, learn time-management and…

  5. Stability of resazurin in buffers and mammalian cell culture media

    DEFF Research Database (Denmark)

    Rasmussen, Eva; Nicolaisen, G.M.

    1999-01-01

    The utility of a ferricyanide/ferrocyanide system used in the AlamarBlue(TM) (Serotec, Oxford, UK) vital. dye to inhibit the reduction of resazurin by mammalian cell culture media is questioned. Resazurin was found to be relatively stable when dissolved in phosphate-buffered saline (PBS). The use...... of HEPES resulted in a huge immediate dye reduction, which was significantly enhanced by exposure to diffuse light from fluorescent tubes in the laboratory 8 h per day. The reduction of resazurin by various cell culture media was time and temperature dependent, and it was significantly enhanced by......'s nutrient mixture F-10 and F-12. Fetal calf serum (5-20%) slightly decreased resazurin reduction during the first 2 days of incubation. The reduction of resazurin by mammalian cell culture media do not appear to be problematic under normal culture conditions, and it is primarily dependent upon the presence...

  6. Towards dynamic metabolic flux analysis in CHO cell cultures.

    Science.gov (United States)

    Ahn, Woo Suk; Antoniewicz, Maciek R

    2012-01-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. PMID:22102428

  7. Detection of multiple mycoplasma infection in cell cultures by PCR

    Directory of Open Access Journals (Sweden)

    J. Timenetsky

    2006-07-01

    Full Text Available A total of 301 cell cultures from 15 laboratories were monitored for mycoplasma (Mollicutes using PCR and culture methodology. The infection was detected in the cell culture collection of 12 laboratories. PCR for Mollicutes detected these bacteria in 93 (30.9% samples. Although the infection was confirmed by culture for 69 (22.9% samples, PCR with generic primers did not detect the infection in five (5.4%. Mycoplasma species were identified with specific primers in 91 (30.2% of the 98 samples (32.6% considered to be infected. Mycoplasma hyorhinis was detected in 63.3% of the infected samples, M. arginini in 59.2%, Acholeplasma laidlawii in 20.4%, M. fermentans in 14.3%, M. orale in 11.2%, and M. salivarium in 8.2%. Sixty (61.2% samples were co-infected with more than one mycoplasma species. M. hyorhinis and M. arginini were the microorganisms most frequently found in combination, having been detected in 30 (30.6% samples and other associations including up to four species were detected in 30 other samples. Failure of the treatments used to eliminate mycoplasmas from cell cultures might be explained by the occurrence of these multiple infections. The present results indicate that the sharing of non-certified cells among laboratories may disseminate mycoplasma in cell cultures.

  8. Promoting Cultural Relativism in Counselors through the Cultural De-Centering Model

    Science.gov (United States)

    McAuliffe, Garrett J.; Milliken, Tammi F.

    2009-01-01

    Counselors who are culturally encapsulated are likely to create client mistrust and to misinterpret clients' cultural norms. This article presents the Cultural De-Centering Model (CDCM) as a constructive-developmental method for helping future counselors to be less ethnocentric in their work. The goal of the CDCM is to increase counselors'…

  9. Models of Minority College-Going and Retention: Cultural Integrity versus Cultural Suicide.

    Science.gov (United States)

    Tierney, William G.

    1999-01-01

    Tinto's theory of college retention suggests that minority students must assimilate into the cultural mainstream to succeed on predominantly white campuses. This theory overlooks the U.S.'s history of ethnic oppression and discrimination. Delineates an alternative model based on cultural integrity and Bourdieu's notions of cultural capital.…

  10. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination

    OpenAIRE

    Alex Stivala; Garry Robins; Yoshihisa Kashima; Michael Kirley

    2014-01-01

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple ...

  11. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures.

    Science.gov (United States)

    Davidson, George S; Joe, Ray M; Roy, Sushmita; Meirelles, Osorio; Allen, Chris P; Wilson, Melissa R; Tapia, Phillip H; Manzanilla, Elaine E; Dodson, Anne E; Chakraborty, Swagata; Carter, Mark; Young, Susan; Edwards, Bruce; Sklar, Larry; Werner-Washburne, Margaret

    2011-04-01

    As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. PMID:21289090

  12. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures

    OpenAIRE

    1989-01-01

    The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cel...

  13. Culturally Risk Averse? – A Model of Economic Growth with Endogenous Culture

    OpenAIRE

    Mariko Klasing

    2008-01-01

    This research studies the dynamic interplay between the evolution of cultural traits and the process of economic development. In particular, this paper shows how cultural attitudes, in this case differences in risk attitudes, influence economic decision making while at the same time illustrating how these attitudes endogenously change over time. In order to study this joint evolution of cultural and economic variables, an endogenous growth model is integrated with a cultural transmission mech...

  14. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    Science.gov (United States)

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. PMID:22509834

  15. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin;

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture....... The contact angle of SU-8 surface was significantly reduced from 90° to 25° after the surface modification. The treated SU-8 surfaces provided a cell culture environment that was comparable with cell culture flask surface in terms of generation time and morphology....

  16. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  17. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...

  18. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; Kooten, TV; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  19. Cell cultures from the symbiotic soft coral Sinularia flexibilis

    NARCIS (Netherlands)

    Khalesi, M.K.; Vera-Jimenez, N.I.; Aanen, D.K.; Beeftink, H.H.; Wijffels, R.H.

    2008-01-01

    The symbiotic octocoral Sinularia flexibilis is a producer of potential pharmaceuticals. Sustainable mass production of these corals as a source of such compounds demands innovative approaches, including coral cell culture. We studied various cell dissociation methodologies and the feasibility of cu

  20. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Ozcan;

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-...

  1. Adolescents Family Models : A Cross-Cultural Study

    OpenAIRE

    Mayer, Boris

    2009-01-01

    This study explores and compares the family models of adolescents across ten cultures using a typological and multilevel approach. Thereby, it aims to empirically contribute to Kagitcibasi s (2007) theory of family change. This theory postulates the existence of three ideal-typical family models across cultures: a family model of independence prevailing in Western societies, a family model of (total) interdependence prevailing in non-industrialized agrarian cultures, and as a synthesis of the...

  2. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes

    OpenAIRE

    Xiaoyan Wang; Tingfeng Chen; Yani Zhang; Bichun Li; Qi Xu; Chengyi Song

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like c...

  3. Border Cell Migration: A Model System for Live Imaging and Genetic Analysis of Collective Cell Movement

    OpenAIRE

    M Prasad; Wang, X; He, L.; Cai, D.; Montell, DJ

    2015-01-01

    © 2015, Springer Science+Business Media New York. Border cell migration in the Drosophila ovary has emerged as a genetically tractable model for studying collective cell movement. Over many years border cell migration was exclusively studied in fixed samples due to the inability to culture stage 9 egg chambers in vitro. Although culturing late-stage egg chambers was long feasible, stage 9 egg chambers survived only briefl y outside the female body. We identifi ed culture conditions that suppo...

  4. Bulky PAH-DNA induced by exposure of a co-culture model of human alveolar macrophages and embryonic epithelial cells to atmospheric particulate pollution

    International Nuclear Information System (INIS)

    Because of their deep penetration in human lungs, fine airborne particulate matter were described as mainly responsible for the deleterious effects of exposure to air pollution on health. Organic constituents are adsorbed on particles surface and, after inhalation, some (polycyclic aromatic hydrocarbons, PAHs) can be activated into reactive metabolites and can bind to DNA. The formation of bulky DNA adducts has been researched after exposure of mono-and co-cultures of alveolar macrophages (AM) and human embryonic human lung epithelial (L132), to fine air pollution particulate matter Air samples have been collected with cascade impactor and characterized: size distribution (92.15% 2/g), inorganic (Fe, AI, Ca, Na, K, Mg, Pb, etc.) and organic compounds (PAHs, etc.). 32P post-labeling method was applied to detect bulky DNA adducts in AM and L132, in mono-and co-cultures, 72 h after their exposure to atmospheric particles at their Lethals and Effects concentrations or (LC or CE) to 50% (i.e. MA: EC50 = 74.63 μg/mL and L132: LC-5-0 = 75.36 μg/mL). Exposure to desorbed particles (MA: C1= 61.11 μg/mL and L132 : C2 = 61.71 μg/mL) and B[a]P (1 μM) were included. Bulky PAH-DNA adducts were detected in AM in mono-culture after exposure to total particles (Pt), to B[a]P and desorbed particles (Pd). Whatever the exposure, no DNA adduct was detected in L132 in mono-culture. These results are coherent with the enzymatic activities of cytochrome P450 l Al in AM and L132. Exposure of co-culture to Pt, or Pd induced bulky adducts to DNA in AM but not in L132. Exposure to B[a]P alone has altered the DNA of AM and L132, in co-culture. Exposure to Pt is closer to the environmental conditions, but conferred an exposure to amounts of genotoxic agents compared to studies using organic extracts. The formation of bulky DNA adducts was nevertheless observed in AM exposed to Pt, in mono- or co-culture, indicating that they were competent in terms of metabolic activation of PAHs. The DNA

  5. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  6. Schwann cell cultures from human fetal dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    Yaping Feng; Hui Zhu; Jiang Hao; Xinmin Wang; Shengping Wu; Li Bai; Xiangming Li; Yun Zha

    2009-01-01

    BACKGROUND:Previous studies have used many methods for in vitro Schwann cells (SCs) cul-tures and purification,such as single cell suspension and cytosine arabinoside.However,it has been difficult to obtain sufficient cellular density,and the procedures have been quite tedious.OBJECTIVE:To investigate the feasibility of culturing high-density SCs using fetal human dorsal root ganglion tissue explants.DESIGN,TIME AND SETTING:Cell culture and immunohistochemistry were performed at the Cen-tral Laboratory of Kunming General Hospital of Chinese PLA between March 2001 and October 2008.MATERIALS:Culture media containing 10% fetal bovine serum,as well as 0.2% collagenase and 0.25% trypsin were purchased from Gibco,USA;mouse anti-human S-100 monoclonal antibody and goat anti-mouse IgG labeled with horseradish peroxidase were provided by Beijing Institute of Bi-ological Products,China.METHODS:Primarily cultured SCs were dissociated from dorsal root ganglia of human aborted fe-tuses at 4-6 months pregnancy.Following removal of the dorsal root ganglion perineurium,the gan-glia were dissected into tiny pieces and digested with 0.2% collagenase and 0.25% trypsin (volume ratio 1:1),then explanted and cultured.SC purification was performed with 5 mL 10% fetal bovine serum added to the culture media,followed by differential adhesion.MAIN OUTCOME MEASURES:SCs morphology was observed under inverted phase contrast light microscopy.SC purity was evaluated according to percentage of S-100 immunostained cells.RESULTS:SCs were primarily cultured for 5-6 days and then subcultured for 4-5 passages.The highly enriched SC population reached > 95% purity and presented with normal morphology.CONCLUSION:A high purity of SCs was obtained with culture methods using human fetal dorsal root ganglion tissue explants.

  7. Modeling cell behavior: moving beyond intuition

    Directory of Open Access Journals (Sweden)

    Mario Jolicoeur

    2014-04-01

    Full Text Available In the context of the launching of this new journal, we propose a forum to the community of researchers interested and involved in, or even simply questioning the why, what, how, and when of modeling cell or cell culture behavior. To start the discussion, we review some of the usual questions we are routinely asked on the pertinence of modeling cell behavior, and on who might benefit from conducting such work. To draw a global portrait, throughout this text we refer the reader to handbooks introducing the basics of modeling a biosystem, as well as to selected works that can help visualize the broad fields of applications.

  8. The Suitability of BV2 Cells as Alternative Model System for Primary Microglia Cultures or for Animal Experiments Examining Brain Inflammation

    OpenAIRE

    Henn, Anja; Lund, Søren; Hedtjärn, Maj; Schrattenholz, André; Pörzgen, Peter; Leist, Marcel

    2009-01-01

    The role of microglia in neurodegeneration, toxicology and immunity is an expanding area of biomedical research requiring large numbers of animals. Use of a microglia-like cell line would accelerate many research programmes and reduce the necessity of continuous cell preparations and animal experimentation, provided that the cell line reproduces the in vivo situation or primary microglia (PM) with high fidelity. The immortalised murine microglial cell line BV-2 has been used frequently as a s...

  9. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  10. Hydrodynamic effects on cells in agitated tissue culture reactors

    Science.gov (United States)

    Cherry, R. S.; Papoutsakis, E. T.

    1986-01-01

    The mechanisms by which hydrodynamic forces can affect cells grown on microcarrier beads in agitated cell culture reactors were investigated by analyzing the motion of microcarriers relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. It was found that harmful effects on cell cultures that have been previously attributed to shear can be better explained as the effects of turbulence (of a size scale comparable to the microcarriers or the spacing between them) or collisions. The primary mechanisms of cell damage involve direct interaction between microcarriers and turbulent eddies, collisions between microcarriers in turbulent flow, and collisions against the impeller or other solid surfaces. The implications of these analytical results for the design of tissue culture reactors are discussed.

  11. Culture and immortalization of pancreatic ductal epithelial cells.

    Science.gov (United States)

    Lawson, Terence; Ouellette, Michel; Kolar, Carol; Hollingsworth, Michael

    2005-01-01

    Some populations of the epithelial cells from the duct and ductular network of the mammalian pancreas have been isolated and maintained in vitro for up to 3 mo. These cells express many of the surface factors that are unique to them in vivo. They also retain significant drug- and carcinogen-metabolizing capacity in vitro. In this chapter we review the progression of the methods for the isolation, culture and maintenance in vitro for these cells from the earliest when only duct/ductular fragments were obtainable to the current ones which provide epithelial cells. The critical steps in the isolation process are identified and strategies are provided to facilitate these steps. These include the selection of tissue digestive enzymes, the importance of extensive mincing before culture and the importance of roles of some co-factors used in the culture medium. PMID:15542901

  12. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota;

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through a...... sandwiched membrane. The culture chamber and perfusion chamber are separated by a sandwiched membrane and each chamber has separate inlet/outlets for easy loading/unloading of cells and perfusion of the media. The perfusion of media and exchange of nutrients occur through the sandwiched membrane, which was...... of CFSE staining and subsequent counting in a flow cytometer. To conclude on the applicability of μBR for genetic diagnostics, we prepare chromosome spreads on glass slides from the cultured samples, which is the primary step for metaphase FISH analysis....

  13. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    International Nuclear Information System (INIS)

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells

  14. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: charliet@uottawa.ca [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  15. Radiation-induced DNA Double Strand Breaks and Their Modulations by Treatments with Moringa oleifera Lam. Leaf Extracts: A Cancer Cell Culture Model

    International Nuclear Information System (INIS)

    Gamma radiation brings deleterious effects upon human cells by inducing oxidative stress and DNA damages. Antioxidants have been shown to confer protective effects on irradiated normal cells. Moringa oleifera Lam. is a widely used nutritional supplement with antioxidant activities. This report showed that antioxidant-containing supplements, in addition to protecting normal cells, could protect cancer cells against genotoxic effects of gamma radiation. γ-H2AX immunofluorescent foci were utilized as an indicator of radiation-induced DNA double strand breaks. MCF-7 human breast adenocarcinoma cells were irradiated with 2-8 Gy gamma radiation. A linear relationship between the formation of γ-H2AX foci and radiation dose was observed with an average of 10 foci per cell per Gy. A 30-minute pretreatment of the cells with either the aqueous or the ethanolic extract of M. oleifera leaves could partially protect the cells from radiation-induced DNA double strand breaks. A pretreatment with 500 µg/mL aqueous extract reduced the number of foci formed by 15% when assayed at 30 minutes post-irradiation. The ethanolic extract was more effective; 500 µg/mL of its concentration reduced the number of foci among irradiated cells by 30%. The results indicated that irradiated cancer cells responded similarly to nutritional supplements containing antioxidants as irradiated normal cells. These natural antioxidants could confer protective effects upon cancer cells against gamma radiation. (author)

  16. Radiation-induced DNA Double Strand Breaks and Their Modulations by Treatments with Moringa oleifera Lam. Leaf Extracts: A Cancer Cell Culture Model

    Directory of Open Access Journals (Sweden)

    K. Boonsirichai

    2014-04-01

    Full Text Available Gamma radiation brings deleterious effects upon human cells by inducing oxidative stress and DNA damages. Antioxidants have been shown to confer protective effects on irradiated normal cells. Moringa oleifera Lam. is a widely used nutritional supplement with antioxidant activities. This report showed that antioxidant-containing supplements, in addition to protecting normal cells, could protect cancer cells against genotoxic effects of gamma radiation. -H2AX immunofluorescent foci were utilized as an indicator of radiation-induced DNA double strand breaks. MCF-7 human breast adenocarcinoma cells were irradiated with 2-8 Gy gamma radiation. A linear relationship between the formation of -H2AX foci and radiation dose was observed with an average of 10 foci per cell per Gy. A 30-minute pretreatment of the cells with either the aqueous or the ethanolic extract of M. oleifera leaves could partially protect the cells from radiation-induced DNA double strand breaks. A pretreatment with 500 µg/mL aqueous extract reduced the number of foci formed by 15% when assayed at 30 minutes post-irradiation. The ethanolic extract was more effective; 500 µg/mL of its concentration reduced the number of foci among irradiated cells by 30%. The results indicated that irradiated cancer cells responded similarly to nutritional supplements containing antioxidants as irradiated normal cells. These natural antioxidants could confer protective effects upon cancer cells against gamma radiation

  17. Dose verification by OSLDs in the irradiation of cell cultures

    International Nuclear Information System (INIS)

    The determination of value of irradiation dose presents difficulties when targets are irradiated located in regions where electronic equilibrium of charged particle is not reached, as in the case of irradiation -in vitro- of cell lines monolayer-cultured, in culture dishes or flasks covered with culture medium. The present study aimed to implement a methodology for dose verification in irradiation of cells in culture media by optically stimulated luminescence dosimetry (OSLD). For the determination of the absorbed dose in terms of cell proliferation OSL dosimeters of aluminum oxide doped with carbon (Al2O3:C) were used, which were calibrated to the irradiation conditions of culture medium and at doses that ranged from 0.1 to 15 Gy obtained with a linear accelerator of 6 MV photons. Intercomparison measurements were performed with an ionization chamber of 6 cm3. Different geometries were evaluated by varying the thicknesses of solid water, air and cell culture medium. The results showed deviations below 2.2% when compared with the obtained doses of OSLDs and planning system used. Also deviations were observed below 3.4% by eccentric points of the irradiation plane, finding homogeneous dose distribution. Uncertainty in the readings was less than 2%. The proposed methodology contributes a contribution in the dose verification in this type of irradiations, eliminating from the calculation uncertainties, potential errors in settling irradiation or possible equipment failure with which is radiating. It also provides certainty about the survival curves to be plotted with the experimental data. (Author)

  18. A cell culture assay for the detection of cardiotoxicity

    International Nuclear Information System (INIS)

    An important step in minimizing the number of animal experiments in medical research is the study of in vitro model systems. The authors propose the use of shock protein formation, which is a cellular response to cell-damaging stress as an assay to monitor cardiotoxicity. Isolated and cultured cardiac myocytes were prepared by a trypsin digestion method from 18-day-old fetal mice. These cells respond to typical substances inducing shock protein formation in other cellular systems as well as to known cardiotoxins with the de novo synthesis of shock proteins. Pharmaceuticals relevant in transplant medicine were tested for possible cardiotoxic effects: Cyclosporine A evokes shock protein formation at subtherapeutic concentrations. Azathioprine and methyl-prednisolone exert the same effect but at concentration ranges highly above the therapeutic level. The ability to induce shock protein synthesis obviously seems to be restricted to toxic drugs. The data presented demonstrate that the proposed in vitro model system for cardiotoxicity is animal saving and sensitive

  19. NMR-based metabolomics of mammalian cell and tissue cultures

    International Nuclear Information System (INIS)

    NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

  20. A cell culture assay for the detection of cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Loew-Friedrich, Iv.; von Bredow, F.; Schoeppe, W. (Department of Nephrology, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main (Germany))

    1991-04-01

    An important step in minimizing the number of animal experiments in medical research is the study of in vitro model systems. The authors propose the use of shock protein formation, which is a cellular response to cell-damaging stress as an assay to monitor cardiotoxicity. Isolated and cultured cardiac myocytes were prepared by a trypsin digestion method from 18-day-old fetal mice. These cells respond to typical substances inducing shock protein formation in other cellular systems as well as to known cardiotoxins with the de novo synthesis of shock proteins. Pharmaceuticals relevant in transplant medicine were tested for possible cardiotoxic effects: Cyclosporine A evokes shock protein formation at subtherapeutic concentrations. Azathioprine and methyl-prednisolone exert the same effect but at concentration ranges highly above the therapeutic level. The ability to induce shock protein synthesis obviously seems to be restricted to toxic drugs. The data presented demonstrate that the proposed in vitro model system for cardiotoxicity is animal saving and sensitive.

  1. Radiosensitivity of cultured insect cells: I. Lepidoptera

    International Nuclear Information System (INIS)

    The radiosensitivity of five lepidopteran insect cell lines representing five different genera has been investigated. These lines are: (1) TN-368, Trichoplusia ni; (2) IPLB-SF-1254, Spodoptera frugiperda; (3) IPLB-1075, Heliothis zea; (4) MRRL-CHl, clone GVl, Manduca sexta; and (5) IAL-PID2, Plodia interpunctella. The cell lines grew at different rates and had population doubling times that ranged from 19 to 52 hr. All of the lines are highly heteroploid and have approximate chromosome numbers near or above 100. The chromosomes are very small. All of the lines are extremely radioresistant; cell populations are able to recover from 260 kVp X-ray exposures up to and including 400 Gy, the highest dose examined. Cell survival curves were obtainable for only the TN-368 and IPLB-SF-1254 lines. The TN-368 cells displayed a biphasic survival response with D0, d/sub q/, and n values of 65.7 and 130.2 Gy, 9.0 and -36.1 Gy, and 1.2 and 0.8, respectively, for the steep and shallow portions of the curve. The IPLB-SF-1254 cells had a D0 of 63.9 Gy. D/sub q/ of 19.0 Gy, and n value of 1.4. These studies provide definitive evidence of the radioresistance of lepidopteran cells, and suggest that this radioresistance is a characteristic of lepidopteran insects

  2. Establishing a stem cell culture laboratory for clinical trials

    Directory of Open Access Journals (Sweden)

    Elíseo Joji Sekiya

    2012-01-01

    Full Text Available Adult stem/progenitor cells are found in different human tissues. An in vitro cell culture is needed for their isolation or for their expansion when they are not available in a sufficient quantity to regenerate damaged organs and tissues. The level of complexity of these new technologies requires adequate facilities, qualified personnel with experience in cell culture techniques, assessment of quality and clear protocols for cell production. The rules for the implementation of cell therapy centers involve national and international standards of good manufacturing practices. However, such standards are not uniform, reflecting the diversity of technical and scientific development. Here standards from the United States, the European Union and Brazil are analyzed. Moreover, practical solutions encountered for the implementation of a cell therapy center appropriate for the preparation and supply of cultured cells for clinical studies are described. Development stages involved the planning and preparation of the project, the construction of the facility, standardization of laboratory procedures and development of systems to prevent cross contamination. Combining the theoretical knowledge of research centers involved in the study of cells with the practical experience of blood therapy services that manage structures for cell transplantation is presented as the best potential for synergy to meet the demands to implement cell therapy centers.

  3. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.

    Science.gov (United States)

    Hu, Ke; Zhou, Naizhen; Li, Yang; Ma, Siyu; Guo, Zhaobin; Cao, Meng; Zhang, Qiying; Sun, Jianfei; Zhang, Tianzhu; Gu, Ning

    2016-06-22

    Cell-adhesive properties are of great significance to materials serving as extracellular matrix mimics. Appropriate cell-adhesive property of material interface can balance the cell-matrix interaction and cell-cell interaction and can promote cells to form 3D structures. Herein, a novel magnetic polyacrylamide (PAM) hydrogel fabricated via combining magnetostatic field induced magnetic nanoparticles assembly and hydrogel gelation was applied as a multicellular spheroids culturing platform. When cultured on the cell-adhesive microarray interface of sliced magnetic hydrogel, normal and tumor cells from different cell lines could rapidly form multicellular spheroids spontaneously. Furthermore, cells which could only form loose cell aggregates in a classic 3D cell culture model (such as hanging drop system) were able to be promoted to form multicellular spheroids on this platform. In the light of its simplicity in fabricating as well as its effectiveness in promoting formation of multicellular spheroids which was considered as a prevailing tool in the study of the microenvironmental regulation of tumor cell physiology and therapeutic problems, this composite material holds promise in anticancer drugs or hyperthermia therapy evaluation in vitro in the future. PMID:27258682

  4. Naïve adult stem cells isolation from primary human fibroblast cultures.

    Science.gov (United States)

    Wenzel, Vera; Roedl, Daniela; Ring, Johannes; Djabali, Karima

    2013-01-01

    readily available from tissue banks around the world (Figure 1). This method has important significance as it allows the isolation of precursor cells when skin samples are not accessible while fibroblast cultures may be available from tissue banks, thus, opening new opportunities to dissect the molecular mechanisms underlying rare genetic diseases as well as modeling diseases in a dish. PMID:23685623

  5. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types. PMID:1026199

  6. Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures.

    Science.gov (United States)

    Domart-Coulon, I; Auzoux-Bordenave, S; Doumenc, D; Khalanski, M

    2000-06-01

    Short-term primary cell cultures were derived from adult marine bivalve tissues: the heart of oyster Crassostrea gigas and the gill of clam Ruditapes decussatus. These cultures were used as experimental in vitro models to assess the acute cytotoxicity of an organic molluscicide, Mexel-432, used in antibiofouling treatments in industrial cooling water systems. A microplate cell viability assay, based on the enzymatic reduction of tetrazolium dye (MTT) in living bivalve cells, was adapted to test the cytotoxicity of this compound: in both in vitro models, toxicity thresholds of Mexel-432 were compared to those determined in vivo with classic acute toxicity tests. The clam gill cell model was also used to assess the cytotoxicity of by-products of chlorination, a major strategy of biofouling control in the marine environment. The applications and limits of these new in vitro models for monitoring aquatic pollutants were discussed, in reference with the standardized Microtox test. PMID:10806375

  7. Continuous culture of immobilized streptomyces cells for kasugamycin production.

    Science.gov (United States)

    Kim, C J; Chang, Y K; Chun, G T; Jeong, Y H; Lee, S J

    2001-01-01

    Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed. PMID:11386865

  8. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized a...

  9. Prediction of microbial growth in mixed culture with a competition model.

    Science.gov (United States)

    Fujikawa, Hiroshi; Sakha, Mohammad Z

    2014-01-01

    Prediction of microbial growth in mixed culture was studied with a competition model that we had developed recently. The model, which is composed of the new logistic model and the Lotka-Volterra model, is shown to successfully describe the microbial growth of two species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. With the parameter values of the model obtained from the experimental data on monoculture and mixed culture with two species, it then succeeded in predicting the simultaneous growth of the three species in mixed culture inoculated with various cell concentrations. To our knowledge, it is the first time for a prediction model for multiple (three) microbial species to be reported. The model, which is not built on any premise for specific microorganisms, may become a basic competition model for microorganisms in food and food materials. PMID:24975413

  10. Multilineage co-culture of adipose-derived stem cells for tissue engineering.

    Science.gov (United States)

    Zhao, Yimu; Waldman, Stephen D; Flynn, Lauren E

    2015-07-01

    Stem cell interactions through paracrine cell signalling can regulate a range of cell responses, including metabolic activity, proliferation and differentiation. Moving towards the development of optimized tissue-engineering strategies with adipose-derived stem cells (ASCs), the focus of this study was on developing indirect co-culture models to study the effects of mature adipocytes, chondrocytes and osteoblasts on bovine ASC multilineage differentiation. For each lineage, ASC differentiation was characterized by histology, gene expression and protein expression, in the absence of key inductive differentiation factors for the ASCs. Co-culture with each of the mature cell populations was shown to successfully induce or enhance lineage-specific differentiation of the ASCs. In general, a more homogeneous but lower-level differentiation response was observed in co-culture as compared to stimulating the bovine ASCs with inductive differentiation media. To explore the role of the Wnt canonical and non-canonical signalling pathways within the model systems, the effects of the Wnt inhibitors WIF-1 and DKK-1 on multilineage differentiation in co-culture were assessed. The data indicated that Wnt signalling may play a role in mediating ASC differentiation in co-culture with the mature cell populations. PMID:23135884

  11. The Dock-in Model of music culture and cross-cultural perception

    OpenAIRE

    Fritz, T.

    2013-01-01

    This paper proposes a model that aims to illustrate how different human music cultures intersect and “dock in” to a set of music features that are universally perceived, while also displaying culture-specific features that must be learned. The model emphasizes that over historic time the music in a given culture can “dock into” and “dock out of” cues that are universally perceived, shifting its potential for cross-cultural perception and interaction. While this model accounts for music ethnol...

  12. Formation and action of oxygen activated species in cell cultures

    International Nuclear Information System (INIS)

    The differences of hydrogen peroxide sensibility of mammal cell lineages (man, mouse, chinese hamster) in culture are studied. The cellular survival and the frequency of DNA induced breaks by hydrogen peroxide are analysed. The efficiency of elimination of DNA breaks by cells is determined. The possible relation between the cell capacity of repair and its survival to hydrogen peroxide action is also discussed. (M.A.)

  13. Polyphosphoinositides are present in plant tissue culture cells

    International Nuclear Information System (INIS)

    Polyphosphoinositides have been isolated from wild carrot cells grown in suspension culture. This is the first report of polyphosphoinositides in plant cells. The phospholipids were identified by comigration with known standards on thin-layer plates. After overnight labeling of the cells with myo-[2-3H] inositol, the phosphoinositides as percent recovered inositol were 93% phosphatidylinositol., 3.7% lysophosphatidylinositol, 1.7% phosphatidylinositol monophosphate, 0.8% phosphatidylinositol bisphosphate

  14. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  15. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like ...

  16. Epithelial morphogenesis in three-dimensional cell culture system

    OpenAIRE

    Liu, Mengfei; 刘梦菲

    2014-01-01

    In human body, the most common structures formed by epithelial cells are hollow cysts or tubules. The key feature of the cysts and tubules is the central lumen, which is lined by epithelial cell sheets. The central lumen allows material exchange, thus it is indispensable for the proper function of the epithelial tissue. In order to understand the way that the epithelial cells form highly specialized structure, an in vitro three-dimensional (3D) culture system was established. The Caco-2 c...

  17. Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring

    OpenAIRE

    Boero, Cristina; Carrara, Sandro; Del Vecchio, Giovanna; Albini, Giuseppe D.; Calzà, Laura; De Micheli, Giovanni

    2010-01-01

    Monitoring of metabolic compounds, such as glucose and lactate, is extensively reported in literature, especially for clinical purposes. Instead, the application of such technologies for monitoring metabolites in cell cultures has not been explored. From one side, such devices can provide information to the current state-of-the-art of cell lines, particularly those which are not fully known, as stem and embryonic cells. On the other hand, those systems can pave the way to fully automation for...

  18. Optimization of Seeding Density in Microencapsulated Recombinant CHO Cell Culture

    OpenAIRE

    Zhang, Ying; Zhou, Jing; Zhang, Xulang; Yu, Weiting; Guo, Xin; Wang, Wei; Ma, Xiaojun

    2008-01-01

    Microencapsulation technology is an alternative large-scale mammalian cell culture method. The semi-permeable membrane of the microcapsule allows free diffusion of nutrients, oxygen and toxic metabolites to support cell growth, and the microcapsule membrane can protect the cells from the mechanical damage of shear forces associated with agitation and aeration. Many polymers have been used to make microcapsules, such as chitosan, polyacrylates, alginate, polyamino acids, and polyamides. One of...

  19. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research

    Science.gov (United States)

    Stover, Alexander E.; Herculian, Siranush; Banuelos, Maria G.; Navarro, Samantha L.; Jenkins, Michael P.; Schwartz, Philip H.

    2016-01-01

    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  20. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  1. Specimen Sample Preservation for Cell and Tissue Cultures

    Science.gov (United States)

    Meeker, Gabrielle; Ronzana, Karolyn; Schibner, Karen; Evans, Robert

    1996-01-01

    The era of the International Space Station with its longer duration missions will pose unique challenges to microgravity life sciences research. The Space Station Biological Research Project (SSBRP) is responsible for addressing these challenges and defining the science requirements necessary to conduct life science research on-board the International Space Station. Space Station will support a wide range of cell and tissue culture experiments for durations of 1 to 30 days. Space Shuttle flights to bring experimental samples back to Earth for analyses will only occur every 90 days. Therefore, samples may have to be retained for periods up to 60 days. This presents a new challenge in fresh specimen sample storage for cell biology. Fresh specimen samples are defined as samples that are preserved by means other than fixation and cryopreservation. The challenge of long-term storage of fresh specimen samples includes the need to suspend or inhibit proliferation and metabolism pending return to Earth-based laboratories. With this challenge being unique to space research, there have not been any ground based studies performed to address this issue. It was decided hy SSBRP that experiment support studies to address the following issues were needed: Fixative Solution Management; Media Storage Conditions; Fresh Specimen Sample Storage of Mammalian Cell/Tissue Cultures; Fresh Specimen Sample Storage of Plant Cell/Tissue Cultures; Fresh Specimen Sample Storage of Aquatic Cell/Tissue Cultures; and Fresh Specimen Sample Storage of Microbial Cell/Tissue Cultures. The objective of these studies was to derive a set of conditions and recommendations that can be used in a long duration microgravity environment such as Space Station that will permit extended storage of cell and tissue culture specimens in a state consistent with zero or minimal growth, while at the same time maintaining their stability and viability.

  2. Expression of CD44 in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Zhongguo Li; Hong Zhang

    2004-01-01

    Purpose:To determine whether cultured human trabecular meshwork cells express CD44 and to discuss their possible relationship with primary open angle glaucoma.Methods:Human trabecular meshwork cells were cultured in DMEM/F12 media. Total RNAs from the cells were extracted with Trizol reagent. Messenger RNA expression of CD44 in human trabecular meshwork cells was examined by using reverse transcriptasepolymerase chain reaction ( RT-PCR ) analysis. Expression of CD44 was confirmed by Western-blotting and immunofiuorescent microscopy. Effect of CD44-specific antisense oligonucleotide on adhesion of trabecular meshwork cells to hyaluronate was determined by MTT assay.Results:A single RT-PCR product whose size was 471bp was obtained.A band about 80kD was stained by Western-blot. Immunofiuorescent examination of expression of CD44 on the cell surface was positive and reactions were mainly localized in cell membranes.Adhesion of trabecular meshwork cells to hyaluronate was inhibited by CD44-specific antisense oligonucleotide.Conclusions: Cultured human trabecular meshwork cells express CD44. CD44 may play a role in pathogenesis of primary open angle glaucoma. Eye Science 2004;20:52-56.

  3. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats

    Science.gov (United States)

    Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-01-01

    Study Design This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. Purpose The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Overview of Literature Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. Methods The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Results Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Conclusions Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in

  4. Preparation of 14C-catechins by tea cell culture

    International Nuclear Information System (INIS)

    The preparation of 14C labelled catechins was studied by feeding 14C labelled precursor to tea cultured cells. Two labelled precursors were tested and their effects were compared. The dynamics of absorption and transformation of fed precursors were analyzed and the effects of pre-culture as well as UV light pretreatment on product labelling rate were evaluated. Product analysis was also made by HSCCC and HPLC techniques

  5. Transplantation of primary cultured embryonic mesencephalic neural precursor cells for treating Parkinsonian rats

    Institute of Scientific and Technical Information of China (English)

    Li Fei; Chengchuan Jiang; Linyin Feng; Yaodong Ji; Zhongliang Ding

    2006-01-01

    BACKGROUND: Choosing proper donor cells is one of keys in experimental and clinical studies on cell replacement therapy (CRT) for treating Parkinson disease (PD). Embryonic mesencephalic precursor cells (MPCs) can stably differentiate into dopaminergic neuron after in vitro proliferated culture. As compared with embryonic stem cell and neural stem cell strains, cell composition of embryonic MPCs after primary culture is also the most close to that of embryonic mesencephalic ventral cell suspension without proliferated culture. Successful experience accumulated in the latter suggests that primary cultured embryonic MPCs might be the most potential donor cells in clinical application with CRT for treating PD so far.OBJECTIVE: To investigate the feasibility of primary cultured embryonic precursor cells cultured primarily as donor cells in CRT for treating PD in rats.DESIGN: A randomized and controlled trial taking SD rats as experimental animals.SETTING: Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University.MATERIALS: This experiment was carried out at the Institute of Neuroscience, Shanghai Institute for Biological Science, Chinese Academy of Sciences from July 2003 to June 2004. Totally 26 female SD rats,with body mass of 200 to 220 g, were provided by Shanghai Experimental Animal Center of Chinese Academy of Sciences.METHODS: Stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle were perfored to develop PD model rat. Among 26 SD rats, 20 rats achieved a more than 5 turns/min in apomorphine induced rotation test, reaching the standard of PD model rats. Immunohistochemical detection was performed on 1out of 20 model rats after execution, and the other 19 rats were randomly divided into control group (n=5),sham transplantation group (n=5)and cell grafted group (n=9). Primary cultured E12 MPC cell suspension (1.2×1011 L-1)were used as donor cells. 4 μL primary cultured E12 MPC cell suspension prepared freshly was injected

  6. In vitro optimization of the Gallus domesticus oviduct epithelial cells culture.

    Science.gov (United States)

    Kasperczyk, K; Bajek, A; Joachimiak, R; Walasik, K; Marszalek, A; Drewa, T; Bednarczyk, M

    2012-06-01

    The aim of this experiment was to establish an efficient method for isolation and further culture in vitro of the normal chicken oviduct epithelial cells (COEC) for cell-based research models. Different factors were tested to optimize COEC primary culture for repeatable results: the origin of isolated cells (oviduct Infundibulum or Magnum section); the oviduct tissue dissociation procedure (mechanical scrapping or mincing), tissue digestion times (15, 30 and 45 min), the culture plates coating (colagene I, polystyrene surface or 3T3 feeder layer), the growth media (classic DMEM/Ham's F12 and defined serum-free medium, Lonza Switzerland), incubation temperature (37 °C vs 41°C) and different cell seeding numbers: 0.2M, 0.5M and 1.0M cells/well. The COEC isolated by mincing the Infundibular neck and digestion of tissue for 30 min formed cell aggregates of bright colour and gave proliferating colonies of epithelial-like character which was the best result obtained from all applied procedures in our studies. The fibroblast-like cells considered as contaminants occurred only sporadically up to day 7 of culture. Seeding about 1M cells in 1 mL of serum-free medium onto 12-well dishes gave the optimal growth of colonies resulting in 5 to 7 confluent culture wells from a single oviduct sample. Feeder layer and collagen I did not improve adhesion of the COEC to the culture vessel. Adoption of 37 °C and 41 °C did not reveal apparent differences to the condition of cultured COEC. Cell differentiation and proliferation potential depends on number and replicative capacity of isolated progenitors. The progenitors are responsible for holoclones formation and good culture growth. The percentage of colonies developed from the cells isolated from Infundibulum was greater than that of other samples in our studies. We conclude that the model of COEC primary cultures from different segments of oviduct, in particular infundibulum, should be incorporated to the range of avian cells

  7. The Culture-Work-Health Model and Work Stress.

    Science.gov (United States)

    Peterson, Michael; Wilson, John F.

    2002-01-01

    Examines the role of organizational culture in the etiology of workplace stress through the framework of the Culture-Work- Health model. A review of relevant business and health literature indicates that culture is an important component of work stress and may be a key to creating effective organizational stress interventions. (SM)

  8. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...... and in established cell lines was reduced to about the same basic level after treatment with heparin, a highly specific inhibitor of CKII activity. The activity of the cAMP-dependent protein kinase was virtually the same in fibroblasts and various human tumour cell lines investigated....

  9. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    Science.gov (United States)

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. PMID:26658353

  10. University - industry collaborations: models, drivers and cultures.

    Science.gov (United States)

    Ehrismann, Dominic; Patel, Dhavalkumar

    2015-01-01

    The way academic institutions and pharmaceutical companies have been approaching collaborations has changed significantly in recent years. A multitude of interaction models were tested and critical factors that drive successful collaborations have been proposed. Based on this experience the current consensus in the pharmaceutical industry is to pursue one of two strategies: an open innovation approach to source discoveries wherever they occur, or investing selectively into scientific partnerships that churn out inventions that can be translated from bench to bedside internally. While these strategies may be intuitive, to form and build sustainable relationships between academia and large multinational healthcare enterprises is proving challenging. In this article we explore some of the more testing aspects of these collaborations, approaches that various industrial players have taken and provide our own views on the matter. We found that understanding and respecting each other's organisational culture and combining the intellectual and technological assets to answer big scientific questions accelerates and improves the quality of every collaboration. Upon discussing the prevailing cooperation models in the university - industry domain, we assert that science-driven collaborations where risks and rewards are shared equally without a commercial agenda in mind are the most impactful. PMID:25658854

  11. Residential segregation and cultural dissemination: An Axelrod-Schelling model

    Science.gov (United States)

    Gracia-Lázaro, C.; Lafuerza, L. F.; Floría, L. M.; Moreno, Y.

    2009-10-01

    In the Axelrod’s model of cultural dissemination, we consider the mobility of cultural agents through the introduction of a density of empty sites and the possibility that agents in a dissimilar neighborhood can move to them if their mean cultural similarity with the neighborhood is below some threshold. While for low values of the density of empty sites, the mobility enhances the convergence to a global culture, for high enough values of it, the dynamics can lead to the coexistence of disconnected domains of different cultures. In this regime, the increase in initial cultural diversity paradoxically increases the convergence to a dominant culture. Further increase in diversity leads to the fragmentation of the dominant culture into domains, forever changing in shape and number, as an effect of the never ending eroding activity of cultural minorities.

  12. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell...

  13. Hollow fiber clinostat for simulating microgravity in cell culture

    Science.gov (United States)

    Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)

    1992-01-01

    A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.

  14. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells.

    Science.gov (United States)

    Makarova, Olga V; Adams, Daniel L; Divan, Ralu; Rosenmann, Daniel; Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei

    2016-09-01

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. PMID:27207054

  15. Moving toward a more physiological model: application of mucin to refine the in vitro digestion/Caco-2 cell culture system

    Science.gov (United States)

    In the intestine, the epithelial cells are covered with a mucin layer produced by goblet cells. This mucin layer provides many important functions and can influence the uptake of iron. The objective of this study was to determine if a combination of commercially available mucin and an 8 um micropor...

  16. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness.

    Science.gov (United States)

    Branco da Cunha, Cristiana; Klumpers, Darinka D; Koshy, Sandeep T; Weaver, James C; Chaudhuri, Ovijit; Seruca, Raquel; Carneiro, Fátima; Granja, Pedro L; Mooney, David J

    2016-08-01

    Two-dimensional (2D) cultures often fail to mimic key architectural and physical features of the tumor microenvironment. Advances in biomaterial engineering allow the design of three-dimensional (3D) cultures within hydrogels that mimic important tumor-like features, unraveling cancer cell behaviors that would not have been observed in traditional 2D plastic surfaces. This study determined how 3D cultures impact CD44 alternative splicing in gastric cancer (GC) cells. In 3D cultures, GC cells lost expression of the standard CD44 isoform (CD44s), while gaining CD44 variant 6 (CD44v6) expression. This splicing switch was reversible, accelerated by nutrient shortage and delayed at lower initial cell densities, suggesting an environmental stress-induced response. It was further shown to be dependent on the hydrogel matrix mechanical properties and accompanied by the upregulation of genes involved in epithelial-mesenchymal transition (EMT), metabolism and angiogenesis. The 3D cultures reported here revealed the same CD44 alternative splicing pattern previously observed in human premalignant and malignant gastric lesions. These findings indicate that fundamental features of 3D cultures - such as soluble factors diffusion and mechanical cues - influence CD44 expression in GC cells. Moreover, this study provides a new model system to study CD44 dysfunction, whose role in cancer has been in the spotlight for decades. PMID:27187279

  17. Beyond Models of National Culture in Information Systems Research

    OpenAIRE

    Michale D. Myers; Felix B. Tan

    2002-01-01

    Many IS scholars argue that global organizations need to understand cultural differences if they are to successfully deploy information technology. We agree that an understanding of cultural differences is important, but suggest that the concept of “national culture†that has tended to dominate the IS research literature is too simplistic. In this article, we challenge information systems researchers to go beyond models of national culture. We propose that IS researchers should adopt a mor...

  18. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    Science.gov (United States)

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered. PMID:22320435

  19. Characterization of the cell-free DNA released by cultured cancer cells.

    Science.gov (United States)

    Bronkhorst, Abel Jacobus; Wentzel, Johannes F; Aucamp, Janine; van Dyk, Etresia; du Plessis, Lissinda; Pretorius, Piet J

    2016-01-01

    The most prominent factor that delays the translation of cell-free DNA (cfDNA) analyses to clinical practice is the lack of knowledge regarding its origin and composition. The elucidation of the former is complicated by the seemingly random fluctuation of quantitative and qualitative characteristics of cfDNA in the blood of healthy and diseased individuals. Besides methodological discrepancies, this could be ascribed to a web of cellular responses to various environmental cues and stressors. Since all cells release cfDNA, it follows that the cfDNA in the blood of cancer patients is not only representative of tumor derived DNA, but also of DNA released by healthy cells under different conditions. Additionally, cfDNA released by malignant cells is not necessarily just aberrant, but likely includes non-mutated chromosomal DNA fragments. This may cause false positive/negative results. Although many have acknowledged that this is a major problem, few have addressed it. We propose that many of the current stumbling blocks encountered in in vivo cfDNA studies can be partially circumvented by in vitro models. Accordingly, the purpose of this work was to evaluate the release of cfDNA from cultured cells and to gauge its potential use for elucidating the nature of cfDNA. Results suggest that the occurrence of cfDNA is not a consequence of apoptosis or necrosis, but primarily a result of actively secreted DNA, perhaps in association with a protein complex. This study demonstrates the potential of in vitro cell culture models to obtain useful information about the phenomenon of cfDNA. PMID:26529550

  20. Statistical prediction of nanoparticle delivery: from culture media to cell.

    Science.gov (United States)

    Brown, M Rowan; Hondow, Nicole; Brydson, Rik; Rees, Paul; Brown, Andrew P; Summers, Huw D

    2015-04-17

    The application of nanoparticles (NPs) within medicine is of great interest; their innate physicochemical characteristics provide the potential to enhance current technology, diagnostics and therapeutics. Recently a number of NP-based diagnostic and therapeutic agents have been developed for treatment of various diseases, where judicious surface functionalization is exploited to increase efficacy of administered therapeutic dose. However, quantification of heterogeneity associated with absolute dose of a nanotherapeutic (NP number), how this is trafficked across biological barriers has proven difficult to achieve. The main issue being the quantitative assessment of NP number at the spatial scale of the individual NP, data which is essential for the continued growth and development of the next generation of nanotherapeutics. Recent advances in sample preparation and the imaging fidelity of transmission electron microscopy (TEM) platforms provide information at the required spatial scale, where individual NPs can be individually identified. High spatial resolution however reduces the sample frequency and as a result dynamic biological features or processes become opaque. However, the combination of TEM data with appropriate probabilistic models provide a means to extract biophysical information that imaging alone cannot. Previously, we demonstrated that limited cell sampling via TEM can be statistically coupled to large population flow cytometry measurements to quantify exact NP dose. Here we extended this concept to link TEM measurements of NP agglomerates in cell culture media to that encapsulated within vesicles in human osteosarcoma cells. By construction and validation of a data-driven transfer function, we are able to investigate the dynamic properties of NP agglomeration through endocytosis. In particular, we statistically predict how NP agglomerates may traverse a biological barrier, detailing inter-agglomerate merging events providing the basis for