Sample records for cell culture growth

  1. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen


    malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  2. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.


    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  3. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures (United States)

    Stampfer, Martha R; Garbe, James C


    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  4. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.


    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  5. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair


    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  6. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K


    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  7. Growth and phenotypic characteristics of human nevus cells in culture. (United States)

    Mancianti, M L; Herlyn, M; Weil, D; Jambrosic, J; Rodeck, U; Becker, D; Diamond, L; Clark, W H; Koprowski, H


    Nevus cells were isolated from the three cutaneous components, epidermis, basal layer, and dermis, of nonmalignant pigmented lesions and were cultured separately in the presence or absence of the phorbol ester 12-0-tetradecanoyl phorbol-13-acetate in medium that supports the rapid proliferation of melanocytic cells. The separation procedure used provided cultures that were essentially free from normal melanocytes (dermis) or fibroblasts (epidermis). In short term culture, nevus cells of all skin compartments expressed markers associated with differentiated melanocytes, such as presence of premelanosomes and melanosomes and elevated tyrosinase levels. Nevus cells also expressed melanoma-associated antigens, such as NGF-receptor, transferrin-related p97, proteoglycan, and HLA-DR as detected with monoclonal antibodies. After several subpassages, cells showed a decreased expression of melanoma-associated antigens, decreased tyrrosinase levels, and melanosomes could no longer be detected. Morphologically, these cells were similar to fibroblasts. The disappearance of melanoma-associated cell surface antigens was concomitant with the appearance of a melanocyte-associated 145 kd protein that might serve as a marker of fibroblast-like differentiation in nevus cells and normal melanocytes. Nevus cell cultures grown in the presence of 12-0-tetradecanoyl phorbol-13-acetate maintained a stable differentiated phenotype throughout their lifespan. As reported earlier, nevus cells in culture, irrespective of the presence or absence of 12-0-tetradecanoyl phorbol-13-acetate, have a finite lifespan in vitro, grow anchorage-independent in soft agar, but do not form tumors when xenografted to nude mice. These studies demonstrate that nevus cells isolated from the epidermal, basal layer, and dermal components of lesional skin can serve as models to characterize the initial steps of tumor progression in a human cell system.

  8. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin


    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  9. Comparison of growth kinetics between static and dynamic cultures of human induced pluripotent stem cells. (United States)

    Kato, Yuma; Kim, Mee-Hae; Kino-Oka, Masahiro


    Understanding the fundamental mechanisms that govern the growth kinetics of human induced pluripotent stem cells (hiPSCs) contributes to culture design strategies to improve large-scale production. Two hiPSC lines (Tic and 253G1) were cultured under static and dynamic suspension conditions, and growth kinetics were compared during early (24-48 h), middle (48-72 h), and late (72-96 h) stages. In 2D static culture, similar growth profiles were observed for both hiPSC lines. However, there were significant differences in growth profile patterns and aggregate morphologies between hiPSC lines grown in 3D static and dynamic cultures. Based on immunostaining comparing the two hiPSC lines, surface distribution of collagen type I was observed in aggregates of the Tic line, but not in those of the 253G1 line. Compared to that in 3D static culture, the numbers of cells at 96 h were significantly decreased in 3D dynamic culture. The apparent specific growth rate (μ app ) of the Tic line was maintained continuously throughout culture, whereas that of the 253G1 line decreased gradually with culture until the late phase, at which time this parameter was reduced to μ app  = (0.85 ± 0.71) × 10 -2  h -1 . This indicates that during the growth of hiPSCs in 3D dynamic culture, cells were damaged by liquid flow, which disrupted the cell-synthesized extracellular matrix (ECM). These results demonstrate that cell-synthesized ECM is an important factor affecting cell growth and morphology, and that changes to the ECM within aggregates lead to reduced growth abilities in dynamic culture. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth

    Directory of Open Access Journals (Sweden)

    Revathi Shekar


    Conclusions: Permanent and deciduous teeth are both viable sources of stem cells. The permanent teeth were easier to culture because of a lower chance of contamination with oral microflora. The growth characteristics of the cells obtained from both these sources were similar. However, there was a difference in the ratio of fibroblastoid cells to epithelioid cells between the cultures obtained from the permanent and deciduous teeth.

  11. Enhanced growth medium and method for culturing human mammary epithelial cells (United States)

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.


    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  12. Effects of auxins on growth and scopoletin accumulation in cell suspension cultures of Angelica archangelica L. (United States)

    Siatka, T; Kasparová, M


    Scopoletin is a coumarin possessing many interesting biological effects, e.g., spasmolytic, anti-inflammatory, antimutagenic, antioxidant, antifungal, apoptosis-inducing, antiproliferative, acetylcholinesterase-inhibitory, and hypouricemic activities. Plant tissue cultures represent a promising alternative source of valuable plant-derived substances. A number of physical and chemical factors influence the cell growth and secondary metabolite biosynthesis in plant tissue cultures. The mechanism of their action is not completely understood. Besides other factors, plant growth regulators and light conditions play an important role. Effects of four auxins (2,4-dichlorophenoxyacetic acid, 2,4-D, alpha-naphthaleneacetic acid, NAA, beta-indoleacetic acid, IAA or beta-indolebutyric acid, IBA) at four concentrations (0.2, 2, 10 or 20 mg/l) on the culture growth and accumulation of scopoletin in the medium were tested in Angelica archangelica cell suspension cultures cultured under continuous light or in the dark. The highest culture growth was achieved with 2 mg/l 2,4-D, and 10 mg/l IAA. The best scopoletin levels were obtained with 0.2 mg/l 2,4-D, 2 mg/l 2,4-D, 10 mg/l NAA, and 20 mg/l IAA. The effects of light conditions were less marked than those of auxins and their concentrations in influencing both the cell growth and scopoletin accumulation in Angelica archangelica cell suspension cultures. The changes brought about by auxins were modified by light conditions.

  13. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures. (United States)

    Majack, R A


    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and-valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet-derived growth factor-mediated proliferation of these cells in two-dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury.

  14. [The action of epidermal growth factor on the development of cultured striatum cells]. (United States)

    Castillo-Díaz, L; Castellano-Benítez, O; Soto-Alonso, J; Rosillo-Martí, J C; de la Cuétara-Bernal, K


    Epidermic growth factor (EGF) has a neurotrophic mitogenic effect on different cell populations in the nervous system. This is modulated by the stage of development and microenvironment of the cells. In this paper we describe the action of EGF on embryonic striatum cells of a culture system dissociated from neurons and glias. The cell culture is prepared from 16-17 day rat embryos. In the system used, the cell population was cultured for 20-24 hours in a medium containing serum. This medium was later replaced by a mixture of specific nutrients and treated for 6 days with 20 mg/ml of EGF. The substitution of serum during the initial period of development led to an appreciable reduction in the living cells in the treated cultures and in the controls. The surviving cells were mainly cellular precursors, taking into account their morphological characteristics and capacity for proliferation. The effect of EGF was seen in an increase in the number of cells and was shown to be a stimulus to the proliferation of neuronal and astrocyte precursors. The specific activity of choline acetyl-transferases determined in the cultures at 16 days showed differentiation of a cholinergic neurons subpopulation, which responded to treatment with nerve growth factor with an increase in the activity of this enzyme.

  15. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa (United States)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng


    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  16. Laminin enhances the growth of human neural stem cells in defined culture media

    Directory of Open Access Journals (Sweden)

    Lathia Justin D


    Full Text Available Abstract Background Human neural stem cells (hNSC have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. In vivo, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth. Results To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner. Conclusion The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.

  17. The effects of a reduced environmental deuterium concentration on growth of culture normal and neoplastic cells

    International Nuclear Information System (INIS)

    Bild, Walther; Haulica, Ion; Nastasa, V.


    In connection with studies on the effects of deuterium depleted water on radioprotection and immunostimulation, research was conducted to find out effects of environmental depleted deuterium upon culture cells growth. The reduction of deuterium concentration in cellular medium was achieved by forming the culture medium for RMPI 1640, Gibco BRL cells with under-deuterated water (produced at ICSI) with different deuterium concentration (30, 60, 90, 120 ppm), as compared with control batches in the same medium constituted from normal distilled water (145-150 ppm D/(D+H). A significant stimulation in the cellular growth due to deuterium depletion in the culture media was observed. Also, variations in growth rates and the profile of proliferation curves in neoplastic cells as compared with normal cells were observed, the same trend being observed in all cultures. Paradoxically, quantitative effects were observed, peaking at 90 ppm deuterium concentration rather than at a minimal concentration, as expected. The MTT test confirmed the stimulating effects of deuterium depletion. To put into evidence the immunity stimulation, the explant rat splenocytes from laboratory animals were grown, stimulated with Concanavaline A or bacterial Lipopolysaccharides of increasing concentration. Similar effects were observed

  18. Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures. (United States)

    Yin, Yuling; Matsui, Ayu; Sakuta, Masaaki; Ashihara, Hiroshi


    Changes in the profile of pyridine metabolism during growth of cells were investigated using trigonelline-forming suspension-cultured cells of Lotus japonicus. Activity of the de novo and salvage pathways of NAD biosynthesis was estimated from the in situ metabolism of [(3)H] quinolinic acid and [(14)C] nicotinamide. Maximum activity of the de novo pathway for NAD synthesis was found in the exponential growth phase, whereas activity of the salvage pathway was increased in the lag phase of cell growth. Expression profiles of some genes related to pyridine metabolism were examined using the expression sequence tags obtained from the L. japonicus database. Transcript levels of NaPRT and NIC, encoding salvage enzymes, were enhanced in the lag phase of cell growth, whereas the maximum expression of NADS was found in the exponential growth phase. Correspondingly, the activities of the salvage enzymes, nicotinate phosphoribosyltransferase (EC and nicotinamidase (EC, increased one day after transfer of the stationary phase cells to the fresh medium. The greatest in situ trigonelline synthesis, both from [(3)H] quinolinic acid and [(14)C] nicotinamide, was found in the stationary phase of cell growth. The role of trigonelline in leguminous plants is discussed.

  19. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.


    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  20. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    International Nuclear Information System (INIS)

    Buck, P.A.


    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by 125 I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10 -10 M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less 125 I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and 3 H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by 125 I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by 125 I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with 35 S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF

  1. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium


    Kendall, Michaela; Hodges, Nikolas J.; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan


    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of ...

  2. Effects of nitrendipine on growth activity in cultured vascular smooth muscle cells. (United States)

    Absher, M P; Baldor, L; Warshaw, D M


    Proliferation and migration of smooth muscle cells (SMCs) in the arterial wall may play a role in the development of atherosclerosis and hypertension. If cell migration and proliferation are dependent on extracellular calcium, then treatment with calcium channel blockers such as nitrendipine may alter these cellular responses. In the studies reported here, proliferation and migration activities were assessed in cultured bovine carotid artery smooth muscle cells exposed to nitrendipine. SMCs in long-term culture are characterized by periods of either stable or enhanced proliferative activity. During the stable periods, 1 microM nitrendipine has no effect on proliferation, but during periods of enhanced proliferation, 1 microM nitrendipine augments growth by approximately 20%. SMC migration rates and interdivision times were determined from analysis of time-lapse cinematography films. During stable periods of growth, cell migration rate was inversely related to interdivision time (i.e., fast migrating cells had the shortest interdivision times). Treatment with 1 microM nitrendipine abolished the relationship between migration rate and interdivision time and prolonged interdivision times. These data suggest that the ability of nitrendipine to alter SMC proliferation, interdivision time, and migration is dependent upon the overall proliferative state of the culture.

  3. Metabolomics profiling of cell culture media leading to the identification of riboflavin photosensitized degradation of tryptophan causing slow growth in cell culture. (United States)

    Zang, Li; Frenkel, Ruth; Simeone, Jeffrey; Lanan, Maureen; Byers, Mark; Lyubarskaya, Yelena


    As more protein biopharmaceuticals are produced using mammalian cell culture techniques, it becomes increasingly important for the biopharmaceutical industry to have tools to characterize the cell culture media and evaluate its impact on the cell culture performance. Exposure of the cell culture media to light, temperature stress, or adventitious introduction of low-level organisms during preparation can lead to the generation of chemical degradants or metabolites of the media components, which are potentially detrimental to the cell culture process. In this work, we applied a liquid chromatography-mass spectrometry based metabolomics methodology for the investigation of a media lot used for a mammalian cell culture process that had resulted in low growth rate and failure to meet required viable cell density (VCD). The study led to the observation of increased levels of tryptophan oxidation products and a riboflavin degradant, lumichrome, in the malfunctioning media lot, relative to working media lots. A compound found 7-fold higher in the working media lots appeared to be tetrahydropentoxyline, a condensation product of glucose and tryptophan. A second compound found at an over 50-fold higher level in the malfunctioning media lot with a proposed molecular formula of C(21)H(17)N(3)O(3) from high-resolution mass spectrometry (HRMS) analysis remains unknown, although it is confirmed to be a degradant of tryptophan in the media. A study of the cell culture media performed under stress conditions using fluorescent light and heat showed that the media powder was highly resistant to light-induced degradation, while solution media could be easily degraded after brief light exposure. It is therefore suspected that inadvertent exposure of the media to light during preparation and storage has resulted in the poor performance of the media causing the low growth and VCD in the cell culture process.

  4. Growth and development of cultured carrot cells and embryos under spaceflight conditions (United States)

    Krikorian, A. D.; Dutcher, F. R.; Quinn, C. E.; Steward, F. C.


    Morphogenetically competent proembryonic cells and well-developed somatic embryos of carrot at two levels of organization were exposed for 18.5 days to a hypogravity environment aboard the Soviet Biosatellite Cosmos 1129. It was confirmed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots and minimally developed shoots. It was also shown that the space hypogravity environment could support the further growth of already-organized, later somatic embryonic stages and give rise to fully developed embryo-plantlets with roots and shoots.

  5. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma

    Directory of Open Access Journals (Sweden)

    Gagliardi Franco


    Full Text Available Abstract Background The aim of this work was to investigate in vitro the putative role of EGR-1 in the growth of glioma cells. EGR-1 expression was examined during the early passages in vitro of 17 primary cell lines grown from 3 grade III and from 14 grade IV malignant astrocytoma explants. The explanted tumors were genetically characterized at the p53, MDM2 and INK4a/ARF loci, and fibronectin expression and growth characteristics were examined. A recombinant adenovirus overexpressing EGR-1 was tested in the primary cell lines. Results Low levels of EGR-1 protein were found in all primary cultures examined, with lower values present in grade IV tumors and in cultures carrying wild-type copies of p53 gene. The levels of EGR-1 protein were significantly correlated to the amount of intracellular fibronectin, but only in tumors carrying wild-type copies of the p53 gene (R = 0,78, p = 0.0082. Duplication time, plating efficiency, colony formation in agarose, and contact inhibition were also altered in the p53 mutated tumor cultures compared to those carrying wild-type p53. Growth arrest was achieved in both types of tumor within 1–2 weeks following infection with a recombinant adenovirus overexpressing EGR-1 but not with the control adenovirus. Conclusions Suppression of EGR-1 is a common event in gliomas and in most cases this is achieved through down-regulation of gene expression. Expression of EGR-1 by recombinant adenovirus infection almost completely abolishes the growth of tumor cells in vitro, regardless of the mutational status of the p53 gene.

  6. Growth factor-defined culture medium for human mesenchymal stem cells. (United States)

    Mimura, Sumiyo; Kimura, Naohiro; Hirata, Mitsuhi; Tateyama, Daiki; Hayashida, Midori; Umezawa, Akihiro; Kohara, Arihiro; Nikawa, Hiroki; Okamoto, Tetsuji; Furue, Miho K


    Human bone marrow-derived mesenchymal stem cells (hMSCs) are potential cellular sources of therapeutic stem cells as they have the ability to proliferate and differentiate into a wide array of mesenchymal cell types such as osteoblasts, chondroblasts and adipocytes. hMSCs have been used clinically to treat patients with graft vs. host disease, osteogenesis imperfect, or alveolar cleft, suggesting that transplantation of hMSCs is comparatively safe as a stem cell-based therapy. However, conventional culture medium for hMSCs contains fetal bovine serum (FBS). In the present study, we developed a growth factor-defined, serum-free medium for culturing hMSCs. Under these conditions, TGF-beta1 promoted proliferation of hMSCs. The expanded hMSC population expressed the human pluripotency markers SSEA-3, -4, NANOG, OCT3/4 and SOX2. Furthermore, double positive cells for SSEA-3 and a mesenchymal cell marker, CD105, were detected in the population. The potential to differentiate into osteoblasts and adipocytes was confirmed. This work provides a useful tool to understand the basic biological properties of hMSCs in culture.

  7. A CMI (cell metabolic indicator)-based controller for achieving high growth rate Escherichia coli cultures. (United States)

    Pepper, Matthew E; Wang, Li; Padmakumar, Ajay; Burg, Timothy C; Harcum, Sarah W; Groff, Richard E


    A large fraction of biopharmaceuticals are produced in Escherichia coli, where each new product and strain currently requires a high degree of growth characterization in benchtop and industrial bioreactors to achieve economical production protocols. The capability to use a standard set of sensors to characterize a system quickly without the need to conduct numerous experiments to determine stable growth rate for the strain would significantly decrease development time. This paper presents a cell metabolic indicator (CMI) which provides better insight into the E. coli metabolism than a growth rate value. The CMI is the ratio of the oxygen uptake rate (OUR) of the culture and the base addition rate (BAR) required to keep pH at a desired setpoint. The OUR and BAR are measured using a off-gas sensor and pH probe, respectively, and thus the CMI can be computed online. Experimental results demonstrate the relationship between CMI and the different cell metabolic states. A previously published model is augmented with acid production dynamics, allowing for comparison of the CMI-based controller with an open-loop controller in simulation. The CMI-based controller required little a priori knowledge about the E. coli strain in order to achieve a high growth rate. Since many different types of cells exhibit similar behaviors, the CMI concept can be extended to mammalian and stem cells.

  8. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. (United States)

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm


    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Primary culture and growth characteristics of four different species of lens epithelial cells

    Directory of Open Access Journals (Sweden)

    Li-Xia Ji


    Full Text Available AIM: To explore the primary culture conditions for four kinds of lens epithelial cells(LECsof rat, rabbit, dog, and human, and measure their growth characteristics. METHODS: The lens capsule or anterior capsular tissue of rat, rabbit, dog and patient were removed by different methods, and they were cut into tiny pieces for primary culture by modified tissue adherent method. The morphological features of four kinds of LECs were observed under an inverted microscope.RESULTS: Four kinds of LECs of rat, rabbit, dog and human could be cultured primarily by tissue adherent method. With the evolution of tissue source, the adherent capacity of LECs gradually strengthened, cells form were changed from irregular polygon to oval, nucleus rounded and cytoplasm enriched gradually. Four kinds of LECs had fibrotic changes after several passages.CONCLUSION: LECs of rat, rabbit, dog and human can be primarily cultured. This method lays the foundation for the mechanism research of caratact and related fields on the cellular and molecular levels.

  10. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ban, E.; Haour, F. (Institut Pasteur, Paris (France)); Gagnerault, M.; Dardenne, M.; Postel-Vinay, M. (Hopital Necker, Paris (France)); Jammes, H. (Endocrinologie Molecuaire, INRA, Jouy-en-Josas (France))


    Growth hormones bound specifically to murine thymic epithelial cells, which represent the major component of thymic micro-environment and can be modulated by pituitary hormones. The Kds found with human growth hormone and bovine growth hormone were 0.14 and 0.27 nM with a Bmax 0.56 and 0.35 fmol/10{sup 6} cells respectively. Competition experiment analysis showed ED{sub 50} of 0.24 nM for hGH, 0.46 nM for rGH, 0.71 nM for bGH, 11.8 nM for hPRL and 11.2 nM for oPRL. No specific binding of ({sup 125}I)-oPRL was observed under the same conditions. Both hPRL and bGH showed a negative regulatory effect on the number of the hGH binding sites when incubated with the culture for three days. The presence of GH receptors on thymic epithelial cells provides biochemical evidence for the effect of GH on thymic function.

  11. Specific binding sites for growth hormone in cultured mouse thymic epithelial cells

    International Nuclear Information System (INIS)

    Ban, E.; Haour, F.; Gagnerault, M.; Dardenne, M.; Postel-Vinay, M.; Jammes, H.


    Growth hormones bound specifically to murine thymic epithelial cells, which represent the major component of thymic micro-environment and can be modulated by pituitary hormones. The Kds found with human growth hormone and bovine growth hormone were 0.14 and 0.27 nM with a Bmax 0.56 and 0.35 fmol/10 6 cells respectively. Competition experiment analysis showed ED 50 of 0.24 nM for hGH, 0.46 nM for rGH, 0.71 nM for bGH, 11.8 nM for hPRL and 11.2 nM for oPRL. No specific binding of ( 125 I)-oPRL was observed under the same conditions. Both hPRL and bGH showed a negative regulatory effect on the number of the hGH binding sites when incubated with the culture for three days. The presence of GH receptors on thymic epithelial cells provides biochemical evidence for the effect of GH on thymic function

  12. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw


    . 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different......A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed...

  13. Process for inhibiting the growth of a culture of lactic acid bacteria, and optionally lysing the bacterial cells, and uses of the resulting lysed culture

    NARCIS (Netherlands)

    Nauta, Arjen; Venema, Gerard; Kok, Jan; Ledeboer, Aat M.


    The invention provides a process for inhibiting the growth of a culture of lactic acid bacteria, or a product containing such culture e.g. a cheese product, in which in the cells of the lactic acid bacteria a holin obtainable from bacteriophages of Gram-positive bacteria, esp. from bacteriophages of

  14. Variation in pestivirus growth in testicle primary cell culture is more dependent on the individual cell donor than cattle breed. (United States)

    Weber, Matheus N; Bauermann, Fernando V; Gómez-Romero, Ninnet; Herring, Andy D; Canal, Cláudio W; Neill, John D; Ridpath, Julia F


    The causes of bovine respiratory disease complex (BRDC) are multifactorial and include infection with both viral and bacterial pathogens. Host factors are also involved as different breeds of cattle appear to have different susceptibilities to BRDC. Infection with bovine pestiviruses, including bovine viral diarrhea virus 1 (BVDV1), BVDV2 and 'HoBi'-like viruses, is linked to the development of BRDC. The aim of the present study was to compare the growth of different bovine pestiviruses in primary testicle cell cultures obtained from taurine, indicine and mixed taurine and indicine cattle breeds. Primary cells strains, derived from testicular tissue, were generated from three animals from each breed. Bovine pestivirus strains used were from BVDV-1a, BVDV-1b, BVDV-2a and 'HoBi'-like virus. Growth was compared by determining virus titers after one passage in primary cells. All tests were run in triplicate. Virus titers were determined by endpoint dilution and RT-qPCR. Statistical analysis was performed using one way analysis of variance (ANOVA) followed by the Tukey's Multiple Comparison Test (P˂0.05). Significant differences in virus growth did not correlate with cattle breed. However, significant differences were observed between cells derived from different individuals regardless of breed. Variation in the replication of virus in primary cell strains may reflect a genetic predisposition that favors virus replication.

  15. Effects of x-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro

    International Nuclear Information System (INIS)

    Koval, T.M.; Myser, W.C.; Hink, W.F.


    Cultured Trichoplusia ni cells in exponential growth were administered x-ray doses of 10,000 R and then subcultured. The untreated cell population began exponential growth within a few hours after subculture, eventually reaching stationary growth phase 96 hr later at a cell density of 2.08 x 10 6 cells/ml, whereas the irradiated cell population did not change for 24 hr after irradiation and then began exponential growth at a rate similar to that of control cells, also reaching stationary phase at 96 hr, but at a cell density of 0.93 x 10 6 cells/ml, which is less than half the maximum density of controls. From 24 to 96 hr after treatment, the x-irradiated cells were characterized by an increased consumption of oxygen that was nearly twice the amount utilized by control cells. The pH of the cell growth medium increases over 96 hr from 6.3 to 6.6 for irradiated as well as for untreated cultures, but since the number of x-rayed cells is less than half the number of untreated cells, the pH increase, per cell, of medium from irradiated cultures is about twice that of medium from control cultures

  16. Growth of cultured human glioma tumour cells can be regulated with histamine and histamine antagonists.


    Van der Ven, L. T.; Prinsen, I. M.; Jansen, G. H.; Roholl, P. J.; Defferrari, R.; Slater, R.; Den Otter, W.


    The 50% survival time for low grade astrocytomas is 50 months and for high grade astrocytomas it is 13 months, underlining the need for new therapies. Several reports show that in vivo histamine antagonists cause retardation of tumour growth in some animal models and prolonged survival in cancer patients. Therefore we have tested the growth modulating effects of histamine and histamine antagonists on human glioma cultures. Twelve freshly excised human gliomas were cultured and tested for thei...

  17. Plasma Membrane Proteomics of Arabidopsis Suspension-Cultured Cells Associated with Growth Phase Using Nano-LC-MS/MS. (United States)

    Li, Bin; Takahashi, Daisuke; Kawamura, Yukio; Uemura, Matsuo


    Arabidopsis thaliana suspension-cultured cells (T87 line) are important model system for studies of responses to biotic and abiotic stresses at the cellular level in vitro since the cells have certain advantages compared with the whole plant system. However, the physiological and morphological characteristics of the cells are influenced by the progress of the growth phase of cells, which may result in different stress tolerance. To obtain comprehensive proteome profiles of the plasma membrane of Arabidopsis thaliana T87 suspension-cultured cells at the lag, log, or stationary growth phase, a shotgun proteomics method using nano-LC-MS/MS is used. The results obtained indicate that proteome profiles of the plasma membrane with the progress of the growth phase of cells dynamically changed, which may be associated with the physiological and morphological characteristics of the plasma membrane of the suspension-cultured cells. The proteomics results are further applied to explain different responsive patterns in the plasma membrane to cold acclimation and ABA treatment, which lead to understanding of different freezing tolerance associated with the growth phase of the cells.

  18. Metabolic effects of growth factors and polycyclic aromatic hydrocarbons on cultured human placental cells of early and late gestation

    International Nuclear Information System (INIS)

    Guyda, H.J.


    The metabolic effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and IGF-II were determined on human placental cells in monolayer culture obtained from early gestation (less than 20 weeks) and late gestation (38-42 weeks). Parameters studied were uptake of aminoisobutyric acid (AIB), uptake of 3-O-methylglucose and [3H]thymidine incorporation into cell protein. Since benzo[alpha]pyrene (BP) inhibits EGF binding and autophosphorylation in cultured human placental cells, particularly in early gestation, we also studied the effect of benzo[alpha]pyrene and other polycyclic aromatic hydrocarbons (PAHs) on EGF-mediated AIB uptake. The metabolic effects of EGF, insulin, and the IGFs in cultured human placental cells varied with gestational age and the growth factor studied. All three classes of growth factors stimulated AIB uptake in both early and late gestation at concentrations from 10-100 micrograms/L, well within a physiological range. However, insulin stimulation of AIB uptake was maximal at a high concentration in both early and late gestation cells, suggesting an action via type 1 IGF receptors rather than via insulin receptors. EGF stimulated 3-O-methylglucose uptake only in term placental cells. No significant stimulation of [3H]thymidine incorporation by any of the growth factors tested was seen with either early or late gestation cells. The effect of PAHs on AIB uptake by cultured placental cells was variable. BP alone stimulated AIB uptake by both very early and late gestation cells and enhanced EGF-stimulated AIB uptake. alpha-naphthoflavone alone inhibited AIB uptake at all gestational ages and inhibited EGF-stimulated AIB uptake. beta-Naphthoflavone and 3-methylcholanthrene minimally inhibited AIB uptake by early gestation cells and did not modify EGF-stimulated uptake at any gestational period

  19. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Poulsen, Frantz Rom; Blaabjerg, Morten; Montero, Maria


    Generation of dentate granule cells and its modulation by glutamate receptor antagonists, growth factors and pilocarpine-induced seizure-like activity was investigated in rat hippocampal slice cultures derived from 1-week-old rats and grown for 2 weeks. Focussing on the dentate granule cell layer...... the number of TUC-4-positive cells, just as combining pilocarpine with the neurogenesis-stimulating compounds, prevented or reduced the increase of TUC-4-positive cells. None of the treatments were found to induce dentate granule cell death within the observed period. Labeling of dividing cells by adding 5...

  20. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium. (United States)

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan


    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Analysis of the growth pattern of Vero cells cultured on dense and porous poly (L-Lactic Acid scaffolds

    Directory of Open Access Journals (Sweden)

    Arnaldo Rodrigues Santos Jr


    Full Text Available Poly (L-lactic acid (PLLA polymers are the most frequently used substrates for cell culture, tissue regeneration and orthopedic prostheses, mainly because of their atoxic characteristics and good biocompatibility. The objective of this study was to evaluate whether a higher density or different pore diameters (less than 45, 180-250, and 250-350 µm would change the growth pattern of cultured cells. The cells were found to adhere to and spread over all PLLA scaffolds studied. The cells also showed similar proliferation on dense and porous PLLA scaffolds, except for PLLA scaffolds with a smaller pore diameter. The cytochemical data showed high metabolic cellular activity on the various substrates. Overall, the results indicated satisfactory cell growth and proliferation on the different PLLA scaffolds studied, especially for those with pore diameters of 180-250 µm and 250-350 µm.

  2. Bacterial cell culture




    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  3. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures. (United States)

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw


    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0 CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. Copyright

  4. Effects of aluminum in red spruce (Picea rubens) cell cultures: Cell growth and viability, mitochondrial activity, ultrastructure and potential sites of intracellular aluminum accumulation (United States)

    Rakesh Minocha; Carolyn McQuattie; Wayne Fagerberg; Stephanie Long; Eun Woon Noh


    The effects of Al on red spruce (Picea rubens Sarg.) cell suspension cultures were examined using biochemical, stereo-logical and microscopic methods. Exposure to Al for 24-48 h resulted in a loss of cell viability, inhibition of growth and a significant decrease in mitochondrial activity. Soluble protein content increased in cells treated with Al....

  5. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete


    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  6. Photolithographically defined deposition of attachment factors as a versatile method for patterning the growth of different cell types in culture. (United States)

    Rohr, Stephan; Flückiger-Labrada, Regula; Kucera, Jan P


    Spatially defined growth of cells in culture is a useful model for studies ranging from the characterization of cellular motility to the analysis of network behaviour in structurally defined ensembles of excitable cells. Current methodological approaches for obtaining patterned growth include sophisticated modifications of surface chemistry, stamping techniques and microfluidics. The implementation of most of these techniques requires the availability of highly specialized apparatus and some of the methods are specific for certain cell types and/or substrate materials. The goal of the present study was to develop a cell-patterning technique that can be implemented by any laboratory working with cell culture and that is highly adaptable in terms of cell types and substrate materials. The method is based on a photolithographic process that permits the patterned deposition of attachment factors of choice on surfaces previously coated with agar with a spatial resolution (maximal deviation from a straight line) of +/-3 micro m. Because agar efficiently prevents cell adhesion, patterned growth obtained with this technique displays virtually no off-pattern cell attachment. The method permitted the patterning of cardiomyocytes, fibroblasts and HeLa cells on either glass substrates or polymer-coated materials with a spatial resolution of a few micrometers.

  7. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny


    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  8. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Directory of Open Access Journals (Sweden)

    Williams Sylvain


    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  9. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. (United States)

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha


    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  10. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume


    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  11. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    International Nuclear Information System (INIS)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.


    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E 2 (PGE 2 ) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  12. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)


    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  13. Effect of nitrogen-rich cell culture surfaces on type X collagen expression by bovine growth plate chondrocytes

    Directory of Open Access Journals (Sweden)

    Wertheimer Michael R


    Full Text Available Abstract Background Recent evidence indicates that osteoarthritis (OA may be a systemic disease since mesenchymal stem cells (MSCs from OA patients express type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification. We recently showed that the expression of type X collagen was suppressed when MSCs from OA patients were cultured on nitrogen (N-rich plasma polymer layers, which we call "PPE:N" (N-doped plasma-polymerized ethylene, containing up to 36 atomic percentage (at.% of N. Methods In the present study, we examined the expression of type X collagen in fetal bovine growth plate chondrocytes (containing hypertrophic chondrocytes cultured on PPE:N. We also studied the effect of PPE:N on the expression of matrix molecules such as type II collagen and aggrecan, as well as on proteases (matrix metalloproteinase-13 (MMP-13 and molecules implicated in cell division (cyclin B2. Two other culture surfaces, "hydrophilic" polystyrene (PS, regular culture dishes and nitrogen-containing cation polystyrene (Primaria®, were also investigated for comparison. Results Results showed that type X collagen mRNA levels were suppressed when cultured for 4 days on PPE:N, suggesting that type X collagen is regulated similarly in hypertrophic chondrocytes and in human MSCs from OA patients. However, the levels of type X collagen mRNA almost returned to control value after 20 days in culture on these surfaces. Culture on the various surfaces had no significant effects on type II collagen, aggrecan, MMP-13, and cyclin B2 mRNA levels. Conclusion Hypertrophy is diminished by culturing growth plate chondrocytes on nitrogen-rich surfaces, a mechanism that is beneficial for MSC chondrogenesis. Furthermore, one major advantage of such "intelligent surfaces" over recombinant growth factors for tissue engineering and cartilage repair is potentially large cost-saving.

  14. Development of a cell-derived matrix: effects of epidermal growth factor in chemically defined culture. (United States)

    Throm, Angela M; Liu, Wai-Ching; Lock, Chi-Hung; Billiar, Kristen L


    Extracellular matrices without animal components and with high mechanical strength are needed for the development of the next generation of viable skin replacements. The goal of this study was to determine the optimal concentration of epidermal growth factor (EGF) to maximize the strength and collagen content of cell-derived matrix (CDM) produced by fibroblasts in vitro in serum-free media. Scaffold-free CDM samples were produced by human dermal fibroblasts in the presence of 0-50 ng/mL EGF in chemically defined media. After 21 days of culture, a membrane inflation system was used to measure the biaxial tensile strength, failure stretch ratio, and thickness of each treatment group. The fibroblasts treated with 5 ng/mL EGF produced the thickest matrix (270 microm). A thinner (130 microm) matrix, produced when the fibroblasts were treated with 0.5 ng/mL, had an ultimate tensile strength (895 kPa), greater than two times that of the other treatment groups. The fibroblasts treated with 0.5 ng/mL also had the highest collagen density (23.5 mg/cm(3)). Fibroblasts stimulated with the lowest (0.05 ng/mL) and highest (50 ng/mL) concentrations of EGF produced significantly weaker matrices and lower collagen densities. There was no significant correlation between UTS and collagen density suggesting that mechanisms other than density contribute to the strength of the matrix. Taken together, these data indicate that the optimal EGF concentration depends upon the relative importance of matrix strength and volume in a given application and that 0.5-5.0 ng/mL EGF promotes production of a robust extracellular matrix in only 3 weeks. (c) 2009 Wiley Periodicals, Inc.

  15. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y.


    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  16. Use of HT-29, a cultured human colon cancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation. (United States)

    Baricault, L; Denariaz, G; Houri, J J; Bouley, C; Sapin, C; Trugnan, G


    Epidemiological and in vivo and in vitro experimental studies have suggested that fermented milks may interfere with the emergence and/or the development of colon cancer. The results, however, remain inconclusive. This prompted us to develop a new approach based on the use of HT-29, a cultured human colon cancer cell line, to study at the cellular level the effect of fermented milks on colon cancer cell growth and differentiation characteristics. Undifferentiated HT-29 cells have been grown in the continuous presence of milks fermented by one of the following bacterial populations: Lactobacillus helveticus, Bifidobacterium, L.acidophilus or a mix of Streptococcus thermophilus and L. bulgaricus. Penicillin G was added to the cell culture medium, resulting in a complete blockade of bacterial growth without significant effect on bacterial viability. One out of the four bacteria species studied, namely L.acidophilus, was without effect on both cell growth and differentiation. The three other bacterial strains induced a significant, although variable, reduction in the growth rate of HT-29 cells, which resulted in a 10-50% decrease in the cell number at steady-state (i.e. at cell confluency). The most efficient strains in lowering the HT-29 growth rate were L. helveticus and Bifidobacterium. Concomitantly, the specific activities of dipeptidyl peptidase IV (DPP IV), a sensitive and specific marker of HT-29 cell differentiation, and that of three other brush border enzymes (sucrase, aminopeptidase N and alkaline phosphatase) were significantly increased, thus suggesting that these cells may have entered a differentiation process. Altogether, these results indicate that the use of cultured colon cancer cells may be a useful tool to further study the effect of fermented milks on colon cancer and that bacterial strains may exert a different and specific effect on cancer cell growth and differentiation when used in fermented milk products.

  17. The influence of growth regulators on membrane permeability in cultures of winter wheat cells

    Czech Academy of Sciences Publication Activity Database

    Filek, M.; KoĽcielniak, J.; Marcińska, I.; Macháčková, Ivana; Krekule, Jan


    Roč. 59, 9/10 (2004), s. 673-678 ISSN 0939-5075 R&D Projects: GA AV ČR IBS5038352 Institutional research plan: CEZ:AV0Z5038910 Keywords : growth regulators * cells * permeability Subject RIV: GC - Agronomy Impact factor: 0.715, year: 2004

  18. Inhibition of growth of human breast cancer cells in culture by neutron capture using liposomes containing 10B. (United States)

    Yanagië, H; Kobayashi, H; Takeda, Y; Yoshizaki, I; Nonaka, Y; Naka, S; Nojiri, A; Shinnkawa, H; Furuya, Y; Niwa, H; Ariki, K; Yasuhara, H; Eriguchi, M


    Cell destruction in boron neutron capture therapy is effected by nuclear reaction between 10B and thermal neutrons with the release of alpha-particles (4He) and lithium-7 ions (7Li). 4He kills cells within 10 microm of the site of 4He generation, therefore it is theoretically possible to destroy tumour cells without affecting adjacent healthy tissue, given selective delivery of compounds containing 10B. Liposomes wore prepared by vortex dispersion of solutions containing 10B compounds with dried lipid films and the effects of those compounds on human breast cancer cells in culture were examined after thermal neutral irradiation. [3H]-TdR incorporation by MRKnu/nu-1 cells treated with 10B-containing liposomes showed 40% suppression compared with liposomes without 10B, at 2 x 1012 n/cm2 thermal neutron fluence. Inhibition of tumour cell growth with liposomes prepared with 100 mm 10B-compound was as significant as with those made with 500 ppm 10B solution. The concentration of 10B in liposomes was 76.5 +/- 3.4 microg/mL. Boronated liposomes can thus deliver sufficient 10B atoms to this line of breast cancer cells in culture to effect cytotoxicity and suppression of growth after thermal neutron irradiation.

  19. 2,3,5-Triphenyl tetrazolium chloride (TTC) reduction as exponential growth phase marker for mammalian cells in culture and for myeloma hybridization experiments. (United States)

    Otero, A J; Rodríguez, I; Falero, G


    Triphenyl tetrazolium chloride in vitro reduction by cells produces a red formazan pellet which can be extracted and measured. We have shown that such reduction is associated with animal cell growth, and particularly with the specific growth rate, so the measurement of Triphenyl tetrazolium chloride reduction is proposed as a physiological marker of the exponential growth of cultured cells. Further application of this technique is shown using this Redox reaction for estimating plasmacytoma fusion potential for hybridoma cell line production.

  20. The synthetic inhibitor of Fibroblast Growth Factor Receptor PD166866 controls negatively the growth of tumor cells in culture

    Directory of Open Access Journals (Sweden)

    Castelli Mauro


    Full Text Available Abstract Background Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1 act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1. Methods Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture. Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by in situ fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay. Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA deriving from the decomposition of poly-unsaturated fatty acids. The expression of Poly-ADP-Ribose-Polymerase (PARP, consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme. Results The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell

  1. Growth behavior in plant cell cultures based on emissions detected by a multisensor array. (United States)

    Komaraiah, Palle; Navratil, Marian; Carlsson, Maria; Jeffers, Paul; Brodelius, Maria; Brodelius, Peter E; Kieran, Patricia M; Mandenius, Carl-Fredrik


    The use of a multisensor array based on chemical gas sensors to monitor plant cell cultures is described. The multisensor array, also referred to as an electronic nose, consisted of 19 different metal oxide semiconductor sensors and one carbon dioxide sensor. The device was used to continuously monitor the off-gas from two plant cell suspension cultures, Morinda citrifolia and Nicotiana tabacum, cultivated under batch conditions. By analyzing the multiarray responses using two pattern recognition methods, principal component analysis and artificial neural networks, it was possible to monitor the course of the cultivations and, in turn, to predict (1) the biomass concentration in both systems and (2) the formation of the secondary metabolite, antraquinone, by M. citrifolia. The results identify the multisensor array method as a potentially useful analytical tool for monitoring plant process variables that are otherwise difficult to analyze on-line.

  2. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture. (United States)

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin

  3. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal


    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  4. The Effect of Plant Growth Regulators and Different Explants on the Response of Tissue Culture and Cell Suspension Cultures of German Chamomile (Matricaria chamomilla L.

    Directory of Open Access Journals (Sweden)

    L. Koohi,


    Full Text Available German chamomile (Matricaria chamomilla L. is one of the most important medicinal plants that its essential oils used in different medicinal industries. In this study which was carried out in 2013 growing season at the Faculty of Agricultural Sciences of the University of Mohaghegh Ardabili, the in vitro response of leaf and hypocotyl explants of German Chamomile in B5 medium supplemented with different levels of plant growth regulators including 2,4-D, naphthalene acetic acid (NAA, kinetin and 6-benzylaminopurine (BAP were investigated in a factorial experiment based on completely randomized design (CRD.In addition, cell suspension cultures were established and characterized. Hypocotyl and leaf explants exhibited cell proliferation and produced callus within 1-2 weeks. The highest fresh weight of the callus (264.1 mg was produced by leaf explants in the medium supplemented with 0.5 mg/l 2,4-D and 1 mg/l BAP. However, the leaf explants cultured on medium containing 1.5 mg/l 2,4-D showed the lowest cell proliferation and callus yield (40.42 mg. The highest percentage of root induction from leaf explants (58.73% was observed on the medium containing 4 mg/l 2,4-D and 1 mg/l Kin, and from hypocotyl explants (48.61% was observed on medium supplemented with 1.5 mg/l NAA. The 42.22% of calli derived from hypocotyl explants on B5 medium supplemented with 4 mg/l NAA and 3 mg/l BAP, were friable. Cell suspension cultures of German chamomile were established by transferring of hypocotyl-derived friable calli into the MS medium supplemented with 1.5 mg/l 2,4-D and 1 mg/l kinetin. The growth curve of cell proliferations started 4 days after culture and continued to grow until day 13th, where the cells entered stationary phase.

  5. Mouse preantral follicle growth in 3D co-culture system using human menstrual blood mesenchymal stem cell. (United States)

    Rajabi, Zahra; Yazdekhasti, Hossein; Noori Mugahi, Seyed Mohammad Hossein; Abbasi, Mehdi; Kazemnejad, Somaieh; Shirazi, Abolfazl; Majidi, Masoumeh; Zarnani, Amir-Hassan


    Follicle culture provides a condition which can help investigators to evaluate various aspects of ovarian follicle growth and development and impact of different components and supplementations as well as presumably application of follicle culture approach in fertility preservation procedures. Mesenchymal Stem Cells (MSCs), particularly those isolated from menstrual blood has the potential to be used as a tool for improvement of fertility. In the current study, a 3D co-culture system with mice preantral follicles and human Menstrual Blood Mesenchymal Stem Cells (MenSCs) using either collagen or alginate beads was designed to investigate whether this system allows better preantral follicles growth and development. Results showed that MenSCs increase the indices of follicular growth including survival rate, diameter, and antrum formation as well as the rate of in vitro maturation (IVM) in both collagen and alginates beads. Although statistically not significant, alginate was found to be superior in terms of supporting survival rate and antrum formation. Hormone assay demonstrated that the amount of secreted 17 β-estradiol and progesterone in both 3D systems increased dramatically after 12 days, with the highest levels in system employing MenSCs. Data also demonstrated that relative expression of studied genes increased for Bmp15 and Gdf9 and decreased for Mater when follicles were cultured in the presence of MenSCs. Collectively, results of the present study showed that MenSCs could improve indices of follicular growth and maturation in vitro. Further studies are needed before a clinical application of MenSCs-induced IVM is considered. Copyright © 2018 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. All rights reserved.

  6. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C


    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  7. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids. (United States)

    Carlsson, J; Acker, H


    The pH gradients, oxygen partial-pressure gradients and growth curves were measured for 7 different types of spheroids. Growth curves were measured in liquid overlay culture and thereafter the spheroids were attached to cover glasses and transferred to a chamber for micro-electrode measurements. The spheroids were randomly divided for pH or pO2 measurements which then were made under conditions as identical as possible. The decreases in pO2 and pH, delta pO2 and delta pH were calculated as the difference between the values in the culture medium and the values 200 micron inside the spheroids. Each type of spheroid had a certain relation between delta pO2 and delta pH. The human colon carcinoma HT29, the mouse mammary carcinoma EMT6 and the hamster lung V79-379A spheroids had high values of the quotient delta pO2/delta pH. The human thyroid carcinoma HTh7 spheroids and the 3 types of human glioma spheroids had lower quotients. There was a tendency for fast-growing spheroids to have high quotients. Two extreme types of spheroids, HT29 (high quotient) and U-118 MG (low quotient) were analyzed for lactate production and oxygen consumption. The U-118 MG spheroids produced about 3 times more lactate and consumed about 3 times less oxygen than the HT29 spheroids. The differences in lactate production could not be explained by differences in the pyruvate Km values of lactate dehydrogenase. The results indicate that there are significant metabolic differences between the spheroid systems studied.

  8. Microspectroscopic investigation of the membrane clogging during the sterile filtration of the growth media for mammalian cell culture. (United States)

    Cao, Xiaolin; Loussaert, James A; Wen, Zai-qing


    Growth media for mammalian cell culture are very complex mixtures of several dozens of ingredients, and thus the preparation of qualified media is critical to viable cell density and final product titers. For liquid media prepared from powdered ingredients, sterile filtration is required prior to use to safeguard the cell culture process. Recently one batch of our prepared media failed to pass through the sterile filtration due to the membrane clogging. In this study, we report the root cause analysis of the failed sterile filtration based on the investigations of both the fouling media and the clogged membranes with multiple microspectroscopic techniques. Cellular particles or fragments were identified in the fouling media and on the surfaces of the clogged membranes, which were presumably introduced to the media from the bacterial contamination. This study demonstrated that microspectroscopic techniques may be used to rapidly identify both microbial particles and inorganic precipitates in the cell culture media. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus. (United States)



    Primary suspended cultures of rhesus monkey kidney cells were infected with poliomyelitis virus, type 1 (Brunhilde strain). The release of virus from these cells over a one-step growth curve was correlated with their change in fine structure, as seen in the electron microscope. Most of the cells were infected nearly simultaneously, and morphological changes developed in the cells were sufficiently synchronous to be classified into three stages. The earliest change (stage I) became visible at a time when virus release into the culture fluid begins, some 3 hours after adsorption. Accentuation of the abnormal characteristics soon occurs, at 4 to 7 hours after adsorption, and results in stage II. Stage III represents the appearance of cells after their rate of virus release had passed its maximum, and probably the abnormal morphology of these cells reflects non-specific physiological damage. There seems to be consistency between the previously described cellular changes as seen under the light microscope and the finer scale changes reported here. Cytoplasmic bodies, called U bodies, were seen in large number at the time when the virus release was the most rapid (stage II). While these bodies are not of proper size to be considered polio virus, they seem to be specifically related to the infection. No evidence was found for the presence of particles that could even be presumptively identified with those of polio virus.

  10. Cultural Globalization and Economic Growth

    Directory of Open Access Journals (Sweden)

    Nuno Carlos Leitão


    Full Text Available This article investigates the relationship between cultural globalization and economic growth for the Portuguese experience for the period 1995-2011. In this research we apply a static and dynamic panel data. The initial GDP per capita is negatively correlated with economic growth. This result is according to theoretical and empirical studies. This paper shows that international trade and cultural globalization promote the economic growth. As we expected the inflation has a negative impact on economic growth.

  11. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G


    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and HeLa...... cells CKII activity is increased concomitant with cellular growth and that the activity declines when confluency is reached. Parallel to the CKII activity increase, nucleolin, which has been shown to be a potential substrate of CKII changes its phosphorylation status, reaching a maximum at the time when...

  12. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee


    Full Text Available This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2 treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis, and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Keywords: Bone marrow stromal cells, Hypoxia, Fibroblast growth factor, Tissue regeneration, Microenvironment interactions

  13. Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators. (United States)

    Alayón-Luaces, Paula; Ponce, Nora M A; Mroginski, Luis A; Stortz, Carlos A; Sozzi, Gabriel O


    The cell wall composition of apples callus cultures showed changes in the presence of 5 mg l(-1) of three different plant growth regulators (PGRs), namely picloram, abscisic acid and gibberellic acid. Although the structural functions of cell walls do not generally allow for pronounced variations of the total pectin and matrix glycan content, this work provides evidence that the addition of these plant growth regulators can rule, at least partly, cell wall metabolism in apple callus cultures. The chelator- and carbonate-extracts always had the analytical characteristics of pectins, with high proportions of uronic acids, arabinose and galactose as the main monosaccharides, and a significant proportion of rhamnose, but the cross-linking glycan fractions were still rich in RG-I-like material. The application of PGRs produced shifts of uronic acid and neutral sugars between fractions. Arabinose was the neutral sugar exhibiting more variations in apple callus cell wall. Picloram and abscisic acid produced an increase of the uronic acid contents of the cell walls. The AIRs obtained from calluses treated with different PGRs did not show large amounts of high molecular weight products, as determined by size-exclusion chromatography. For the carbonate-extract only the callus treated with picloram displayed two separated peaks for products of different molecular weights. The chromatographic profiles for the 4% KOH-extract displayed two peaks for all the treatments, one very sharp with high molecular weight, and another one wider of smaller molecular weight, whereas the difference between treatments can only be appraised through the areas of the peaks. This is the first report on cell wall composition from fruit calluses supplemented with different PGRs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Ureaplasma infection of cell cultures. (United States)

    Kotani, H; McGarrity, G J


    Studies were performed to characterize the effects of ureaplasmas in HeLa, 3T6, and CV-1 cell cultures. The ureaplasmas studied were human Ureaplasma urealyticum T960 (serotype VIII), bovine U. diversum T95, simian strain T167-2, ovine strain 1202, canine strain D1M-C, and feline strains 382 and FT2-B. FT2-B was the only ureaplasma to grow in the cell free culture medium, Dulbecco modified Eagle-Earle medium containing 10% fetal bovine serum. The growth pattern of the ureaplasmas varied in the different cell cultures, but each strain grew in at least two of the cell cultures, suggesting a requirement for a product of the cell culture and for low concentrations of urea. When growth occurred, organisms grew to concentrations that approached, but did not equal, those observed in 10B broth. Most, but not all, ureaplasmas grew quickly, reaching peak titers 2 days after infection. Canine strain D1M-C did not grow in 3T6, but showed rapid growth in HeLa and CV-1 cells, killing both cultures, In some systems, e.g., U. urealyticum T960 and simian strain T167-2, the infection persisted, and ureaplasmas could be recovered from cell cultures four passages after infection, when studies were terminated. The cell culture ureaplasmas grew on T agar, but not on mycoplasma agar medium.

  15. Effects of hypoxia condition in embryogenic callus growth of soybean cell culture (United States)

    Damanik, R. I.; Manurung, B. H.; Bayu, E. S.


    The study was performed at Tissue Culture Laboratory, Agrotechnology Department, University of Sumatera Utara, to investigate the effect of plant growth regulator (PGR) and embryogenic callus performance soybean cultivars on hypoxia condition. This research had two stages, induction of embryogenic callus and analysis metabolism of callus after hypoxic condition with T-test. The analysis was used factorial Completely Randomized Design with two factors. The first factors were cultivars of soybean (Baluran, Gepak Kuning, and Grobogan) and the second factors were combinations of PGR (5 mg/l 2,4-D + 1 mg/l BAP, 10 mg/l 2,4-D + 1.5 mg/l BAP, and 15 mg/l 2,4-D + 2 mg/l BAP). The result showed the cultivars, combination of PGR, and interaction between cultivars and PGR gave significant effect to weight callus. The result of T-test showed that in hypoxic condition, POD enzyme exercise on Gepak Kuning’s callus in 5 mg/l 2,4-D + 1 mg/l BAP was different before and after hypoxic condition.

  16. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival. (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J


    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed

  17. Effects of zinc and cadmium ions on cell growth and production of coumarins in cell suspension cultures of Angelica archangelica L. (United States)

    Siatka, Tomáš; Kašparová, Marie; Spilková, Jiřina


    The plant cell may respond to the excess of heavy metals in its environment by various mechanisms, including enhanced biosynthesis of secondary metabolites. In this study, zinc (0 to 1500 μM) and cadmium ions (0 to 100 μM) were tested as potential elicitors of the production of coumarins in angelica cell suspension cultures. In addition, the toxicity of both metals was assessed by evaluating their effect on cell growth (characterized by fresh and dry biomass at the end of a two-week subculture). It has been found that fresh biomass was not influenced up to zinc concentrations of 150 and 300 μM in the dark-grown and light-grown cultures, resp. Then it declined with an increasing zinc level. Zinc at 1500 μM diminished it by 54% and 24% in the dark-grown and light-grown cultures, resp. Dry biomass was influenced in a similar way. Zinc at 1500 μM reduced dry cell weight by 30% and 20% in cultures in the dark and in the light, resp. Cadmium ions did not affect fresh and dry weights of cells up to concentrations of 10 μM and 50 μM in cultures in the dark and in the light, resp. Toxic concentrations of cadmium are by an order of magnitude lower than those of zinc. Cadmium at 50 μM reduced fresh and dry cell weights by 66% and 59%, resp., in the dark-grown cultures. Cadmium at 100 μM caused a decrease in fresh and dry biomass by 40% and 44%, resp., in the light-grown cultures. Neither zinc nor cadmium improved production of coumarins.

  18. An absolute procedure to test the growth potential of medium and the influence of decreased oxygen tension in primary amniotic fluid cell cultures

    NARCIS (Netherlands)

    Sikkema-Raddatz, Birgit; Suijkerbuijk, Ron; van der Vlag, Jakob; Stoepker, Marian; Buys, Charles H. C. M.; Meerman, Gerard J. te

    Objective For prenatal cytogenetic diagnosis, cell cultures should be maximally successful. When introducing a change in conditions, e.g. a new batch of medium, the growth potential of a culture is usually compared under both the new condition and the one already in use. Such a relative test is in

  19. An absolute procedure to test the growth potential of medium and the influence of decreased oxygen tension in primary amniotic fluid cell cultures.

    NARCIS (Netherlands)

    Sikkema-Raddatz, B.; Suijkerbuijk, R.F.; Vlag, J. van der; Stoepker, M.; Buys, C.H.C.M.; Meerman, G.J. te


    OBJECTIVE: For prenatal cytogenetic diagnosis, cell cultures should be maximally successful. When introducing a change in conditions, e.g. a new batch of medium, the growth potential of a culture is usually compared under both the new condition and the one already in use. Such a relative test is in

  20. Oscillating Cell Culture Bioreactor (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.


    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  1. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.


    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  2. Growth and production optimization of tropane alkaloids in Datura stramonium cell suspension culture. (United States)

    Iranbakhsh, A R; Oshagi, M A; Ebadi, M


    Abstract: A number of physicochemical conditions such different concentration of glucose, sucrose, potassium nitrate, ammonium nitrate, calcium chloride and temperatures were tested to optimize growth and production of tropane alkaloids from Datura stramonium (Solanaceae) plants. Cell suspension from semi-clear calli of leave explants developed in MS medium containing kinetin (0.5 mg L(-1)) and NAA (2 mg L(-1)) hormones was used to measure biomass and total alkaloids and comparison of treatments. The results showed that 30 and 40 g L(-1) glucose led to the highest level of alkaloids and biomass productions, respectively. 20 and 40 g L(-1) sucrose concentrations resulted in order the most rates of alkaloids and biomass productions. The results showed that increasing of nitrate concentration led to the reduction of the alkaloids. The best concentration of potassium nitrate for the production of tropane alkaloids and biomass were in order 9.4 and 3.76 mM. Also it was evinced that the optimized concentration of ammonium nitrate for alkaloids production was 10.3 mM and for the biomass was 41.22 mM. The best concentration of calcium chloride for growth and production of the alkaloids was 7.92 mM. Testing different temperature specified that the best condition for production of the alkaloids was 20 degrees C whereas it was 25 degrees C for biomass production. The results of this study could be recommended to farmers involved in production of D. stramonium for tropain alkaloids at industrial and semi-industrial scales.

  3. Using Raman spectroscopy and chemometrics to identify the growth phase of Lactobacillus casei Zhang during batch culture at the single-cell level. (United States)

    Ren, Yan; Ji, Yuetong; Teng, Lin; Zhang, Heping


    As microbial cultures are comprised of heterogeneous cells that differ according to their size and intracellular concentrations of DNA, proteins, and other constituents, the detailed identification and discrimination of the growth phases of bacterial populations in batch culture is challenging. Cell analysis is indispensable for quality control and cell enrichment. In this paper, we report the results of our investigation on the use of single-cell Raman spectrometry (SCRS) for real-time analysis and prediction of cells in different growth phases during batch culture of Lactobacillus (L.) casei Zhang. A targeted analysis of defined cell growth phases at the level of the single cell, including lag phase, log phase, and stationary phase, was facilitated by SCRS. Spectral shifts were identified in different states of cell growth that reflect biochemical changes specific to each cell growth phase. Raman peaks associated with DNA and RNA displayed a decrease in intensity over time, whereas protein-specific and lipid-specific Raman vibrations increased at different rates. Furthermore, a supervised classification model (Random Forest) was used to specify the lag phase, log phase, and stationary phase of cells based on SCRS, and a mean sensitivity of 90.7% and mean specificity of 90.8% were achieved. In addition, the correct cell type was predicted at an accuracy of approximately 91.2%. To conclude, Raman spectroscopy allows label-free, continuous monitoring of cell growth, which may facilitate more accurate estimates of the growth states of lactic acid bacterial populations during fermented batch culture in industry.

  4. Paracrine Secretion of Transforming Growth Factor β by Ductal Cells Promotes Acinar-to-Ductal Metaplasia in Cultured Human Exocrine Pancreas Tissues. (United States)

    Akanuma, Naoki; Liu, Jun; Liou, Geou-Yarh; Yin, Xue; Bejar, Kaitlyn R; Liu, Chengyang; Sun, Lu-Zhe; Storz, Peter; Wang, Pei


    We aimed to evaluate the contribution of acinar-to-ductal metaplasia (ADM) to the accumulation of cells with a ductal phenotype in cultured human exocrine pancreatic tissues and reveal the underlying mechanism. We sorted and cultured viable cell populations in human exocrine pancreatic tissues with a flow cytometry-based lineage tracing method to evaluate possible mechanisms of ADM. Cell surface markers, gene expression pattern, and sphere formation assay were used to examine ADM. A large proportion of acinar cells gained CD133 expression during the 2-dimensional culture and showed down-regulation of acinar markers and up-regulation of ductal markers, assuming an ADM phenotype. In a serum-free culture condition, ADM induction was mainly dependent on transforming growth factor β (TGF-β) secreted from cultured ductal cells. Human acinar cells when cultured alone for a week in a serum-free condition do not undergo ADM. However, serum may contain other factors besides TGF-β to induce ADM in human acinar cells. In addition, we found that TGF-β cannot induce ADM of murine acinar cells. Ductal cells are the major source of TGF-β that induces ADM in cultured human exocrine pancreatic tissues. This culture system might be a useful model to investigate the mechanism of ADM in human cells.

  5. Irisin inhibition of growth hormone secretion in cultured tilapia pituitary cells. (United States)

    Lian, Anji; Li, Xin; Jiang, Quan


    Irisin, the product of fibronectin type III domain-containing protein 5 (FNDC5) gene, is well-documented to be a regulator of energy metabolism. At present, not much is known about its biological function in non-mammalian species. In this study, a full-length tilapia FDNC5 was cloned and its tissue expression pattern has been confirmed. Based on the sequence obtained, we produced and purified recombinant irisin which could induce uncoupling protein 1 (UCP1) gene expression in tilapia hepatocytes. Further, the rabbit polyclonal irisin antiserum was produced and its specificity was confirmed by antiserum preabsorption. In tilapia pituitary cells, irisin inhibited growth hormone (GH) gene expression and secretion and triggered rapid phosphorylation of Akt, Erk1/2, and p38 MAPK. Furthermore, irisin-inhibited GH mRNA expression could be prevented by inhibiting PI3K/Akt, MEK1/2, and p38 MAPK, respectively. Apparently, fish irisin can act directly at the pituitary level to inhibit GH transcript expression via multiple signaling pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of Low Power Laser Irradiation on the Ability of Cell Growth and Myogenic Differentiation of Myoblasts Cultured In Vitro

    Directory of Open Access Journals (Sweden)

    Cui-Ping Zhang


    Full Text Available As a therapeutic modality, low power laser irradiation (LPLI has been used clinically in the treatment of skeletal muscle injuries and other myopathic conditions, but the cellular and molecular mechanisms attributed to this therapy were still unclear. Myoblasts are a type of myogenic stem cells quiescence in mature skeletal muscle fibers and are considered as the source cells during the regenerating process. The purpose of this paper was to investigate the effects of LPLI on the proliferation and myogenic differentiation of the cultured myoblasts and to find out the major candidates responsible for LPLI-induced muscle regeneration in vivo. In this study, primary rat myoblasts were exposed to helium-neon (He-Ne laser. Cell proliferation, differentiation, and the cellular responses to LPLI were monitored by using morphological observation and molecular biological methods. It was found that LPLI at a certain fluence could increase the cell growth potential for myoblasts and further induce more cells entering into S phase of the mitotic cycle as indicated by high levels of bromodeoxyuridine (BrdU incorporation, while at the same time inhibiting their in vitro differentiation and decreasing the expression of myogenic regulatory genes to a certain extent. Taken together, these results provide experimental evidence for the clinical applications of LPLI in regenerating skeletal muscle.

  7. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis. (United States)

    Monner, D A


    Mouse bone marrow cells were grown in liquid culture in microtiter plates in the presence of different colony-stimulating factors (CSF). Growth was assayed using the tetrazolium salt MTT, which is reduced in the mitochondria of viable cells to a water-insoluble blue formazan dye. Two technical problems have limited the use of this assay: the solubilization of the dye crystals and the necessity to acidify the phenol red in the culture medium. Both could be solved here by the use of a developing solution of 5% formic acid in isopropanol. Using manual mixing combined with a short sonication by floating the plates in a sonic bath, the crystals were dissolved within minutes. There was no flocculation of protein, even using medium with 20% serum. The color remained stable for at least 4 h. This enabled the semi-automatic measurement of large numbers of cultures directly in the microtiter plates. Growth and differentiation of myelopoietic precursor cells in the liquid cultures was shown to be comparable to that in soft agar. Cell growth was CSF-dependent. The calculated cell yield per colony forming cell (CFC) seeded was within the range of the average cell number per colony found in soft agar, and the spectrum of mature cells obtained reflected the type of CSF used as stimulus. Using the combined culture and assay systems, it was possible to perform detailed kinetic studies of myelopoiesis. This technique should be useful for studying the mechanisms of action of pharmacological modulators of myelopoiesis.

  8. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    International Nuclear Information System (INIS)

    Yaffe, B.M.


    In cultured GC cells, a rat pituitary tumor cell line, growth hormone [GH] is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A) + RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A) + RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with [ 3 H]uridine, and quantitating [ 3 H]GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones

  9. Effects of exogenous growth regulators on cell suspension culture of yin-hong grape (vitis vinifera l.) and establishment of the optimum medium

    International Nuclear Information System (INIS)

    Chao, Y.; Feng, J.C.; Yan, W.Y.; Xiao, Y.; Jun, Y.Y


    Callus induced by stem of Yin-hong grape (Vitis vinifera L.) was used as materials and B5 medium as basic medium. The major growth parameters of cell suspension cultures with various levels of 1-Naphthaleneacetic acid (NAA) and 6-Benzyl aminopurine (6-BA) were investigated to provide a basis for the optimum medium of suspension cell cultures of Yin-hong grape regarding cell number, packed cell volume (PCV), dry cell weight (DCW), cell viability, and morphology. All data were analysed by of two-way analysis of variance (ANOVA). Results showed that the treatment of 6-BA and NAA would effect the cell growth dynamics, probably causing logarithmic phase in advance at higher levels of 6-BA. Different concentration of 6-BA and NAA had significant effects on cells number, PCV, DCW and viability (p<0.05), while no-significant effect was observed on the cells morphology. The optimum medium for suspension cell cultures of Yin-hong grape was identified as B5+1.5 mg/L6-BA+1.5 mg/LNAA+ 250 mg/L casein hydrolysate + 30 g/L sucrose. With the optimum medium, the maximum number of suspension cells after the logarithmic growth phase was 34.78 * 108 / mL, the highest cell viability reached 86.45%.; DCW reached 3.84 g/L and PCV reached 0.092 mL/mL after eight days cultivating. (author)

  10. Analysis of certain kinetic regularities of cultured cell growth. Part 2. Effect of ionizing radiation, an alkylating agent and low frequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, A.N.; Golovina, M.E.; Chirkova, E.Y.; Nadzharyan, T.L.


    The effects of gamma radiation, the alkylating agent thiophosphamide, and a low-frequency electromagnetic field on the growth kinetics of cultured hamster cell were studied. Gamma radiation decreased both the steepness of the growth curve and the height of the plateau on the curve. Plateau height and curve steepness were also reduced almost in direct proportion to the dose of alkylating agent used. The electromagnetic radiation also reduced somewhat the height of the growth plateau, but did not decrease the steepness of the growth curve. Low frequency electromagnetic radiation is considered a geropromoter on the basis of its reduction of the growth plateau in this experiment. 17 references, 5 figures.

  11. Growth and maintenance of an embryogenic cell culture of daylily (Hemerocallis) on hormone-free medium (United States)

    Smith, D. L.; Krikorian, A. D.


    Callus cultures of the diploid daylily (Hemerocallis) clone Autumn Blaze' were initiated and maintained in hormone-containing nutrient medium. At various times (from 6 weeks to 1 year) after being initiated, hormone-derived cultures were evaluated for their ability to be maintained and to multiply on hormone-free medium at low pH (between pH 4 and 4.5). Cultures had to be exposed to hormone-containing medium for at least 12 weeks before they could be maintained on hormone-free medium at low pH. The transition to maintainability on low pH hormone-free medium included the production of many aberrant embryonal forms ( neomorphs'). However, all hormone-derived cultures tested consisted entirely of preglobular stage proembryos (PGSPs) after 12-24 weeks on low pH hormone-free medium. PGSP cultures have been maintained and multiplied as such for over 1 year on low pH hormone-free medium. PGSPs continue their development into various somatic embryo stages when cultured on hormone-free medium buffered at pH 5.8. The production of well-formed somatic embryos was greatly enhanced when PGSPs were plated on activated charcoal impregnated filter papers that were placed on top of the agar surface. The gross morphology and histology of the PGSPs and stages of somatic embryo development are presented. The work shows that the ability of hormone-free medium at low pH to permit PGSP multiplication without development into later stages of embryo development is not restricted to carrot.

  12. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.


    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  13. The influence of glutamine on growth and viability of cell suspension cultures of Douglas-fir after exposure to polyethylene glycol. (United States)

    Leustek, T; Kirby, E G


    The response of cell cultures of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to osmotic stress was studied by measuring cell growth and viability after exposure to polyethylene glycol (PEG) (M(r) 6000-8000). Growth of cells inoculated in a medium containing 10% PEG was slightly inhibited, whereas growth in a medium containing 15% PEG was severely inhibited. Cells grown for 6 days in nutrient medium and then subcultured in a medium containing 15% PEG to induce water stress showed high viabilities, whereas cells grown for longer than 6 days before exposure to PEG showed decreased viabilities after subculture. Cells grown in medium containing 30 mM glutamine were significantly more resistant to PEG-induced water stress, as measured by viability, than cells grown in medium without glutamine.

  14. Local expression and distribution of growth hormone and growth hormone receptor in the chicken ovary: effects of GH on steroidogenesis in cultured follicular granulosa cells. (United States)

    Ahumada-Solórzano, S Marisela; Carranza, Martha E; Pedernera, Enrique; Rodríguez-Méndez, Adriana J; Luna, Maricela; Arámburo, Carlos


    Preovulatory follicular development (PFD) is mainly regulated by gonadotropins (FSH, LH) and steroids, although other intraovarian factors are also involved. We analyzed the local expression of growth hormone (GH) in the hen ovary and the role that this hormone may play on the regulation of steroidogenesis in granulosa cells (GCs). Ovarian follicles from sexually mature hens were studied at different developmental stages. Both GH mRNA (by in situ hybridization) and protein (by immunohistochemistry) were expressed mainly in the GCs, and to a lesser extent in the theca cells of the follicular wall. Sequence of a GH cDNA 690-bp fragment obtained from the follicular wall was identical to that obtained from the pituitary. The growth hormone receptor (GHR) mRNA was also expressed in the follicles. Nine GH variants were observed by SDS-PAGE and Western blotting, but the main isoform showed a MW of 17 kDa, at all developmental stages. Addition of GH (0.1, 1, 10 nM) stimulated the synthesis of progesterone (P4) in primary GCs cultures in a dose-dependent manner (1.5, 2.9, 5.4 times, respectively). GH also stimulated the expression of cholesterol side-chain cleavage enzyme (cytochrome P450scc) mRNA, a rate-limiting enzyme during P4 synthesis (2.9, 4.6, 4.9 times, respectively), whereas the synthesis of 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA (a constitutive enzyme) was not changed. Both GH and GHR were co-expressed in GCs cultures. The locally expressed GH present in concentrated (4×, 6×, 8×) conditioned media obtained from ovarian GC cultures stimulated P4 production (1.2, 2.2, 4.4 times, respectively) in additional fresh cultured GCs, and this effect disappeared when the conditioned media were treated with antiserum against GH. These data suggest that locally produced GH may modulate follicular development through autocrine/paracrine effects in the chicken ovary. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Regulation of insulin-like growth factor-binding protein-1 synthesis and secretion by progestin and relaxin in long term cultures of human endometrial stromal cells

    International Nuclear Information System (INIS)

    Bell, S.C.; Jackson, J.A.; Ashmore, J.; Zhu, H.H.; Tseng, L.


    The decidualized endometrium during the first trimester of pregnancy synthesizes and secretes a 32-kDa insulin-like growth factor-binding protein (termed hIGFBP-1) at high levels. IGFBP-1 is the major soluble protein product of this tissue and is principally localized to the differentiated endometrial stromal cell, the decidual cell. In the present study long term culture of stromal cells from the nonpregnant endometrium have been employed to elucidate the hormonal requirements for IGFBP-1 production. Immunoreactive IGFBP-1 was undetectable in control cultures. However, inclusion of medroxyprogesterone acetate (MPA) induced rates of 0.35 +/- 0.09 microgram/0.1 mg cell after 20-30 days. In these cultures cells exhibited morphological changes consistent with decidual cell differentiation. In all cultures removal of MPA after exposure for 10-16 days, with or without subsequent inclusion of relaxin (RLX), increased production of IGFBP-1 450- to 4600-fold to rates of 150-710 micrograms/0.1 mg cell or 26-131 micrograms/10(6) on days 24-26. The rates tended to be higher with the inclusion of RLX and were sustained in contrast to cultures without RLX, where rates fell by day 30. Individual cultures responded differently to RLX when added from the initiation of culture, with either a response similar to MPA alone or a cyclical change in production, achieving maximal rates of 190-290 micrograms/0.1 mg cell Cultures in which RLX alone induced high IGFBP-1 high production were obtained from endometrium during the progesterone-dominated luteal phase. In cultures exhibiting high rates of immunoreactive IGFBP-1 production, the protein represented their major secretory protein product. This was confirmed by [ 35 S]methionine incorporation and the presence of IGFBP-1 as the predominant protein in serum-free culture medium

  16. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells. (United States)

    Nishi, Hiroyuki; Maeda, Noriko; Izumi, Shunsuke; Higa-Nakamine, Sayomi; Toku, Seikichi; Kakinohana, Manabu; Sugahara, Kazuhiro; Yamamoto, Hideyuki


    In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta. (United States)

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M


    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Growth-inhibitory effect of TGF-B on human fetal adrenal cells in primary monolayer culture. (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Adkar, V; Lefebvre, Y


    We examined the effects of transforming-growth factor-B (TGF-B) on growth ([3H]-thymidine uptake) and function (dehydroepiandrosterone sulfate [DHAS] and cortisol production) of human fetal zone adrenal cells. Results indicate that TGF-B significantly inhibits, in a dose-related manner, both basal and epidermal growth factor (EGF)-stimulated cell growth: IC50 = 0.1-0.25 ng/ml. EGF is ineffective in overcoming the inhibitory effect of TGF-B, suggesting a noncompetitive antagonism between the two factors. Also, the inhibitory effect of TGF-B is additive to that of adrenocorticotropic hormone (ACTH). On the other hand, TGF-B (1 ng/ml) does not significantly change basal or ACTH-stimulated DHAS or cortisol secretion. We conclude that, unlike its effect on other steroid-producing cells, TGF-B inhibits growth of fetal zone cells and does not appear to have a significant inhibitory effect on steroidogenesis.

  19. Characterization of growth and Oryctes rhinoceros nudivirus production in attached cultures of the DSIR-HA-1179 coleopteran insect cell line. (United States)

    Pushparajan, Charlotte; Claus, Juan Daniel; Marshall, Sean David Goldie; Visnovsky, Gabriel


    The DSIR-HA-1179 coleopteran cell line is a susceptible and permissive host to the Oryctes rhinoceros nudivirus (OrNV), which has been used as a biocontrol agent against the coconut rhinoceros beetle (Oryctes rhinoceros); a pest of palms in the Asia-Pacific region. However, little is known about growth and metabolism of this cell line, knowledge of which is necessary to develop an in vitro large-scale OrNV production process. The strong anchorage-dependent characteristics of the cell line, its particular fragility and its tendency to form dense clumps when manipulated, are the most likely reasons that have precluded further development of the cell line. In order to characterize DSIR-HA-1179 cells, there was first a need for a reliable technique to count the cells. A homogenous cell suspension suitable for enumeration could be produced by treatment with TrypLE Express™ with optimum mean time for cell release calculated as 30 min. The cell line was adapted to grow in four serum-supplemented culture media namely TC-100, IPL-41, Sf-900 II and Sf-900 III and cell growth, glucose consumption, lactate and ammonia production were assessed from static-batch cultures. The maximum viable cell density was reached in Sf-900 II (17.9 × 10(5) cells/ml), with the maximum specific growth rate observed in this culture medium as well (0.0074 h(-1)). Higher production of OrNV was observed in IPL-41 and TC-100 (4.1 × 10(7) TCID50/ml) than in cultures infected in Sf-900 III (2.0 × 10(7) TCID50/ml) and Sf-900 II (1.4 × 10(7) TCID50/ml). At the end of the growth period, glucose was completely consumed in cultures grown in TC-100, while remained in excess in the other three culture media. The cell line produced lactate and ammonia to very low levels in the TC-100 culture medium which is a promising aspect for its cultivation at large-scale.

  20. Towards optimisation of induced pluripotent cell culture: Extracellular acidification results in growth arrest of iPSC prior to nutrient exhaustion. (United States)

    Wilmes, Anja; Rauch, Caroline; Carta, Giada; Kern, Georg; Meier, Florian; Posch, Wilfried; Wilflingseder, Doris; Armstrong, Lyle; Lako, Majlinda; Beilmann, Mario; Gstraunthaler, Gerhard; Jennings, Paul


    Human induced pluripotent stem cells (iPSC) have the potential to radically reduce the number of animals used in both toxicological science and disease elucidation. One initial obstacle culturing iPSC is that they require daily medium exchange. This study attempts to clarify why and propose some practical solutions. Two iPSC lineages were fed at different intervals in a full growth area (FGA) or a restricted growth area (RGA). The FGA consisted of a well coated with Matrigel™ and the RGA consisted of a coated coverslip placed in a well. Glucose, lactate, extracellular pH and cell cycle phases were quantified. Without daily feeding, FGA cultured iPSC had significantly reduced growth rates by day 2 and began to die by day 3. In contrast, RGA cultured cells grew to confluence over 3days. Surprisingly, glucose was not exhausted under any condition. However, extracellular pH reached 6.8 after 72h in FGA cultures. Artificially reducing medium pH to 6.8 also inhibited glycolysis and initiated an increase in G0/G1 phase of the cell cycle, while adding an additional 10mM bicarbonate to the medium increased glycolysis rates. This study demonstrates that iPSC are highly sensitive to extracellular acidification, a likely limiting factor in maintenance of proliferative and pluripotent status. Culturing iPSC in RGA prevents rapid extracellular acidification, while still maintaining pluripotency and allowing longer feeding cycles. Copyright © 2017. Published by Elsevier Ltd.

  1. Cultural diversity and economic growth

    DEFF Research Database (Denmark)

    Ager, Philipp; Brückner, Markus


    We exploit the large inflow of immigrants to the US during the 1870–1920 period to examine the effects that within-county changes in the cultural composition of the US population had on output growth. We construct measures of fractionalization and polarization to distinguish between the different...

  2. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth. (United States)

    Ohyama, Kunio; Akaike, Takenori; Hirobe, Chieko; Yamakawa, Toshio


    A crude extract was prepared with ethanol from dried ripened Vitex agnus-castus fruits growing in Israel (Vitex extract). Cytotoxicity of the extract against human uterine cervical canal fibroblast (HCF), human embryo fibroblast (HE-21), ovarian cancer (MCF-7), cervical carcinoma (SKG-3a), breast carcinoma (SKOV-3), gastric signet ring carcinoma (KATO-III), colon carcinoma (COLO 201), and small cell lung carcinoma (Lu-134-A-H) cells was examined. After culture for 24 h (logarithmic growth phase) or 72 h (stationary growth phase), the cells were treated with various concentrations of Vitex extract. In both growth phases, higher growth activity of cells and more cytotoxic activity of Vitex extract were seen. The cytotoxic activity against stationary growth-phase cells was less than that against logarithmic growth-phase cells. DNA fragmentation of Vitex extract-treated cells was seen in SKOV-3, KATO-III, COLO 201, and Lu-134-A-H cells. The DNA fragmentation in Vitex extract-treated KATO-III cells was inhibited by the presence of the antioxidative reagent pyrrolidine dithiocarbamate or N-acetyl-L-cysteine (NAC). Western blotting analysis showed that in Vitex extract-treated KATO-III cells, the presence of NAC also inhibited the expression of heme oxygenase-1 and the active forms of caspases-3, -8 and -9. It is concluded that the cytotoxic activity of Vitex extract may be attributed to the effect on cell growth, that cell death occurs through apoptosis, and that this apoptotic cell death may be attributed to increased intracellular oxidation by Vitex extract treatment.

  3. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.


    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  4. Alkaline phosphatase expression in cultured endothelial cells of aorta and brain microvessels: induction by interleukin-6-type cytokines and suppression by transforming growth factor betas. (United States)

    Nakazato, H; Deguchi, M; Fujimoto, M; Fukushima, H


    Alkaline phosphatase (ALP) activity is markedly high in endothelial cells of the blood-brain barrier (BBB) type but absent from or low in those of the non-BBB type. Interleukin 6 (IL-6) has been identified as a glial cell line-derived factor that induces high ALP activity in cultured aortic endothelial cells. In the present study, we examined the effect of IL-6-type cytokines and transforming growth factor betas (TGF-betas) on ALP expression in cultures of calf pulmonary aortic endothelial (CPAE) cells and porcine brain microvascular endothelial (PBME) cells. Leukemia inhibitory factor, ciliary neurotrophic factor, and oncostatin M, which are known as IL-6-type cytokines, induced high ALP expression in the CPAE cells but not in the PBME cells. ALP levels in these cells were markedly suppressed by culture with TGF-betas. However, in cultured PBME cells, IL-6 and a derivative of cyclic adenosine monophosphate significantly increased ALP activity. Our findings raise the posibility that local concentrations of IL-6, IL-6-type cytokines, and TGF-betas affect the ALP levels in the endothelial cells of aorta and brain microvessels under normal development and also under inflammatory conditions.

  5. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures.

    Directory of Open Access Journals (Sweden)

    Mauricio Vergara

    Full Text Available Chinese hamster ovary (CHO cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum.In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA were carried out at two temperatures (37°C and 33°C and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system or ERAD II (Autophagosoma/Lisosomal system pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1 and low (0.012 h-1 dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA.Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO

  6. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae. (United States)

    Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina


    Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.

  7. [Influence of the activator of transcription GAL4 on growth and development of embryos and embryonic cells in primary cultures of sand dollar]. (United States)

    Odintsova, N A; Kiselev, K V; Bulgakov, V P; Kol'tsova, E A; Iakovlev, K V


    In order to solve many tasks of biotechnology, constant lines of the cells of marine invertebrates with a high growth potential are required, which are absent at present. We used the universal activator of transcription gal4 to change the degree of expression of genes of growth factors in embryonic sea urchin cells and, thereby, increase their proliferative activity. The fertilized sea urchin eggs and dissociated embryonic cells at the blastula stage were treated with plasmids containing both the functional gene gal4 and the gene devoid of the regions encoding the activator domain. The transfection of embryonic sea urchin eggs with the functional gene led to cell dedifferentiation and formation of tumor-like structures in the embryos or increased number of embryonic cells in culture. In the cells obtained from the transfected embryos, the pigments were found within two months of cultivation, whose absorption spectrum coincided with that of echinochrome.

  8. The adhesion and growth of vascular smooth muscle cells in cultures on carboranethiol-modified gold films

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Baše, Tomáš; Londesborough, Michael Geoffrey Stephen; Lisá, Věra; Bačáková, Lucie


    Roč. 11, 81-84 (2008), s. 117-119 ISSN 1429-7248 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40320502 Keywords : bioactive coating * cell adhesion * cell growth Subject RIV: EI - Biotechnology ; Bionics

  9. Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System

    Directory of Open Access Journals (Sweden)

    Christian Bucher


    Full Text Available Intervertebral disc (IVD cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5 by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.

  10. [Differentiation of directly co-cultured bone marrow mesenchymal stem cells and ligament fibroblasts into ligament cells after induced by transforming growth factor β1 and basic fibroblast growth factor]. (United States)

    Liu, Yi; Zhang, Chenghao; Fan, Qinghong; Sun, Pengpeng; Wu, Shuhong


    To investigate the effect of transforming growth factor β1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, proliferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured. BMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and proliferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type I and type III were determined by ELISA; and mRNA expressions of collagen types I and III, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR. A single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion (> 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P 0.05). The ratios of collagen type I to type III were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type I and type III and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05). Directly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation

  11. Intensification of the inhibitory effect of X-rays on the growth of Ehrlich ascites tumor cells in monolayer culture by quinacrine (atebrine) or chloroquine (resochine)

    International Nuclear Information System (INIS)

    Biller, H.; Pfab, R.; Hess, F.; Schachtschabel, D.O.; Leising, H.B.


    Monolayers of Ehrlich ascites tumor cells in their logarithmic phase of growth were exposed to a single X-ray dose of 1 to 16 Gy. Following exposure, the monolayers were cultured for several days or weeks with or without an addition of 4 x to 6 x 10 -6 M of quinacrine (atebrine) or 3.3 x 10 -5 to 1 x 10 -4 M of chloroquine. Proliferation activity was controlled by the daily microscopical count of representative areas out of the total population. A significant delay resulted from exposure to 4 Gy (particularly during the 1st day), while sole irradiation with 1 or 2 Gy did not much influence the proliferation of the cells. An 8-Gy dose and to a larger extent 16 Gy led to a fall of the cell number down to 20% (8 Gy) or around 10% (16 Gy) of the initial value between the 7th and the 10th day. The cells subsequently multiplied with nearly the growth rate of controls. The inhibitory effect on cells proliferation produced by an exposure to X-rays was distinctly intensified by means of incubation with continuously replaced quinacrine or chloroquine containing culture media. Treatment with 1 x 10 -4 mol chloroquine thus brought about a more pronounced inhibition after pre-irradiation with a single dose of 2 or 8 Gy. If 4 x 10 -6 or 6 x 10 -6 M of quinacrine were added to cultures pretreated with 4 Gy, a more intense inhibition of growth resulted therefrom than from sole treatment with either quinacrine or X-rays. Incubation of cultures pretreated with 8 Gy in the presence of 6 x 10 -6 M quinacrine led to the death of all the cells within 8 days. Quinacrine and chloroquine effects on cells previously exposed to X-rays are discussed in view of the well-known effects these agents exert by inhibiting enzymatic repair processes of DNA damage. (orig.) [de

  12. Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NARCIS (Netherlands)

    Manzano, A.I.; Herranz, R.; Manzano, A.; van Loon, J.J.W.A.; Medina, F.J.

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the

  13. Effects of 60Co γ-rays irradiation on cell growth and alkaloid accumulation of protocorm-like bodies in suspension cultures from Dendrobium huoshanense

    International Nuclear Information System (INIS)

    Hong Sali; Jin Qing; Huang Bei; Cai Yongping; Lin Yi


    Protocorm-like bodies (PLBs) in suspension cultures from Dendrobium huoshanense were irradiated by 60 Co γ-rays at doses of 5, 10, 20 and 30Gy, and alkaloid accumulation of PLBs was studied. The results showed that 60 Co γ-rays irradiation could improve the alkaloid content of PLBs, and the suitable dose was 10Gy. The fresh weight of 10Gy irradiated PLBs was 26.54g/flask, and the alkaloid content was 0.035% on the 36th day. The medium pH and electric conductivity of 10Gy irradiated PLBs changed slightly during the suspension culture period. The results suggested such cultural environment was suitable for PLBs growth continuely. Results also showed that 60 Co γ-rays irradiation could increase the activities of POD, SOD, CAT, PAL and decrease the activity of PPO, these were responsible for the improvement of cell growth and alkaloid accumulation in PLBs. (authors)

  14. Paradoxical adverse culture conditions do not hamper the growth of human multipotent vascular wall-mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Carmen eCiavarella


    Full Text Available Background: Mesenchymal stem cells (MSCs with multilineage potential and anti-inflammatory property can be isolated from different human tissues, representing promising candidates in regenerative medicine. Despite the common criteria of characterization, many factors contribute to MSC heterogeneity (i.e. tissue origin, coexistence of cell subsets at different stage of differentiation, epigenetic and no standard methods have been approved to characterize MSCs in cell culture.Aim: The present study aimed to test whether MSCs resist adverse chemical and physical culture conditions, surviving MSC subpopulations are endowed with the stemness abilities; to characterize MMP expression in AAA-MSCs under the adverse experimental conditions. Methods and results: MSCs enzymatically isolated from human abdominal aortic aneurysm (AAA-MSCs were exposed to media acidification, hypoxia, starving, drying and hypothermia through the following strategies: 1 low-density seeding in closed flasks; 2 exposure to a chemical hypoxia inducer, cobalt chloride; 3 exposure to a dry environment with growing medium deprivation and culture at 4°C. None of these conditions affected MSC viability and stemness profile, as evidenced by NANOG, OCT-4 and Sox-2 mRNA expression in surviving cells. A significant MMP-9 decrease, especially when AAA-MSCs were exposed to hypothermia, was associated with stress resistant stem cells.Conclusions: AAA-MSCs survive to extremely adverse culture conditions, keeping their morphology and stemness features. Besides MMP-9 role in pathological tissue remodeling, this protease may be related to MSC survival. Future studies on MSCs derived from other tissues will be necessary to refine our culture protocol, which can represent an empirical method to demonstrate MSC stemness,, with potential implications for their clinical use.

  15. Augmentation by L-Dopa of growth inhibition and melanin formation of X-irradiated Harding-Passey melanoma cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Schachtschabel, D.O.; Pfab, R.; Hess, F.; Paul, N.


    Treatment of exponentially proliferating melanogenic Harding-Passey melanoma cells in monolayer culture (HPM-73 line) with a single dose of X-irradiation (up to 8 Gy) or continuously (for several weeks) with L-3,4-dihydroxyphenylalanine (L-Dopa) up to 5x10/sup -4/ M resulted in a dose-dependent inhibition of cell proliferation, but not in death of all cells. Actually, 8 Gy-irradiated or L-Dopa (2x10/sup -4/ M)-treated cultures finally reached the cell number and cell density of controls. However, a combination of a single dose of radiation (8 Gy) followed by L-Dopa (2x10/sup -4/ M)-treatment resulted in destruction of all cells. Melanin formation was stimulated by L-dopa-treatment or X-irradiation, and was further elevated by the combined application of radiation and L-Dopa-exposure. Whether the effects of exogenously applied L-Dopa, an intermediary metabolite of melanin synthesis, are due to the conversion to growth-inhibitory metabolites (quinones, radicals, etc.) inside or outside the cell, was discussed. The latter might result from release (due to membrane damage or cell desintegration) of tyrosinase or/and melanosomes into the culture medium with the consequence of extracellular synthesis of potentially cytotoxic metabolites from medium substrates. Further, endocytosis of exogenous melanosomes and tyrosinase with potentially harmful effects is feasible. An application of such a combination therapy of melanoma to clinical medicine should be considered.

  16. Augmentation by L-Dopa of growth inhibition and melanin formation of X-irradiated Harding-Passey melanoma cells in culture

    International Nuclear Information System (INIS)

    Schachtschabel, D.O.; Pfab, R.; Hess, F.; Paul, N.


    Treatment of exponentially proliferating melanogenic Harding-Passey melanoma cells in monolayer culture (HPM-73 line) with a single dose of X-irradiation (up to 8 Gy) or continuously (for several weeks) with L-3,4-dihydroxyphenylalanine (L-Dopa) up to 5x10 -4 M resulted in a dose-dependent inhibition of cell proliferation, but not in death of all cells. Actually, 8 Gy-irradiated or L-Dopa (2x10 -4 M)-treated cultures finally reached the cell number and cell density of controls. However, a combination of a single dose of radiation (8 Gy) followed by L-Dopa (2x10 -4 M)-treatment resulted in destruction of all cells. Melanin formation was stimulated by L-dopa-treatment or X-irradiation, and was further elevated by the combined application of radiation and L-Dopa-exposure. Whether the effects of exogenously applied L-Dopa, an intermediary metabolite of melanin synthesis, are due to the conversion to growth-inhibitory metabolites (quinones, radicals, etc.) inside or outside the cell, was discussed. The latter might result from release (due to membrane damage or cell desintegration) of tyrosinase or/and melanosomes into the culture medium with the consequence of extracellular synthesis of potentially cytotoxic metabolites from medium substrates. Further, endocytosis of exogenous melanosomes and tyrosinase with potentially harmful effects is feasible. An application of such a combination therapy of melanoma to clinical medicine should be considered. (orig.) [de

  17. Effect of epidermal growth factor on the labeling of the various RNA species and of nuclear proteins in primary rat astroglial cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Avola, R.; Condorelli, D.F.; Turpeenoja, L.; Ingrao, F.; Reale, S.; Ragusa, N.; Giuffrida Stella, A.M.


    This study investigated the effects of epidermal growth factor (EGF) on the labeling of various RNA species and of nuclear proteins in primary rat astroglial cell cultures. After 12 hours of EGF treatment in serum-free medium or chemically defined medium, significant increase in RNA labeling, and also in acid-soluble radioactivity and RNA content, was observed. The ratio RNA/DNA was significantly higher in EGF-treated cultures compared with controls. Ribosomal RNAs (28S and 18S), polyadenylated, and nonpolyadenylated RNAs showed a higher specific radioactivity in EGF-treated cultures. Among the nuclear proteins, the labeling of basic proteins was enhanced by EGF treatment, whereas that of total nuclear acidic protein (NHPs) was less modified, except for some NHPs separated by gel electrophoresis with a molecular weight (MW) approximately 95-83 and 44 kd, which were significantly more labeled in EGF-treated cultures.

  18. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jharna R Das

    Full Text Available Renal endothelial cells (REc are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A and Fibroblast Growth Factor-2 (FGF-2, in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms.

  19. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles. (United States)

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun


    The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.

  20. Growth of Igbo-Ora virus in some tissue cultures. (United States)

    Olaleye, O D; Omilabu, S A; Baba, S S


    VERO, MRC5, MDCK, and MA104 cells were tested for their ability to support the growth of Igbo-Ora virus. In VERO and MRC5 cell cultures the virus replicated to high titres causing apparent cytopathic effects (CPE) (cell rounding and complete lysis) and formation of complement fixing antigens. The virus grew to lower infectious titre in MDCK and MA104 cell cultures in which CPE was limited to cell rounding only.

  1. Basic cell culture. (United States)

    Pollard, J W


    This article will describe the basic techniques required for successful cell culture. It will also act to introduce some of the other chapters in this volume. It is not intended, as this volume is not, to describe the establishment of a tissue culture laboratory, nor to provide a historical or theoretical survey of cell culture. There are several books that adequately cover these areas, including the now somewhat dated but still valuable volume by Paul (1), the multi-authored Methods in Enzymology volume edited by Jakoby and Pastan (2), and the new edition of Freshney (3). Instead, this chapter's focus will be on the techniques for establishing primary rodent cell cultures from embryos and adult skin, maintaining and subculturing these fibro-blasts and their transformed derivatives, and the isolation of genetically pure strains. The cells described are all derived from Chinese hamsters since, to date, these cells, have proved to be the most useful for somatic cell genetics (4,5). The techniques, however, are generally applicable to most fibroblastic cell types.

  2. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions]. (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D


    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  3. Addition of granulosa cell mass to the culture medium of oocytes derived from early antral follicles increases oocyte growth, ATP content, and acetylation of H4K12. (United States)

    Sugiyama, Miyako; Sumiya, Mei; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka


    The main aim of the present study was to examine the hypothesis that an increase in the number of granulosa cells surrounding developing bovine oocytes results in both high ATP levels and an increase in the acetylation level of H4K12 in oocytes grown in vitro. Oocyte-granulosa cell complexes (OGCs) were collected from early antral follicles (EAFs, 0.4-0.7 mm in diameter), and individually cultured on 96-well plates with or without additional granulosa cell mass that had been prepared from other OGCs. After 16 days of culture, we examined: (i) the rate of antrum formation of the OGCs; (ii) the diameter, maturation, and fertilization rate of the oocytes; and (iii) the ATP content and acetylation level of H4K12 in the oocytes grown in vitro. Granulosa cell mass added to the culture medium contributed to the development of OGCs with a higher rate of antrum formation and oocyte growth. Furthermore, the addition of granulosa cells increased the ATP content and acetylation level of H4K12 in oocytes grown in vitro compared with those developed without addition of granulosa cells. In addition, there was a positive correlation between the ATP content in oocytes grown in vitro and the number of granulosa cells in the corresponding OGCs. The results suggest that granulosa cells play a role not only in the development of OGCs and the growth of oocytes, but also in the determination of ATP content and the acetylation of H4K12 in the oocytes developed in vitro.

  4. Effects of low oxygen tension on gene profile of soluble growth factors in co-cultured adipose-derived stromal cells and chondrocytes. (United States)

    Shi, Sirong; Xie, Jing; Zhong, Juan; Lin, Shiyu; Zhang, Tao; Sun, Ke; Fu, Na; Shao, Xiaoru; Lin, Yunfeng


    Moving towards development of optimized cartilage regeneration with adipose-derived stromal cells (ASCs), the focus of this study was on investigating the influence of hypoxia on soluble factors secreted by ASCs and chondrocytes after crosstalk. We established direct contact co-culture and non-contact co-culture systems by using red or green fluorescent protein (R/GFP)-labelled mice and SD rats respectively. Gene variation of growth factors of the two cell types, in both hypoxic and normoxic conditions, were screened using semi-quantitative polymerase chain reaction (PCR). Co-culture with ASCs and chondrocytes under hypoxia was shown to successfully induce or enhance ASC to chondrogenic differentiation. To be specific, chondrogenic maker genes: AGC, COL II and SOX9 were remarkably enhanced in both ASCs and chondrocytes after crosstalk under low oxygen tension. Subsequently, screening growth factors in ASCs and chondrocytes under hypoxia showed that HIF-1α, VEGF-A/B, BMP-2/-4/-6, FGF-2 and IGF-1 were significantly increased, but not TGF-β1. These results revealed that both hypoxia and co-culture systems can notably enhance chondrogenesis of ASCs as well as increase proliferation of ASCs and chondrocytes. © 2016 John Wiley & Sons Ltd.

  5. Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application (United States)

    Durán, Marcela; Andrade, Patricia F.; Durán, Nelson; Luzo, Angela C. M.; Fávaro, Wagner J.


    It was prepared the graphene oxide (GO) sheets by suspension of GO in ultrapure deionized water or in Pluronic F-68 using a ultrasonicator bath. Total characterization of GO sheets was carried out. The results on suspension of GO in water showed excellent growth and cell adhesion. GO/Pluronic F-68 platform for the growth and adhesion of adipose-derived stem cells (ASCs) that exhibits excellent properties for these processes. GO in water suspension exhibited an inhibition of the cell growth over 5 μg/mL In vivo study with GO suspended in water (100 μg/mL) on Fisher 344 rats via i.p. administration showed low toxicity. Despite GO particle accumulates in the intraperitoneal cavity, this fact did not interfere with the final absorption of GO. The AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels (liver function) did not differ statistically in all experimental groups. Also, creatinine and urea levels (renal function) did not differ statistically in all experimental groups. Taking together, the data suggest the great potential of graphene oxide sheets as platform to ACSs, as well as, new material for treatment several urological diseases.

  6. Cell Culturing of Cytoskeleton (United States)


    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  7. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Kelly Y C Lam

    Full Text Available Acori Tatarinowii Rhizoma (ATR, the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB. In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved.

  8. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu


    Full Text Available Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer’s disease and depression.

  9. Characterization of rPEPT2-mediated Gly-Sar transport parameters in the rat kidney proximal tubule cell line SKPT-0193 cl.2 cultured in basic growth media

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Frokjaer, Sven


    The rat proximal kidney tubule cell line SKPT-0193 cl.2 (SKPT) expresses the di-/tripeptide transporter PEPT2 (rPEPT2) and has been used to study PEPT2-mediated transport. Traditionally, SKPT cells have been cultured in growth media supplemented with epidermal growth factor (EGF), apotransferrin,...

  10. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project. (United States)

    Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela


    Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cholera toxin stimulation of human mammary epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R.


    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  12. Essential role of structural integrity and firm attachment of surface-anchored epidermal growth factor in adherent culture of neural stem cells. (United States)

    Nakaji-Hirabayashi, Tadashi; Kato, Koichi; Iwata, Hiroo


    Surface immobilization of proteins provides various biomaterials that permit the control of cellular functions through protein-protein interactions. Our previous study demonstrated that human epidermal growth factor carrying a hexahistidine sequence at the C-terminus (hEGF-His) could be anchored to the Ni-chelated surface by coordination, providing the versatile substrate for the selective proliferation of neural stem cells. The present study was undertaken to gain deeper insights into the basis for such an outstanding property of the surface with coordinated hEGF-His. For this purpose, the structure of the coordinated hEGF-His was analyzed by multiple internal reflection-infrared absorption spectroscopy. In addition, stability of coordinate bonds was assessed under cell culture conditions using a spatially-restricted anchoring technique. These data were compared to the results obtained from surfaces with covalently immobilized and physically adsorbed hEGF-His. The results presented here demonstrate that coordinated hEGF-His remains its intact conformation and is firmly anchored to the surface during cell culture. These attributes are both crucial for establishing the adherent culture and hence selective expansion of neural stem cells.

  13. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. (United States)

    Park, Catherine C; Zhang, Hui; Pallavicini, Maria; Gray, Joe W; Baehner, Frederick; Park, Chong J; Bissell, Mina J


    Current therapeutic approaches to cancer are designed to target molecules that contribute to malignant behavior but leave normal tissues intact. beta(1) integrin is a candidate target well known for mediating cell-extracellular matrix (ECM) interactions that influence diverse cellular functions; its aberrant expression has been implicated in breast cancer progression and resistance to cytotoxic therapy. The addition of beta(1) integrin inhibitory agents to breast cancer cells at a single-cell stage in a laminin-rich ECM (three-dimensional lrECM) culture was shown to down-modulate beta(1) integrin signaling, resulting in malignant reversion. To investigate beta(1) integrin as a therapeutic target, we modified the three-dimensional lrECM protocol to approximate the clinical situation: before treatment, we allowed nonmalignant cells to form organized acinar structures and malignant cells to form tumor-like colonies. We then tested the ability of beta(1) integrin inhibitory antibody, AIIB2, to inhibit tumor cell growth in several breast cancer cell lines (T4-2, MDA-MB-231, BT474, SKBR3, and MCF-7) and one nonmalignant cell line (S-1). We show that beta(1) integrin inhibition resulted in a significant loss of cancer cells, associated with a decrease in proliferation and increase in apoptosis, and a global change in the composition of residual colonies. In contrast, nonmalignant cells that formed tissue-like structures remained resistant. Moreover, these cancer cell-specific antiproliferative and proapoptotic effects were confirmed in vivo with no discernible toxicity to animals. Our findings indicate that beta(1) integrin is a promising therapeutic target, and that the three-dimensional lrECM culture assay can be used to effectively distinguish malignant and normal tissue response to therapy.

  14. The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture. (United States)

    Mii, Sumiyuki; Duong, Jennifer; Tome, Yasunori; Uchugonova, Aisada; Liu, Fang; Amoh, Yasuyuki; Saito, Norimitsu; Katsuoka, Kensei; Hoffman, Robert M


    We have previously reported that nestin-expressing hair follicle stem cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, vibrissa hair follicles, including their sensory nerve stump, were excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice), and were placed in 3D histoculture supported by Gelfoam®. β-III tubulin-positive fibers, consisting of ND-GFP-expressing cells, extended up to 500 µm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F-actin. These findings indicate that β-III tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in ND-GFP cells which appeared to play a major role in its elongation and interaction with other nerves in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. The results of the present report suggest a major function of the nestin-expressing stem cells in the hair follicle is for growth of the follicle sensory nerve. Copyright © 2013 Wiley Periodicals, Inc.

  15. Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of human immunodeficiency virus type 1 in cell culture. (United States)

    Dykes, Carrie; Wang, Jiong; Jin, Xia; Planelles, Vicente; An, Dong Sung; Tallo, Amanda; Huang, Yangxin; Wu, Hulin; Demeter, Lisa M


    Human immunodeficiency virus type 1 (HIV-1) replication efficiency or fitness, as measured in cell culture, has been postulated to correlate with clinical outcome of HIV infection, although this is still controversial. One limitation is the lack of high-throughput assays that can measure replication efficiency over multiple rounds of replication. We have developed a multiple-cycle growth competition assay to measure HIV-1 replication efficiency that uses flow cytometry to determine the relative proportions of test and reference viruses, each of which expresses a different reporter gene in place of nef. The reporter genes are expressed on the surface of infected cells and are detected by commercially available fluorescence-labeled antibodies. This method is less labor-intensive than those that require isolation and amplification of nucleic acids. The two reporter gene products are detected with similar specificity and sensitivity, and the proportion of infected cells in culture correlates with the amount of viral p24 antigen produced in the culture supernatant. HIV replication efficiencies of six different drug-resistant site-directed mutants were reproducibly quantified and were similar to those obtained with a growth competition assay in which the relative proportion of each variant was measured by sequence analysis, indicating that recombination between the pol and reporter genes was negligible. This assay also reproducibly quantified the relative fitness conferred by protease and reverse transcriptase sequences containing multiple drug resistance mutations, amplified from patient plasma. This flow cytometry-based growth competition assay offers advantages over current assays for HIV replication efficiency and should prove useful for the evaluation of patient samples in clinical trials.

  16. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry


    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  17. Growth and Potential Damage of Human Bone-Derived Cells Cultured on Fresh and Aged C60/Ti Films (United States)

    Kopova, Ivana; Lavrentiev, Vasily; Vacik, Jiri; Bacakova, Lucie


    Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation. PMID:25875338

  18. Strategies for "minimal growth maintenance" of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a Space station (United States)

    Krikorian, A. D.


    How cells manage without gravity and how they change in the absence of gravity are basic questions that only prolonged life on a Space station will enable us to answer. We know from investigations carried out on various kinds of Space vehicles and stations that profound physiological effects can and often to occur. We need to know more of the basic biochemistry and biophysics both of cells and of whole organisms in conditions of reduced gravity. The unique environment of Space affords plant scientists an unusual opportunity to carry out experiments in microgravity, but some major challenges must be faced before this can be done with confidence. Various laboratory activities that are routine on Earth take on special significance and offer problems that need imaginative resolution before even a relatively simple experiment can be reliably executed on a Space station. For example, scientists might wish to investigate whether adaptive or other changes that have occurred in the environment of Space are retained after return to Earth-normal conditions. Investigators seeking to carry out experiments in the low-gravity environment of Space using cultured cells will need to solve the problem of keeping cultures quiescent for protracted periods before an experiment is initiated, after periodic sampling is carried out, and after the experiment is completed. This review gives an evaluation of a range of strategies that can enable one to manipulate cell physiology and curtail growth dramatically toward this end. These strategies include cryopreservation, chilling, reduced oxygen, gel entrapment strategies, osmotic adjustment, nutrient starvation, pH manipulation, and the use of mitotic inhibitors and growth-retarding chemicals. Cells not only need to be rendered quiescent for protracted periods but they also must be recoverable and further grown if it is so desired. Elaboration of satisfactory procedures for management of cells and tissues at "near zero or minimal growth" will

  19. Microfluidic Cell Culture Device (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)


    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  20. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin


    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  1. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells. (United States)

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I


    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  2. [Basic studies on CaO-P2O5-MgO-SiO2-CaF system glass ceramics. 1. Morphology under the phase-contrast microscope and growth of cultured cells]. (United States)

    Yoshimoto, Y; Hara, Y; Abe, T; Akamine, A; Maeda, K; Aono, M


    In order to determine the biocompatibility of glass ceramics which is one of the new biomaterials, in vitro studies were carried out by a cell culture method using four established cell lines. Materials used were glass ceramic disks with a diameter of 3 mm, and polystyrene coverslips of the same size as controls of the growth curve. Cells of each line were inoculated into 24-well multiplates at an appropriate density onto glass ceramic disks, and examined by phase contrast microscopy on the 1st, 3rd, 6th and 8th day. In addition, doubling time and saturation density were calculated from the growth curve. The results obtained were as follows. 1) Phase-contrast microscopy revealed that cells of each line attached to the disk within 24 hours and their numbers increased with time. After 8 days of cultivation, all of them reached confluence. 2) Contact with the glass ceramics did not cause cellular death or degeneration. Furthermore, the cultured cells showed the same morphological features as the control cells. 3) According to the growth curves, doubling time of all cells cultured with glass ceramics was shorter than that of the control cultures. On the other hand, saturation density was reduced to a minimum of 80% of the controls. These findings led to the conclusion that glass ceramic materials do not prevent the growth of cultured cells. According to the above results, glass ceramics possess the characteristics needed for bone grafts and implant materials.

  3. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs. (United States)

    Hadsbjerg, Johanne; Friis, Martin B; Fahnøe, Ulrik; Nielsen, Jens; Belsham, Graham J; Rasmussen, Thomas Bruun


    Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the subdomain IIIf of the internal ribosome entry site (IRES) that directs the initiation of protein synthesis. Rescued viruses were inoculated into pigs. The rescued vPader10 virus, without modifications in the IRES, induced clinical disease in pigs that was very similar to that observed previously with the parental field strain and transmission to in-contact pigs occurred. Two sequence reversions, in the NS2 and NS5B coding regions, became dominant within the virus populations in these infected pigs. Rescued viruses, with mutant IRES elements, did not induce disease and only very limited circulation of viral RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus adaptation and to identify key determinants of viral replication efficiency in cells and within host animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Establishment and characterization of American elm cell suspension cultures (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy


    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  5. Growth effects on mixed culture of Dunaliella salina and ...

    African Journals Online (AJOL)



    Oct 10, 2011 ... length of 680 nm using UV-spectrophotometer (TU-1900, Beijing) every two days during the entire cultural period to monitor the cell growth. Cell density was monitored and recorded with a hemocytometer (XB.K.25, Shanghai) under optical microscope. (Olympus CX41, Japan) at the same time of the day on ...

  6. Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae. (United States)

    Aon, Juan C; Sun, Jianxin; Leighton, Julie M; Appelbaum, Edward R


    In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.

  7. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael


    on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...... culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...

  8. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Villingshøj, Mette; Poulsen, Hans Skovgaard


    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions...

  9. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael


    We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled c...... compared to cell cultured in culture flasks incubated in a dark and CO2 conditioned incubator....

  10. Correlation between culture medium pH, extracellular proteinase activity, and cell growth of Candida albicans in insoluble stratum corneum-supplemented media. (United States)

    Tsuboi, R; Matsuda, K; Ko, I J; Ogawa, H


    Candida albicans produces a major extracellular proteinase whose activities are observed only in weakly acidic pH. However, in affected lesions, a variety of pH conditions exist, including neutral pH. To verify the pathological importance of the extracellular proteinase, the correlation between culture medium pH, extracellular proteinase activity, and cell growth of C. albicans was followed for 3 weeks with unbuffered and insoluble stratum corneum-supplemented liquid media. Each medium pH, initially adjusted within a range of pH 3-7 by the addition of sodium hydroxide or hydrochloric acid solution, was acidified, and a subsequent high proteolytic activity and rapid fungal growth were observed. After full fungal growth, neutralization of each medium to pH 7 and reduction of proteinase activity occurred. Results from a glucose addition experiment suggest that acidification of each medium was produced by the acid formation from glucose and neutralization by the exhaustion of glucose and increase of ammonia from denatured stratum corneum. These data suggest that extracellular proteinase from C. albicans could act as a virulence factor under a wide range of pH conditions by the acidification of the environmental pH close to the organism.

  11. Influence of growth factors and medium composition on benzo[a]pyrene- and vitamin A-induced cell proliferation and differentiation in hamster tracheal epithelium in organ culture

    NARCIS (Netherlands)

    Wolterbeek, A.P.M.; Ciotti, M.A.L.T.; Schoevers, E.J.; Roggeband, R.; Baan, R.A.; Feron, V.J.; Rutten, A.A.J.J.L.


    Tracheal organ cultures and isolated tracheal epithelial cells are frequently used to study effects of carcinogens and retinoids on both proliferation and differentiation of respiratory tract epithelial cells. For each of these in vitro models, optimal culture conditions have been established,

  12. Transforming growth factor-betas block cytokine induction of catalase and xanthine oxidase mRNA levels in cultured rat cardiac cells. (United States)

    Flanders, K C; Bhandiwad, A R; Winokur, T S


    We examined the effects of transforming growth factor-beta (TGF-beta) on the mRNA expression of the antioxidative enzymes, catalase, manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD), as well as the oxidative enzyme, xanthine oxidase (XO), in cultures of cardiomyocytes, cardiac non-myocytes, and fetal bovine heart endothelial cells. TGF-betas alone had little effect on expression of these enzymes, but treatment with a combination of interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha increased expression of MnSOD, catalase, and XO in some cell types with little effect on CuZnSOD expression. When TGF-betas were added along with these inflammatory cytokines there was a return to control levels of catalase expression, as well as a dramatic reduction in XO expression. In fetal bovine heart endothelial cells, treatment with inflammatory cytokines increased XO mRNA expression 11.5-fold and inclusion of TGF-betas reduced this 4-5-fold: effects on XO enzyme activity paralleled those seen on mRNA expression. Similar changes in XO expression were seen in cardiomyocytes. In contrast, TGF-betas did not change cytokine-induced MnSOD expression. All three mammalian isoforms of TGF-beta showed similar effects. In summary, TGF-betas may be able to decrease superoxide anion production and subsequent tissue damage by decreasing levels of XO.

  13. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    International Nuclear Information System (INIS)

    Keller, B.T.; Borchardt, R.T.


    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of [ 125 I]-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23 0 C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37 0 C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37 0 C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation

  14. Influence of mixed culture system on the growth performance of ...

    African Journals Online (AJOL)



    May 22, 2013 ... This study describes a novel strategy to improve the α-galactosidase and invertase production of. Saccharomyces cerevisiae by co-cultivating it with Aspergillus oryzae. In the mixed culture, the growth of the both strains was repressed, and the protein synthesis for the yeast cell wall was promoted.

  15. Influence of mixed culture system on the growth performance of ...

    African Journals Online (AJOL)

    This study describes a novel strategy to improve the α-galactosidase and invertase production of Saccharomyces cerevisiae by co-cultivating it with Aspergillus oryzae. In the mixed culture, the growth of the both strains was repressed, and the protein synthesis for the yeast cell wall was promoted significantly. As a result ...

  16. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana. (United States)

    Arias, J P; Zapata, K; Rojano, B; Arias, M


    Thevetia peruviana (T. peruviana) has been considered as a potentially important plant for industrial and pharmacological application. Among the number of compounds which are produced by T. peruviana, antioxidants and polyphenols are of particular interest due to their benefits on human health. Cell suspension cultures of T. peruviana were established under different conditions: 1) constant illumination (24h/day) at different light wavelengths (red, green, blue, yellow and white), 2) darkness and 3) control (12h/12h: day light/dark) to investigate their biomass, substrate uptake, polyphenols production and oxidizing activity. The results showed biomass concentrations between 17.1g dry weight (DW)/l (green light) and 18.2g DW/l (control) after 13days. The cultures that grew under green light conditions consumed completely all substrates after 10days, while other cultures required at least 13days or more. The total phenolic content was between 7.21 and 9.46mg gallic acid (GA)/g DW for all light conditions. In addition the ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant activity ranged from 5.41-6.58mg ascorbic acid (AA)/g DW and 82.93-110.39μmol Trolox/g DW, respectively. Interestingly, the samples which grew under the darkness presented a higher phenolic content and antioxidant capacity when compared to the light conditions. All together, these results demonstrate the extraordinary effect of different lighting conditions on polyphenols production and antioxidant compounds by T. peruviana. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Filová, Elena; Kubies, Dana; Machová, Luďka; Proks, Vladimír; Malinova, V.; Rypáček, František


    Roč. 18, č. 7 (2007), s. 1317-1323 ISSN 0957-4530 R&D Projects: GA AV ČR IAA4050202; GA AV ČR(CZ) 1QS500110564 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40500505 Keywords : tissue engineering * integrin-mediated cell adhesion * bioartificial tissue Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.581, year: 2007

  18. In vitro production of azadirachtin from cell suspension cultures of ...

    Indian Academy of Sciences (India)


    to affect the growth and metabolism of cultured cells, and have been studied extensively in different species in .... Specific growth rate of neem cell suspensions in altered nitrate: ammonium ratio. MS, Murashige and Skoog medium; MS medium with .... Stimulated caffeine production has been reported in Coffea arabica cell ...

  19. Changes In Growth Culture FDA Activity Under Changing Growth Conditions

    DEFF Research Database (Denmark)

    Jørgensen, Per Elberg; Eriksen, Thomas Juul; Jensen, Bjørn K.


    of the bacteria. The FDA activity/ATP ratio was calculated for different concentrations of autoclaved sludge. A faster decay rate of ATP relative to FDA hydrolysis activity was observed, thus causing changes in the ratio. Furthermore, comparison between values obtained from pure cultures and different soils......The FDA hydrolysis capacities and bacterial biomass concentrations (estimated by determination of ATP content) of growth cultures prepared from activated sludge and wastewater, were measured to find out whether the FDA activity would reflect bacterial biomass under different physiological states...

  20. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen


    of growth regulators were observed to be 3 × 10−6M indoleacetic acid (JAA) combined with 3 × 10−6M benzylaminopurin (BAP) or 10−6M 2,4-dichlorophenoxy acetic acid (2,4-D) alone. IAA + BAP caused a 100 fold increase in fresh weight over 4 weeks at 25°C. Addition of casein hydrolysate increased growth further....... Cell suspension cultures worked best in media containing 2,4-D in which they had a doubling time of about 2 days. Filtered suspensions were successfully plated on agar in petri dishes, but division was never observed in single cells. The cultures initiated roots at higher concentrations of IAA or NAA...

  1. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    The production of gallic acid in cell suspension culture of Acer ginnala Maxim was studied. Some physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were investigated. Cells harvested from plant tissue culture were extracted and applied to high performance liquid ...

  2. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-β- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    International Nuclear Information System (INIS)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R.


    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-β superfamily members myostatin and TGF-β 1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-β 1 or myostatin significantly (P 1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P 1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-β 1 or myostatin treatment (P 1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-β and myostatin to suppress proliferation of PEMC

  3. Pluronic polyols in human lymphocyte cell line cultures. (United States)

    Mizrahi, A


    Pluronic polyols markedly improved the growth of two human lymphocyte cell lines when added to the growth medium in concentrations of 0.05 to 0.1%. The results of the current studies suggest that, in addition to the protective effect of polyols against mechanical damage of mammalian cells in submerged cultures, the pluronic compounds may also, by lowering surface tension, facilitate transport of metabolites into cells and thus increase the growth rate. PMID:1063740

  4. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.


    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  5. Cell culture compositions (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian


    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  6. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L


    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  7. Effect of 5-amino-4-imidazolecarboxamide riboside (AICA-riboside) on the purine nucleotide synthesis and growth of rat kidney cells in culture: study with [15N]aspartate. (United States)

    Nissim, I; Yudkoff, M; Nissim, I; States, B


    The present investigation evaluates the effect of AICA-Riboside on the synthesis of purine nucleotides and the growth of normal rat kidney cells in culture. Experiments in the presence and absence of various concentrations of AICA-Riboside were conducted with Dulbecco's Modified Eagle's Medium supplemented with either 1 mM [15N]aspartate or [14N]aspartate. Addition of 50 microM AICA-Riboside to the incubation medium significantly stimulated intracellular adenine nucleotide concentrations following incubation for 48 hours. This stimulation was associated with augmented cell growth and DNA concentration. In contrast, with concentrations above 100 microM of AICA-Riboside in the incubation medium, there was a remarkable inhibition of cell growth and a significant depletion of intracellular pools of adenine nucleotides and DNA. Experiments with [15N]aspartate showed that the initial rate (0-24 hours) of [6-15NH2]adenine nucleotide formation from 1 mM [15N]aspartate was 38.8 +/- 9.6, 67.9 +/- 12.5, and 20.1 +/- 3.8 pmol h-1/10(6) cells in the presence of 0 (control), 50 microM and 500 microM AICA-Riboside, respectively. These observations indicate that the main effect of AICA-Riboside is on the formation of AMP from aspartate and IMP via the sequential action of adenylosuccinate synthetase and adenylosuccinate lyase. The current studies suggest that AICA-Riboside could be used as a factor mediating renal cell mitosis in culture. AICA-Riboside has a biphasic effect on the growth of renal epithelial cells in culture and on their intracellular purine nucleotides and DNA concentration.

  8. Changes In Growth Culture FDA Activity Under Changing Growth Conditions

    DEFF Research Database (Denmark)

    Jørgensen, Per Elberg; Eriksen, Thomas Juul; Jensen, Bjørn K.


    The FDA hydrolysis capacities and bacterial biomass concentrations (estimated by determination of ATP content) of growth cultures prepared from activated sludge and wastewater, were measured to find out whether the FDA activity would reflect bacterial biomass under different physiological states...... of the bacteria. The FDA activity/ATP ratio was calculated for different concentrations of autoclaved sludge. A faster decay rate of ATP relative to FDA hydrolysis activity was observed, thus causing changes in the ratio. Furthermore, comparison between values obtained from pure cultures and different soils...... revealed differences up to two orders of magnitude of the ratio. Based on these results it was concluded that the FDA activity should not be applied for measurements of viable biomass in environments in which different physiological conditions occur....

  9. Determination of Bacterial Growth in Culture Media

    International Nuclear Information System (INIS)

    Elly Ellyna Rashid; Shariza Hanim Zainal Abidin; Mok, P.S.


    Bacteria is one of the important microorganism in our daily life. Bacteria provides human beings with products in the field of medical, industry, food, agriculture and others. Determination of bacteria growth is important so that we can enjoy the most benefit from it. Spread-plate method is one of the methods to obtain the bacterial counts. Agar plates, such as Nutrient Agar or Plate Count Agar are usually used for this purpose. Bacterial culture will be diluted first before being spread on the agar plate and incubated at specific temperature. The number of bacteria in colony-forming unit (CFU) will be counted the next day. The count will be used to determine the bacterial growth. (author)

  10. Nylon-3 polymers that enable selective culture of endothelial cells. (United States)

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H; Masters, Kristyn S


    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.

  11. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures


    Vergara, Mauricio; Berrios, Julio; Mart?nez, Irene; D?az-Barrera, Alvaro; Acevedo, Cristian; Reyes, Juan G.; Gonzalez, Ramon; Altamirano, Claudia


    Background Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in ...

  12. Youth Culture and Cell Phone

    Directory of Open Access Journals (Sweden)

    mohammad saeed zokaei


    Full Text Available Iranian youth’s leisure culture has been immediately affected by the digital media culture. As a communicative media, cell phone has crossed borders of youth norms and identity; and in addition to facilitating their communication, has changed its patterns. Applying Bourdieu’s concepts of habitus and field, and relied on the qualitative and quantitative data gathered from the mobile youth users, the present study argues that mobile has produced a new field in which youth’s opportunities for leisure, entertainment, communication, and independence have extended. In addition, cell phone has facilitated and compensated for some defects in public sphere, and therefore empowered youth agency, individuality, and power. Despite this strengthening, cell phone does not cross borders of gender and class differences, or the levels of social capital.

  13. Synthesis of polymer materials for use as cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lakard, Sophie [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, IUT, 30 Avenue de l' Observatoire, 25009 Besancon (France)], E-mail:; Morrand-Villeneuve, Nadege [Laboratoire de Neurosciences, University of Franche-Comte, Place Leclerc, 25030 Besancon (France); Lesniewska, Eric [Laboratoire de Physique de l' Universite de Bourgogne, University of Bourgogne, 9 Avenue Savary, 21078 Dijon (France); Lakard, Boris [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Michel, Germaine [Laboratoire de Neurosciences, University of Franche-Comte, Place Leclerc, 25030 Besancon (France); Herlem, Guillaume [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Gharbi, Tijani [Laboratoire d' Optique P.M. Duffieux, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France); Fahys, Bernard [Laboratoire de Chimie des Materiaux et Interfaces, University of Franche-Comte, 16 Route de Gray, 25030 Besancon (France)


    Up to today, several techniques have been used to maintain cells in culture for studying many aspects of cell biology and physiology. More often, cell culture is dependent on proper anchorage of cells to the growth surface. Thus, poly-L-lysine, fibronectin or laminin are the most commonly used substrates. In this study, electrosynthesized biocompatible polymer films are proposed as an alternative to these standard substrates. The electrosynthesized polymers tested were polyethylenimine, polypropylenimine and polypyrrole. Then, the adhesion, proliferation and morphology of rat neuronal cell lines were investigated on these polymer substrates in an attempt to develop new and efficient polymer materials for cell culture. During their growth on the polymers, the evolution of the cell morphology was monitored using both confocal microscopy and immunohistochemistry, leading to the conclusion of a normal development. An estimation of the adhesion and proliferation rates of rat neuronal cell cultures indicated that polyethylenimine and polypropylenimine were the best substrates for culturing olfactory neuronal cells. A method to favour the differentiation of the neuronal cells was also developed since the final aim of this work is to develop a biosensor for odour detection using differentiated neuronal cells as transducers. Consequently, a biosensor was microfabricated using silicon technology. This microsystem allowed us to culture the cells on a silicon wafer and to position the cells on certain parts of the silicon wafer.

  14. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)


    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  15. Gravity, chromosomes, and organized development in aseptically cultured plant cells (United States)

    Krikorian, Abraham D.


    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  16. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)


    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  17. Growth Culture Conditions and Nutrient Signaling Modulating Yeast Chronological Longevity

    Directory of Open Access Journals (Sweden)

    Júlia Santos


    Full Text Available The manipulation of nutrient-signaling pathways in yeast has uncovered the impact of environmental growth conditions in longevity. Studies using calorie restriction show that reducing glucose concentration of the culture media is sufficient to increase replicative and chronological lifespan (CLS. Other components of the culture media and factors such as the products of fermentation have also been implicated in the regulation of CLS. Acidification of the culture media mainly due to acetic acid and other organic acids production negatively impacts CLS. Ethanol is another fermentative metabolite capable of inducing CLS reduction in aged cells by yet unknown mechanisms. Recently, ammonium was reported to induce cell death associated with shortening of CLS. This effect is correlated to the concentration of NH4+ added to the culture medium and is particularly evident in cells starved for auxotrophy-complementing amino acids. Studies on the nutrient-signaling pathways regulating yeast aging had a significant impact on aging-related research, providing key insights into mechanisms that modulate aging and establishing the yeast as a powerful system to extend knowledge on longevity regulation in multicellular organisms.

  18. Viability and growth of feline preantral follicles in vitro cultured with insulin growth factor and epidermal growth factor supplemented medium. (United States)

    Alves, A E; Padilha-Nakaghi, L C; Pires-Butler, E A; Apparicio, M; Silva, Nam; Motheo, T F; Vicente, Wrr; Luvoni, G C


    In vitro culture of ovarian preantral follicles has emerged as a reproductive technology aimed at obtaining large amount of oocytes for in vitro embryo production. The addition of growth factors (GF) in the in vitro culture of preantral follicles of different species has provided superior results of follicular development, antrum formation and proliferation of granulosa cells. However, there are only few reports regarding the use of these factors on feline preantral follicle in vitro culture. Thus, the aim of this study was to investigate the effect of a combination of IGF-1 and EGF on in vitro viability and growth of preantral follicles and enclosed oocytes collected from domestic cats. A total of 64 follicles characterized by multilayer granulosa cells were isolated and individually cultured for 6 days (T6) in minimum essential medium supplemented with IGF-1+ EGF (100 ng/ml each) or without (control). A higher percentage of follicles were viable after culture with GF than without, and an increase in size when IGF-1+ EGF were added to the medium (170 ± 32.4 μm (T0) vs. 201 ± 22.3 μm (T6); p  .05). These data suggest that the addition of IGF-1 and EGF to the culture medium promotes the in vitro development of preantral follicles of cats. © 2016 Blackwell Verlag GmbH.

  19. Interaction of ovine somatomedin and multiplication stimulating activity/rat insulin-like growth factor II with cultured skeletal muscle satellite cells

    International Nuclear Information System (INIS)

    Dodson, M.V.; Allen, R.E.; Shimizu, Nobuyoshi; Shimizu, Yoshiko; Hossner, K.L.


    The interactions of 125 I-multiplication stimulating activity (MSA) and 125 I-ovine somatomedin with receptors on skeletal muscle satellite cells are described. Specific binding of 125 I-MSA/rIGF-II was inhibited by MSA/rIGF-II and oSm but not by insulin. Binding of 125 I-oSm was inhibited by MSA/rIGF-II, oSm and insulin. In addition, 24-h pre-incubation of satellite cells with insulin increased the amount of 125 I-MSA/rIGF-II bound, but insulin concentrations below 550 μg/l had no effect on the subsequent binding of 125 I-oSm. Preincubation of cultures with oSm or MSA/rIGF-II decreased the subsequent binding of 125 I-oSm and 125 I-MSA/rIGF-II. These preliminary experiments suggest that oSm is similar to IGF-I in its binding characteristics and that primary cultures of skeletal muscle satellite cells possess type I and type II IGF receptors. (author)

  20. Transforming growth factor beta isoforms regulation of Akt activity and XIAP levels in rat endometrium during estrous cycle, in a model of pseudopregnancy and in cultured decidual cells

    Directory of Open Access Journals (Sweden)

    Asselin Eric


    Full Text Available Abstract Background During the estrous cycle, the rat uterine endometrium undergoes many changes such as cell proliferation and apoptosis. If implantation occurs, stromal cells differentiate into decidual cells and near the end of pregnancy, a second wave of apoptosis occurs. This process called decidual regression, is tightly regulated as is it crucial for successful pregnancy. We have previously shown that TGF-beta1, TGF-beta2 and TGF-beta3 are expressed in the endometrium during decidual basalis regression, but although we had demonstrated that TGF- beta1 was involved in the regulation of apoptosis in decidual cells, the ability of TGF- beta2 and TGF-beta3 isoforms to trigger apoptotic mechanisms in these cells remains unknown. Moreover, we hypothesized that the TGF-betas were also present and regulated in the non-pregnant endometrium during the estrous cycle. The aim of the present study was to determine and compare the specific effect of each TGF-β isoform in the regulation of apoptosis in sensitized endometrial stromal cells in vitro, and to investigate the regulation of TGF-beta isoforms in the endometrium during the estrous cycle in vivo. Methods Rats with regular estrous cycle (4 days were killed at different days of estrous cycle (diestrus, proestrus, estrus and metestrus. Pseudopregnancy was induced with sex steroids in ovariectomized rats and rats were killed at different days (days 1–9. Uteri were collected and either fixed for immunohistochemical staining (IHC or processed for RT-PCR and Western analyses. For the in vitro part of the study, rats were ovariectomized and decidualization was induced using sex steroids. Endometrial stromal decidual cells were purified, cultured and treated with different concentrations of TGF-beta isoforms. Results Our results showed that all three TGF-beta isoforms are present, but are localized differently in the endometrium during the estrous cycle and their expression is regulated differently

  1. Horizontally rotated cell culture system with a coaxial tubular oxygenator (United States)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)


    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  2. Basic Techniques in Mammalian Cell Tissue Culture. (United States)

    Phelan, Katy; May, Kristin M


    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.


    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  4. Monitoring of cell cultures with LTCC microelectrode array. (United States)

    Ciosek, P; Zawadzki, K; Łopacińska, J; Skolimowski, M; Bembnowicz, P; Golonka, L J; Brzózka, Z; Wróblewski, W


    Monitoring of cell cultures in microbioreactors is a crucial task in cell bioassays and toxicological tests. In this work a novel tool based on a miniaturized sensor array fabricated using low-temperature cofired ceramics (LTCC) technology is presented. The developed device is applied to the monitoring of cell-culture media change, detection of the growth of various species, and in toxicological studies performed with the use of cells. Noninvasive monitoring performed with the LTCC microelectrode array can be applied for future cell-engineering purposes.

  5. Population growth, demographic change, and cultural landscapes. (United States)

    Woodgate, G; Sage, C


    The inclusion of both ecological and socioeconomic components within landscapes makes possible the perception of the hierarchical character of landscape organization. A research approach is needed to conceptualize cultural landscapes as the product of interaction between society and nature. Richard Norgaard's 1984 paper on coevolutionary agricultural development attempts to meet this challenge. Coevolution is the interactive synthesis of natural and social mechanisms of change that characterize the relationship between social systems and ecosystems. The relationship between population, consumption, and environmental changes is complex. Currently industrialized countries present the biggest threat to global environmental resources. The issue of carrying capacity is the corollary of population and the environment. It is primarily the technological factor rather than population that needs to be controlled. The relationship between rich and poor countries is determined by superior economic power. An analysis of landscape change is made, tracing the coevolution of society and environment from the end of the feudal era and making comparisons with continental Europe. Over the years since 1945 the need to realize potential economies of scale has resulted in a wholesale loss of woodlands, hedgerows, and small ponds in the UK. In a global context the likely impacts of population growth and demographic change on landscapes will be influenced by such socioeconomic factors as technology and affluence; policies that ignore cause and effect; and the traditional tendency to treat the environment as a waste repository and a supply depot.

  6. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H


    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  7. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.


    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  8. Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells. (United States)

    Sjuvarsson, Elena; Marquez, Victor E; Eriksson, Staffan


    Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase. dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK. dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed. List of abbreviations: ddC, 2', 3'-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2',3'-dideoxy-3'-thiacytidine, Lamivudine; CdA, 2-cloro-2'-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1-3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1-4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.

  9. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO: evidence for a regulatory role of autocrine activin and TGF-β.

    Directory of Open Access Journals (Sweden)

    Hendrik Ungefroren

    Full Text Available Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s and TGF-β(s, are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the

  10. AMPK regulation of the growth of cultured human keratinocytes

    International Nuclear Information System (INIS)

    Saha, Asish K.; Persons, Kelly; Safer, Joshua D.; Luo Zhijun; Holick, Michael F.; Ruderman, Neil B.


    AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). At concentrations of 10 -4 and 10 -3 M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10 -6 M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D 3 (10 -7 and 10 -6 M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p 3 is AMPK-independent

  11. 9 CFR 101.6 - Cell cultures. (United States)


    ... used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES...

  12. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures. (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R


    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, and IGF-1R. However, the mechanism through which TBA mediates changes in protein degradation is different and appears to involve only the EGFR and erbB2. Furthermore, it appears the protein kinase B pathway is involved in TBA's effects on fused BSC cultures.

  13. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  14. Effects of Growth Regulators on the Induction of Anthocyanin Synthesis in Carrot Suspension Cultures


    Yoshihiro, Ozeki; Atsushi, Komamine; Department of Botany, Faculty of Science, The University of Tokyo:(Present)Department of Biology, College of Arts and Sciences, The University of Tokyo; Department of Botany, Faculty of Science, The University of Tokyo:(Present)Biological Institute, Faculty of Science, Tohoku University


    The effects of plant growth regulators were investigated on anthocyanin synthesis induced by removing auxin from carrot suspension cultures. Of the auxins tested, 2,4-D showed the strongest inhibiting effect on anthocyanin synthesis and had the strongest promoting effect on undifferentiated growth. When 2,4-D was added to anthocyanin synthesizing cells, in which cell division had ceased, anthocyanin synthesis was repressed immediately, accumulated anthocyanin disappeared and cell division res...

  15. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance. (United States)

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li


    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  16. Stem Cells Cultured on Beta Tricalcium Phosphate (β-TCP) in Combination with Recombinant Human Platelet-Derived Growth Factor - BB (rh-PDGF-BB) for the Treatment of Human Infrabony Defects. (United States)

    Dhote, Roshani; Charde, Priti; Bhongade, Manohar; Rao, Jyotsana


    Knowledge gained from the field of tissue engineering, helped to develop a biological substitute that promotes tissue regeneration. The usual biological substitute consists of stem cells, growth factors and an appropriate scaffold. The present randomized controlled clinical and radiographic study was undertaken to evaluate the effectiveness of mesenchymal stem cells cultured on beta tricalcium phosphate (β-TCP) in combination with rh-PDGF-BB in treatment of infrabony defect in humans. A total of 24 infrabony defects in 14 systemically healthy patients were selected for the present study. The selected defects exhibited a probing pocket depth (PPD) of ≥ 5 mm and depth of infrabony component ≥ 3 mm as assessed by clinical and radiographic measurements and later confirmed by intrasurgical measurement. Baseline measurements included were Plaque Index (PI), Papillary Bleeding Index (PBI), Probing Pocket Depth (PPD), Relative gingival marginal level (RGML), Relative Clinical Attachment Level (R-CAL) and Radiographic Defect Depth (DD) and linear bone growth (LBG). 6 weeks after initial therapy, the defects were randomly assigned to either test group or control group. The control group was treated by an open flap debridement (OFD) only, while the test group was treated by a Stem cells cultured on β-TCP in combination with rh-PDGF-BB. All the measurements recorded preoperatively were repeated at 6 months after the surgery. The efficacy of each treatment modality was investigated through statistical analysis. Mean probing pocket depth reduction was significantly greater in test group (4.50 ± 1.08 mm) compared to the OFD group (3.50 ± 0.90 mm). Mean gains in clinical attachment level was 3.91 ± 1.37 mm in the test group and 2.08 ± 0.90 mm in the control group. The mean increase in gingival recession (GR) was less in test group (0.58 ± 0.79 mm) compared to OFD group (1.4 ± 0.66 mm). Radiographic defect depth reduction was greater in the test group (3.50 ± 0.67 mm

  17. Theories of Posttraumatic Growth: Cross-Cultural Perspectives (United States)

    Splevins, Katie; Cohen, Keren; Bowley, Jake; Joseph, Stephen


    Posttraumatic growth is a concept that has been established within a Western cultural framework. This review examines whether there is a Western cultural bias in this concept, and related processes and outcomes, and whether any cultural bias has been incorporated into associated psychometric tools. It is concluded that, although at an abstract…

  18. Effects of culture systems on growth and economic performance of ...

    African Journals Online (AJOL)

    The effect of culture system on growth and economics performance of Orechromis niloticus (Nile tilapia) in concrete tanks was investigated. Four outdoor concrete tanks measuring 2.5 x 2 m was used for the study for 24 weeks culture period. The culture systems included the use of algae only at the stocking rates of 4 ...

  19. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping


    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  20. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    Energy Technology Data Exchange (ETDEWEB)

    Stiene-Martin, A.; Hauser, K.F. (Univ. of Kentucky, Lexington (USA))


    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  1. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson


    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth ...

  2. Exogenous growth factors do not affect the development of individually cultured murine embryos. (United States)

    Herrick, Jason R; Greene-Ermisch, Alison F; Schoolcraft, William B; Krisher, Rebecca L


    The objective of this study was to evaluate the effects of multiple growth factors on the development of individually cultured murine embryos. Embryos produced by in vitro fertilization using in vitro (IVM) or in vivo (IVO) matured oocytes from three strains of mice (CF1, Swiss Webster, B6D2F1) were cultured individually (10 μl) in the absence (control) or presence of growth factors (paf, epidermal growth factor [EGF], insulin-like growth factor 1 [IGF-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Blastocyst formation, hatching, and blastocyst cell numbers (trophectoderm, inner cell mass, and total) were evaluated on days 4 and 5 of culture. Post-hatching development of CF1 IVO embryos was also evaluated in vitro and in vivo. The presence of growth factors did not improve the proportion of embryos forming blastocysts or initiating hatching for any of the types of embryos tested. The only significant (P embryos that formed blastocysts by day 5 in CF1 IVM embryos. The presence of growth factors also did not affect blastocyst cell numbers. For CF1 IVO embryos, the presence of growth factors during culture did not affect the proportion of embryos that attached to fibronectin-coated dishes, the size of the resulting outgrowths, or in vivo development following transfer. Combinations of paf, EGF, GM-CSF, and IGF-1 did not improve development of murine embryos cultured individually in a sequential medium containing a defined protein source.

  3. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N


    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  4. Identificação de micoplasmas pela inibição de crescimento de amostras isoladas de culturas celulares Identification of mycoplasma samples isolated from cell cultures by the growth inhibition test

    Directory of Open Access Journals (Sweden)

    Jorge Timenetsky


    assayed by the growth inhibition test. It is known that Mycoplasma orale is the most common human mycoplasma contaminant of cell cultures, the major vehicle of contamination being mouth pippeting, while commercial bovine serum in the main source for Mycoplasma arginini and Acholeplasma laidlawii. M. arginini was found in 18 (48.65% of the cell samples tested, A. laidlawii in 15 (40.55%, and M. orale in two (5.40%. Two other samples could not be identified by the antisera used (antisera against M. arginini, M. orale, Mycoplasma hyorhinis and A. laidlawii their characteristics being "fried egg" colonies, digitonine sensitivity, Dienes stained, positive glucose catabolism, negative arginini hydrolysis, and negative tetrazolium reduction. No more than one type of mycoplasma was found in each cell culture. In the light of the results of the study, it is suggested that: a cell cultures should be tested for mycoplasma on a routine basis; b microbial control techniques be unproved; c mouth pippeting be abolished; d serum and cell culture media components purchased be of certified quality; e the presence of mycoplasma when cell lines are exchanged among institutions be investigated; f data obtained when mycoplasma infected cell cultures are used be carefully evaluated.

  5. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.


    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  6. Cell culture media impact on drug product solution stability. (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J


    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.

  7. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. (United States)

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw


    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Elicitation of Diacetylenic Compounds in Suspension Cultured Cells of Eggplant (United States)

    Imoto, Setsuko; Ohta, Yoshimoto


    Induction of stress metabolites in the suspension cultured cells of eggplant (Solanum melongena L.) was examined. When autoclaved RNase A or nigeran, both of which are nonspecific phytoalexin elicitors in bean cells, were added to the cell culture of eggplant, greatly enhanced levels of three compounds were observed. One of them was cis-pentadeca-6-ene-1,3-diyne-5,15-diol, a novel diacetylenic compound. This compound has considerable fungitoxic activity. Also identified was falcarindiol, another fungitoxic diacetylenic compound previously reported as one of the phytoalexins in infected tomato fruits and leaves. Elicited compounds preferentially accumulated in the culture medium rather than in the cells and decreased to original levels during prolonged culturing. The elicitation of these compounds was closely correlated with cellular damage in terms of the decrease of growth rate and was inhibited by 10 micromolar cycloheximide. PMID:16665862

  9. Novel culture medium for the axenic growth of Balamuthia mandrillaris. (United States)

    Lares-Jiménez, Luis Fernando; Gámez-Gutiérrez, Ricardo Alfredo; Lares-Villa, Fernando


    Until now, for axenic cultivation of Balamuthia mandrillaris, the BM-3 culture medium and the Modified Chang's special medium have been the only ones recommended, but they have some disadvantages, as both require many components and their preparations are laborious. Therefore, we developed a novel culture medium for B. mandrillaris axenic cultivation. Each one of the 11 components of BM-3 was combined with Cerva's medium as basal culture medium. Ten strains of B. mandrillaris including the reference strain CDC:V039 and 9 environmental isolates were used during trials. After testing all combinations, the basal medium complemented with 10× Hank's balanced salt solution was the only one that supported confluent growth of B. mandrillaris. Cell shape and motility of trophozoites were normal. This developed medium is as useful as BM-3 for axenization. The development of a cheaper and easy-to-prepare medium for B. mandrillaris opens the possibility of increasing its study. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Multizone Paper Platform for 3D Cell Cultures (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.


    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  11. Discrepancy between growth of Coccidioides immitis in bacterial blood culture media and a radiometric growth index

    International Nuclear Information System (INIS)

    Ampel, N.M.; Wieden, M.A.


    Spherules of Coccidioides immitis grew readily after inoculation in vented trypticase soy broth, biphasic brain heart infusion media, and aerobic tryptic soy broth bottles used in a radiometric system (BACTEC). However, visible growth was not accompanied by a significant radiometric growth index. Growth of C. immitis can be visually detected in routine bacterial blood culture media while the radiometric growth index remains negative

  12. Surface modified alginate microcapsules for 3D cell culture (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin


    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  13. Diffusion chamber culture of human peripheral mononuclear cells in mice

    International Nuclear Information System (INIS)

    Kawakami, Masahito; Shigeta, Chiharu; Enzan, Hideaki; Takahashi, Hiroshi; Ohkita, Takeshi


    The mononuclear cells isolated by Isopaque-Ficoll method from blood of three healthy men were cultured in diffusion chambers implanted to peritoneal cavity of mice pretreated by cyclophosphamide 300 mg/kg b. w. or 800 rad of 60 Co γ ray or 500 rad. For two of three men the cell growth was slightly higher in hosts pretreated by cyclophosphamide or 800 rad than in hosts pretreated by 500 rad, but, for another one it was slow in all hosts. Under these conditions the growth potential of mononuclear cells might be different from person to person. A few granulocytes as well as plasma cells, very few megakaryocytes and rare erythroblasts were found in diffusion chamber cultured cells. (auth.)

  14. Differential Expression of Extracellular Matrix and Growth Factors by Embryoid Bodies in Hydrodynamic and Static Cultures (United States)

    Fridley, Krista M.; Nair, Rekha


    During development, cell fate specification and tissue development are orchestrated by the sequential presentation of soluble growth factors (GF) and extracellular matrix (ECM) molecules. Similarly, differentiation of stem cells in vitro relies upon the temporal presence of extracellular cues within the microenvironment. Hydrodynamic culture systems are not limited by volume restrictions and therefore offer several practical advantages for scalability over static cultures; however, hydrodynamic cultures expose cells to physical parameters not present in static culture, such as fluid shear stress and mass transfer through convective forces. In this study, the differences between static and hydrodynamic culture conditions on the expression of ECM and GF molecules during the differentiation of mouse embryonic stem cells were examined at both the gene and protein level. The expression of ECM and GF genes exhibited an early decrease in static cultures based on heat map and hierarchical clustering analysis and a relative delayed increase in hydrodynamic cultures. Although the temporal patterns of specific ECM and GF protein expression were comparable between static and hydrodynamic cultures, several notable differences in the magnitudes of expression were observed at similar time points. These results describe the establishment of an analytical framework that can be used to examine the expression patterns of ECM and GF molecules expressed by pluripotent stem cells undergoing differentiation as 3D multicellular aggregates under different culture conditions, and suggest that physical parameters of stem cell microenvironments can alter endogenous ECM and GF expression profiles that may, in turn, influence cell fate decisions. PMID:25423310

  15. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index

    Directory of Open Access Journals (Sweden)

    Thomas Branly


    Full Text Available Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA, a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform, along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an

  16. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading (United States)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.


    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  17. Growth of Saccharomycopsis fibuliger and Candida utilis in mixed culture on apple processing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, P.J.; Worgan, J.T.


    Sequential cultures of the yeasts Saccharomycopsis fibuliger and Candida utilis were grown on selected wastes from the processing of apples. Effluent from cider manufacture supported the growth of 45.4 g cells/100 g substrate and C. utilis formed 96% of the viable cells in the harvested biomass. Whole, unripe apples yielded 44 g cells/100 g substrate with a reduction in the substrate viscosity of 84%. C. utilis formed 56% of the viable cells in the harvested biomass. Effluent from pectin manufacture contained a substantial proportion of reducing compounds and supported the growth of C. utilis without prehydrolysis by S. fibuliger, to yield 33 g cells/100 g substrate. (Refs. 26).

  18. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture. (United States)

    Lestard, Nathalia R; Capella, Marcia A M


    Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  19. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)



    Oct 5, 2009 ... The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of.

  20. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of E. angustifolia was ...

  1. Further characterization of the adhesive-tumor-cell culture system for measuring the radiosensitivity of human tumor primary cultures

    International Nuclear Information System (INIS)

    Brock, W.A.; Bock, S.P.; Williams, M.; Baker, F.L.


    This study extends the use of the adhesive-tumor-cell culture system to include: over 100 sensitivity measurements at 2.0 Gy; tumorgenicity determinations in nude mice; and flow cytometry of the cells grown in the system. The malignant nature of the growing cells was proved by injecting cells into nude mice. Tumors resulted in 60% of the cases and the histology of each xenograft was similar to that of the human tumor. Flow cytometry was used to obtain DNA histograms of the original cell suspension and of cultures during the two week culture period in order to obtain quantitative information about the growth of aneuploid versus diploid populations. The results thus far demonstrate that 95% of aneuploid populations yield aneuploid growth; of the first 20 cases studied, only one suspension with an aneuploid peak resulted in diploid growth. Of further interest was the observation that it is not unusual for a minor aneuploid population to become the predominate growth fraction after two weeks in culture. These results demonstrate that the adhesive-tumor-cell culture system supports the growth of malignant cells, that multiple cell populations exist in cell suspensions derived from solid tumors, and that differences exist between the radiosensitivity of cells at 2.0 Gy in different histology types

  2. Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess. (United States)

    Lecina, Martí; Nadal, Gisela; Solà, Carles; Prat, Jordi; Cairó, Jordi J


    Combined effect of ferric chloride and pH on Chlorella vulgaris growth and flocculation were optimized using DoE. Afterwards, an integrated bioprocess for microalgae cultivation and harvesting conceived as a sole step was run in continuous operation mode. Microalgae concentration in a 2L-photobioreactor was about 0.5gL(-1) and the efficiency of flocculation in the coupled sedimentation tank was about 95%. Dewatered microalgae reached a biomass concentrations increase about 50-fold, whereas it was only about 0.02gL(-1) in the clarified medium. Then, the reuse of the clarified medium recovered was further evaluated. The clarified medium was reused without any further nutrient supplementation, whereas a second round of medium reuse was performed after supplementation of main nutrients (phosphate-sulfate-nitrate), micronutrients and ferric chloride. The medium reuse strategy did not affect cell growth and flocculation. Consequently, the reuse of medium reduces the nutrients requirements and the demand for water, and therefore the production costs should be reduced accordingly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of mineral concentration of culture media without growth ...

    African Journals Online (AJOL)


    Effect of mineral concentration of culture media without growth substances on the callogenesis of Atriplex ... Key words: Atriplex halimus, in vitro culture, callogenesis, mineral elements. INTRODUCTION. Atriplex are plants adapted to the .... Purple pigments was also observed on callus developed on G/20, G/50 and G/100.

  4. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells. (United States)

    Conceição, M M; Tonso, A; Freitas, C B; Pereira, C A


    Viral antigens can be obtained from infected mammalian cells cultivated on microcarriers. We have worked out parameters for the production of bovine parainfluenza 3 (PI-3) virus by Mandin-Darby Bovine Kidney (MDBK) cells cultivated on Cytodex 1 microcarriers (MCs) in spinners flasks and bioreactor using fetal bovine serum (FBS) supplemented Eagle minimal essential medium (Eagle-MEM). Medium renewal during the cell culture was shown to be crucial for optimal MCs loading (>90% MCs with confluent cell monolayers) and cell growth (2.5 x 10(6)cells/mL and a micro(x) (h(-1)) 0.05). Since cell cultures performed with lower amount of MCs (1g/L), showed good performances in terms of cell loading, we designed batch experiments with a lower concentration of MCs in view of optimizing the cell growth and virus production. Studies of cell growth with lower concentrations of MCs (0.85 g/L) showed that an increase in the initial cell seeding (from 7 to 40 cells/MC) led to a different kinetic of initial cell growth but to comparable final cell concentrations ((8-10)x10(5)cells/mL at 120 h) and cell loading (210-270 cells/MC). Upon infection with PI-3 virus, cultures showed a decrease in cell growth and MC loading directly related to the multiplicity of infection (moi) used for virus infection. Infected cultures showed also a higher consumption of glucose and production of lactate. The PI-3 virus and PI-3 antigen production among the cultures was not significantly different and attained values ranging from, respectively, 7-9 log(10) TCID(50)/mL and 1.5-2.2 OD. The kinetics of PI-3 virus production showed a sharp increase during the first 24h and those of PI-3 antigen increased after 24h. The differential kinetics of PI-3 virus and PI-3 antigen can be explained by the virus sensitivity to temperature. In view of establishing a protocol of virus production and based on the previous experiments, MDBK cell cultures performed under medium perfusion in a bioreactor of 1.2L were infected

  5. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N


    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells...... was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin...

  6. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen


    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  7. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun


    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  8. Enhancement of erythroid colony growth in culture by hemin

    International Nuclear Information System (INIS)

    Porter, P.N.; Meints, R.H.; Mesner, K.


    Hemin was found to enhance the growth of murine erythroid colonies in culture. In the presence of 100 mU/ml erythropoietin (EPO), the addition of hemin (0.05-0.2 mM) resulted in the growth of twice as many colonies as were obtained with EPO alone. Hemin also significantly increased erythroid colony formation in culture in the absence of added EPO. Hemoblobin synthesis as measured by the incorporation of 59 Fe into cyclohexanone extractable heme was augmented in culture by hemin. Neither Δ-aminolevulinic acid, a hemin precursor, nor FeCl 3 increased colony number. (author)

  9. Microalgal Photosynthesis and Growth in Mass Culture

    NARCIS (Netherlands)

    Janssen, M.G.J.


    The development of large-scale outdoor microalgae production requires a thorough understanding of microalgal growth which should be encompassed in a mathematical model. The model should be as simple as possible allowing use in outdoor practice by persons with varying backgrounds. This chapter

  10. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells. (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk


    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  11. Isolation and culture of pulmonary endothelial cells.


    Ryan, U S


    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vas...

  12. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies (United States)

    Vendrame, Wagner A.; Pinares, Ania


    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  13. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues. (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu


    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  14. Factors Causing Compositional Changes in Soy Protein Hydrolysates and Effects on Cell Culture Functionality

    NARCIS (Netherlands)

    Gupta, A.J.; Gruppen, H.; Maes, D.; Boots, J.W.; Wierenga, P.A.


    Soy protein hydrolysates significantly enhance cell growth and recombinant protein production in cell cultures. The extent of this enhancement in cell growth and IgG production is known to vary from batch to batch. This can be due to differences in the abundance of different classes of compounds

  15. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture (United States)

    Richmond, Robert C.


    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  16. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice. (United States)

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi


    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  17. Production of recombinant proteins in suspension-cultured plant cells. (United States)

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique


    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  18. Advances in 3D neuronal cell culture

    NARCIS (Netherlands)

    Frimat, Jean Philippe; Xie, Sijia; Bastiaens, Alex; Schurink, Bart; Wolbers, Floor; Den Toonder, Jaap; Luttge, Regina


    In this contribution, the authors present our advances in three-dimensional (3D) neuronal cell culture platform technology contributing to controlled environments for microtissue engineering and analysis of cellular physiological and pathological responses. First, a micromachined silicon sieving

  19. Cell division in Escherichia coli cultures monitored at single cell resolution

    Directory of Open Access Journals (Sweden)

    Luidalepp Hannes


    Full Text Available Abstract Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular

  20. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.


    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  1. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    Lee, Jae-Suk; Kaibara, M.; Iwaki, M.; Sasabe, H.; Suzuki, Y.; Kusakabe, M.


    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na + , N 2 + , O 2 + , Ar + and Kr + were implanted to the polymer surface with ion fluences between 1 x 10 15 and 3 x 10 17 ions/cm 2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  2. Mineralization and growth of cultured embryonic skeletal tissue in microgravity (United States)

    Klement, B. J.; Spooner, B. S.


    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  3. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro


    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2.

  4. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S


    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...

  5. Effects of Wnt-10b on hair shaft growth in hair follicle cultures

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Moriya, Kei; Ishizaka, Shigeaki


    Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via β-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and β-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/β-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b

  6. Culture of Mouse Neural Stem Cell Precursors


    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.


    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  7. Characterization of conditioned medium of cultured bone marrow stromal cells. (United States)

    Nakano, Norihiko; Nakai, Yoshiyasu; Seo, Tae-Boem; Yamada, Yoshihiro; Ohno, Takayuki; Yamanaka, Atsuo; Nagai, Yoji; Fukushima, Masanori; Suzuki, Yoshiyuki; Nakatani, Toshio; Ide, Chizuka


    It has been recognized that bone marrow stromal cell (BMSC) transplantation has beneficial effects on spinal cord injury in animal models and therapeutic trials. It is hypothesized that BMSCs provide microenvironments suitable for axonal regeneration and secrete some trophic factors to rescue affected cells from degeneration. However, the molecular and cellular mechanisms of the trophic factors involved remain unclear. In the present study, we examined the effects of trophic factors secreted by rat BMSCs using bioassays involving cultured hippocampal neurons. The conditioned medium (CM) as well as non-contact co-culture of BMSCs promoted neurite outgrowth and suppressed TUNEL-positive cells compared to serum-free D-MEM. Protein analyses of the CM by antibody-based protein array analysis and ELISA revealed that the CM contained insulin-like growth factor (IGF)-1, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-beta1. DNA microarray analysis revealed that neurons highly expressed receptors of IGF-1 and TGF-beta1. However, their expression indices remained unchanged even after the CM treatment. The individual trophic factors mentioned above or their combinations were less effective at promoting neuronal survival and neurite outgrowth than the CM. The present study showed that BMSCs secreted various kinds of molecules into the culture medium including trophic factors to promote neuronal survival and neurite outgrowth. The main trophic factors responsible remain to be elucidated. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. A thin-layer liquid culture technique for the growth of Helicobacter pylori. (United States)

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho


    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  9. An Important Method in the Investigation of Vascular Pathologies: Endothelial Cell Culture

    Directory of Open Access Journals (Sweden)

    Yusufhan Yazır


    Full Text Available Endothelial cells line the interior surface of blood vessels and form an interface between circulating blood in the lumen and the rest of the vessel wall. Endothelial cells are involved in many aspects of vascular biology, including barrier function, vasoconstriction, coagulation and inflamation. The endothelial cells in different organs have different functions and surface phenotype. These cells express prostoglandin-I2, platelet activating factor, collagen, endothelin-1, laminin, fibronectin and growth factors including platelet derived growth factor, fibroblast growth factor. İn the cell culture, cells can be isolated, maintened and proliferate in the laboratory conditions. The techniques of the cell culture have allowed scientists to use the cells in vitro for experimental studies, such as the production of vaccine, antibody and enzime, drug research, cell-cell interactions. Human umbilical vein endothelial cell is a good source for endothelial cell, because it is cheaper, easy to find and has the basic features of the normal endothelial cells.

  10. Isolation and culture of pulmonary endothelial cells. (United States)

    Ryan, U S


    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan.

  11. Characterisation and germline transmission of cultured avian primordial germ cells. (United States)

    Macdonald, Joni; Glover, James D; Taylor, Lorna; Sang, Helen M; McGrew, Michael J


    Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  12. Characterisation and germline transmission of cultured avian primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Joni Macdonald

    Full Text Available BACKGROUND: Avian primordial germ cells (PGCs have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds. PRINCIPAL FINDINGS: We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring. CONCLUSIONS: The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

  13. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan


    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  14. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping, E-mail: [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China); He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China)


    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  15. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Seagrave, J.C.; Valdez, J.G.; Tobey, R.A.; Gurley, L.R.


    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC1 2 , one being increased in amount while the other was reduced to an insignificant level. In ZnC1 2 -treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC1 2 -treated cells. While ZnC1 2 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC1 2 -treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC1 2 -treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  16. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells (United States)

    Maggio, Savannah; Takeda, Kazuyo; Stark, Felicity; Meierovics, Anda I.; Yabe, Idalia; Cowley, Siobhan C.


    The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates. PMID:26379269

  17. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Savannah Maggio

    Full Text Available The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells. Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates.

  18. Hormonal regulation of wheat growth during hydroponic culture (United States)

    Wetherell, Donald


    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  19. Henrietta Lacks, HeLa cells, and cell culture contamination. (United States)

    Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M


    Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.

  20. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. (United States)

    Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P


    As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories.

  1. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.


    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific

  2. Human cell culture in a space bioreactor (United States)

    Morrison, Dennis R.


    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  3. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.


    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  4. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.


    state, may be of significant benefit for cfDNA research. Methods CfDNA was isolated from the growth medium of C3A spheroid cultures in rotating bioreactors during both normal growth and treatment with acetaminophen. Spheroid growth was monitored via planimetry, lactate dehydrogenase activity and glucose...... environment. Combining 3D culture and cfDNA research could, therefore, optimize both research fields.......Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...

  5. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha


    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  6. Evaluation of conidia production and mycelial growth in solid culture ...

    African Journals Online (AJOL)

    It is important to know the ability of native strains to carry out the process of sporulation and growth in different conditions and to determine their possible potential as biological control of pests of agricultural importance, mainly in citrus areas. The objective of this study was to evaluate five different solid culture media for the ...

  7. Effects of culture systems on growth and economic performance of ...

    African Journals Online (AJOL)



    Jul 3, 2013 ... Key words: Culture system, growth performance, economic performance, Oreochromic niloticus. INTRODUCTION. Food is a basic necessity of life, second only to air and water. The global food equation recognizes two major components namely; food crop component and animal protein component ...

  8. Culture, Gender and Growth. Policy Insights, No. 15 (United States)

    Jutting, Johannes; Morrisson, Christian


    While the overall picture for gender equality is still gloomy, recent changes in family institutions in some countries provide an enlightening example. Developing countries are starting to reform cultural barriers to gender equality that limit their growth prospects. Morocco, Algeria, Egypt and some states of India are some examples of countries…

  9. Effect of mineral concentration of culture media without growth ...

    African Journals Online (AJOL)

    The studies on the in vitro culture of the Atriplex halimus, a fooder plant of arid zones of Tunisia, have shown an induction of the callogenesis on intact seedlings cultivated on medium without growth substances. Two media, which differ only by the nature and the concentration of macroelements, were tested. Assays of ...

  10. Growth and Cultural Characteristics of Cordyceps cardinalis Collected from Korea (United States)

    Sung, Gi-Ho; Shrestha, Bhushan; Han, Sang-Kuk; Kim, Soo-Young


    Cordyceps cardinalis was reported in Japan and the USA in 2004, and its fruiting bodies have recently been cultured in Korea. Herbarium specimens preserved at the Cordyceps Research Institute, Mushtech, Korea were revised and identified as C. cardinalis, based on morphological characters and conidial structures. Most of the C. cardinalis specimens were collected from Mt. Halla in Jeju-do. The effects of various nutritional sources and environmental conditions such as temperature and pH on mycelial growth of C. cardinalis were studied. Oatmeal agar, Martin's peptone dextrose agar, and Schizophyllum (mushroom) genetics complete medium plus yeast extract resulted in the best mycelial growth. Among carbon sources, cereals, and nitrogen sources, maltose, oatmeal, and peptone resulted in the best mycelial growth respectively. Mineral salts helped to increase growth rate but only resulted in thin mycelial density, similar to water agar. A temperature of 25℃ and a pH of 7 resulted in the highest mycelial growth. Based on these results, a Cordyceps cardinalis composite medium (CCM) was formulated with 1% maltose, 2% oatmeal, 1% peptone, and 2% agar. Use of the CCM resulted in slightly better mycelial growth than that of other commonly used agar media. Only organic nitrogen sources imparted a reddish pigmentation to the agar media, but this character diminished after several subcultures. A 7 day culture duration resulted in the best mycelial growth. PMID:23956666

  11. Altered eicosanoid production and phospholipid remodeling during cell culture. (United States)

    Okuno, Toshiaki; Gijón, Miguel A; Zarini, Simona; Martin, Sarah A; Barkley, Robert M; Johnson, Christopher A; Ohba, Mai; Yokomizo, Takehiko; Murphy, Robert C


    The remodeling of PUFAs by the Lands cycle is responsible for the diversity of phospholipid molecular species found in cells. There have not been detailed studies of the alteration of phospholipid molecular species as a result of serum starvation or depletion of PUFAs that typically occurs during tissue culture. The time-dependent effect of cell culture on phospholipid molecular species in RAW 264.7 cells cultured for 24, 48, or 72 h was examined by lipidomic strategies. These cells were then stimulated to produce arachidonate metabolites derived from the cyclooxygenase pathway, thromboxane B 2 , PGE 2 , and PGD 2 , and the 5-lipoxygenase pathway, leukotriene (LT)B 4 , LTC 4 , and 5-HETE, which decreased with increasing time in culture. However, the 5-lipoxygenase metabolites of a 20:3 fatty acid, LTB 3 , all trans -LTB 3 , LTC 3 , and 5-hydroxyeicosatrienoic acid, time-dependently increased. Molecular species of arachidonate containing phospholipids were drastically remodeled during cell culture, with a new 20:3 acyl group being populated into phospholipids to replace increasingly scarce arachidonate. In addition, the amount of TNFα induced by lipopolysaccharide stimulation was significantly increased in the cells cultured for 72 h compared with 24 h, suggesting that the remodeling of PUFAs enhanced inflammatory response. These studies supported the rapid operation of the Lands cycle to maintain cell growth and viability by populating PUFA species; however, without sufficient n-6 fatty acids, 20:3 n-9 accumulated, resulting in altered lipid mediator biosynthesis and inflammatory response. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Cracking Streptococcus thermophilus to stimulate the growth of the probiotic Lactobacillus casei in co-culture. (United States)

    Ma, Chengjie; Ma, Aimin; Gong, Guangyu; Liu, Zhenmin; Wu, Zhengjun; Guo, Benheng; Chen, Zhengjun


    Lactobacillus casei, a probiotic, and Streptococcus thermophilus, a fast acidifying lactic acid bacterial strain, are both used in the food industry. The aim of this study was to investigate the interaction between L. casei and S. thermophilus in the presence or absence of S. thermophilus-specific bacteriophage during milk fermentation. The acidification capability of L. casei co-cultured with S. thermophilus was significantly higher than that observed for L. casei or S. thermophilus cultured alone. However, the probiotic content (i.e., L. casei cell viability) was low. The fastest acidification and the highest viable L. casei cell count were observed in co-cultures of L. casei and S. thermophilus with S. thermophilus phage. In these co-cultures, S. thermophilus compensated for the slow acid production of L. casei in the early exponential growth phase. Thereafter, phage-induced lysis of the S. thermophilus cells eliminated the competition for nutrients, allowing L. casei to grow well. Additionally, the ruptured S. thermophilus cells released intracellular factors, which further promoted the growth and function of the probiotic bacteria. Crude cellular extract isolated from S. thermophilus also significantly accelerated the growth and propagation of L. casei, supporting the stimulatory role of the phage on this micro-ecosystem. Copyright © 2015. Published by Elsevier B.V.

  13. 21 CFR 864.2280 - Cultured animal and human cells. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  14. Cell Culture on MEMS Platforms: A Review (United States)

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry


    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  15. Linking stem cell function and growth pattern of intestinal organoids. (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg


    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S


    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  17. From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.


    Stem cells respond to nanoscale, microscale, and macroscale cues, such as matrix, growth factors, and niche organization, which are difficult to physiologically recapitulate in culture. We discuss how utilizing bioengineering approaches to manipulate and integrate spatiotemporal cues across these

  18. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  19. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.


    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  20. Effects of radiation on cultured fish cells

    International Nuclear Information System (INIS)

    Etoh, Hisami; Suyama, Ippei


    A new fibroblastic cell line was established in our laboratory from the caudal fin of the goldfish, C. auratus. The cells, designated CAF, have been subcultured over 80 passages since initiation in August, 1977. A brief description of cell cultivation and colony formation is presented. The plating efficiency obtained was considerably higher than those reported for other fish cell lines. CAF cells were irradiated with 250, 500, 1,000, 2,000, and 3,000 R of x-rays at a dose rate of 80 R/min in air. The survival parameters changed when the number of passages of culture increased. Values for D 0 , D sub(q), and n obtained from cells irradiated at the 70th passage were calculated to be 650 R, 700 R, and 2.7 respectively. Thus CAF cells would be several times as resistant in general as cultured mammalian cells. The cells irradiated with 1,000 R of x-rays received a second dose from 250 to 2,000 R at intervals of 3, 6, and 24 hr. The cells kept at 26 0 C showed a pronounced recovery from sublethal damage during the intervals between two doses. Magnitude of recovery was larger if the interval was longer under the present experimental conditions. These results may indicate that the recovery observed at an individual level accounts partly for that in vitro. (author)

  1. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes. (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M


    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  2. Cell thickness of UV absorption by the cell: relation to UV action spectrum shift in mammalian cells in culture

    International Nuclear Information System (INIS)

    Sakharov, V.H.; Voronkova, L.N.; Blokhin, A.V.


    By means of reconstruction of series half - thin transverse sections the three - dimensional morphometry of SPEV cells for a series of their specific states in culture is performed: for exponential growth in a monolayer, in a merged monolayer, in the mitosis phase, for giant cells and suspension cells. In the monolayer the cell thickness in its central part depended mainly on the nucleus thickness and in average changed but slightly despite a wide range of changes in volumes of nuclei and cells and their density in culture. The cell thickness has noticeably increased in mitosis. For the above states of cells UV radiation absorption spectra are determined. It is shown that a certain shift of action spectrus of death of mammalian cells as compared with that for bacterial cell can be a seguence of selfshielding and not differences in the nature of active chromophores

  3. Self-assembling Fmoc dipeptide hydrogel for in situ 3D cell culturing

    Directory of Open Access Journals (Sweden)

    Akpe Victor


    Full Text Available Abstract Background Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale. Results Phenylalanine derivative hydrogel formation was seen to occur in multiple dispersion media. Cells were immobilized in situ within microchambers designed for cell analysis. Use of the highly biocompatible hydrogel components and simplistic procedures significantly reduced the cytotoxic effects seen with alternate 3D culture materials and microstructure loading methods. Cells were easily immobilized, sustained and removed from microchambers. Differences in growth morphology were seen in the cultured cells, owing to the 3-dimentional character of the gel structure. Degradation improved the removal of hydrogel from the microstructures, permitting reuse of the analysis platforms. Conclusion Self-assembling diphenylalanine derivative hydrogel provided a method to dramatically reduce the typical difficulties of microculture formation. Effective generation of patterned 3D cultures will lead to improved cell study results by better modeling in vivo growth environments and increasing efficiency and specificity of cell studies. Use of simplified growth scaffolds such as peptide-derived hydrogel should be seen as highly advantageous and will likely become more commonplace in cell culture methodology.

  4. Cells competition in tumor growth poroelasticity (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.


    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  5. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh


    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  6. Cell binding and growth inhibition by hexachlorophene of decanoate and their reversibility. (United States)

    Levin, B C; Freese, E


    More than 80% of the hexachlorophene added to a Bacillus subtilis culture binds to the cells. Complete growth inhibition requires 6 x 10(5) molecules bound per cell. In contrast, more than 99% decanoate remains in solution and 3.8 x 10(7) molecules bound per cell are needed to inhibit growth. Centrifugation and resuspension of cells in growth medium removes only decanoate, whereas the addition of 1% bovine serum albumin to the growth medium removes both inhibitors from their binding sites on the cells. The addition of untreated cells to a hexachlorophene-treated culture enables the hexachlorophene molecules to redistribute among all the cells with the result that the inhibited cells can resume growth.

  7. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.


    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  8. [The effect of Solcoseryl on in-vitro cultured cells]. (United States)

    Lindner, G; Grosse, G; Lehmann, A


    Explants of peripherical nervous system (PNS), skin and ventriculus cordis from chick embryo were cultivated in Maximow chambers and the effect of Solcoseryl, Fa. Solco Basel AG, on some morphological parameters was tested. 1. The growth of tissue cultures is influenced by Solcoseryl in relation to concentration and time of application. The index of area in cultures of PNS and cor increased within the first days. By long time application up to 6 days in vitro the index of area decreased and the index was the same than in controls. Explants of skin showed no essential stimulation of growth. 2. The number of cells per unit of culture in the outgrowth of PNS, cor and skin was different influenced. The density of cells in cultures of PNS and skin decreased (signif. difference). In explants of heart we could not observe a difference between the inside and outside of the outgrowth. An influence of Solcoseryl on the degree of migration is discussed. 3. The area of cell nuclei from heartcells was observed. The area decreased under the influence of Solcoseryl. The difference is significant. 4. The mitotic index of heart cells increased by application of Solcoseryl within the first 2 and 3 days in vitro. 5. The number of nucleoli per nucleus of heart cells under experimental conditions increased significant. It is discussed, Solcoseryl influenced in vitro metabolic processes in suitable systems; stimulation of cell proliferation and migration and rns-synthesis was observed within the first days of cultivation. In-vitro-systems are important objects and they are suitable for tests of pharmaca in vitro.

  9. Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells

    NARCIS (Netherlands)

    Peverali, F.A.; Mandriota, S.J.; Ciana, P.; Marelli, R.; Quax, P.; Rifkin, D.B.; Della Valle, G.; Mignatti, P.


    Culture medium conditioned by human SK-Hep1 hepatoma cells or mouse S180 sarcoma cells rapidly up-regulates endothelial cell expression of basic fibroblast growth factor (bFGF) and induces formation of capillary-like structures by vascular endothelial cells grown on three-dimensional fibrin gels (in

  10. A feeder-cell independent subpopulation of the PICM-19 pig liver stem cell line capable of long-term growth and extensive expansion (United States)

    A method for the feeder-independent culture of PICM-19 pig liver stem cell line was recently devised, but the cell line’s growth was finite and the cells essentially ceased dividing after approximately 20 passages over a one year culture period. Here we report the isolation, continuous culture, and...

  11. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry


    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  12. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication


    Bateman, Allen C.; Karasin, Alexander I.; Olsen, Christopher W.


    Please cite this paper as: Bateman et al. (2013) Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza and Other Respiratory Viruses 7(2) 139–150. Background  Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air–liquid interface (ALI) in media with defined hormones and growth fa...

  13. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.


    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  14. Embryo forming cells in carrot suspension cultures

    NARCIS (Netherlands)

    Toonen, M.A.J.


    Somatic cells of many plant species can be cultured in vitro and induced to form embryos that are able to develop into mature plants. This process, termed somatic embryogenesis, was originally described in carrot (Daucus carota L.). Somatic embryos develop through the same characteristic

  15. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi


    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  16. Effect of culture conditions on the growth of biomass Yarrowia lipolytica - producing protein feed

    Directory of Open Access Journals (Sweden)

    O. S. Korneeva


    Full Text Available Fodder yeast is highly valuable protein-vitamin products. Protein digestibility by yeast and amino acid content, superior proteins of animal origin. Fodder yeast protein digested in animals by 95 %. The biological value of yeast protein is determined by the presence of a significant amount of essential amino acids. Moreover, yeast cells contain many vitamins microelement and a significant amount of fat, in which the predominant unsaturated fatty acid. Currently, fodder yeast successfully used in livestock and poultry, so the demand for them is increasing every year. For the production of fodder yeast using a yeast having the necessary technological properties: the ability of rapid growth in aerobic conditions to form protein, amino acids and vitamins, resistant crop production, the development of resistance to foreign microorganisms. Intensive education yeast biomass contributes to a number of conditions, including pH, temperature and aeration of the culture occupy an important place. The main criterion for comparison and selection of a culture medium for this is the speed of its growth and ability to assimilate all of the nutrients with high economic factor. It depends on the performance of the enterprise, energy consumption and other technical - economic performance. The effect of pH of the medium on the biomass accumulation of yeast Yarrowia lipolytica. Found that at pH 5,2 - 5,5 observed maximum growth rate of the yeast cells. The effect of temperature on the accumulation of yeast biomass. The temperature of the culture medium determines the intensity of metabolism in cells. It was found that the optimal growth temperature of the culture Yarrowia lipolytica is 33 0C. The effect of aeration on the growth rate of yeast cells. Tro-established that the maximum increase of biomass was obtained with the aeration of 70 cm3 /cm3hrs.

  17. Modification of MCF-10A Cells with Pioglitazone and Serum-Rich Growth Medium Increases Soluble Factors in the Conditioned Medium, Likely Reducing BT-474 Cell Growth


    Khoo, Boon Yin; Miswan, Noorizan; Balaram, Prabha; Nadarajan, Kalpanah; Elstner, Elena


    In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively ...

  18. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.


    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  19. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.


    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  20. Local stimulation of cultured myocyte cells by femtosecond laser-induced stress wave (United States)

    Kuo, Yung-En; Wu, Cheng-Chi; Hosokawa, Yoichiroh; Maezawa, Yasuyo; Okano, Kazunori; Masuhara, Hiroshi; Kao, Fu-Jen


    When an 800 nm femtosecond laser is tightly focused into cell culture medium a stress wave is generated at the laser focal point. Since the stress wave localizes in a few tens of μm, it is possible to locally stimulate single cells in vitro. In this work, several kinds of cultured mammalian cells, HeLa, PC12, P19CL6, and C2C12, were stimulated by the stress wave and the cell growth after the stress loading with the laser irradiation was investigated. In comparison with the control conditions, cell growth after the laser irradiation was enhanced for the cells of C2C12 and P19CL6, which can differentiate into myocytes, and suppressed for PC12 and HeLa cell lines. These results suggest a possibility of cell growth enhancement due to myogenic cells response to the femtosecond laser-induced stress.

  1. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.


    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  2. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film. (United States)

    Barthes, Julien; Vrana, Nihal E; Özçelik, Hayriye; Gahoual, Rabah; François, Yannis N; Bacharouche, Jalal; Francius, Grégory; Hemmerlé, Joseph; Metz-Boutigue, Marie-Hélène; Schaaf, Pierre; Lavalle, Philippe


    Mammalian cell culture is the starting point in many research studies focusing on biomedical applications. However, researchers have little control over the standardized cell microenvironment parameters. Here a modular ECM-mimicking surface coating for cell culture environment is designed. This substrate is a new and versatile thin film obtained by spin-coating of concentrated gelatin crosslinked by transglutaminase. It can be modified with respect to the biochemical and biophysical needs of the final cell destination, i.e. it delivers loaded multi-growth factors and serum components and allows for cell culture in a serum-free culture medium. Also, a well-known cell behavior modulator, the substrate stiffness, is controlled exogenously by addition of nanoparticles. In addition to growth factors, antimicrobial agents such as natural peptides are added to the substrate for limiting the repeated addition of antimicrobial agents to the culture medium and to prevent the increase of resistant bacterial strains in the culture environment. Finally, this substrate contains simultaneously ECM components, growth factors, stiffening elements and antimicrobial agents. It provides a favorable microenvironment and sterile conditions. It is a free-of-maintenance system, as cells will grow without addition of serum or antimicrobial cocktails. This low cost and easy-to-use substrate could emerge as a new standard for cell culture.

  3. Reduction in placental growth factor impaired gestational beta-cell proliferation through crosstalk between beta-cells and islet endothelial cells. (United States)

    Xu, Xiaosheng; Shen, Jian


    Reduced placental growth factor (PLGF) during pregnancy is known to be a reason for developing preeclampsia (PE) and gestational diabetes mellitus (GDM), but the underlying mechanisms remain unclear. Recently, it has been shown that reduced PLGF may induce GDM through suppressing beta-cell mass growth in a PI3k/Akt signalling-dependent manner. Here, we dissected the interaction between beta-cells and islet endothelial cells in this model. We analysed proliferation of beta-cells and islet endothelial cells at different time points of gestation in mice. We cultured mouse islet endothelial cells (MS1), with or without PLGF. We cultured primary mouse beta-cells in conditioned media from PLGF-treated MS1. We cultured MS1 cells in conditioned media from proliferating beta-cells that were activated with conditioned media from PLGF-treated MS1 cells. We analysed cell proliferation by BrdU incorporation. We analysed cell growth by a MTT assay. We found that during mouse gestation, the increases in cell proliferation occurred earlier in beta-cells than in islet endothelial cells. In vitro, PLGF itself failed to induce proliferation of MS1 cells. However, conditioned media from the PLGF-treated MS1 cells induced beta-cell proliferation, resulting in increases in beta-cell number. Moreover, proliferation of MS1 cells significantly increased when MS1 cells were cultured in conditioned media from proliferating beta-cells activated with conditioned media from PLGF-treated MS1 cells. Thus, our data suggest that gestational PLGF may stimulate islet endothelial cells to release growth factors to promote beta-cell proliferation, and proliferating beta-cells in turn release endothelial cell growth factor to increase proliferation of endothelial cells. PE-associated reduction in PLGF impairs these processes to result in islet growth impairment, and subsequently the onset of GDM.

  4. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow (United States)

    Colter, David C.; Class, Reiner; DiGirolamo, Carla M.; Prockop, Darwin J.


    Cultures of plastic-adherent cells from bone marrow have attracted interest because of their ability to support growth of hematopoietic stem cells, their multipotentiality for differentiation, and their possible use for cell and gene therapy. Here we found that the cells grew most rapidly when they were initially plated at low densities (1.5 or 3.0 cells/cm2) to generate single-cell derived colonies. The cultures displayed a lag phase of about 5 days, a log phase of rapid growth of about 5 days, and then a stationary phase. FACS analysis demonstrated that stationary cultures contained a major population of large and moderately granular cells and a minor population of small and agranular cells here referred to as recycling stem cells or RS-1 cells. During the lag phase, the RS-1 cells gave rise to a new population of small and densely granular cells (RS-2 cells). During the late log phase, the RS-2 cells decreased in number and regenerated the pool of RS-1 cells found in stationary cultures. In repeated passages in which the cells were plated at low density, they were amplified about 109-fold in 6 wk. The cells retained their ability to generate single-cell derived colonies and therefore apparently retained their multipotentiality for differentiation. PMID:10725391

  5. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.


    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  6. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Olga V. [Creatv MicroTech, Inc., 2242 West Harrison St., Chicago 60612, IL (United States); Adams, Daniel L., E-mail: [Creatv MicroTech, Inc., 1 Deer Park Drive, Monmouth Junction, NJ 08852 (United States); Divan, Ralu; Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Ave., Argonne 60439, IL (United States); Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei [Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac 20854, MD (United States)


    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. - Highlights: • Surface topographical effects the growth patterns and cell function of cancer cells • Nanoscale surface topography on polymer filters for circulating tumor cell culture • Membrane fabricated directly on polymer surfaces utilized for polymer etching • Nanotopography alters cell shape, phenotype and growth patterns of cancer cells • Nanoscale surface topography dictates monolayering or 3D structured cell culture.

  7. Effects of Electromagnetic Stimulation on Cell Density and Neural Markers in Murine Enteric Cell Cultures

    International Nuclear Information System (INIS)

    Carreon-Rodriguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Canedo-Dorantes, L.


    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue

  8. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.


    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  9. Time evolution of cell size distributions in dense cell cultures (United States)

    Khain, Evgeniy


    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  10. Dynamic cell culture system (7-IML-1) (United States)

    Cogoli, Augusto


    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  11. Effect of Spiritist "passe" (Spiritual healing) on growth of bacterial cultures. (United States)

    Lucchetti, Giancarlo; de Oliveira, Renata Ferreira; Gonçalves, Juliane Piasseschi de Bernardin; Ueda, Suely Mitoi Ykko; Mimica, Lycia Mara Jenne; Lucchetti, Alessandra Lamas Granero


    Biofield therapies are approaches that harness energy fields to influence the human body. These therapies encompass Reiki, Qigong, Therapeutic Touch, Johrei and Spiritist "passe", among others. The aim of this study was to evaluate bacterial growth in two groups of cultures subjected to biofield therapy (Spiritist "passe" and laying on of hands (LOH)) in four situations (no intention, intention to inhibit bacterial growth, intention to promote growth, and influence of a negative factor) and compare them with a "no LOH/no treatment" group. Bacterial cultures (Escherichia coli ATCC) were randomized and allocated into three groups: Spiritist "passe", "LOH", and "no LOH". Bacterial growth was assessed using the McFarland Nephelometer Scale. A One-way ANOVA was performed to determine group differences in bacterial growth at 48h, and at 1 week after each situation. A total of 11 Spiritist "passe" healers, 10 LOH laymen and "no LOH" tubes were assessed. Under the intention to inhibit bacterial growth condition, statistically significant differences were found between the Spiritist "passe" and "no LOH" Groups (p=0.002 after 48h, and p=0.008 after one week) and also between the Spiritist "passe" and "LOH" Groups (p=0.005 after 48h, and p=0.009 after one week). No statistically significant difference was detected for the other situations tested (no intention, intention to promote growth and influence of a negative factor). We concluded that Spiritist "passe" effectively inhibited growth in bacterial cultures compared to LOH with intention or no LOH. Further studies comparing different intentions and types of LOH in cultures of cells and microorganisms are warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Culture Conditions for the Mycelial Growth of Ganoderma applanatum. (United States)

    Jo, Woo-Sik; Cho, Yun-Ju; Cho, Doo-Hyun; Park, So-Deuk; Yoo, Young-Bok; Seok, Soon-Ja


    Ganoderma applanatum is one of the most popular medicinal mushrooms due to the various biologically active components it produces. This study was conducted to obtain basic information regarding the mycelial culture conditions of Ganoderma applanatum. Based on the colony diameter and mycelial density, PDA, YMA and MCM media were suitable for the mycelial growth of the mushroom. The optimum temperature for mycelial growth was found to be 25~30℃. The optimum carbon and nitrogen sources were mannose and dextrin, respectively, and the optimum C/N ratio was 2 to 10 when 2% glucose was used. Other minor components required for the optimal growth included thiamine-HCl and biotin as vitamins, succinic acid and lactic acid as organic acids, and MgSO4·7H2O, KH2PO4 and NaCl as mineral salts.

  13. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance. (United States)

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael


    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  14. Mechanical characterization of yeast cells: effects of growth conditions. (United States)

    Overbeck, A; Kampen, I; Kwade, A


    Industrial biotechnology uses microbiological cells to produce a wide range of products. While the organisms in question are well understood regarding their genetic and molecular properties, less is known about their mechanical properties. Previous work has established a testing procedure for single Saccharomyces cerevisiae cells using a Nanoindenter equipped with a Flat Punch probe, allowing the compression between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and served to determine characteristic values such as the bursting force, bursting energy and relative deformation. This study examined the mechanical characteristics of yeast cells under the influence of varying cultivation parameters, namely the pH value, temperature, aeration rate, stirrer speed and culture medium composition. It was observed that only temperature and medium composition showed significant effect on the mechanical properties of the cells. Higher temperatures during cultivation caused lower bursting forces and energies. Further analysis of the data showed that the mechanical characteristics of the cells were only influenced by parameters which also had an influence on the growth rate. In conclusion, higher growth rates result in a lower mechanical strength of the yeast cells. This study provides data on the influence of growth conditions on the mechanical properties of yeast cells. Single cell compression tests on Saccharomyces cerevisiae cells indicate that higher growth rates result in a lower mechanical strength of the cells. As in biotechnological processes mechanical degradation is often part of the downstream process to release the product from the micro-organisms, the knowledge about the mechanical properties of the cells is relevant for process optimization. © 2015 The Society for Applied Microbiology.

  15. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells.

    Directory of Open Access Journals (Sweden)

    Ramaschandra G Sharathchandra

    Full Text Available BACKGROUND: This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. CONCLUSIONS: The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks

  16. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A


    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  17. Valproic acid promotes human hair growth in in vitro culture model. (United States)

    Jo, Seong Jin; Choi, Soon-Jin; Yoon, Sun-Young; Lee, Ji Yeon; Park, Won-Seok; Park, Phil-June; Kim, Kyu Han; Eun, Hee Chul; Kwon, Ohsang


    β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. To determine the effect of VPA on human hair growth. We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Long-term culture and analysis of cashmere goat Sertoli cells. (United States)

    Su, Huimin; Luo, Fenhua; Bao, Jiajing; Wu, Sachula; Zhang, Xueming; Zhang, Yan; Duo, Shuguang; Wu, Yingji


    Sertoli cells have important functions in the testis for spermatogenesis. Thus, Sertoli cell culture systems have been established in many animals, such as rat, mouse, human, dog, cow, and pig, but a goat culture has not been reported. This study describes the isolation and culture of Sertoli cells from 3- to 4-month-old cashmere goat (Capra hircus) testes. These proliferative cells were expanded for 20 passages and repeatedly cryopreserved in vitro, in contrast to previous study in human, of which maintain steady growth for up to seven passages and only passages 1 to 5 could be refrozen. The microstructure and ultrastructure of the culture were typical of Sertoli cells, bearing irregular nuclei and a cytoplasm that was rich in smooth and rough endoplasmic reticulum, mitochondria, Golgi, lysosomes, lipid drops, and glycogenosomes. By immunofluorescence analysis, the all cells expressed SRY-related HMG box gene 9 (Sox9). Growth curves and 5-bromo-2'-deoxyuridine (BrdU) incorporation were used to analyze the proliferation of the cultured cells. With increasing passage times, the proliferation of the Sertoli cells declined, but the transcription of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF), and β1-integrin was constant. By flow cytometry, the cells retained the ability to proliferate after 5 yr of cryopreservation. Thus, cashmere goat Sertoli cells have significant proliferative potential in vitro, expressing germ cell regulatory factors and have important applications in studying Sertoli cell-germ cell interactions, spermatogenesis, reproductive toxicology, and male infertility.

  19. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior. (United States)

    Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing


    By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.

  20. Acetaldehyde and hexanaldehyde from cultured white cells

    Directory of Open Access Journals (Sweden)

    Zaldivar Frank


    Full Text Available Abstract Background Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds. Methods To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium. Results HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene. Conclusion This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured in vitro in trace amounts.

  1. Depletion of host cell riboflavin reduces Wolbachia levels in cultured mosquito cells (United States)

    Baldridge, Gerald D.; Carroll, Elissa M.; Kurtz, Cassandra M.


    Wolbachia is an obligate intracellular alphaproteobacterium that occurs in arthropod and nematode hosts. Wolbachia presumably provides a fitness benefit to its hosts, but the basis for its retention and spread in host populations remains unclear. Wolbachia genomes retain biosynthetic pathways for some vitamins, and the possibility that these vitamins benefit host cells provides a potential means of selecting for Wolbachia-infected cell lines. To explore whether riboflavin produced by Wolbachia is available to its host cell, we established that growth of uninfected C7–10 mosquito cells decreases in riboflavin-depleted culture medium. A well studied inhibitor of riboflavin uptake, lumiflavin, further inhibits growth of uninfected C7–10 cells with an LC50 of approximately 12 µg/ml. Growth of C/wStr1 mosquito cells, infected with Wolbachia from the planthopper, Laodelphax striatellus, was enhanced in medium containing low levels of lumiflavin, but Wolbachia levels decreased. Lumiflavin-enhanced growth thus resembled the improved growth that accompanies treatment with antibiotics that deplete Wolbachia, rather than a metabolic advantage provided by the Wolbachia infection. We used the polymerase chain reaction to validate the decrease in Wolbachia abundance and evaluated our results in the context of a proteomic analysis in which we detected nearly 800 wStr proteins. Our data indicate that Wolbachia converts riboflavin to FMN and FAD for its own metabolic needs, and does not provide a source of riboflavin for its host cell. PMID:24789726

  2. Designing media for animal cell culture: CHO cells, the industrial standard. (United States)

    Landauer, Karlheinz


    The success of culturing CHO cells solely depends on functionality of the used media. Cell culture technology is more than 50 years old, and the knowledge of cell requirements increased steadily. In the beginning, animal-sourced components were the key to growth. Nowadays state-of-the-art media do not contain any animal or naturally sourced components. The compositions are based on scientific awareness of the needs of the cells. The result is high lot-to-lot consistency and high performance.In this book section, a method for the development of a synthetic, animal component-free medium is described. The composition is based on public available formulations and information based on the work of many scientists printed in numerous papers and manuscripts. The method shall help beginners to design their own medium, although some knowledge of biochemistry and animal cells is still required.

  3. Changes in auxin level in the course of growth of a sunflower crown-gall suspension culture

    Directory of Open Access Journals (Sweden)

    Zofia Chirek


    Full Text Available The auxin level in the cell mass and culture medium was determined by means of the Avena straight caleoptile test in various periods of the suspension culture cycle of the sunflower crown-gall tumour. The investigations were performed in the course of the zero passage (PO and first one (Pl, differing in their time of duration of maximum growth and its intensity. In both passages the intra- and extra-cellular auxin levels reach values of the same order. At the beginning of the maximal growth phase the activity corresponding to IAA in the cells prevails over that of the other auxin-like compounds. This disproportion diminishes with further development of the culture, and with the beginning of the stationary phase the cellular IAA level is lower than that of the remaining auxin-like compounds. The short phase of maximal growth (PO occurs with an auxin level decreasing in the cell mass and increasing in the medium, and towards the end of the cycle these levels become equal. During the long phase of maximal growth (Pl the total amount of auxins in the cells increases and is 2-3 times higher than in the medium, whereas IAA in the cells remains at a constant level. These results suggest that the participation of IAA in the intracellular pool of auxin-like substances is decisive for the mitotic activity of the cells and maintenance of growth in the culture.

  4. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi


    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  5. Kinetics of growth of Leishmania (Leishmania chagasi cycle in McCoy cell culture Cinéticas de crescimento do ciclo da Leishmania (Leishmania chagasi em cultura de células McCoy

    Directory of Open Access Journals (Sweden)

    Yeda L. Nogueira


    Full Text Available The kinetics of growth of Leishmania performed in vitro after internalization of the promastigote form in the cell and the occurrence of the transformation of the parasite into the amastigote form have been described by several authors. They used explants of macrophages in hamster spleen cell culture or in a human macrophage lineage cell, the U937. Using microscopy, the description of morphologic inter-relationship and the analysis of the production of specific molecules, it has been possible to define some of the peculiarities of the biology of the parasite. The present study shows the growth cycle of Leishmania chagasi during the observation of kinetic analysis undertaken with a McCoy cell lineage that lasted for a period of 144 hours. During the process, the morphologic transformation was revealed by indirect immunofluorescence (IF and the molecules liberated in the extra cellular medium were observed by SDS-PAGE at 24-hour intervals during the whole 144-hour period. It was observed that in the first 72 hours the promastigote form of L. chagasi adhered to the cell membranes and assumed a rounded (amastigote-like form. At 96 hours the infected cells showed morphologic alterations; at 120 hours the cells had liberated soluble fluorescent antigens into the extra cellular medium. At 144 hours, new elongated forms of the parasites, similar to promastigotes, were observed. In the SDS-PAGE, specific molecular weight proteins were observed at each point of the kinetic analysis showing that the McCoy cell imitates the macrophage and may be considered a useful model for the study of the infection of the Leishmania/cell binomial.Cinéticas de crescimento de Leishmania realizadas in vitro após a internalização da forma promastigota na célula e a ocorrência da transformação do parasito na forma amastigota foram descritas por vários autores, seja com a utilização de explantes de macrófagos em células de baço de hamster ou atualmente da c

  6. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. (United States)

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J


    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions. (United States)

    Nagamatsu, Go; Suda, Toshio


    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  8. 3D Cell Culture Imaging with Digital Holographic Microscopy (United States)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan


    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  9. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  10. Primary Culture of Canine Growth Plate Chondrocytes as a Model of Biomineralization


    Ryuji, HOSOKAWA; Kenji, KIKUZAKI; Daisuke, CHIBA; Yasumasa, AKAGAWA; Department of Removable Prosthodontics, Hiroshima University School of Dentistry; Department of Removable Prosthodontics, Hiroshima University School of Dentistry; Department of Removable Prosthodontics, Hiroshima University School of Dentistry; Department of Removable Prosthodontics, Hiroshima University School of Dentistry


    This study investigated the mineralization process in primary cultures of dog growth plate chondrocytes as a model of biomineralization. Chondrocytes were isolated from the growth plates of ribs of 1-week-old dogs. The chondrocytes were maintained at extremely high density (5x10^4 cells/well) in collagen-coated 96-well dishes in a-MEM supplemented with 10% fetal bovine serum and 50 μg/ml ascorbic acid. Mineralization was initiated between days 20 and 24; however, the addition of fibroblast gr...

  11. Indirect immunofluorescence staining of cultured neural cells. (United States)

    Barbierato, Massimo; Argentini, Carla; Skaper, Stephen D


    Immunofluorescence is a technique allowing the visualization of a specific protein or antigen in cells or tissue sections by binding a specific antibody chemically conjugated with a fluorescent dye such as fluorescein isothiocyanate. There are two major types of immunofluorescence staining methods: (1) direct immunofluorescence staining in which the primary antibody is labeled with fluorescence dye and (2) indirect immunofluorescence staining in which a secondary antibody labeled with fluorochrome is used to recognize a primary antibody. This chapter describes procedures for the application of indirect immunofluorescence staining to neural cells in culture.

  12. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system]. (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong


    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  13. Regulation of Cytoplasmic and Vacuolar Volumes by Plant Cells in Suspension Culture

    DEFF Research Database (Denmark)

    Owens, Trevor; Poole, Ronald J


    by cytoplasm is roughly correlated with protein content, but shows no correlation with cell size or with intracellular concentrations of K or Na. The most striking observation is that the growth of cytoplasmic volume for the culture as a whole appears to be constant throughout the culture cycle, despite...

  14. Cultured epidermal stem cells in regenerative medicine. (United States)

    Jackson, Catherine J; Tønseth, Kim Alexander; Utheim, Tor Paaske


    Transplantation of cultured epidermal cell sheets (CES) has long been used to treat patients with burns, chronic wounds, and stable vitiligo. In patients with large area burns this can be a life-saving procedure. The ultimate goal, however, is to restore all normal functions of the skin and prevent scar formation. Increased focus on the incorporation of epidermal stem cells (EpiSCs) within CES transplants may ultimately prove to be key to achieving this. Transplanted EpiSCs contribute to restoring the complete epidermis and provide long-term renewal.Maintenance of the regenerative potential of EpiSCs is anchorage-dependent. The extracellular matrix (ECM) provides physical cues that are interpreted by EpiSCs and reciprocal signaling between cells and ECM are integrated to determine cell fate. Thus, the carrier scaffold chosen for culture and transplant influences maintenance of EpiSC phenotype and may enhance or detract from regenerative healing following transfer.Long-term effectiveness and safety of genetically modified EpiSCs to correct the severe skin blistering disease epidermolysis bullosa has been shown clinically. Furthermore, skin is gaining interest as an easily accessible source of adult epithelial stem cells potentially useful for restoration of other types of epithelia. This review highlights the role of EpiSCs in the current treatment of skin injury and disease, as well as their potential in novel regenerative medicine applications involving other epithelia.

  15. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R


    receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either......Epidermal growth factor (EGF), a low-molecular-weight polypeptide (G. Carpenter and S. Cohen, 1979, Annu. Rev. Biochem. 48, 193-216), stimulates the proliferation and keratinisation of cultured embryonic epidermis (S. Cohen, 1965, Dev. Biol. 12, 394-407) and promotes epidermal growth, thickening......, and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...

  16. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. (United States)

    Bateman, Allen C; Karasin, Alexander I; Olsen, Christopher W


    Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air-liquid interface (ALI) in media with defined hormones and growth factors, recapitulate many aspects of the in vivo respiratory tract and allow for experimental studies at the cellular level. To optimize growth conditions for differentiated swine airway epithelial cultures and to use these cultures to examine influenza virus infection and replication. Primary swine respiratory epithelial cells were grown at an air-liquid interface with varying amounts of retinoic acid and epidermal growth factor. Cells grown with optimized concentrations of these factors for 4 weeks differentiated into multilayer epithelial cell cultures resembling the lining of the swine respiratory tract. Influenza virus infection and replication were examined in these cultures. Retinoic acid promoted ciliogenesis, whereas epidermal growth factor controlled the thickness of the pseudoepithelium. The optimal concentrations for differentiated swine cell cultures were 1·5 ng/ml epidermal growth factor and 100nm retinoic acid. Influenza A viruses infected and productively replicated in these cultures in the absence of exogenous trypsin, suggesting that the cultures express a protease capable of activating influenza virus hemagglutinin. Differences in virus infection and replication characteristics found previously in pigs in vivo were recapitulated in the swine cultures. This system could be a useful tool for a range of applications, including investigating influenza virus species specificity, defining cell tropism of influenza viruses in the swine respiratory epithelium, and studying other swine respiratory diseases. © 2012 Blackwell Publishing Ltd.

  17. Effects of outdoor cultures on the growth and lipid production of Phaeodactylum tricornutum using closed photobioreactors. (United States)

    Santos-Ballardo, David U; Rendón-Unceta, María Del Carmen; Rossi, Sergio; Vázquez-Gómez, Rosa; Hernández-Verdugo, Sergio; Valdez-Ortiz, Angel


    One of the principal challenges for large scale production of microalgae is the high costs of biomass production. Aiming for minimize this problem, microalgal biodiesel production should focus on outdoors cultures, using available solar light and allowing lower energy cost process. Testing species that proved to be common and easy to culture may be a good approach in this process. The present work reports indoor-outdoor cultures of Phaeodactylum tricornutum using different bioreactors types, using cell growth, biochemical composition, and the profiles of the fatty acids produced as the parameters to test the optimization processes. The results show that the use of outdoor cultures is a good choice to obtain P. tricornutum biomass with a good potential for biodiesel production. The microalgae produced reached better growth efficiency, major lipid content and showed an increment in the percentage of saturated fatty acids (required on the biodiesel production) respect indoor cultures. These results are important to show the relevance of using outdoor cultures as a way to improve the efficiency and the energetic balance of the biodiesel production with P. tricornutum algae.

  18. Development of a serum-free defined system employing growth factors for preantral follicle culture. (United States)

    Park, Young Hyun; Gong, Seung Pyo; Kim, Hwa Young; Kim, Gil Ah; Choi, Jun Hee; Ahn, Ji Yeon; Lim, Jeong Mook


    This study was conducted to evaluate if mouse preantral follicles can yield developmentally competent oocytes following culture in serum-free, defined medium. Donor follicles were obtained from 14-day-old B6CBAF1 mice, and cultured in α-MEM-Glutamax medium. The replacement of fetal bovine serum with knockout serum replacement (KSR) did not significantly reduce follicle growth or oocyte maturation in vitro, although it significantly reduced the development of oocytes after activation. Regardless of the replacement medium, follicle growth was not influenced by the addition of leukemia inhibitory factor (LIF). The addition of 100 ng/ml stem cell factor (SCF) to the KSR-supplemented serum-free medium significantly stimulated follicle development, which further improved blastocyst formation after oocyte activation. On Day 3 of culture, a significant increase in Bmp7 expression was detected in the SCF-containing medium compared with the serum-containing medium, whereas Gdf9 and Amh were increased in the serum-containing medium. A significant increase in estradiol production was detected under serum-free conditions, but minimal progesterone secretion was detected throughout the culture period. In conclusion, serum-free media can be used to optimize ovarian follicle cultures, and the addition of SCF is beneficial for deriving developmentally competent oocytes through follicle culture. Copyright © 2013 Wiley Periodicals, Inc.

  19. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette


    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved...... in beta cell differentiation and proliferation may lead to new ways of forming beta cells for treatment of diabetes in man....

  20. Diffusion chamber culture of mouse bone marrow cells, (1)

    International Nuclear Information System (INIS)

    Sigeta, Chiharu; Tanaka, Kimio; Kawakami, Masahito; Takahashi, Hiroshi; Ohkita, Takeshi


    Mouse bone marrow cells were cultured in diffusion chambers (DC) implanted in the peritoneal cavity of host mice. Host mice were subjected to (1) irradiation ( 60 Co 800 rad) and/or (2) phenylhydrazine induced anemia and then receiving irradiation ( 60 Co 600 rad). After culture periods of 3-7 days, the total number of cells in DC was increased. A marked increase in DC is due to the proliferation of granulocyte series. When host mice were subjected to anemia and irradiation, the start of cell proliferation in DC was delay about two days. On the whole, anemia and irradiation host reduced a little cell growth in DC. The number of immature granulocytes grown in DC in irradiated hosts or anemia and irradiated hosts increased and reached a plateu at day 5. During the plateu period, the proportions between immature and mature granulocytes in DC were kept constantly. The number of macrophages showed a two-phase increasing. Erythroid cells and lymphocytes rapidly disappeared from the chambers during 3 days. The number of erythroid cells was not significantly influenced even in anemia and irradiation hosts. (author)

  1. Problems and potentialities of cultured plant cells in retrospect and prospect (United States)

    Steward, F. C.; Krikorian, A. D.


    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  2. Ascorbic acid transport into cultured pituitary cells

    International Nuclear Information System (INIS)

    Cullen, E.I.; May, V.; Eipper, R.A.


    An amidating enzyme designated peptidyl-glycine α-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 μM [ 14 C]ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 μM ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system

  3. Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase. (United States)

    Romagnoli, Gabriele; Cundari, Enrico; Negri, Rodolfo; Crescenzi, Marco; Farina, Lorenzo; Giuliani, Alessandro; Bianchi, Michele M


    The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Modification of MCF-10A Cells with Pioglitazone and Serum-Rich Growth Medium Increases Soluble Factors in the Conditioned Medium, Likely Reducing BT-474 Cell Growth

    Directory of Open Access Journals (Sweden)

    Kalpanah Nadarajan


    Full Text Available In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.

  5. The effect of sebocytes cultured from nevus sebaceus on hair growth. (United States)

    Lee, Weon Ju; Cha, Hyun Wuk; Lim, Hyun Jung; Lee, Seok-Jong; Kim, Do Won


    Sebaceous glands are known to affect hair growth. Nevus sebaceus, a sebaceous gland hamartomas, presents as hairless patches. In this study, cultures of nevus sebaceus sebocytes (NSS) and normal scalp hair follicle sebocytes (NS) were used in performance of microarray, RT-PCR, western blot assay and immunofluorescence staining. NSS- and NS-conditioned media were also added to the culture of outer root sheath cells (ORSCs), dermal papilla cells (DPCs) or normal scalp hair follicle sebocytes. Results of this study showed a decrease in the survival rate of ORSCs and DPCs and hair growth in the NSS-conditioned medium-treated group, compared with the control and NS-conditioned medium-treated groups. An increase in expression of fibroblast growth factor (FGF)-5, Dickkopf-1 and inflammatory cytokines and a decrease in expression of Wnt10b and Lef1 were observed. In conclusion, NSS showed an increase in expression of hair growth-suppressing bioactive factors, including FGF-5, and a decrease in expression of hair growth-stimulating factors. © 2012 John Wiley & Sons A/S.

  6. Feasibility of mesenchymal stem cell culture expansion for a phase I clinical trial in multiple sclerosis. (United States)

    Planchon, Sarah M; Lingas, Karen T; Reese Koç, Jane; Hooper, Brittney M; Maitra, Basabi; Fox, Robert M; Imrey, Peter B; Drake, Kylie M; Aldred, Micheala A; Lazarus, Hillard M; Cohen, Jeffrey A


    Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited. To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use. In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1-2 × 10 6 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16-62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.

  7. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations. (United States)

    Park, Seo-Young; Reimonn, Thomas M; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu


    Amino acids and glucose consumption, cell growth and monoclonal antibody (mAb) production in mammalian cell culture are key considerations during upstream process and particularly media optimization. Understanding the interrelations and the relevant cellular physiology will provide insight for setting strategy of robust and effective mAb production. The aim of this study was to further our understanding of nutrient consumption metabolism, since this could have significant impact on enhancing mAb titer, cell proliferation, designing feeding strategies, and development of feed media. The nutrient consumption pattern, mAb concentration, and cell growth were analyzed in three sets of cell cultures with media supplementation of glucose, methionine, threonine, tryptophan, and tyrosine. The amino acids metabolism and its impact on cell growth and mAb production during the batch and fed-batch culture were closely analyzed. It was shown that the phenylalanine, tyrosine and tryptophan biosynthesis pathways were significantly altered under different culture conditions with different media. These changes were more apparent in the fed-batch process in which higher mAb titer was observed due to the metabolic changes than mAb titer in the batch process. The pathway analysis approach was well utilized for evaluating the impact on the relevant pathways involved under different cell culture conditions to improve cell growth and mAb titer. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  8. Neural stem cell isolation and culture from C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    S Koirala


    Full Text Available INTRODUCTION A widely used in vitro culture, the neurosphere assay (NSA has provided a means to retrospectively identify neural progenitor cells as well as to determine both their selfrenewal capacity. Objective of study was to isolate and compare growth of the embryonic neuronal stem cell and adult neuronal stem cells in presence of Epidermal Growth Factor (EGF and Fibroblastic Growth Factor (FGF2. MATERIALS AND METHODS Embryonic neuronal stem cell were collected from cortical plate of dorsal telencephalon of fifteen C57BL/6 transgenic mice using stereoscopic microscope on 11th gestational day (GD. Adult mammalian neuronal stem cells taken from subventricular zone (SVZ of the lateral ventricles and subgranular layer of the dentate gyrus of the hippocampus were cultured. The growth for the neurosphere was then observed in interval of 24 and 72 hours. RESULT The adult stem cell culture showed few intact cells with high amount of debris and 9% heterogeneous sphere after 24 hours while only 20 % was observed at the end of 72 hours. Higher proliferation rate was observed in embryonic neurospheres than the adult stem cell culture. CONCLUSION Presence of EGF and basic FGF2 is essential for culture of neurospheres.DOI: Journal of College of Medical Sciences-Nepal, 2014, Vol.10(2; 1-3

  9. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture. (United States)

    Crabbendam, P M; Neijssel, O M; Tempest, D W


    The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration, specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74 +/- 0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27 +/- 0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions, leading to changes in the Y glucose and YATP values. In general, glucose-sufficient cultures expressed lower yield values than a corresponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40 g glucose X 1(-1) also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased. Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of

  10. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman


    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  11. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment.

    Directory of Open Access Journals (Sweden)

    Shirly Sieh

    Full Text Available Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to

  12. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi


    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  13. Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. (United States)

    Braga, A; Mesquita, D P; Amaral, A L; Ferreira, E C; Belo, I


    Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Zheyan Chen

    Full Text Available Zebrafish (Danio rerio is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+-imaging revealed local elevation of cytoplasmic Ca(2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development

  15. Obtaining phenolic acids from cell cultures of various Artemisia ...

    African Journals Online (AJOL)

    Plant cell cultures represent a high valuable source for the production of bioactive secondary metabolites which can be used in food industry, medicine and cosmetic industry. In our study, we focused on obtaining phenolic acids from plant cell cultures. We compared cell cultures obtained from nine plant species of two ...

  16. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.


    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  17. Propagation of human germ stem cells in long-term culture (United States)

    Akhondi, Mohammad Mehdi; Mohazzab, Arash; Jeddi-Tehrani, Mahmood; Sadeghi, Mohammad Reza; Eidi, Akram; Khodadadi, Abbas; Piravar, Zeinab


    Background: Spermatogonial stem cells (SSCs), a subset of undifferentiated type A spermatogonia, are the foundation of complex process of spermatogenesis and could be propagated in vitro culture conditions for long time for germ cell transplantation and fertility preservation. Objective: The aim of this study was in vitro propagation of human spermatogonial stem cells (SSCs) and improvement of presence of human Germ Stem Cells (hGSCs) were assessed by specific markers POU domain, class 5, transcription factor 1 (POU5F1), also known as Octamer-binding transcription factor 4 (Oct-4) and PLZF (Promyelocytic leukaemia zinc finger protein). Materials and Methods: Human testicular cells were isolated by enzymatic digestion (Collagenase IV and Trypsin). Germ cells were cultured in Stem-Pro 34 media supplemented by growth factors such as glial cell line-derived neurotrophic factor, basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor to support self-renewal divisions. Germline stem cell clusters were passaged and expanded every week. Immunofluorecent study was accomplished by Anti-Oct4 antibody through the culture. The spermatogonial stem cells genes expression, PLZF, was studied in testis tissue and germ stem cells entire the culture. Results: hGSCs clusters from a brain dead patient developed in testicular cell culture and then cultured and propagated up to 6 weeks. During the culture Oct4 were a specific marker for identification of hGSCs in testis tissue. Expression of PLZF was applied on RNA level in germ stem cells. Conclusion: hGSCs indicated by SSCs specific marker can be cultured and propagated for long-term in vitro conditions. This article extracted from Ph.D. Thesis. (Zeinab Piravar) PMID:24639790


    Energy Technology Data Exchange (ETDEWEB)

    Bissell, M.J.; Farson, D.; Tung, A.S.C.


    The rate of hexose transport was compared in normal and virus-transformed cells on a monolayer and in suspension. It was shown that: (1) Both trypsin-removed cells and those suspended for an additional day in methyl cellulose had decreased rates of transport and lower available water space when compared with cells on a monolayer. Thus, cell shape affects the overall rate of hexose transport, especially at higher sugar concentrations. (2) Even in suspension, the initial transport rates remained higher in transformed cells with reference to normal cells. Scanning electron micrographs of normal and transformed chick cells revealed morphological differences only in the flat state. This indicates that the increased rate of hexose transport after transformation is not due to a difference in the shape of these cells on a monolayer. The relation between the geometry of cells, transport rates, and growth regulation is undoubtedly very complex, and our knowledge of these relationships is still very elementary. In a recent review on the influence of geometry on control of cell growth, Folkman and Greenspan (1) pointed out that the permeability of cells in a flat versus a spherical state may indeed be very different. The growth properties of cells on a surface and in suspension have been compared often (1-5). However, with one exception. little is known about the changes in transport properties when cell shape is changed. Foster and Pardee (6) demonstrated that the active transport of a-aminoisobutyric acid was reduced 2.5 times in suspension cultures of Chinese hamster cells with respect to the cells grown on a coverslip. They attributed this to the smaller surface area of suspended cells. While it is not clear why active transport should be dependent on the surface area available, it is possible that once the cells assume a spherical configuration, the carrier proteins are redistributed in such a way as to make them less accessible to the substrate. What happens to

  19. Flow field measurements in the cell culture unit (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy


    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  20. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Directory of Open Access Journals (Sweden)

    Camila Bonazza

    Full Text Available Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2 and progesterone (P4 effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation. These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  1. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna


    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  2. Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures. (United States)

    Stoop, JMH.; Pharr, D. M.


    Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures.

  3. Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts. (United States)

    Fong, Chui-Yee; Biswas, Arijit; Subramanian, Arjunan; Srinivasan, Akshaya; Choolani, Mahesh; Bongso, Ariff


    Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids. © 2013 Wiley Periodicals, Inc.

  4. In Vitro Cell Culture Infectivity Assay for Human Noroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin A.; Orosz Coghlan, Patricia A.; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza; Nickerson, Cheryl A.


    Human noroviruses (NoV) cause severe, self-limiting gastroenteritis that typically lasts 24 - 48 hours. The true nature of NoV pathogenesis remains unknown due to the lack of suitable tissue culture or animal models. Here we show, for the first time, that NoV can infect and replicate in an organoid, three-dimensional (3-D) model of human small intestinal epithelium (INT-407). Cellular differentiation for this model was achieved by growing the cells in 3-D on porous collagen I-coated microcarrier beads under conditions of physiological fluid shear in rotating wall vessel bioreactors. Microscopy, PCR, and fluorescent in-situ hybridization were employed to provide evidence of NoV infection. CPE and norovirus RNA was detected at each of the five cell passages for both genogroup I and II viruses. Our results demonstrate that the highly differentiated 3-D cell culture model can support the natural growth of human noroviruses, whereas previous attempts using differentiated monolayer cultures failed.

  5. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette


    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved......Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...

  6. Cell-transforming activity and genotoxicity of phenolphthalein in cultured Syrian hamster embryo cells. (United States)

    Tsutsui, T; Tamura, Y; Yagi, E; Hasegawa, K; Tanaka, Y; Uehama, A; Someya, T; Hamaguchi, F; Yamamoto, H; Barrett, J C


    Phenolphthalein is a cathartic agent widely used in non-prescription laxatives. For the simultaneous assessment of in vitro carcinogenicity and mutagenicity of phenolphthalein, the ability of this chemical to induce cell transformation and genetic effects was examined using the Syrian hamster embryo (SHE) cell model. Cell growth was reduced by treatment with phenolphthalein at 10-40 microM in a dose-related manner. Treatment with phenolphthalein for 48 hr induced a dose-dependent increase in morphological transformation of SHE cells. Over the dose range that resulted in cell transformation ( 10-40 microM), treatment of SHE cells with phenolphthalein induced gene mutations at the hprt locus but not at the Na+/K+ ATPase locus. A statistically significant level of chromosomal aberrations was elicited in SHE cells treated with phenolphthalein at the highest dose (40 microM). Meanwhile, neither numerical chromosomal changes nor DNA adduct formation, analyzed by the nuclease P1 enhancement version of 32P-post-labeling, were induced by treatment with phenolphthalein at any concentrations examined. We thus report cell-transforming activity and mutagenicity of phenolphthalein assessed with the same mammalian cells in culture. Our results provide evidence that phenolphthalein has cell-transforming and genotoxic activity in cultured mammalian cells. The mutagenic and clastogenic activities of phenolphthalein could be a causal mechanism for carcinogenicity in rodents.

  7. An efficient 3D cell culture method on biomimetic nanostructured grids.

    Directory of Open Access Journals (Sweden)

    Maria Wolun-Cholewa

    Full Text Available Current techniques of in vitro cell cultures are able to mimic the in vivo environment only to a limited extent, as they enable cells to grow only in two dimensions. Therefore cell culture approaches should rely on scaffolds that provide support comparable to the extracellular matrix. Here we demonstrate the advantages of novel nanostructured three-dimensional grids fabricated using electro-spinning technique, as scaffolds for cultures of neoplastic cells. The results of the study show that the fibers allow for a dynamic growth of HeLa cells, which form multi-layer structures of symmetrical and spherical character. This indicates that the applied scaffolds are nontoxic and allow proper flow of oxygen, nutrients, and growth factors. In addition, grids have been proven to be useful in in situ examination of cells ultrastructure.

  8. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures. (United States)

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V


    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of Selected Physicochemical Parameters on Zerumbone Production of Zingiber zerumbet Smith Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Mahanom Jalil


    Full Text Available Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.

  10. Cell-cycle research with synchronous cultures: an evaluation (United States)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.


    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  11. Algorithms for pattern recognition in images of cell cultures (United States)

    Mendes, Joyce M.; Peixoto, Nathalia L.; Ramirez-Fernandez, Francisco J.


    Several applications of silicon microstructures in areas such as neurobiology and electrophysiology have been stimulating the development of microsystems with the objective of mechanical support to monitor and control several parameters in cell cultures. In this work a multi-microelectrode arrays was fabricated over a glass plate to obtain the growth of neuronal cell monitoring their behavior during cell development. To identify the neuron core and axon an approach for implementation of edge detectors algorithms associated to images is described. The necessity of efficient and reliable algorithms for image processing and interpretation is justified by its large field of applications in several areas as well as medicine, robotics, cellular biology, computational vision and pattern recognition. In this work, it is investigated the adequacy of some edge detectors algorithms such as Canny, Marr-Hildreth. Some alterations in those methods are propose to improve the identification of both cell core and axonal growth measure. We compare the operator to edge detector proposed by Canny, Marr-Hildreth operator and application of Hough Transform. For evaluation of algorithms adaptations, we developed a method for automatic cell segmentation and measurement. Our goal is to find a set of parameters defining the location of the objects to compare the original and processed images.

  12. Octanoate in Human Albumin Preparations Is Detrimental to Mesenchymal Stromal Cell Culture

    Directory of Open Access Journals (Sweden)

    Way-Wua Wong


    Full Text Available Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na+/K+ ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior.


    Directory of Open Access Journals (Sweden)



    Full Text Available Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation.

  14. Sphagnum growth in floating cultures: Effect of planting design

    Directory of Open Access Journals (Sweden)

    Y. Hoshi


    Full Text Available To establish rapid and stable Sphagnum growth, capitulum culture of a selected strain of S. palustre was carried out using a floating culture method. Four planting treatments were tested at mountain and urban sites in Kumamoto Prefecture on Kyushu Island, south-west Japan. Capitula were planted in colonies of different sizes on 30 cm square floating rafts, but with strict control of the number (75–77 of capitula per raft. The initial cover of live green Sphagnum ranged from 15 to 20 %. Growth of the colonies was followed throughout the growing season (April to November of 2008. After three months, green coverage rates reached 40–50 % in all planting treatments. At the end of the growing season, the highest Sphagnum cover (almost 90 % at the urban site was recorded in the planting treatment with eleven re-introduced colonies of seven capitula (‘11×7cap’, while the highest capitulum number and biomass (dry weight gain occurred in the ‘4×19cap’ planting treatment. Average stem elongation ranged from 5 cm to 7 cm in the ‘77×1cap’ and ‘4×19cap’planting treatments, respectively, indicating that the larger sized colony grew longer stems. However, contrary to expectation, the ‘4×19cap’planting treatment - which had the largest colony size - did not deliver the highest number of newly formed side shoots.

  15. Axenization and optimization of in vitro growth of clonal cultures of Tetratrichomonas gallinarum and Trichomonas gallinae. (United States)

    Amin, Aziza; Neubauer, Claudia; Liebhart, Dieter; Grabensteiner, Elvira; Hess, Michael


    A rapid and simple procedure was established to obtain clonal axenic cultures of Tetratrichomonas gallinarum and Trichomonas gallinae and to optimize their in vitro growth conditions. Medium 199 was used for axenization of two genetically different clones of T. gallinarum and T. gallinae. Six different media were used to optimize the growth behaviour of axenically grown parasites: Medium 199, TYM, TYI-S-33, Hollander fluid (HF), Trichomonas vaginalis (TV) and modified TV media. The highest cell yields for both axenic clones of T. gallinarum were obtained in modified TV medium without antibiotics. The maximum numbers of trophozoites of T. gallinae were obtained in an optimized HF medium. This study demonstrated that axenic cultures for T. gallinarum and T. gallinae could be obtained avoiding the migration technique through a V-tube. Following axenization and optimization, both clones of T. gallinarum and T. gallinae could be propagated both aerobically and anaerobically. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions (United States)

    Goodwin, Thomas J. (Inventor)


    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  17. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions (United States)

    Goodwin, Thomas J. (Inventor)


    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  18. Growth of primary embryo cells in a microculture system. (United States)

    Villa, Max; Pope, Sara; Conover, Joanne; Fan, Tai-Hsi


    We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

  19. Good cell culture practices &in vitro toxicology. (United States)

    Eskes, Chantra; Boström, Ann-Charlotte; Bowe, Gerhard; Coecke, Sandra; Hartung, Thomas; Hendriks, Giel; Pamies, David; Piton, Alain; Rovida, Costanza


    Good Cell Culture Practices (GCCP) is of high relevance to in vitro toxicology. The European Society of Toxicology In Vitro (ESTIV), the Center for Alternatives for Animal Testing (CAAT) and the In Vitro Toxicology Industrial Platform (IVTIP) joined forces to address by means of an ESTIV 2016 pre-congress session the different aspects and applications of GCCP. The covered aspects comprised the current status of the OECD guidance document on Good In Vitro Method Practices, the importance of quality assurance for new technological advances in in vitro toxicology including stem cells, and the optimized implementation of Good Manufacturing Practices and Good Laboratory Practices for regulatory testing purposes. General discussions raised the duality related to the difficulties in implementing GCCP in an academic innovative research framework on one hand, and on the other hand, the need for such GCCP principles in order to ensure reproducibility and robustness of in vitro test methods for toxicity testing. Indeed, if good cell culture principles are critical to take into consideration for all uses of in vitro test methods for toxicity testing, the level of application of such principles may depend on the stage of development of the test method as well as on the applications of the test methods, i.e., academic innovative research vs. regulatory standardized test method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cultivating liver cells on printed arrays of hepatocyte growth factor. (United States)

    Jones, Caroline N; Tuleuova, Nazgul; Lee, Ji Youn; Ramanculov, Erlan; Reddi, A Hari; Zern, Mark A; Revzin, Alexander


    Growth factors are commonly present in soluble form during in vitro cell cultivation experiments in order to provide signals for cellular proliferation or differentiation. In contrast to these traditional experiments, we investigated solid-phase presentation of a hepatocyte growth factor (HGF), a protein important in liver development and regeneration, on microarrays of extracellular matrix (ECM) proteins. In our experiments, HGF was mixed in solution with ECM proteins (collagen (I), (IV) or laminin) and robotically printed onto silane-modified glass slides. Primary rat hepatocytes were seeded onto HGF/ECM protein microarrays and formed cellular clusters that corresponded in size to the dimensions of individual protein spots (500 microm diameter). Analysis of liver-specific products, albumin and alpha1-antitrypsin, revealed several fold higher levels of expression of these proteins in hepatocytes cultured on HGF/ECM microarrays compared to cells cultivated on ECM proteins alone. In addition, cultivation of hepatocytes on HGF/ECM protein spots led to spontaneous reorganization of cellular clusters from a monolayer into three-dimensional spheroids. We also investigated the effects of surface-tethered HGF on hepatocytes co-cultivated with stromal cells and observed a significantly higher level of albumin in co-cultures where hepatocytes were stimulated by HGF/ECM spots compared to co-cultures created on ECM protein islands without the growth factor. In summary, our study suggests that incorporation of HGF into ECM protein microarrays has a profound and long-lasting effect on the morphology and phenotype of primary hepatocytes. In the future, the number of growth factors printed on ECM microarrays will be expanded to enable multiplexed and combinatorial screening of inducers of cellular differentiation or proliferation.

  1. Fungal growth in culture media simulating an extreme environment. (United States)

    Alvarez-Pérez, Sergio; Blanco, José L; Alba, Patricia; García, Marta E


    There is an increasing interest in the study of microorganisms that inhabit extreme environments for reasons that vary from gaining insight into the origin of life to the searching of new biotechnological applications. In this work, we studied the tolerance of fungi isolated from the Aguas Agrias Stream (AAS; Tharsis, Huelva, Spain), an acidic metal-rich environment, to a culture medium prepared with water from this extreme ecosystem (AASW medium). The ability of some culture collection strains of moulds and yeasts to grow on AASW medium was also assessed. For moulds, a tolerance index was calculated by dividing the growth diameter of colonies on AASW medium by the diameter in the control medium, and their germinative potential was recorded. For yeasts and yeast-like fungi, the minimum inhibitory concentration of AASW was determined. In general, the fungi isolated from the AAS showed differences in their ability to germinate and grow on AASW medium. Collection strains of the genus Aspergillus could grow on AASW medium, but showed some differences in tolerance when compared to environmental isolates. Extremotolerant fungi can manifest differences in their tolerance to culture media that simulate the conditions of their natural habitat. The results of this work suggest that the ability of fungi to grow in acidic, metal-rich environments might be more widespread than previously thought, and highlight the importance of determining the factors that are responsible for tolerance to these extreme environments. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Culture of human cells in experimental units for spaceflight impacts on their behavior. (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Maier, Jeanette Am; Castiglioni, Sara


    Because space missions produce pathophysiological alterations such as cardiovascular disorders and bone demineralization which are very common on Earth, biomedical research in space is a frontier that holds important promises not only to counterbalance space-associated disorders in astronauts but also to ameliorate the health of Earth-bound population. Experiments in space are complex to design. Cells must be cultured in closed cell culture systems (from now defined experimental units (EUs)), which are biocompatible, functional, safe to minimize any potential hazard to the crew, and with a high degree of automation. Therefore, to perform experiments in orbit, it is relevant to know how closely culture in the EUs reflects cellular behavior under normal growth conditions. We compared the performances in these units of three different human cell types, which were recently space flown, i.e. bone mesenchymal stem cells, micro- and macrovascular endothelial cells. Endothelial cells are only slightly and transiently affected by culture in the EUs, whereas these devices accelerate mesenchymal stem cell reprogramming toward osteogenic differentiation, in part by increasing the amounts of reactive oxygen species. We conclude that cell culture conditions in the EUs do not exactly mimic what happens in a culture dish and that more efforts are necessary to optimize these devices for biomedical experiments in space. Impact statement Cell cultures represent valuable preclinical models to decipher pathogenic circuitries. This is true also for biomedical research in space. A lot has been learnt about cell adaptation and reaction from the experiments performed on many different cell types flown to space. Obviously, cell culture in space has to meet specific requirements for the safety of the crew and to comply with the unique environmental challenges. For these reasons, specific devices for cell culture in space have been developed. It is important to clarify whether these

  3. Polymeric film of 6-arm-poly(ethylene glycol) amine graphene oxide with poly (ε-caprolactone): Adherence and growth of adipose derived mesenchymal stromal cells culture on rat bladder (United States)

    Durán, Marcela; Durán, Nelson; Luzo, Angela C. M.; Duarte, Adriana S. S.; Volpe, Bruno B.; Ceragioli, Helder J.; Andrade, Patricia F.; De Souza, Joel G.; Fávaro, Wagner J.


    Nanotechnology has been more present in different fields related to health. The need to find a durable material, of easy use, and which does not interfere significantly in the growth and differentiation of stem cells for the construction of a scaffold for use in urologic surgery, with the purpose of reducing infections, regeneration times and even graft rejection during reconstitution in patients with urethral stricture was conducted a broad survey of information about this and came to the consensus of this project: using graphene oxide, a widely studied nanomaterials which has been presenting numerous beneficial results when in contact with the adipose-derived stem cells. Advanced techniques for the growth, differentiation and proliferation of adipose-derived stem cells were used, as well as the characterization of graphene oxide sheets. For this study, it was prepared the graphene oxide/6 ARM-Poly (ethylene glycol) amine films with poly (ε-caprolactone). The graphene suspension in organic solvent was prepared by using an ultrasonicator bath and subsequently, the film was formed by solvent evaporation. Total characterization of graphene oxide/6 ARM-PEG-amine/ poly (ε-caprolactone) film was carried out. It was tested growth and adhesion of adipose-derived stem cells on the film, as well as, were verified the histopathological effects of this scaffold when implanted in the urinary bladder to repair the lesion. Our results demonstrated that this scaffold with adipose-derived stem cells enhanced the repair in rat urinary bladder defect model, resulting in a regular bladder. Improved organized muscle bundles and urothelial layer were observed in animals treated with this scaffold with adipose-derived stem cells compared with those treated only suture thread or scaffold. Thus, our biomaterial could be suitable for tissue engineered urinary tract reconstruction.

  4. Fabrication and characterization of thermoresponsive polystyrene nanofibrous mats for cultured cell recovery. (United States)

    Oh, Hwan Hee; Ko, Young-Gwang; Uyama, Hiroshi; Park, Won Ho; Cho, Donghwan; Kwon, Oh Hyeong


    Rapid cell growth and rapid recovery of intact cultured cells are an invaluable technique to maintain the biological functions and viability of cells. To achieve this goal, thermoresponsive polystyrene (PS) nanofibrous mat was fabricated by electrospinning of PS solution, followed by the graft polymerization of thermoresponsive poly(N-isopropylacrylamide)(PIPAAm) on PS nanofibrous mats. Image analysis of the PS nanofiber revealed a unimodal distribution pattern with 400 nm average fiber diameter. Graft polymerization of PIPAAm on PS nanofibrous mats was confirmed by spectroscopic methods such as ATR-FTIR, ESCA, and AFM. Human fibroblasts were cultured on four different surfaces, PIPAAm-grafted and ungrafted PS dishes and PIPAAm-grafted and ungrafted PS nanofibrous mats, respectively. Cells on PIPAAm-grafted PS nanofibrous mats were well attached, spread, and proliferated significantly much more than those on other surfaces. Cultured cells were easily detached from the PIPAAm-grafted surfaces by decreasing culture temperature to 20 °C, while negligible cells were detached from ungrafted surfaces. Moreover, cells on PIPAAm-grafted PS nanofibrous mats were detached more rapidly than those on PIPAAm-grafted PS dishes. These results suggest that thermoresponsive nanofibrous mats are attractive cell culture substrates which enable rapid cell growth and recovery from the culture surface for application to tissue engineering and regenerative medicine.

  5. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.


    Sundin, D R; Mecham, J O


    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  6. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds (United States)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)


    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  7. Growth of intestinal epithelium in organ culture is dependent on EGF signalling

    International Nuclear Information System (INIS)

    Abud, Helen E.; Watson, Nadine; Heath, Joan K.


    Differentiation of endoderm into intestinal epithelium is initiated at E13.5 of mouse development when there are significant changes in morphology resulting in the conversion of undifferentiated stratified epithelium into a mature epithelial monolayer. Here we demonstrate that monolayer formation is associated with the selective apoptosis of superficial cells lining the lumen while cell proliferation is progressively restricted to cells adjacent to the basement membrane. We describe an innovative embryonic gut culture system that maintains the three-dimensional architecture of gut and in which these processes are recapitulated in vitro. Explants taken from specific regions of the gut and placed into organ culture develop and express molecular markers (Cdx1, Cdx2 and A33 antigen) in the same spatial and temporal pattern observed in vivo indicating that regional specification is maintained. Inhibition of the epidermal growth factor receptor (EGFR) tyrosine kinase using the specific inhibitor AG1478 significantly reduced the proliferation and survival of cells within the epithelial cell layer of cultured gut explants. This demonstrates an essential role for the EGF signalling pathway during the early stages of intestinal development

  8. ( Linum usitatissimum L. cv. Modran cell suspension culture

    Directory of Open Access Journals (Sweden)

    Aleksandra Seta-Koselska


    Full Text Available Flax ( Linum usitatissimum L. is an ancient crop that is widely cultivated as a source of oil, fiber, and bioactive compounds. Flax fiber is traditionally used in textile industry, linseed oil is processed for industrial oils, paints, varnishes and bio-petroleum. Flaxseeds are also rich in α-linolenic acid and phytochemicals such as lignans. In addition to the commercial aspects, this species has been used widely and readily in biotechnological, developmental, and plant-pathogen interaction studies. Differences in the levels of endogenous hormones in various cultivars of flax significantly affected the intensity of callogenesis and determined the type and concentration of growth regulators necessary for callus production. The aim of our investigation was to optimize the culture conditions for callus formation and cell proliferation in liquid medium of the Polish cultivar of fiber flax – Modran. In the first step, 4 combinations of phytohormones in the medium were tested to obtain established callus tissue suitable for initiation of suspension culture. Next, we investigated the effect of chosen plant growth regulators on cell divisions, fresh and dry weight, and dispersal of callus cells in liquid medium. Fast growing and friable callus was obtained in a modified MS medium supplemented with 0.5 mg/l BAP and 0.1 mg/l NAA. We determined that for the initiation of cell suspension supplementation with 0.5 mg/l BAP and 0.5 mg/l NAA is optimal. The results obtained indicated that high concentration of cytokinin (BAP in liquid medium limited cell proliferation and decreased biomass formation.

  9. Cardiac Cells Beating in Culture: A Laboratory Exercise (United States)

    Weaver, Debora


    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  10. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth. (United States)

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric


    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.


    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  12. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Jennifer


    Full Text Available Abstract Background Ginger (Zingiber officinale Rosc is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.

  13. Equipment for large-scale mammalian cell culture. (United States)

    Ozturk, Sadettin S


    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed.

  14. Assay of anticancer drugs in tissue culture: cell cultures of biopsies from human astrocytoma. (United States)

    Morgan, D; Freshney, R I; Darling, J L; Thomas, D G; Celik, F


    A method has been developed for measuring the drug sensitivity of human gliomas in short-term culture, using scintillation counting or autofluorography. Cell cultures prepared from malignant astrocytomas were treated with anticancer drugs whilst in exponential growth in microtitration plates. After drug treatment and a recovery period, residual viability was measured by [3H] leucine incorporation followed by scintillation counting or by [35S] methionine incorporation and autofluorography in situ. In 5 glioma cell lines tested against 6 drugs, the microtitration method correlated well with monolayer cloning. Although replicate samples of the same tumour showed little variation in chemosensitivity, there was marked variation between the chemosensitivities of cultures derived from the tumours of different patients. However, as variability between replicates was apparent during drug exposure or shortly after, it is important to allow the assay to run as long as possible after drug removal. It is hoped that this assay may provide the basis of a method for the prediction of in vivo chemosensitivity or the screening of potential chemotherapeutic drugs.

  15. Histamine-stimulated expression of insulin-like growth factors in human glioma cells.


    Van der Ven, L. T.; Van Buul-Offers, S. C.; Gloudemans, T.; Roholl, P. J.; Sussenbach, J. S.; Den Otter, W.


    Glioma tumour growth is associated with the expression of insulin-like growth factors I and II (IGFs) and of both type I and type II IGF receptors. It has also been shown that IGFs can stimulate proliferation of cultured glioma cells. We previously reported that histamine too can stimulate the growth of glioma cells in vitro. In this report, we study whether the histamine-induced growth of G47 glioma cells is mediated by the IGFs. We found that histamine stimulates the expression of both IGF-...

  16. Azo-polysiloxanes as new supports for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hurduc, Nicolae, E-mail: [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Prof. Dimitrie, Mangeron Street, 73, 700050-Iasi (Romania); Macovei, Alina [Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Splaiul Independentei 296, Sector 6, 060041-Bucuresti (Romania); Paius, Cristina; Raicu, Alina [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Prof. Dimitrie, Mangeron Street, 73, 700050-Iasi (Romania); Moleavin, Ioana [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France); Branza-Nichita, Norica, E-mail: [Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, Splaiul Independentei 296, Sector 6, 060041-Bucuresti (Romania); Hamel, Matthieu [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France); Rocha, Licinio, E-mail: [CEA, LIST Saclay, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette, Cedex (France)


    The paper introduces a new class of materials with azo-polysiloxanic structure bearing the property to generate nano-structured surfaces by laser irradiation. The ability to modulate the optical response of the film, through a modification of the polymer chemical structure, has been investigated. The azo-materials were tested for their ability to support cell adhesion and growth, with very promising results. A future use of these materials as growth support in cell cultures is of great interest, due to an easy, one step-method to generate the surface relief grating and to the possibility to introduce a large range of chemical modifications due to the presence of the chlorobenzyl groups in the polymeric side-chain. - Graphical abstract: Cell development on a nano-structured surface obtained from an azo-polysiloxanic film. Highlights: ► New azo-polysiloxanic films for biological applications were reported. ► Nanostructured surfaces with controllable geometry are obtained by laser irradiation. ► Cells are very sensitive to the chemical and physical properties of the polymeric substrate.

  17. [Research progress of cell co-culture method]. (United States)

    Qin, Yanqin; Chen, Yulong; Li, Jiansheng


    Cell culture technology is the most commonly used method in the in vitro experiments at present. However, monolayer cell culture technology has been unable to meet the demand of the researchers. This is because that monolayer cell culture cannot mimic the cellular environment in which multiple cells interact with each other in the body. We cannot discuss the relationship of many cells, because we do not know the relationship between cells through a single kind of cell. So cell co-culture medicine arises at the historic moment for the demand. With the development of research method in recent years, cell co-culture method also has been improved in practice: from direct contact co-cultures to indirect contact co-cultures, from two-dimensional co-cultures to three-dimensional co-cultures. Cell co-culture method is closer to the human body. It is also more advantageous to study the interaction among cells. Nowadays, there are more researchers tend to select this method to study the physiological and pathological in vitro model, tissue engineering, and cell differentiation research. At the same time, it has become the focus of drug research and development, drug analysis, mechanism of drug action, and drug targets. This article will review the studies of cell co-culture method, summarize advantages and disadvantages of various methods, so as to promote improvement of cell culture methods, to build cells co-culture system that more close to human body, and build the in vitro model that simulate internal circulation of human body further.

  18. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. (United States)

    Li, Yanju; Xu, Xiao; Wang, Lihua; Liu, Guangjin; Li, Yanqi; Wu, Xiaobing; Jing, Yongguang; Li, Haiyan; Wang, Guihua


    Cellular senescence is linked to aging and tumorigenesis. The senescence of mesenchymal stem cells (MSCs) may influence the tumor growth, metastasis, and angiogenesis by secreting a variety of cytokines and growth factors. The conditioned media of adipose derived MSCs (AD-MSCs) stimulated the proliferation of human LoVo colorectal-cancer cells, and the replicative senescent MSCs had the more obvious effects in comparison to that of premature AD-MSCs. Analysis of the factors secreted in the MSCs culture media determined that senescent MSCs expressed and secreted high levels of galectin-3. Galectin-3 expression correlated with the stimulatory effect of senescent AD-MSCs on LoVo cells proliferation, as knockdown of galectin-3 in senescent AD-MSCs significantly reversed the effect of MSCs-mediated growth stimulation of LoVo cells. Furthermore, the simultaneous addition of recombinant galectin-3 to the co-culture systems partially restored the tumor-promoting effect of the senescent AD-MSCs. Analysis of the mechanisms of senescent MSCs and galectin-3 on LoVo cells signal transduction determined that senescent MSCs and exogenous galectin-3 promoted cell growth by activating the mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase [ERK]1/2) pathway. Senescent MSCs may alter the tissue microenvironment and affect nearby malignant cells via cytokine secretion, and galectin-3 is an important mediator of senescent AD-MSC-mediated stimulation of colon cancer cell growth. Therefore, thorough assessment of AD-MSCs prior to their implementation in clinical practice is warranted.

  19. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells. (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K


    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Elastic Deformations During Bacterial Cell Growth (United States)

    Huang, K. C.


    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  1. In vitro zygotic embryo culture of Pinus peuce Gris.: Optimization of culture conditions affecting germination and early seedling growth

    Directory of Open Access Journals (Sweden)

    Stojičić Dragana


    Full Text Available This study reports a protocol for the germination and early seedling growth of Pinus peuce Gris. using zygotic embryo culture. In order to overcome seed dormancy and optimize organogenesis, the effect of nutritional, plant growth regulatory and physical factors on in vitro germination and growth of isolated mature zygotic embryos of P. peuce were investigated.

  2. Protection of cultured mammalian cells by rebamipide

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, Shigetoshi; Aramaki, Ryoji [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Tanaka, Hisashi; Kusumoto, Naotoshi


    Rebamipide which is used as a drug for gastritis and stomach ulcer has large capability for OH radical scavenging. It is expected that rebamipide has protective effect against ionizing radiations. The present paper deals with protective effect of rebamipide for cultured mammalian cells exposed to ionizing radiations. As rebamipide is insoluble in water, three solvents were used to dissolve. Rebamipide dissolved in dimethyl sulfoxide (DMSO), dimethyl formamide (DMFA) and 0.02 N NaOH was added to the cells in Eagle`s minimum essential medium (MEM) supplemented with 10% fetal calf serum and the cells were irradiated with X-rays. After irradiation, the cells were trypsinized, plated in MEM with 10% fetal calf serum and incubated for 7 days in a CO{sub 2} incubator to form colonies. Rebamipide dissolved in 0.02 N NaOH exhibited the protective effect expected its OH radical scavenging capability. However, the protective effect of rebamipide dissolved in DMSO was about half of that expected by its radical scavenging capability and that of rebamipide dissolved in DMFA was not observed. Uptake of rebamipide labeled with {sup 14}C increased with increasing contact time with rebamipide. These rebamipide mainly distributed in nucleus rather than cytoplasm. (author)

  3. Recombinant Protein Production and Insect Cell Culture and Process (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)


    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  4. Examining the sources of variability in cell culture media used for biopharmaceutical production. (United States)

    McGillicuddy, Nicola; Floris, Patrick; Albrecht, Simone; Bones, Jonathan


    Raw materials, in particular cell culture media, represent a significant source of variability to biopharmaceutical manufacturing processes that can detrimentally affect cellular growth, viability and specific productivity or alter the quality profile of the expressed therapeutic protein. The continual expansion of the biopharmaceutical industry is creating an increasing demand on the production and supply chain consistency for cell culture media, especially as companies embrace intensive continuous processing. Here, we provide a historical perspective regarding the transition from serum containing to serum-free media, the development of chemically-defined cell culture media for biopharmaceutical production using industrial scale bioprocesses and review production mechanisms for liquid and powder culture media. An overview and critique of analytical approaches used for the characterisation of cell culture media and the identification of root causes of variability are also provided, including in-depth liquid phase separations, mass spectrometry and spectroscopic methods.

  5. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi


    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  6. Growth hormone receptors in cultured adipocytes: a model to study receptor regulation. (United States)

    Roupas, P; Herington, A C


    Acutely isolated rat adipocytes have been maintained in primary culture for several days and the effects of culture on the kinetics of 125I-human growth hormone (hGH) binding to adipocytes have been determined. A marked increase (500-1000%) in specific binding of 125I-hGH was observed over the first 3 days of culture--acutely isolated adipocytes (5.5 +/- 1.4%, mean +/- SE, n = 47) compared to 3-day cultured adipocytes (48 +/- 7%, mean +/- SE, n = 8). Specific binding of 125I-hGH to both acutely isolated and cultured adipocytes was dependent on incubation time and temperature (equilibrium being reached in 1 h at 37 degrees C and 2 h at 22 degrees C). Binding was reversible (t1/2 approximately 1.5 h). Scatchard analysis revealed linear plots and showed that the increase in binding during culture was due to an increase in the number of receptors per cell (approximately 20 000 to approximately 170 000) with little or no change in binding affinity (Ka approximately 1 X 10(9) M-1). Cycloheximide inhibited the increase in binding sites during culture suggesting a requirement for de novo protein synthesis. Addition of unlabelled hGH to the culture medium resulted in a marked down-regulation of the GH receptor by 2 days. The GH-induced decrease in receptor number was to due to receptor occupancy by exogenously added GH. The studies to date indicate that the cultured rat adipocyte should provide a useful model for a comprehensive study of the cellular mechanisms and dynamics of GH receptor regulation.

  7. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma. (United States)

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József


    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.


    Volkova, L A; Urmantseva, V V; Popova, E V; Nosov, A M


    The efficiency of long-term cryogenic storage to prevent somaclonal variations in plant cell cultures and retain their major cytogenetic and biochemical traits remains under debate. In particular, it is not clear how stress conditions associated with cryopreservation, such as low temperature, dehydration and toxic action of some cryoprotectants (DMSO in particular), affect post-storage regrowth and genetic integrity of cell samples. We assessed growth, cytogenetic and biochemical characteristics of the peroxidase-producing strain of Medicago sativa L. cell culture recovered after 27 years of cryogenic storage as compared to the same culture before cryopreservation. In 1984, M. sativa L. cell culture was cryopreserved using programmed freezing and 7% DMSO as a cryoprotectant. In 2011, after rewarming in a water bath at 40 degree C for 90 s, cell culture was recovered and proliferated. Viability, growth profile, mitotic index, ploidy level, peroxidase activity and cell response to hypothermia and osmotic stress were compared between the recovered and the initial cell cultures using the records available from 1984. Viability of alfalfa cell culture after rewarming was below 20% but it increased to 80% by the 27th subculture cycle. Recovered culture showed higher mitotic activity and increased number of haploid and diploid cells compared to the initial cell line. Both peroxidase activity and response to abiotic stress in the recovered cell culture were similar to that of the initial culture. Cryopreservation by programmed freezing was effective at retaining the main characteristics of M. sativa undifferentiated cell culture after 27 years of storage. According to available data, this is longest period of successful cryopreservation of plant cell cultures reported so far. After storage, there was no evidence that DMSO had any detrimental effect on cell viability, growth or cytogenetics.

  9. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu; Rosenmann, Daniel; Zhu, Peixuan; Li, Shuhong; Amstutz, Platte; Tang, Cha-Mei


    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and without an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. Copyright 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells. (United States)

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel


    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons

  11. Efficacy of various durations of in vitro predegeneration on the cell count and purity of rat Schwann-cell cultures. (United States)

    Kraus, Armin; Täger, Joachim; Kohler, Konrad; Manoli, Theodora; Haerle, Max; Werdin, Frank; Hoffmann, Jürgen; Schaller, Hans-Eberhard; Sinis, Nektarios


    The efficacy of Schwann-cell cultivation can be enhanced by in vitro predegeneration of the harvested cells compared to immediate culture. The aim of this study was to improve Schwann-cell culture efficacy by comparing three different durations of predegeneration. The sciatic and median nerves of 6-8-week-old Lewis rats were harvested and subjected to either 2-day, 7-day, or 14-day predegeneration in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal calf serum and 1% Penicillin/Streptomycin. Afterward, tissue was enzymatically dissociated and placed in a modified melanocyte growth medium. The cell count was determined immediately after dissociation while the cell purity was determined one subculture/trypsinization cycle later after cell attachment to the culture plate by means of optical microscopy and immunocytochemistry. Particular attention was then paid to the Schwann-cell-to-fibroblast relation. The cumulative cell count in the culture was 5.8 x 10(5) for 2-day, 1.12 x 10(6) for 7-day, and 1.48 x 10(6) for 14-day predegeneration. The culture purity was approximately equal for 2- and 7-day predegeneration (88% Schwann cells, 12% fibroblasts after 2 days; 85% Schwann cells, 15% fibroblasts after 7 days). After 14 days, however, cell cultures were significantly debased by fibroblast proliferation (57% Schwann cells, 43% fibroblasts). In vitro predegeneration is a particularly suitable procedural method to increase the cultural Schwann-cell yield. The number of cultivated rat Schwann cells is doubled by 7-day in vitro predegeneration in comparison to 2-day predegeneration. After 14-day predegeneration, however, the culture is significantly debased by fibroblasts. Therefore, 7-day in vitro predegeneration is an advisable predegeneration period.

  12. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu


    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  13. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf


    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  14. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells. (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa


    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  15. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan


    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  16. Waste-water assay with continuous algal cultures: the effect of mercuric acetate on the growth of some marine dinoflagellates

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, H.


    The effect of mercuric acetate was studied in culture experiments with the dinoflagellates Scrippsiella faeroense (Paulsen) Balech et Soares, Prorocentrum micans Ehrenberg and Gymnodinium splendens Lebour. Impairment of growth rates, in vivo chlorophyll fluorescence, maximum cell densities and morphological changes served as criteria for assessing sublethal influences. Tests were made using the batch- and continuous-culture techniques. Addition of Hg at concentrations of 0.001 mg.1/sup -1/ and higher resulted in reduction of relative growth rates. In a few cases populations recovered from the initial decline and showed new growth. Cell counts corresponded very closely to in vivo chlorophyll fluorescence measurements. Morphological variations were observed in S. faeroense, which responded (even in sublethal concentrations) by bursting its thecae, releasing naked motile cells and forming vegetative resting stages. The problems of optimal algal-bioassay methods are discussed also, in the light of results obtained by other authors.

  17. Fate of amoxicillin in mixed-culture bioreactors and its effects on microbial growth and resistance to silver ions. (United States)

    Cunningham, James H; Lin, Lian-Shin


    This research focused on studying the fate of amoxicillin (AMX) in mixed-culture bioreactors and its effects on bacterial growth and bacterial resistance to silver-ion disinfection. The bioreactors were dosed with a range of AMX (10-70 mg L(-1) d(-1)) mimicking a biological treatment unit of a proposed water recovery system for long-term space missions. Aqueous-phase AMX concentrations in the bioreactors were monitored to characterize the kinetics of selected AMX fate processes. Specific growth rates and silver minimum effective concentrations (MECs) of the bacterial cultures were determined by assessing cell viability using flow cytometry. Hydrolysis, sorption, and biodegradation of AMX followed first-order kinetics with rate constants of 0.078, 0.083, and 0.13 d(-1), respectively. Specific growth rates of the AMX-dosed cultures were suppressed from 7% to 35% in order of increasing AMX dose as compared to the AMX-free control cultures. The AMX-treated cultures had higher silver MECs than the AMX-free control cultures, indicating an enhanced bacterial resistance to silver ions as a result of the AMX exposure. Biosorption experiments revealed that the AMX-treated cultures exhibited exclusion of silver ions from the cells as a potential mechanism for the enhanced resistance. This paper reports for the first time that low levels of AMX (<100 mg L(-1)) could induce bacterial cross-resistance to silver ion in an aqueous system mimicking an active biological system for wastewater treatment.

  18. Studies on culture and osteogenic induction of human mesenchymal stem cells under CO2-independent conditions. (United States)

    Chen, Jian; Zhang, Cui; Feng, Yiding; Zong, Chen; Chen, Jiarong; Tang, Zihua; Jia, Bingbing; Tong, Xiangming; Zheng, Qiang; Wang, Jinfu


    Human mesenchymal stem cells (hMSCs) are one of the important factors that regulate bone anabolism. Osteoporosis resulting from microgravity during spaceflight may possibly be due to a decrease in osteogenesis mediated by hMSCs. This speculation should be verified through culture and osteogenic induction of hMSCs in a microgravity environment during spaceflight. Control of CO2 is a key component in current experimental protocols for growth, survival, and proliferation of in vitro cultured cells. However, carrying CO2 tanks on a spaceflight and devoting space/mass allowances for classical CO2 control protocols make experimentation on culture and osteogenesis difficult during most missions. Therefore, an experimental culture and osteogenic medium was developed through modifying the components of buffer salts in conventional culture medium. This experimental medium was used to culture and induce hMSCs under CO2-independent conditions. The results showed that culture and induction of hMSCs with conventional culture medium and conventional osteogenic medium under CO2-independent conditions resulted in an increase of pH in medium. The proliferation of hMSCs was also inhibited. hMSCs cultured with experimental culture medium under CO2-independent conditions showed a proliferation potential that was the same as those cultured with conventional culture medium under CO2-dependent conditions. The experimental osteogenic medium could promote hMSCs to differentiate into osteoblast-like cells under CO2-independent conditions. Cells induced by this induction system showed high alkaline phosphatase activity. The expression levels of osteogenic genes in cells induced with experimental osteogenic medium under CO2-independent conditions were not significantly different from those cells induced with conventional osteogenic medium under CO2-dependent conditions. These results suggest that the experimental culture and induction system could be used to culture hMSCs and induce the

  19. Cell cycle phase of nondividing cells in aging human cell cultures determined by DNA content and chromosomal constitution

    International Nuclear Information System (INIS)

    Yanishevsky, R.M.


    Human diploid cell cultures, strain WI-38, have a finite proliferative capacity and have been proposed as a model of biological aging. To identify the cell cycle phase of the nondividing cells, cultures of various ages were exposed to 3 Hdt for 48 hours to label dividing cells, then the cycle phase was identified for individual cells by one of two methods, and finally, the proliferative status of the same cells was scored by autoradiographic evidence of 3 HdT uptake. The methods to identify the cycle phase were: determination of DNA strain content by Feulgen scanning cytophotometry, and determination of chromosome constitution by the technique of premature chromosome condensation (PCC). Preliminary experiments showed the effect of continuous exposure to various levels of 3 HdT on cell growth. High levels of 3 HdT inhibited cell cycle traverse: the cell number and labeling index curves reached a plateau; the cell volume increased; the cells accumulated with 4C DNA contents and it appeared that they blocked in G 2 phase. This pattern is consistent with a radiation effect. (U.S.)

  20. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.


    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  1. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M


    1,25-Dihydroxyvitamin D3 (calcitriol), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGFs) are all important bone regulatory factors known to affect proliferation and differentiation of human bone-forming cells (osteoblasts). We have previously shown that TGF-beta1...... increased IGF-I and IGF-binding protein (IGFBP)-3 production in human bone marrow stromal (hMS) osteoblast progenitors and calcitriol stimulated IGFBP-3 and IGFBP-4 production. As interaction between signaling pathways of these factors has been reported, the present study aimed at examining the concerted...... actions on components of the IGF-system. We report that co-treatment with TGF-beta1 and calcitriol resulted in a synergistic increase in IGFBP-3 production, thereby suggesting that the effects of these factors on hMS osteoblast differentiation may involve the observed increase in IGFBP-3....

  2. Elicitation Phenolic Compounds in Cell Culture of Vitis vinifera L. by Phaeomoniella chlamydospora

    Directory of Open Access Journals (Sweden)

    Sák Martin


    Full Text Available The in vitro cell cultures of Vitis vinifera L. cv. St. Laurent were treated with two elicitors - synthetic methyl jasmonate and natural, prepared from grapevine plant infected with the Phaeomoniella chlamydospora, the agent causing the Esca disease of grapevine. Efficiency of phenolic compounds production after elicitation of cell culture was analysed immediately after treatment (15 min, 30 min, 60 min and later (after 24, 48, and 72 hours. The cell growth and content of phenolic compounds (+-catechin, (--epicatechin, p-coumaric acid, syringaldehyde, rutin, vanillic acid, and trans-resveratrol were analysed in cultivated cells as well as in cultivation medium. Pch-treatment increased production of total polyphenols the most significantly 15 min after the elicitation and in optimal time was 2.86 times higher than in nonelicited culture and 1.44 times higher than in MeJa induced cell culture.

  3. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture (United States)

    Sahu, Neety; Pal, Shilpa; Sapru, Sunaina; Kundu, Joydip; Talukdar, Sarmistha; Singh, N. Ibotambi; Yao, Juming


    Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins. PMID:27517047

  4. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture

    Directory of Open Access Journals (Sweden)

    Neety Sahu


    Full Text Available Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins.

  5. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture. (United States)

    Sahu, Neety; Pal, Shilpa; Sapru, Sunaina; Kundu, Joydip; Talukdar, Sarmistha; Singh, N Ibotambi; Yao, Juming; Kundu, Subhas C


    Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins.

  6. Biophysical monitoring of cell cultures for quality assessment utilizing digital holographic microscopy (United States)

    Kastl, Lena; Isbach, Michael; Dirksen, Dieter; Schnekenburger, Jürgen; Kemper, Björn


    Quality and reproducibility of cell-based assays strongly depend on the quality of the underlying cell culture which is influenced by various parameters like nutrient and growth factor availability, buffer conditions, subculture routines and optimal cell concentrations. Thus, methods for accurate assessment of objective cell parameters that characterize a specific cell line and detect global changes in cell culture are highly desirable. During the past years, quantitative phase imaging has been recognized as a promising tool for quantitative label-free live cell analysis. We demonstrate the utilization of quantitative phase imaging with digital holographic microscopy (DHM) to quantify the impact of cell culture conditions on single cells using a pancreatic tumor cell model. Label-free quantitative phase imaging of detached cells in suspension is performed by Michelson interferometer-based self-interference DHM. The quantitative phase images of the cells are analyzed for refractive index, volume and dry mass. We show that the evaluation of quantitative DHM phase images allows to extract absolute biophysical cellular parameters that are related to cell layer confluence states. In summary, the results of our study demonstrate that DHM is capable for label-free imaging cytometry with novel biophysical data sets that are acquired with minimum sample preparation for sophisticated monitoring of cell morphology alterations that are related to changes of cell culture conditions.

  7. Preparation of cultured skin for transplantation using insulin-like growth factor I in conjunction with insulin-like growth factor binding protein 5, epidermal growth factor, and vitronectin. (United States)

    Dawson, Rebecca A; Upton, Zee; Malda, Jos; Harkin, Damien G


    Cultured skin for transplantation is routinely prepared by growing patient keratinocytes in the presence of semidefined sources of growth factors including serum and feeder cells, but these materials require substantial risk remediation and can contribute to transplant rejection. We have therefore investigated the potential of a novel combination of recombinant and purified growth factors to replace serum and feeder cells in cultures of human keratinocytes suitable for clinical application. Our technique was investigated with respect to culture establishment, serial propagation, colony-forming efficiency, immunocytochemistry, epidermal reconstruction, and suitability to support transplantation by aerosolization. We demonstrate that insulin-like growth factor (IGF)-I--used in conjunction with epidermal growth factor (EGF), insulin-like growth factor binding protein (IGFBP)-5 and vitronectin--supports growth in the absence of serum. Moreover, a threefold greater number of cells are generated within 7 days compared to those grown under current best practice conditions using serum (P<0.05). The resulting test cultures are suitable for epidermal reconstruction and support the option for delivery in the form of an aerosolized cell suspension. Serial propagation, with the view to producing confluent sheets for extensive injuries, was achieved but with less consistency and this result correlated with a significant decline in colony-forming efficiency compared to controls. IGF-I used in conjunction with IGFBP-5, EGF, and vitronectin provides a superior alternative to serum for the rapid expansion and transplantation of cultured keratinocytes within the first week of treatment. Nevertheless, further optimization is required with respect to elimination of feeder cells and serial expansion of cultures for treatment of extensive injuries.

  8. Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA


    Vergara,Mauricio; Becerra,Silvana; Díaz-Barrera,Alvaro; Berrios,Julio; Altamirano,Claudia


    We evaluated the combined effect of decreasing the temperature to a mild hypothermia range (34 and 31ºC) and switching to a slowly metabolizable carbon source (glucose substituted by galactose) on the growth and production of a recombinant human tissue plasminogen activator (rh-tPA) by Chinese hamster ovary cells in batch and semi-perfusion cultures. In batch cultures using glucose as a carbon source, decreasing the temperature caused a reduction in cell growth and an increase in specific pro...

  9. Advances in tissue engineering through stem cell-based co-culture. (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A


    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  10. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.


    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  11. Proteins associated with adaptation of cultured tobacco cells to NaCl

    International Nuclear Information System (INIS)

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.


    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35 S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables

  12. Electrospinning of microbial polyester for cell culture

    International Nuclear Information System (INIS)

    Kwon, Oh Hyeong; Lee, Ik Sang; Ko, Young-Gwang; Meng, Wan; Jung, Kyung-Hye; Kang, Inn-Kyu; Ito, Yoshihiro


    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture

  13. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; Zhong, Liyun


    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  14. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    of the microfluidic perfusion cell culture system is shown by investigation of adipose-derived stem cell (ASC) differentiation into adipocytes, where we have revealed that paracrine/autocrine signaling is involved in differentiation of a population of ASCs into adipocytes. We have thereby demonstrated......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs...

  15. Can established cultured papilloma cells harbor bovine papillomavirus? (United States)

    Campos, S R C; Trindade, C; Ferraz, O P; Giovanni, D N S; Lima, A A; Caetano, H V A; Carvalho, R F; Birgel, E H; Dagli, M L Z; Mori, E; Brandão, P E; Richtzenhain, L J; Beçak, W; Stocco, R C


    Papillomaviruses have been reported to be very difficult to grow in cell culture. Also, there are no descriptions of cell cultures from lesions of bovine cutaneous papillomatosis, with identification of different bovine papilloma virus (BPV) DNA sequences. In the present report, we describe primary cell cultures from samples of cutaneous lesions (warts). We investigated the simultaneous presence of different BPV DNA sequences, comparing the original lesion to different passages of the cell cultures and to peripheral blood. BPV 1, 2 and 4 DNA sequences were found in lesion samples, and respective cell cultures and peripheral blood, supporting our previous hypothesis of the possible activity of these sequences in different samples and now also showing how they can be maintained in different passages of cell cultures.

  16. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  17. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding.

    Directory of Open Access Journals (Sweden)

    Steven Lotz

    Full Text Available An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation. We report that stabilization of FGF2 levels using controlled release PLGA microspheres improves expression of stem cell markers, increases stem cell numbers and decreases spontaneous differentiation. The controlled release FGF2 additive reduces the frequency of media changes needed to maintain stem cell cultures, so that human embryonic stem cells and induced pluripotent stem cells can be maintained successfully with biweekly feedings.

  18. Growth Phase, Oxygen, Temperature and Starvation Affect the Development of Viable but Non-Culturable State of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Bin eWu


    Full Text Available AbstractVibrio cholerae can enter into a viable but non-culturable (VBNC state in order to survive in unfavourable environments. In this study, we studied the roles of five physicochemical and microbiological factors or states, namely, different strains, growth phases, oxygen, temperature, and starvation, on the development of VBNC of V. cholerae in artificial sea water (ASW. Different strains of the organism, the growth phase, and oxygen levels affected the progress of VBNC development. It was found that the VBNC state was induced faster in V. cholerae serogroup O1 classical biotype strain O395 than in O1 El Tor biotype strains C6706 and N16961. When cells in different growth phases were used for VBNC induction, stationary-phase cells lost their culturability more quickly than exponential-phase cells, while induction of a totally non-culturable state took longer to achieve for stationary-phase cells in all three strains, suggesting that heterogeneity of cells should be considered. Aeration strongly accelerated the loss of culturability. During the development of the VBNC state, the culturable cell count under aeration conditions was almost 106-fold lower than under oxygen-limited conditions for all three strains. The other two factors, temperature and nutrients-rich environment, may prevent the induction of VBNC cells. At 22°C or 37°C in ASW, most of the cells rapidly died and the culturable cell count reduced from about 108 CFU/mL to 106–105 CFU/mL. The total cell counts showed that cells that lost viability were decomposed, and the viable cell counts were the same as culturable cell counts, indicating that the cells did not reach the VBNC state. VBNC state development was blocked when ASW was supplied with Luria-Bertani broth (LB, but it was not affected in ASW with M9, suggesting that specific nutrients in LB may prevent the development of VBNC state. These results revealed that the five factors evaluated in this study had different

  19. the non-genomic effects of high doses of rosiglitazone on cell growth

    African Journals Online (AJOL)


    Received: April, 2009. Accepted: July, 2009. THE NON-GENOMIC EFFECTS OF HIGH DOSES OF ROSIGLITAZONE ON. CELL GROWTH AND APOPTOSIS IN CULTURED MONOCYTIC CELLS. *S.A. Isa, L.S. Mainwaring, R. Webb, and A.W. Thomas. Centre for Biomedical Sciences, University of Wales Institute, Cardiff CF5 ...

  20. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system. (United States)

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan


    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-l