WorldWideScience

Sample records for cell concentration system

  1. Solar cell concentrating system

    International Nuclear Information System (INIS)

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  2. Laser grooved buried contact cells optimised for linear concentration systems

    Energy Technology Data Exchange (ETDEWEB)

    Vivar, M.; Anton, I.; Sala, G. [Instituto de Energia Solar, UPM, Ciudad Universitaria S/N, 28040 Madrid (Spain); Morilla, C.; Fernandez, J.M. [BP Solar Espana, Pol. Ind. Tres Cantos, s/n Zona Oeste, 28760 Tres Cantos, Madrid (Spain)

    2010-02-15

    Laser grooved buried contact silicon solar cells can be optimised for use in linear concentration systems at low cost. Optimising the groove depth, the copper thickness and the finger pitch by using the Design of Experiments (DOE) experimental methodology can lead to a dramatic reduction of the cell series resistance. This type of cell can be optimised for each application in an industrial line with few changes. For the EUCLIDES III linear concentrator system, optimised cell efficiency metrics for 51 x 116 mm units are in the range of 18-19% at the 40 x concentration level. (author)

  3. GaAs solar cells for concentrator systems in space

    Science.gov (United States)

    Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.

    1983-01-01

    Cells for operation in space up to more than 100 suns were made, and an AMO efficiency of 21% at 100 suns with these cells was obtained. The increased efficiency resulted not only from the higher open circuit voltage associated with the higher light intensity (higher short circuit current); it also benefitted from the increase in fill factor caused by the lower relative contribution of the generation recombination current to the forward bias current when the cell's operating current density is increased. The experimental cells exhibited an AMO efficiency close to 16% at 200 C. The prospect of exploiting this capability for the continuous annealing of radiation damage or for high temperature missions (e.g., near Sun missions) remains therefore open. Space systems with concentration ratios on the order of 100 suns are presently under development. The tradeoff between increased concentration ratio and increased loss due to the cell's series resistance remains attractive even for space applications at a solar concentrator ratio of 100 suns. In the design of contact configuration with low enough series resistance for such solar concentration ratios, the shallow junction depth needed for good radiation hardness and the thin AlGaAs layer thickness needed to avoid excessive optical absorption losses have to be retained.

  4. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    International Nuclear Information System (INIS)

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400–800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems. (paper)

  5. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    Science.gov (United States)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  6. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    CERN Document Server

    Maragliano, Carlo; Stefancich, Marco

    2015-01-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate the solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates the light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3x1 cm2 area and a maximum concentration of 210x for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the...

  7. Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300x

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, A.

    2005-06-15

    In this work a rear contacted silicon concentrator cell was developed for an application in a two stage concentrator photovoltaic system. This system was developed at Fraunhofer ISE some years ago. The innovation of this one-axis tracked system is that it enables a high geometrical concentration of 300x in combination with a high optical efficiency (around 78%) and a large acceptance angle of {+-}23.5 all year through. For this, the system uses a parabolic mirror (40.4x) and a three dimensional second stage consisting of compound parabolic concentrators (CPCs, 7.7x). For the concentrator concept and particularly for an easy cell integration, the rear line contacted concentrator (RLCC) cells with a maximum efficiency of 25% were developed and a hybrid mounting concept for the RLCC cells is presented. The optical performance of different CPC materials was tested and analysed in this work. Finally, small modules consisting of six series interconnected RLCC cells and six CPCs were integrated into the concentrator system and tested outdoor. A system efficiency of 16.2% was reached at around 800 W/m2 direct irradiance under realistic outdoor conditions. (orig.)

  8. High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System

    Science.gov (United States)

    Nakamura, T.; Case, J. A.; Timmons, M. L.

    2004-01-01

    This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.

  9. Optical concentration effects on conversion efficiency of a split-spectrum solar cell system

    International Nuclear Information System (INIS)

    A detailed analysis is presented to exhibit the possibility of a split-spectrum solar cell system to improve solar energy conversion above 50% and to explain the important role of optical concentration in such a system. The analysis is based on numerical simulation using a solar cell capacitance simulator. In the analysis, it is assumed that an ideal optical system is used to split the solar spectrum and concentrate the radiation into a six-solar-cell system. The parameters of the assumed and used materials are obtained from literature. The analysis shows that an efficiency of 45.39% can be achieved without concentration. This can reach 47.35% with 10 Sun concentration and 49.84% with 100 Sun concentration. (paper)

  10. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    OpenAIRE

    Youngseung Na; Federico Zenith; Ulrike Krewer

    2015-01-01

    Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC) systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further ...

  11. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances Rs changed from 0 Ω to 1 Ω, the maximum power Pm of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower series

  12. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  13. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Science.gov (United States)

    Martínez Díez, Ana Luisa; Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Plaza, David Gómez; Goldschmidt, Jan Christoph

    2014-10-01

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm × 20 mm × 2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  14. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    International Nuclear Information System (INIS)

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm × 20 mm × 2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  15. Photothermoelectric cell for thermophotovoltaic systems and solar power plants with concentrators

    International Nuclear Information System (INIS)

    We have attempted to justify the appropriateness of the photoelectric and thermoelectric (photothermoelectric) cells in the development of efficient thermophotovoltaic systems and facilities with photoelectric converters and concentrators of solar radiation. These cells are p-n structures based on narrow-band semiconductors capable of the simultaneous thermo- and photogeneration of electron-hole pairs under the effects of irradiation. We discuss the reduction of losses in the course energy conversion carried out with a photothermo-electric cell instead of separate thermo- and photoelectric cells. In addition, we describe the characteristic features and estimate the efficiency of photothermoelectric cells in the thermophotoelectric systems and facilities for the photoelectric conversion of the concentrated solar radiation. (author)

  16. Optimization of antireflection coating design for multijunction solar cells and concentrator systems

    Science.gov (United States)

    Valdivia, Christopher E.; Desfonds, Eric; Masson, Denis; Fafard, Simon; Carlson, Andrew; Cook, John; Hall, Trevor J.; Hinzer, Karin

    2008-06-01

    Photovoltaic solar cells are a route towards local, environmentally benign, sustainable and affordable energy solutions. Antireflection coatings are necessary to input a high percentage of available light for photovoltaic conversion, and therefore have been widely exploited for silicon solar cells. Multi-junction III-V semiconductor solar cells have achieved the highest efficiencies of any photovoltaic technology, yielding up to 40% in the laboratory and 37% in commercial devices under varying levels of concentrated light. These devices benefit from a wide absorption spectrum (300- 1800 nm), but this also introduces significant challenges for antireflection coating design. Each sub-cell junction is electrically connected in series, limiting the overall device photocurrent by the lowest current-producing junction. Therefore, antireflection coating optimization must maximize the current from the limiting sub-cells at the expense of the others. Solar concentration, necessary for economical terrestrial deployment of multi-junction solar cells, introduces an angular-dependent irradiance spectrum. Antireflection coatings are optimized for both direct normal incidence in air and angular incidence in an Opel Mk-I concentrator, resulting in as little as 1-2% loss in photocurrent as compared to an ideal zero-reflectance solar cell, showing a similar performance to antireflection coatings on silicon solar cells. A transparent conductive oxide layer has also been considered to replace the metallic-grid front electrode and for inclusion as part of a multi-layer antireflection coating. Optimization of the solar cell, antireflection coating, and concentrator system should be considered simultaneously to enable overall optimal device performance.

  17. A novel multi-layer manifold microchannel cooling system for concentrating photovoltaic cells

    International Nuclear Information System (INIS)

    Highlights: • A multi-layer manifold microchannel cooling system was fabricated for CPV cells. • The unique multi-layer design can result in the higher heat transfer coefficient. • A higher net output power for CPV cell was achieved. - Abstract: Using concentrating photovoltaic (CPV) cells is an effective method for the low-cost photovoltaic conversion. However, higher temperature and non-uniform surface temperature distribution will result in the electrical output decline of CPV cells and shorten their life time. To obtain higher net output power of CPV cells and prolong their life time, we designed a novel multi-layer manifold microchannel cooling system to effectively lower the cell surface temperature and improve the uniformity of surface temperature distribution. Thermal image analysis indicated that the surface temperature difference of the CPV cells was below 6.3 °C. The multi-layer manifold microchannel had a heat transfer coefficient of 8235.84 W/m2 K and its pressure drop was lower than 3 kPa. The results show that the hybrid CPV cells have a satisfactory net output power due to their lower pumping power and the higher electrical output of CPV cells

  18. Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuo-Fu; Deng Jin-Xiang

    2012-01-01

    A metal plate cooling model for 400× single concentrator solar cells was established.The effects of the thickness and the radius of the metal plate,and the air environment on the temperature of the solar cells were analyzed in detail.It is shown that the temperature of the solar cells decreased sharply at the beginning,with the increase in the thickness of the metal plate,and then changed more smoothly.When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker,the temperature of the solar cell basically stabilized at about 53 ℃.Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably.The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively,and demonstrated the superiority of Al material for the cooling system.Furthermore,considering cost reduction,space holding and the stress of the system,we optimized the structural design of the metal plate.The simulated results can be referred to the design of the structure for the metal plate.Finally,a method to devise the structure of the metal plate for single concentrator solar cells was given.

  19. Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

    International Nuclear Information System (INIS)

    A metal plate cooling model for 400× single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53 °C. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of Al and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of Al material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Concentrator silicon cell research

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

    1992-04-01

    This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

  1. Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Highlights: ► Four different weather conditions are considered and characterized. ► The concentrator is carefully designed to get a uniformly concentrated irradiation. ► A model is made to evaluate the system with optical efficiency of concentrators considered. ► Direct and diffuse lights are distinguished in the model. - Abstract: The main problem of the photovoltaic system is the high cost of solar cells. One possible solution is to concentrate the solar radiation to minimize the required cell area for the same output. In this paper a low-concentrating photovoltaic–thermal hybrid (PV/T) system was set up to study the electrical and thermal outputs under different weather conditions. The concentrator in the system was designed using Fresnel lens and flat mirrors to get a uniformly concentrated irradiation on the solar cells. The results show that on a clear day the electrical efficiency is about 10% and the thermal efficiency is about 56% for our system. Irradiance is the most important factor to characterize the weather. When the irradiance is above 350 W/m2 the electrical output will saturate and when it is above 162 W/m2 the thermal energy can be effectively output in our system. The system is also modeled to predict the output and describe the concentrator’s performance. By this model different concentrated PV/T systems can be compared in the electrical and thermal outputs and also the performance of concentrators

  2. Spatial proton exchange membrane fuel cell performance under carbon monoxide poisoning at a low concentration using a segmented cell system

    Science.gov (United States)

    Reshetenko, Tatyana V.; Bethune, Keith; Rocheleau, Richard

    2012-11-01

    The impact of the fuel contaminant CO, which was intentionally injected in to the hydrogen stream at a concentration of 2 ppm, on proton exchange membrane fuel cell (PEMFC) performance distribution was studied using a segmented cell system and spatial electrochemical impedance spectroscopy (EIS). The cell was operated under a galvanostatic control of the overall cell current at 0.8 A cm-2, and tests were carried out under H2/O2, H2/air, and H2/H2 gas configurations. Upon CO injection the voltage decreased by 0.080, 0.300, and 0.320 V for O2, air, and H2 cathode gases, respectively. The voltage drop was accompanied by changes in the current density distributions. Inlet segments 1-4 showed a decrease in current due to CO adsorption on Pt, while, downstream segments 7-10 exhibited an increase in current. The performance completely recovered within 1-2 h after CO injection was stopped. The conversion of CO proceeds through a combination of catalytic and electrochemical oxidation reactions; however, the catalytic oxidation of CO is likely the dominant process. It was found that an increased membrane gas permeability can mitigate the impact of CO, mainly due to the catalytic oxidation of adsorbed CO on the Pt anode by the permeated O2.

  3. The effect of the optical system on the electrical performance of III-V concentrator triple junction solar cells

    Science.gov (United States)

    Schultz, R. D.; van Dyk, E. E.; Vorster, F. J.

    2016-01-01

    High Concentrated Photovoltaic (H-CPV) technologies utilize relatively inexpensive reflective and refractive optical components for concentration to achieve high energy yield. The electrical performance of H-CPV systems is, however, dependent on the properties and configuration of the optical components. The focus of this paper is to summarize the effect of the properties of the optical system on the electrical performance of a Concentrator Triple Junction (CTJ) InGaP/InGaAs/Ge cell. Utilizing carefully designed experiments that include spectral measurements and intensity profiles in the optical plane of the CTJ cell, the influence of photon absorption, Fresnel lens properties and chromatic aberration created by the optical system on the electrical performance of a CTJ cell is shown. From the results obtained, it is concluded that good characterization and understanding of the optical system's properties may add to improved design of future multi-junction devices.

  4. A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters

    International Nuclear Information System (INIS)

    Highlights: • Concentrating grid-connected systems are working at maximum power point. • The operating cell temperature is inherently lower than at open circuit. • Two novel methods for estimating the cell temperature are proposed. • Both predict the operating cell temperature from atmospheric parameters. • Experimental results show that both methods perform effectively. - Abstract: The working cell temperature of high concentrator photovoltaic systems is a crucial parameter when analysing their performance and reliability. At the same time, due to the special features of this technology, the direct measurement of the cell temperature is very complex and is usually obtained by using different indirect methods. High concentrator photovoltaic modules in a system are operating at maximum power since they are connected to an inverter. So that, their cell temperature is lower than the cell temperature of a module at open-circuit voltage since an important part of the light power density is converted into electricity. In this paper, a procedure for indirectly estimating the cell temperature of a high concentrator photovoltaic system from atmospheric parameters is addressed. Therefore, this new procedure has the advantage that is valid for estimating the cell temperature of a system at any location of interest if the atmospheric parameters are available. To achieve this goal, two different methods are proposed: one based on simple mathematical relationships and another based on artificial intelligent techniques. Results show that both methods predicts the cell temperature of a module connected to an inverter with a low margin of error with a normalised root mean square error lower or equal than 3.3%, an absolute root mean square error lower or equal than 2 °C, a mean absolute error lower or equal then 1.5 °C, and a mean bias error and a mean relative error almost equal to 0%

  5. Concentrating bacterial cells using a ratchet system: a lattice Monte Carlo simulation study

    Science.gov (United States)

    Tao, Yuguo; Slater, Gary

    2012-02-01

    Rectification of motile E. coli bacteria has been observed in the presence of funnel-like channels. We present a lattice Monte Carlo model which takes into account both the size and the mechanical and thermodynamic properties of autonomous bacterial cells. The motion of the cells is composed of alternating run and tumble periods. We show that the rectification effect of the funnels is strongly dependent upon the effective random walk step length of the run/tumble cycle as well as the size of the funnel's aperture. Our results agree with experimental observations, and also confirm some conclusions from a previous simulation model of point-like bacteria. We also explore series of funnels as a means to pump and concentrate cells. We observe deviations from theoretical predictions when the size of the cells is comparable to that of the aperture of the funnel. The current model can be extended to study cells with different shapes, e.g. cigar-shape bacteria.

  6. Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuo-Fu; Deng Jin-Xiang; Liu Li-Ying

    2013-01-01

    A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number,height,and thickness of fins,the base thickness and thermal resistance of the thermal conductive adhesive.Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained.With optimized number,height and thickness of fins,and the thickness values of base of 8,1.4 cm,1.5 mm,and 2 mm,the lowest temperatures of the solar cell and heat sink are 41.7 ℃ and 36.3 ℃ respectively.A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built.Outdoor temperatures of the prototype are tested.Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃ respectively,slightly lower than the simulation results because of effects of the wind and cloud.Thus the simulation model enables to predict the thermal performance of the system,and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.

  7. Physiological consequences of ionic concentration changes in cardiac cell tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Christé, G.; Šimurda, J.

    Plzeň : Západočeká universita v Plzni, 2004 - (Horák, M.), s. 1-4 ISBN 80-7043-315-9. [Biomechanics of Man 2004. hotel Horizont, Šumava (CZ), 16.11.2004-19.11.2004] R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * tubular system * quantitative modelling Subject RIV: BO - Biophysics

  8. Light-trapping concentrator cells

    Science.gov (United States)

    Keavney, Christopher J.; Geoffroy, Leo M.; Sanfacon, Michael M.; Tobin, Stephen P.

    1989-11-01

    The objective was to develop a thin, light-trapping silicon concentrator solar cell using a new structure, the cross-grooved cell. A process was developed for fabricating V-grooves on both sides of thin silicon wafers, the grooves on one side being perpendicular to those on the other side. A way to minimize flat spots at the tops of the V-grooves was discovered. The theoretical light-trapping superiority of the cross-grooved structure was verified. A reduction was also demonstrated in grid line obscuration for grid lines running parallel to the V-grooves due to light reflection into the cell. High short-circuit current densities were achieved for p-i-n concentrator cells with the cross-grooved structure, proving the concept. The best efficiencies achieved were 18 percent at concentration, compared to 20 percent for a conventional planar low-resistivity cell. Recombination in the full-area emitter was identified as the major intrinsic loss mechanism in these thin, high-resistivity bifacial cells. Recombination on the emitter limits Voc and fill factor, and also leads to a large sublinearity of short-circuit current with light intensity. Reduction of the junction area is a major recommendation for future work. In addition, there were persistent problems with ohmic contacts and maintaining high minority-carrier lifetime during processing. It is believed that these problems can be solved, and that the cross-grooved cell is a viable approach to the limit-efficiency silicon solar cell. This report covers research conducted between March 1987 and July 1989.

  9. Solar concentrator protective system

    Science.gov (United States)

    Selcuk, M. K. (Inventor)

    1984-01-01

    A mechanism that blocks concentrated sunlight from reaching a receiver, in the event of a tracking failure or loss of coolant is described. Sunlight is normally concentrated by a dish reflector onto the opening of a receiver. A faceplate surrounds the opening, and coolant carrying tubes, line the receiver. If the concentrated sunlight wanders so it begins to fall on the faceplate, then the sunlight will melt a portion of a fuse wire portion will break. The wire is attached to a flange on a shutter frame, and breaking of the fuse wire allows the frame to fall. Normally, the shutter frame supports shutter elements that are held open by cam followers that bear against cams.

  10. Analysis of a four lamp flash system for calibrating multi-junction solar cells under concentrated light

    International Nuclear Information System (INIS)

    It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light

  11. Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells

    OpenAIRE

    Victoria Pérez, Marta; Herrero Martin, Rebeca; Domínguez Domínguez, César; Anton Hernandez, Ignacio; Askins, Stephen; Sala Pano, Gabriel

    2011-01-01

    The irradiance and spectral distribution cast on the cell by a concentrating photovoltaic system, typically made up of a primary Fresnel lens and a secondary stage optical element, is dependent on many factors, and these distributions in turn influence the electrical performance of the cell. In this paper, the effect of spatial and spectral non-uniform irradiance distribution on multi-junction solar cell performance was analyzed using an integrated approach. Irradiance and spectral distributi...

  12. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, respectively. Experimental results show that direct irradiation affects the electrical performance of the system dominantly. Fitting results of electrical performance offer simple and reliable methods to analyze the system performance. - Highlights: • A point-focus Fresnel lens photovoltaic/thermal system is proposed and studied. • The system presents an instantaneous electrical efficiency of 28%. • The system has a highest instantaneous thermal efficiency of 54%. • Direct irradiation has the dominant effect on the electrical performance. • Fitting results offer simple and reliable methods to analyze system performances. - Abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, which means the overall efficiency of the system can be more than 80%. A mathematical model for calculating cell temperature is proposed to solve difficult measurement of cell temperature in a system. Moreover, characteristics of electrical performance under various direct

  13. Influence of aeration–homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism

    OpenAIRE

    Núñez, Eutimio Gustavo Fernández; Leme, Jaci; de Almeida Parizotto, Letícia; Chagas, Wagner Antonio; de Rezende, Alexandre Gonçalves; da Costa, Bruno Labate Vale; Monteiro, Daniela Cristina Ventini; Boldorini, Vera Lucia Lopes; Jorge, Soraia Attie Calil; Astray, Renato Mancini; Pereira, Carlos Augusto; Caricati, Celso Pereira; Tonso, Aldo

    2013-01-01

    This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller f...

  14. Influence of aeration-homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism.

    Science.gov (United States)

    Núñez, Eutimio Gustavo Fernández; Leme, Jaci; de Almeida Parizotto, Letícia; Chagas, Wagner Antonio; de Rezende, Alexandre Gonçalves; da Costa, Bruno Labate Vale; Monteiro, Daniela Cristina Ventini; Boldorini, Vera Lucia Lopes; Jorge, Soraia Attie Calil; Astray, Renato Mancini; Pereira, Carlos Augusto; Caricati, Celso Pereira; Tonso, Aldo

    2014-08-01

    This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 10(6) cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation-aeration systems. PMID:23846480

  15. Characterization of the InGaP/InGaAs/Ge triple-junction solar cell with a two-stage dish-style concentration system

    International Nuclear Information System (INIS)

    Highlights: • A mathematical model of triple-junction solar cell is established. • The calculated results compare well with outdoor experimental data. • A high efficiency heat pipe exchanger is specially designed to cool the cell. • The effect of the homogenizer is more significant at small direct solar radiation. • The impact of solar radiation on the experimental error is researched. - Abstract: Research on automatic tracking solar concentrator photovoltaic systems has gained increasing focus recently in order to develop high efficient solar PV technologies. A paraboloidal concentrator with a secondary optical system (with a concentration ratio in the range of 100–200×) and a sun tracking system was developed in this work. The performance of a heat-pipe cooled triple-junction GaInP/GalnAs/Ge solar cell was characterized. The experiments showed that the system achieved an average output power of 1.52 W/cm2 and an average efficiency of 29.3% when average direct solar radiation is 450 W/m2, while keeping the maximum cell temperature below 64.9 °C, which were 23.3% and 9.1% higher than those of single stage concentrating system respectively. Moreover, the experimental error is increases with the solar radiation. The experimental results for Voc and Isc compared reasonable well with the predictions from a mathematical model, and the calculated values were out of the measured error, which suggested that the model can be used to analyze the influence of relevant parameters on the performance of high concentration photovoltaic systems

  16. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated...... polymers were degraded resulting in acceleration factors in the range of 19-55. This shows that concentrated sunlight can be used as qualitatively to determine the lifetime of polymers under highly accelerated conditions....

  17. Concentrators Enhance Solar Power Systems

    Science.gov (United States)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  18. 槽式聚光系统聚光硅电池阵列特性实验研究%Characteristic Investigation of Concentration Silicon Solar Cell Arrays Based on the Trough Concentrating System

    Institute of Scientific and Technical Information of China (English)

    许玲; 李明; 李国良; 黄波; 魏生贤

    2011-01-01

    The performance tests of two types of domestic concentration silicon cell arrays with parallel and inverted square grid-line distribution based on the trough concentrating photovoltaic/thermal system have been carried out.Experimental results indicate that photoelectric efficiencies of the two selected concentration silicon solar cell arrays reach 11.42% and 13.89%.The maximum output power amplifies 16.06 times and 19.33 times respectively with energy flux concentration ratio 20 times.The temperature coefficients of Pm, FF and 77 of the two cell arrays are -0.047 W/K、 -0.45%/K、 -0.035%/K and -0.029 W/K、 -0.176%/K、 -0.105%/K respectively.All those works provide reference for choosing concentrating solar cells and optimizing performance of trough concentrating photovoltaic/ thermal system.%利用所设计的槽式聚光热电联供系统,对栅线平行分布和反方形分布的两种聚光硅太阳电池阵列进行了性能测试研究.结果表明,在能流聚光比为20倍的槽式聚光器下,两种电池阵列的光电效率分别为11.42%和13.89%,最大输出功率分别比聚光前放大16.06倍和19.33倍.两种电池阵列Pm、FF和η的温度系数分别为:-0.047 W/K、-0.45%/K、-0.035%/K;-0.029 W/K、-0.176%/K、-0.105%/K.研究结果为中低倍聚光系统聚光电池的选择和槽式聚光热电联供系统性能的优化提供参考.

  19. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  20. Analysis of Photovoltaic Concentrating Solar Energy Systems

    OpenAIRE

    Garo Pilawjian

    2012-01-01

    In this paper the photovoltaic concentrating solar energy systems are analyzed. Both the Fresnel lens light refraction and mirror light reflection concentrating optical systems are considered. The main parameters and properties of photovoltaic concentrating solar energy systems are outlined. It is shown that the multi-parameter cost optimization is necessary to conduct to reduce the cost of photovoltaic concentrating solar energy systems.

  1. Burnable gas concentration control system

    International Nuclear Information System (INIS)

    In a combustion gas concentration control system, the height from the upper end of a catalyst to an exit of a chimney is determined to twice or more the height of the catalyst, and the flow area of the exit of the chimney is determined to 25% or more of the flow rate area at the entrance of the chimney. Alternatively, a cover is formed above the exit of the chimney, the height from the upper end of the catalyst to the exit of the chimney is determined to three times or more the height of the catalyst, and the ratio between the flow channel area at a gap portion between the cover and the exit of the chimney and the flow channel area of the entrance of the chimney is determined to 60% or more. The area of the cover is made greater than the flow channel area at the exit of the chimney, and the area of the floor below the chimney is made greater than the cross sectional area at the lower portion of the chimney. In addition, a burnable gas concentration reducing device is disposed near a living body shielding walls and near the inner wall of a pressure suppression chamber. Burnable gases can be processed efficiently upon occurrence of an accident. (N.H.)

  2. Thermal analysis and test for single concentrator solar cells

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuofu; Yang Xiaoli; Wang Yu; Bai Yining; Zhang Xingwang

    2009-01-01

    A thermal model for concentrator solar cells based on energy conservation principles was designed.Under 400X concentration with no cooling aid,the cell temperature would get up to about 1200℃.Metal plates were used as heat sinks for cooling the system,which remarkably reduce the cell temperature.For a fixed concentration ratio,the cell temperature reduced as the heat sink area increased.In order to keep the cell at a constant temperature,the heat sink area needs to increase linearly as a function of the concentration ratio.GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model.A cell temperature of 37℃ was measured when using a heat sink at 400X concentratration.

  3. 聚光光伏电池及系统的研究现状%RESEARCH PROGRESS OF CONCENTRATOR PHOTOVOTAIC CELLS AND SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    王一平; 李文波; 朱丽; 韩新月; 方振雷

    2011-01-01

    By using concentrator photovoltaic (CPV) power generation method, the renewable electricity cost can be greatly reduced in comparison with the flat solar panels.As a result, many demonstration projects have been built all over the world.The recent progress on CPV work in research organizations and companies at home and abroad was summarized in the present paper, which briefly introduced the recent progress of concentrator photovoltaic systems.Meanwhile, the recent progress of concentrator solar cells and the cooling technologies of CPV were reviewed.In accordance to the fast development pace, concentrator photovoltaic systems will have great prospects.%首先总结了国内外在聚光光伏发电方面的权威研究机构及公司情况,介绍了目前聚光光伏发电技术及系统的最新研究进展情况及存在的技术难点;其次综述了近几年国内外在聚光太阳电池方面的最新研究进展,并介绍了聚光光伏中的冷却问题;最后对聚光光伏发电技术的发展前景进行了展望.

  4. Generation System of Concentrator Photovoltaic Based on Gallium Arsenide Cells%基于砷化镓电池的聚光光伏发电系统

    Institute of Scientific and Technical Information of China (English)

    宁铎; 王辉辉; 黄建兵; 李明勇

    2011-01-01

    Solar photovoltaic power generation system for the problem of low utilization, a generation system of concentrator photovoltaic (CPV) based on gallium arsenide (GaAs) cells can be designed. The system consists of concentrating power modules, solar tracking module, inverter module. Fresnel lens concentrator power generation module 400 times by concentrating light in lcm2 GaAs after the battery,the realization of power function; sun-tracking modules and optical sensors from the head to ensure that the basic vertical sunlight through the Fresnel lens; GaAs inverter module converts DC battery AC issued. After testing, the system reached 20. 2% conversion efficiency of solar, inverter part of the realization of the exchange function of the DC variable.%针对光伏发电系统中太阳能利用率低的问题,设计了一种基于砷化镓(GaAs)电池的聚光光伏(CPV)发电系统;该系统由聚光发电模块、太阳跟踪模块和逆变模块组成;聚光发电模块采用菲涅尔透镜400倍聚光以后照射在1Cmz的砷化镓电池上,实现发电功能;太阳跟踪模块由云台和光电传感器组成,保证太阳光基本垂直通过菲涅尔透镜,逆变模块将砷化镓电池发出的直流电转换成交流电;经过测试.该系统太阳能转换效率达到20.2%,逆变部分实现了直流变交流功能.

  5. Analysis of Photovoltaic Concentrating Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Garo Pilawjian

    2012-03-01

    Full Text Available In this paper the photovoltaic concentrating solar energy systems are analyzed. Both the Fresnel lens light refraction and mirror light reflection concentrating optical systems are considered. The main parameters and properties of photovoltaic concentrating solar energy systems are outlined. It is shown that the multi-parameter cost optimization is necessary to conduct to reduce the cost of photovoltaic concentrating solar energy systems.

  6. Lens refracting cost effective photovoltaic solar energy concentrating systems

    International Nuclear Information System (INIS)

    The overall cost reduction task is studied for photovoltaic (PV) solar energy systems. For that purpose, a new, cost effective lens refracting system is developed. The concentrating system consists of Fresnel lenses placed under different facet angles refracting the sun light onto the solar cells placed along a line. The developed photovoltaic concentrating system uses the mathematical model of Fresnel lens concentrating optics for photovoltaic systems used to optimize the system by cost. A computer program FLCPVSys2.1 for the new concentrating system is developed allowing to design a photovoltaic system of the required power with the minimum cost. The program can be used for designing a cost effective photovoltaic solar concentrating system

  7. Serum ferritin concentration in sickle cell crisis.

    OpenAIRE

    Brownell, A; Lowson, S; Brozović, M

    1986-01-01

    Serum ferritin, aspartate aminotransferase (AST), alkaline phosphatase and hydroxybutyrate dehydrogenase (HBD) were studied during 21 vaso-occlusive crises in 12 adults with sickle cell disease (11 SS, 1 S beta degrees). The patients comprised three groups: those who had been untransfused (4), those who had received occasional exchange transfusion in crisis (3), and those who had been multiply transfused (5). Serum ferritin concentrations in crisis were compared with those of the steady state...

  8. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    Science.gov (United States)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  9. Simulation of an electrowetting solar concentration cell

    Science.gov (United States)

    Khan, Iftekhar; Rosengarten, Gary

    2015-09-01

    Electrowetting control of liquid lenses has emerged as a novel approach for solar tracking and concentration. Recent studies have demonstrated the concept of steering sunlight using thin electrowetting cells without the use of any bulky mechanical equipment. Effective application of this technique may facilitate designing thin and flat solar concentrators. Understanding the behavior of liquid-liquid and liquid-solid interface of the electrowetting cell through trial and error experimental processes is not efficient and is time consuming. In this paper, we present a simulation model to predict the liquid-liquid and liquid-solid interface behavior of electrowetting cell as a function of various parameters such as applied voltage, dielectric constant, cell size etc. We used Comsol Multiphysics simulations incorporating experimental data of different liquids. We have designed both two dimensional and three dimensional simulation models, which predict the shape of the liquid lenses. The model calculates the contact angle using the Young-Lippman equation and uses a moving mesh interface to solve the Navier-stokes equation with Navier slip wall boundary condition. Simulation of the electric field from the electrodes is coupled to the Young-Lippman equation. The model can also be used to determine operational characteristics of other MEMS electrowetting devices such as electrowetting display, optical switches, electronic paper, electrowetting Fresnel lens etc.

  10. Tracking-integrated systems for concentrating photovoltaics

    Science.gov (United States)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  11. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  12. Energy yield determination of concentrator solar cells using laboratory measurements

    Science.gov (United States)

    Geisz, John F.; García, Iván; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-01

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  13. Correlation of Serum Concentrations of Soluble Thrombomodulin, Soluble Vascular Cell Adhesion Molecule-1,Intracellular Adhesion Molecule -1 And E-Selectin In Patients WithSystemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Malak., A. Mohsen*, Magda.A.Gamil*,Maha. I.Shehata

    2003-09-01

    Full Text Available To date no specific serological parameters are available to assess disease activity in systemic lupus erythematosus (SLE. The objective of this study was to correlate serum levels of thrombomodulin (TM, intracellular adhesion molecule-1 sICAM-1, vascular cell adhesion molecule-1 sVCAM-1, and E-selectin with standard laboratory tests and clinical indices of disease activity in 40 patients with SLE and 20 apparently healthy persons as controls. According to British Isles Lupus Assessment Group (BILAG disease activity index, the 40 patients were divided into two groups, the first consisted of 22 with active disease, and the second consisted of 18 patients with inactive SLE. Serum sTM, sICAM-1, sVCAM-I, and E-selectin were measured in their sera, using enzyme linked immuonosorbent assay (ELISA technique.C-reactiv protein (CRP, Erythrocyte sedimentation rates (ESR and serum creatinines were measured by standard laboratory tests. Total leukocytic count and hemoglobin concentration were detected by coulter counter. Levels of sTM and sVCAM were highly elevated in the group of patients with active SLE as compared to the inactive one (P0.05. In SLE, the BILAG disease activity index, ESR and serum creatinine correlated best with sTM, sVCAM-1 and E-selectin levels while there was a weak association between CRP levels and the adhesion molecules, and no correlation between CRP level and disease activity. In conclusion, sTM and sVCAM were the most important serological indices of disease activity in SLE and might be valuable serological parameters for monitoring therapy.

  14. Monitoring electrolyte concentrations in redox flow battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  15. Status of concentrator collector and high-efficiency concentrator cell development

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.

    1990-01-01

    Photovoltaic concentrator collectors are an attractive option for utility-scale photovoltaic power plants. This paper reviews the current status of photovoltaic concentrator collector and cell development. Included in the review is a discussion of the economic motivation for concentrators, a summary of recent concentrator collector and cell development, and a description of a major new program to accelerate development and commercial introduction of concentrator collectors. 21 refs., 1 fig., 3 tabs.

  16. Spectral Selectivity Applied To Hybrid Concentration Systems

    Science.gov (United States)

    Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.

    1985-12-01

    The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.

  17. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  18. TAB interconnects for space concentrator solar cell arrays

    Science.gov (United States)

    Avery, J.; Bauman, J. S.; Gallagher, P.; Yerkes, J. W.

    1993-05-01

    The Boeing Company has evaluated the use of Tape Automated Bonding (TAB) and Surface Mount Technology (SMT) for a highly reliable, low cost interconnect for concentrator solar cell arrays. TAB and SMT are currently used in the electronics industry for chip interconnects and printed circuit board assembly. TAB tape consists of sixty-four 3-mil/1-oz tin-plated copper leads on 8-mil centers. The leads are thermocompression gang bonded to GaAs concentrator solar cell with silver contacts. This bond, known as an Inner Lead Bond (ILB), allows for pretesting and sorting capability via nondestruct wire bond pull and flash testing. Destructive wire pull tests resulted in preferred mid-span failures. Improvements in fill factor were attributed to decreased contact resistance on TAB bonded cells. Preliminary thermal cycling and aging tests were shown excellent bond strength and metallurgical results. Auger scans of bond sites reveals an Ag-Cu-Tin composition. Improper bonds are identified through flash testing as a performance degradation. On going testing of cells are underway at Lewis Research Center. SMT techniques are utilized to excise and form TAB leads post ILB. The formed leads' shape isolates thermal mismatches between the cells and the flex circuit they are mounted on. TABed cells are picked and placed with a gantry x-y-z positioning system with pattern recognition. Adhesives are selected to avoid thermal expansion mismatch and promote thermal transfer to the flex circuit. TAB outer lead bonds are parallel gap welded (PGW) to the flex circuit to finish the concentrator solar cell subassembly.

  19. Correlation of Serum Concentrations of Soluble Thrombomodulin, Soluble Vascular Cell Adhesion Molecule-1,Intracellular Adhesion Molecule -1 And E-Selectin In Patients WithSystemic Lupus Erythematosus

    OpenAIRE

    Malak., A. Mohsen*, Magda.A.Gamil*,Maha. I.Shehata

    2003-01-01

    To date no specific serological parameters are available to assess disease activity in systemic lupus erythematosus (SLE). The objective of this study was to correlate serum levels of thrombomodulin (TM), intracellular adhesion molecule-1 sICAM-1, vascular cell adhesion molecule-1 sVCAM-1, and E-selectin with standard laboratory tests and clinical indices of disease activity in 40 patients with SLE and 20 apparently healthy persons as controls. According to British Isles Lupus Assessment Grou...

  20. ITABIRITE IRON ORE CONCENTRATION BY PNEUMATIC FLOTATION CELL

    Directory of Open Access Journals (Sweden)

    Angelo Quintiliano Nunes da Silva

    2015-06-01

    Full Text Available The main iron ore processing plants in Brazil operate through reverse cationic flotation. Many studies have been conducted in order to improve flotation efficiency by optimization process variables. The pneumatic flotation cell stands out due to the simplicity to and to the intense contact particle/bubble promoted by the pulp feeding system. In this study, laboratory scale and pilot were conducted using a sample of itabirite iron ore. The objectives are evaluating the performance of this device using low grade iron ore, and drawing a comparison with laboratory scale tests on conventional flotation cell. The results indicate the potential application of pneumatic flotation cell to the ore tested. Adjustments in the feed particle size and process optimizations can be performed on the concentrate, reaching Fe and SiO2 grades used by the industry

  1. Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell's structure focusing on series resistance for high-efficiency concentrator photovoltaic systems

    OpenAIRE

    Nishioka, K.; Takamoto, T; Agui, T; Kaneiwa, M; Uraoka, Y.; Fuyuki, T

    2006-01-01

    The series resistance of an InGaP/InGaAs/Ge triple-junction solar cell was evaluated in detail. Series resistance components such as electrode resistance, tunnel junction resistance and lateral resistance between electrodes were estimated separately. The characteristics of the triple-junction solar cell under concentrated light were evaluated by equivalent circuit calculation with a simulation program with integrated circuit emphasis (SPICE). By equivalent circuit calculation, the optimizatio...

  2. Tracking accuracy assessment for concentrator photovoltaic systems

    Science.gov (United States)

    Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.

    2010-10-01

    The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.

  3. Linear concentration system; Sistema de concentracion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx

    2013-03-15

    Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para

  4. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    absorption at the emission peak of the dye. A factorial increase in the output power density of coupled PV as compared to PV exposed directly to solar spectrum is observed for high light concentration on the edge. These initial results motivated a more in-depth study of coupled LSC-PV system, which took into account the radiative transport inside the realistic LSC. These investigations were carried out on LSCs using Lumogen Red305 and Rhodamine 6G dyes coupled to pristine and plasmonic ultra-thin film silicon solar cells. Prediction based on detailed balance shows that the coupled LSC-plasmonic solar cell can generate 63.7 mW/cm2 with a photocurrent density of 71.3 mA/cm2 which is higher than that of cSi solar cells available on current market. The second part of the thesis focuses on PV absorption enhancement techniques. First, the effect of vertical positioning of plasmonic nanostructures on absorption enhancement was theoretically investigated to understand which one of the three mechanisms usually responsible for the enhancement (forward scattering, diffraction and localized surface plamson) plays the dominant role. Simulation results suggested that the maximum enhancement occurred when placing the nanostructures in the rear side of the cell because of longer path length due to scattering. The experimental effort then switched focus on substrate patterning, which is a less expensive alternative to plasmonic absorption enhancement. Specifically, a nanostructured substrate was prepared by a simple electrochemical process based on two-step aluminum anodization technique. The absorption of thin film silicon deposited on these substrates showed a broadband enhancement. The overall photocurrent density was up to 40% higher than that of films deposited on flat substrates. In conclusion, the studies carried out in this thesis indicate that spectral coupling of LSCs to thin film solar cells could lead to significant improvements in PV output power density. Moreover, while the

  5. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring

    OpenAIRE

    Milessi, Thais S S; Antunes, Felipe A. F.; Chandel, Anuj K; Silvio S. da Silva

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Schef...

  6. 菲涅耳聚光系统下砷化镓电池输出特性研究%Investigation of the Output Characteristics of GaAs Solar Cell Based on Fresnel Concentrating System

    Institute of Scientific and Technical Information of China (English)

    王文博; 李明; 季旭; 魏生贤; 王六玲; 杨玉文; 范介清; 龙星

    2012-01-01

    The output characteristics on a GaAs solar cell and the components which are composed of six pieces of GaAs solar cells in concentration ratio 676 based on Fresnel concentrating system is analyzed. Single-index model of GaAs solar cell is established and compared with experiments. There is a good agreement of theory and experiments with the error less than 7.6%. The experimental results indicate that, with the same concentration ratio, a GaAs solar cell is in concentration ratio 390, and the six pieces of GaAs solar cells is in concentration ratio 281. The short-circuit current of the monolithic cell is enlarged 322 times, and the max electric power is enlarged 316 times in concentration which of the six pieces of GaAs solar cells system is enlarged 275 times and 272 times. The maximum power output of the solar cell is achieved when the energy-flux density is 0.321 MW/tn2. The GaAs solar cell works well with a temperature lower than 323 K. The efficiency of the system increases 0.227% as the transmittance of the system improve 0.01. The monolithic GaAs solar cell can generate electric energy 0.015 kW?hand the the cell set of six pieces can generate electric energy 0.076 kW-h for a clear day with daily direct irradiation of 17. 212 MJ/m2.%对理论聚光比为676的菲涅耳聚光系统下单片砷化镓太阳电池及由六片砷化镓电池的串联组件的输出特性进行分析.建立三结砷化镓电池输出特性的单指数数学模型,并与实验进行了对比.理论计算与实验吻合较好,误差在7.6%以内.实验结果表明,在相同理论聚光比下,单片电池系统能流聚光比为390,六片电池组件系统能流聚光比为281;聚光后单片电池的短路电流与峰值功率分别放大322倍与316倍,六片电池组件系统的短路电流与峰值功率分别放大275倍与272倍;电池表面能流密度为0.321 MW/m2时电池的输出功率达到最大,电池表面温度高于323 K将影响其工作稳定性;聚

  7. Description of an Immersed Photovoltaic Concentrating Solar Power System

    OpenAIRE

    Falbel, Gerald

    1998-01-01

    Recent advancements in photovoltaic solar cells made from Gallium Arsenide (GaAs) have shown that with concentration ratios greater than one solar constant, overall efficiencies up to 23% can be achieved. A second issue applicable to solar power systems for spacecraft is the cost driver, which requires that the efficiency/weight ratio be improved so that solar panels with high output, weighing less, will reduce payload weights, which, in turn, reduces launch costs. This has resulted in a "Fig...

  8. Performance analysis of solar cell arrays in concentrating light intensity

    Institute of Scientific and Technical Information of China (English)

    Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    tage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system.

  9. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  10. Effect of Irradiation on Microparticles in Red Blood Cell Concentrates

    OpenAIRE

    Cho, Chi Hyun; Yun, Seung Gyu; Koh, Young Eun; Lim, Chae Seung

    2016-01-01

    Changes in microparticles (MP) from red blood cell (RBC) concentrates in the context of irradiation have not been investigated. The aim of this study was to evaluate how irradiation affects the number of MPs within transfusion components. Twenty RBC concentrates, within 14 days after donation, were exposed to gamma rays (dose rate: 25 cGy) from a cesium-137 irradiator. Flow cytometry was used to determine the numbers of MPs derived from RBC concentrates before and 24 hr after irradiation. The...

  11. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2012-03-01

    Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple and optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interface(s), while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials. An existing CPV module (with no PV cells present) was modified to accommodate encapsulation specimens. The module (where nominal concentration of solar flux is 500x for the domed-Fresnel design) has been mounted on a tracker in Golden, CO (elevation 1.79 km). Initial results are reported here for 18 months cumulative exposure, including the hottest and coldest months of the past year. Characteristics observed at intervals during that time include: visual appearance, direct and hemispherical transmittance, and mass. Degradation may be assessed from subsequent analysis (including yellowness index and cut-on frequency) relative to the ambient conditions present during field exposure. The fluorescence signature observed of all the silicone specimens is examined here, including possible factors of causation -- the platinum catalyst used in the addition cured materials as well as the primer used to promote adhesion to the quartz substrate and superstrate.

  12. The performance analysis of the Trough Concentrating Solar Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Research highlights: → A 2 m2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system is built, a single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. → Another 10 m2 TCPV/T system using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. → The economic performance analysis show the electricity generating cost of the TCPV/T system with the concentrating silicon cell array can catch up with flat-plate PV system. -- Abstract: The electrical and thermal performance of a 2 m2 Trough Concentrating Photovoltaic/Thermal (TCPV/T) system with an energy flux ratio 10.27 are characterized by experiments. A single crystalline silicon solar cell array, a polycrystalline silicon cell array, a Super cell array and a GaAs cell array are respectively used in the experiments. The experimental results show that the electrical performance of the system with the GaAs cell array is better than that of crystal silicon solar cell arrays. The superior output performance of the GaAs cell array mainly benefits from its lower series resistance. But the thermal performances of the system using the single crystal silicon solar cell array and the polycrystalline silicon solar cell array are better. It results from the widths of the two types of cells in the system close to that of the focal line. Another 10 m2 TCPV/T system with an energy flux ratio of 20 using the GaAs cell array and a concentrating silicon cell array are also constructed and characterized. The experimental results indicate that the photoelectric efficiency of the GaAs cell array is 23.83%, and the instantaneous electrical efficiency and thermal efficiency of the system are 9.88% and 49.84% respectively. While the instantaneous electrical efficiency and thermal efficiency of the system using the low-cost concentrating silicon cell array are 7.51% and 42

  13. Common Student Misconceptions in Electrochemistry: Galvanic, Electrolytic, and Concentration Cells.

    Science.gov (United States)

    Sanger, Michael J.; Greenbowe, Thomas J.

    1997-01-01

    Investigates student (N=16) misconceptions concerning electrochemistry related to galvanic, electrolytic, and concentration cells. Findings indicate that most students demonstrating misconceptions were still able to calculate cell potentials correctly. Discusses common misconceptions and possible sources of these. Contains 33 references.…

  14. Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro

    OpenAIRE

    Kasten, P; I Beyen; Egermann, M.; AJ Suda; AA Moghaddam; Zimmermann, G; R Luginbühl

    2008-01-01

    In regenerative medicine, there is an approach to avoid expansion of the mesenchymal stem cell (MSC) before implantation. The aim of this study was to compare methods for instant MSC therapy by use of a portable, automatic and closed system centrifuge that allows for the concentration of MSCs. The main outcome measures were the amount of MSCs per millilitre of bone marrow (BM), clusters of differentiation (CD), proliferation and differentiation capacities of the MSC. A volume reduction protoc...

  15. New nonimaging static concentrators for bifacial photovoltaic solar cells

    Science.gov (United States)

    Benitez, Pablo; Hernandez, Maikel; Mohedano Arroyo, Ruben; Minano, Juan C.; Munoz, Fernando

    1999-10-01

    Two new static nonimaging designs for bifacial solar cells are presented. These concentrators have been obtained with the Simultaneous Multiple Surface design method of Nonimaging Optics. The main characteristics of these concentrators are: (1) high compactness, (2) linear symmetry (in order to be made by low cost extrusion), (3) performance close to the thermodynamic limit, and (4) a non-shading sizable gap between at least one of the cell edges and the optically active surfaces. This last feature is interesting because this gap can be used to allocate the interconnections between cells, with no additional optical losses. As an example of the results, one design for an acceptable angle of +/- 30 degrees gets a geometrical concentration of 5.5X, with an average thickness to entry aperture width ratio of 0.24. The 3D ray-tracing analysis of the concentrators is also presented.

  16. Effect of impurity doping concentration on solar cell output

    Science.gov (United States)

    Iles, P. A.; Soclof, S. I.

    1975-01-01

    Experimental measurements were made of solar cell and related photovoltaic parameters for silicon with high concentrations of dopant impurities. The cell output peaked for doping levels around 10 to the 17th power per cu cm. Independent measurements of diffusion length and open circuit voltage at high doping levels showed severe reductions at concentrations above 10 to the 18th power per cu cm. Theoretical reasons are given to explain these reductions. Indication is given of the problems requiring solution before increased cell output can be achieved at high doping levels.

  17. Cell for determination of tritium concentration by liquid radiometer

    International Nuclear Information System (INIS)

    An optimized cell is described for determination of tritium concentration in the form of tritiated water by a liquid scintillation radiometer at a level of 104 Bq/m3. The cell is made of Teflon and has a wall thickness of 0.8-1.0 mm. The useful capacity of the cell is 45 cm3 (5 cm3 of tritiated water and 40 cm3 of ZhS-81 liquid scintillator)

  18. 42% 500X Bi-Facial Growth Concentrator Cells

    Science.gov (United States)

    Wojtczuk, S.; Chiu, P.; Zhang, X.; Pulver, D.; Harris, C.; Siskavich, B.

    2011-12-01

    Data are presented from three-junction concentrator photovoltaic cells using a new cell architecture (1.9 eV InGaP top cell lattice-matched to a 1.42 eV GaAs middle cells on one side of a infrared-transparent GaAs wafer with a lattice-mismatched 0.95 eV InGaAs bottom cell grown isolated on the wafer backside). The cell uses a new epitaxial bifacial growth (BFG) technique. The impetus is to replace the 0.67 eV Ge bottom cell in the standard three junction InGaP/GaAs/Ge tandems with a higher bandgap 0.95 eV InGaAs cell that boosts the bottom cell voltage by about 40% while maintaining a simple high-yield cell process without use of complex large area epitaxial liftoff or wafer bonding steps used to make similar cell stacks. Efficiency was independently-verified by NREL for a 1 cm×1 cm cell (42.3% at 406 suns, with Voc 3.452V, 87.1% FF and 1xJsc of 14.07 mA/cm2, at 25 °C AM1.5D, 100 mW/cm2), which was the world record at the time of the CPV-7 conference. No degradation was seen during concentrated solar operation after a 2000 hr 165C burn-in and PbSn solder tests. Average efficiency of 1 cm2 cells designed for 500 suns at 1018 suns was 40.5% (Spire test, 25 °C, spectrally corrected flash simulator). Measured efficiency temperature coefficient for gen2 cells is -0.06%/°C, similar to InGaP/GaAs/Ge tandems.

  19. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  20. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    Science.gov (United States)

    Solano, Manuel E.; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.; Lakhtakia, Akhlesh

    2013-11-01

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  1. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Manuel E.; Monk, Peter B. [Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 (United States); Faryad, Muhammad; Lakhtakia, Akhlesh, E-mail: akhlesh@psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mallouk, Thomas E. [Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2013-11-04

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  2. Effect of Temperature on the AlGaAs/GaAs Tandem Solar Cell for Concentrator Photovoltaic Performances

    OpenAIRE

    Hemmani Abderrahmane; B. Dennai; H. Khachab; A. Helmaoui

    2016-01-01

    Multijunction solar cells for concentrator photovoltaic (CPV) systems have attracted increasing attention in recent years for their very high conversion efficiencies. But there is a problem in this type of solar cells (CPV) is to increase the temperature if it has been augmenting the concentration ratio. In this paper, we studied the effect of the concentration photovoltaic in a high-efficiency double-junction devices solar cell on temperature solar cell and its impact on the photocurrent, th...

  3. Methods and systems for concentrated solar power

    Science.gov (United States)

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  4. Advanced photovoltaic concentrator system low-cost prototype module

    Energy Technology Data Exchange (ETDEWEB)

    Kaminar, N.R.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

    1991-09-01

    This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted in a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.

  5. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    Science.gov (United States)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  6. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring.

    Science.gov (United States)

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 2(2) full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725

  7. Concept of Bee-Eyes Array of Fresnel Lenses as a Solar Photovoltaic Concentrator System

    OpenAIRE

    Nura Liman Chiromawa; Kamarulazizi Ibrahim

    2015-01-01

    This paper presents a proposal of a new configuration of an optical concentrator for photovoltaic application which may enhance the efficiency of solar cells. Bee-eyes array Fresnel lenses concentrator proposed here provide high concentration factor which is greater than1000x at the 20th zone. In addition, the system also provides room for increasing the number of zones to achieve the high concentration factor if needs arise. The transmission efficiency greater than 90% has been achieved with...

  8. Effects of Aroclor 1254 on dopamine and norepinephrine concentrations in pheochromocytoma (PC-12) cells

    International Nuclear Information System (INIS)

    Pheochromocytoma (PC-12) cells synthesize, store, release and metabolize dopamine (DA) and norepinephrine (NE) in a manner analogous to that observed in the mammalian central nervous system. These cells were used to develop and validate an alternate method to animal testing to assess the effects of a complex environmental mixture of polychlorinated biphenyls (Aroclor 1254) on cellular catecholamine function. Aroclor 1254, at concentrations of 1 to 100 ppm, significantly decreased cellular catecholamine concentrations after 6 hrs. Exposure at 100 ppm for periods of less than an hr increased cellular catecholamine concentrations while longer exposure times (i.e., 1 to 24 hr) decreased cellular catecholamine concentrations. This in vitro depletion of catecholamines is similar to that seen in vivo. Thus, PC-12 cells may be useful for neurochemical evaluation of neurotoxicants with particular reference to effects on catecholaminergic systems

  9. System for particle concentration and detection

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  10. Cell Maintenance Systems

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  11. The Stability-Concentration Relationship in the Brazilian Banking System

    OpenAIRE

    Benjamin Miranda Tabak; Solange Maria Guerra; Eduardo José Araújo Lima; Eui Jung Chang

    2007-01-01

    In this article the relation between non-performing loans (NPL) of the Brazilian banking system and macroeconomic factors, systemic risk and banking concentration is empirically tested. While evaluating this relation, we use a dynamic specification with fixed effects, using a panel data approach. The empirical results indicate that the banking concentration has a statistically significant impact on NPL, suggesting that more concentrated banking systems may improve financial stability. These r...

  12. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    OpenAIRE

    Tsung Chieh Cheng; Chao Kai Yang; Lin, I.

    2016-01-01

    In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately main...

  13. Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    P Kasten

    2008-10-01

    Full Text Available In regenerative medicine, there is an approach to avoid expansion of the mesenchymal stem cell (MSC before implantation. The aim of this study was to compare methods for instant MSC therapy by use of a portable, automatic and closed system centrifuge that allows for the concentration of MSCs. The main outcome measures were the amount of MSCs per millilitre of bone marrow (BM, clusters of differentiation (CD, proliferation and differentiation capacities of the MSC. A volume reduction protocol was compared to the traditional laboratory methods of isolation using a Ficoll gradient and native BM. Fifty millilitres of BM were obtained from haematologically healthy male Caucasians (n=10, age 8 to 49 years. The number of colony forming units-fibroblast (CFU-F/ml BM was highest in the centrifuge volume reduction protocol, followed by the native BM (not significant, the centrifuge Ficoll (p=0.042 and the manual Ficoll procedure (p=0.001. The MSC of all groups could differentiate into the mesenchymal lineages without significant differences between the groups. The CD pattern was identical for all groups: CD13+; CD 44+; CD73 +; CD90+; CD105+; HLA-A,B,C+; CD14-; CD34-; CD45-; CD271-; HLA-DR-. In a further clinical pilot study (n=5 with 297 ml BM (SD 18.6, the volume reduction protocol concentrated the MSC by a factor of 14: there were 1.08 x 102 MSC/ml BM (standard deviation (SD 1.02 x 102 before concentration, 14.8 x 102 MSC/ ml BM (SD 12.4 x 102 after concentration, and on average 296 x 102 MSC (SD 248.9 x 102, range 86.4-691.5 x 102 were available for MSC therapy. The volume reduction protocol of the closed centrifuge allows for the highest concentration of the MSC, and therefore, is a promising candidate for instant stem cell therapy.

  14. Mechanically Stacked Four-Junction Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kurtz, Sarah R.

    2015-06-14

    Multijunction solar cells can be fabricated by bonding together component cells that are grown separately. Because the component cells are each grown lattice-matched to suitable substrates, this technique allows alloys of different lattice constants to be combined without the structural defects introduced when using metamorphic buffers. Here we present results on the fabrication and performance of four-junction mechanical stacks composed of GaInP/GaAs and GaInAsP/GaInAs tandems, grown on GaAs and InP substrates, respectively. The two tandems were bonded together with a low-index, transparent epoxy that acts as an omni-directional reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the sub-bandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and thus higher subcell voltage, compared with GaAs subcells without enhanced internal optics; all four subcells exhibit excellent material quality. The device was fabricated with four contact terminals so that each tandem can be operated at its maximum power point, which raises the cumulative efficiency and decreases spectral sensitivity. Efficiencies exceeding 38% at one-sun have been demonstrated. Eliminating the series resistance is the key challenge for the concentrator cells. We will discuss the performance of one-sun and concentrator versions of the device, and compare the results to recently fabricated monolithic four-junction cells.

  15. Reversible degradation of inverted organic solar cells by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manor, Assaf; Katz, Eugene A; Krebs, Frederik C

    2011-01-01

    cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the....... The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O2 desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward...

  16. Concentrate composition for Automatic Milking Systems - Effect on milking frequency

    DEFF Research Database (Denmark)

    Madsen, J; Weisbjerg, Martin Riis; Hvelplund, Torben

    2010-01-01

    The purpose of this study was to investigate the potential of affecting milking frequency in an Automatic Milking System (AMS) by changing ingredient composition of the concentrate fed in the AMS. In six experiments, six experimental concentrates were tested against a Standard concentrate all...... the Standard concentrate. A marked effect was found on the number of visits of the cows in the AMS and the subsequent milk production in relation to composition of the concentrate. The composition of the concentrates also influenced the composition of the milk and the MR intake. Based on the overall...

  17. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  18. On-line monitoring of cell concentration of Perilla frutescens in a bioreactor

    International Nuclear Information System (INIS)

    This article demonstrates the successful in situ real-time monitoring of the cell concentration of Perilla frutescens in a bioreactor by using a laser turbidimeter. It was found that turbidity measurements at 780 nm with the laser sensor were hardly affected by the red color of the anthocyanin produced by P. frutescens cells, nor by the aeration rate or agitation speed within the ranges investigated. There was an excellent linear relationship, with a correlation coefficient (r2) higher than 0.99, between the sensor's response and the cell concentration. The whole growth stage of the cells, i.e., lag, logarithmic, and stationary phases, in bioreactor cultivations, could be satisfactorily estimated on-line by means of the in situ turbidimeter. However, during the declining phase of the cells, an apparent deviation was observed between the on-line estimations and off-line measurements of cell concentrations by dry cell weight, while the wet cell weight could be estimated by the same turbidimeter system. We found that this deviation was caused by a decrease in the cell density due to an increase of the individual cell volume and a decrease of the cell dry weight during the declining phase

  19. Fluctuations, Correlations and the Estimation of Concentrations inside Cells

    Science.gov (United States)

    Pérez Ipiña, Emiliano; Ponce Dawson, Silvina

    2016-01-01

    Information transmission in cells occurs quite accurately even when concentration changes are “read” by individual binding sites. In this paper we study ligand number and site occupancy fluctuations when ligands diffuse and react going beyond the analyses that focus on their asymptotic decay. In this way we show that, for immobile binding sites, fluctuations in the number of bound molecules decay on a relatively fast scale before the asymptotic behavior kicks in. This result can explain the observed co-existence of highly fluctuating instantaneous transcriptional activities with accumulated mRNA concentrations that have relatively small noise levels. We also show that the initial stages of the decay in the bound molecule number fluctuations have one or two characteristic timescales depending on the concentration of free molecules. This transition can explain the changes in enzyme activity observed at the single molecule level. PMID:26962863

  20. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  1. Fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  2. Improved low concentration gas detection system based on intracavity fiber laser

    Science.gov (United States)

    Zhang, Hongxia; Liu, Kun; Jia, Dagong; Xu, Tianhua; Liu, Tiegen; Peng, Gangding; Jing, Wencai; Zhang, Yimo

    2011-02-01

    The improvement of a low concentration gas detection system based on the intracavity fiber laser is proposed in this paper. The sensitivity of the system is deduced based on Lambert-Beer law. The optimized system was established with the gas cell made elaborately. In order to apply the wavelength sweeping technique, the fiber Bragg grating reflector was substituted by the wavelength independent Faraday rotation reflector. The sensitivity of the system for acetylene detection is reduced to less than 100 ppm by using the average of three absorption spectra. The acetylene detection coefficients of variation with different concentrations are measured. The gas measurement system is validated to detect low concentration gas effectively.

  3. Terrestrial photovoltaic power systems with sunlight concentration. Annual progress report, January 1, 1975--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Backus, C.E.

    1976-01-31

    This annual report is for the second year of a program to investigate the characteristics of the components and the total system using sunlight concentrated onto solar cells. The second year was primarily to experimentally investigate the conclusions of the first year of analytical studies. Cells have been fabricated that are designed for different intensities. Typically the efficiency of a cell will increase from its 11 percent at AM1 peak to efficiency at the designed concentration level and return to its initial efficiency at about 3 times its designed concentration level. The developed cells have been tested under high intensity simulators and in concentrated sunlight and have shown to have the predicted response. The experimental testing of passive cooling limitations for cooling cells with just finned arrangements in the back of the cell has been completed in the controlled environment of a wind tunnel. These experiments have confirmed the heat transfer coefficients that had been used in the analytical studies. Testing was done to collect heat transfer coefficients for actual wind conditions and these data show good agreement with the controlled wind tunnel data. Four photovoltaic/concentrator system experiments have been started with CR of about 3, 10, 25, and 100. System analysis has indicated that photovoltaic concentration systems may be attractive in low solar irradiation areas such as Cleveland.

  4. Thermal annealing of GaAs concentrator solar cells

    Science.gov (United States)

    Curtis, H. B.; Brinker, David J.

    1991-01-01

    Isochronal and isothermal annealing tests were performed on GaAs concentrator cells which were irradiated with electrons of various energies to fluences up to 1 x 10(exp 16) e/sq cm. The results include: (1) For cells irradiated with electrons from 0.7 to 2.3 MeV, recovery decreases with increasing electron energy. (2) As determined by the un-annealed fractions, isothermal and isochronal annealing produce the same recovery. Also, cells irradiated to 3 x 10(exp 15) or 1 x 10(exp 16) e/sq cm recover to similar un-annealed fractions. (3) Some significant annealing is being seen at 150 C although very long times are required.

  5. GaAs quantum dot solar cell under concentrated radiation

    International Nuclear Information System (INIS)

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1–1.3 found from the VOC-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40–90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ∼40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns

  6. GaAs quantum dot solar cell under concentrated radiation

    Science.gov (United States)

    Sablon, K.; Li, Y.; Vagidov, N.; Mitin, V.; Little, J. W.; Hier, H.; Sergeev, A.

    2015-08-01

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%-19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1-1.3 found from the VOC-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40-90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ˜40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns.

  7. Comment on ''A strategy of estimating fuel concentration in a direct liquid-feed fuel cell system'' [Y.J. Chiu, H.C. Lien, Journal of Power Sources 159 (2006) 1162-1168

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Xie, Xiaofeng; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2008-12-01

    The strategy for estimating the methanol concentration provided by Chiu and Lien [Y.J. Chiu, H.C. Lien, Journal of Power Sources 159 (2006) 1162-1168] overlooks the performance degradation (PD) of a direct methanol fuel cell (DMFC). In addition, the method may not be suitable in practice. (author)

  8. Memory CD8(+) T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function.

    Science.gov (United States)

    Balmer, Maria L; Ma, Eric H; Bantug, Glenn R; Grählert, Jasmin; Pfister, Simona; Glatter, Timo; Jauch, Annaïse; Dimeloe, Sarah; Slack, Emma; Dehio, Philippe; Krzyzaniak, Magdalena A; King, Carolyn G; Burgener, Anne-Valérie; Fischer, Marco; Develioglu, Leyla; Belle, Réka; Recher, Mike; Bonilla, Weldy V; Macpherson, Andrew J; Hapfelmeier, Siegfried; Jones, Russell G; Hess, Christoph

    2016-06-21

    How systemic metabolic alterations during acute infections impact immune cell function remains poorly understood. We found that acetate accumulates in the serum within hours of systemic bacterial infections and that these increased acetate concentrations are required for optimal memory CD8(+) T cell function in vitro and in vivo. Mechanistically, upon uptake by memory CD8(+) T cells, stress levels of acetate expanded the cellular acetyl-coenzyme A pool via ATP citrate lyase and promoted acetylation of the enzyme GAPDH. This context-dependent post-translational modification enhanced GAPDH activity, catalyzing glycolysis and thus boosting rapid memory CD8(+) T cell responses. Accordingly, in a murine Listeria monocytogenes model, transfer of acetate-augmented memory CD8(+) T cells exerted superior immune control compared to control cells. Our results demonstrate that increased systemic acetate concentrations are functionally integrated by CD8(+) T cells and translate into increased glycolytic and functional capacity. The immune system thus directly relates systemic metabolism with immune alertness. PMID:27212436

  9. Effect of Irradiation on Microparticles in Red Blood Cell Concentrates.

    Science.gov (United States)

    Cho, Chi Hyun; Yun, Seung Gyu; Koh, Young Eun; Lim, Chae Seung

    2016-07-01

    Changes in microparticles (MP) from red blood cell (RBC) concentrates in the context of irradiation have not been investigated. The aim of this study was to evaluate how irradiation affects the number of MPs within transfusion components. Twenty RBC concentrates, within 14 days after donation, were exposed to gamma rays (dose rate: 25 cGy) from a cesium-137 irradiator. Flow cytometry was used to determine the numbers of MPs derived from RBC concentrates before and 24 hr after irradiation. The mean number of MPs (±standard deviation) in RBC concentrates was 21.9×10⁹/L (±22.7×10⁹/L), and the total number of MPs ranged from 2.6×10⁹/L to 96.9×10⁹/L. The mean number of MPs increased to 22.6×10⁹/L (±31.6×10⁹/L) after irradiation. Before irradiation, the CD41-positive and CD235a-positive MPs constituted 9.5% (1.0×10⁹/L) and 2.2% (263×10⁶/L) of total MPs, respectively. After irradiation, CD41-positive MPs increased to 12.1% (1.5×10⁹/L) (P=0.014), but the CD235a-positive MPs decreased to 2.0% (214×10⁶/L) of the total MPs (P=0.369). Irradiation increases the number of CD41-positive MPs within RBC concentrates, suggesting the irradiation of RBC concentrates could be associated with thrombotic risk of circulating blood through the numerical change. PMID:27139610

  10. Ascorbate concentrations in vitro and in vivo, and their role in the radiation response of cells

    International Nuclear Information System (INIS)

    Hydrogen-atom or electron-transfer reactions of ascorbate are often invoked in discussing its potential role in radiobiology and free radical damage by cytotoxins, but detailed information on actual levels in experimental systems is lacking. A range of 0-250 μM ascorbate is present in several commonly used mammalian cell culture media. V79 379A Chinese hamster cells can concentrate ascorbate from medium containing 200 or 500 μM ascorbate but when ascorbate is absent in medium, cells do not appear to contain a significant amount. Tumour concentrations are approximately 1mM, similar to that of glutathione (GSH). There is much current interest in depleting cells of GSH to enhance radiosensitivity, and ascorbate is maintained by a GSH dependent enzyme, glutathione dehydrogenase. Data is presented on the effect of GSH depletion by buthionine sulphoximine on cell and tumour ascorbate levels, and the effect of ascorbate on in vitro radiosensitivity, and misonidazole sensitizing efficiency

  11. Elevated Concentrations of Serum Immunoglobulin Free Light Chains in Systemic Lupus Erythematosus Patients in Relation to Disease Activity, Inflammatory Status, B Cell Activity and Epstein-Barr Virus Antibodies

    DEFF Research Database (Denmark)

    Draborg, Anette H; Lydolph, Magnus C; Westergaard, Marie; Olesen Larsen, Severin; Nielsen, Christoffer T; Duus, Karen; Jacobsen, Søren; Houen, Gunnar

    2015-01-01

    OBJECTIVE: In this study, we examined the concentration of serum immunoglobulin free light chains (FLCs) in systemic lupus erythematosus (SLE) patients and investigated its association with various disease parameters in order to evaluate the role of FLCs as a potential biomarker in SLE. Furthermore......, FLCs' association with Epstein-Barr virus (EBV) antibodies was examined. METHODS: Using a nephelometric assay, κFLC and λFLC concentrations were quantified in sera from 45 SLE patients and 40 healthy controls. SLE patients with renal insufficiency were excluded in order to preclude high concentrations...... of serum FLCs due to decreased clearance. RESULTS: Serum FLC concentrations were significantly elevated in SLE patients compared to healthy controls (p<0.0001) also after adjusting for Ig levels (p<0.0001). The concentration of serum FLCs correlated with a global disease activity (SLE disease...

  12. Entanglement Concentration for Higher-Dimensional Quantum Systems

    Institute of Scientific and Technical Information of China (English)

    姚春梅; 顾永建; 叶柳; 郭光灿

    2002-01-01

    Using local operations and classicalcommunication, we present two schemes for realizing entanglement concentration from pure entangled pairs of qutrits. These methods can be easily generalized to d-dimensional (d > 3)quantum systems.

  13. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing

    Science.gov (United States)

    Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.

    2013-06-01

    Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.

  14. Development of Fresnel-based Concentrated Photovoltaic (CPV) System with Uniform Irradiance

    OpenAIRE

    Irfan Ullah

    2014-01-01

    Different designs have been presented to achieve high concentration and uniformity for the concentrated photovoltaic (CPV) system. Most of the designs have issues of low efficiency in terms of irradiance uniformity. To this end, we present a design methodology to increase irradiance uniformity over solar cell. The system consists of an eight-fold Fresnel lens as a primary optical element (POE) and an optical lens, which consists of eight parts, as a secondary optical element (SOE). Sunlight i...

  15. Steam electrolysis cell system and electrolyzing method

    International Nuclear Information System (INIS)

    The present invention concerns a method effective to the electrolysis of tritium water in a tritium recovering system of a thermonuclear fuel system. Namely, in a steam electrolysis cell system including integrally constituted multistage type cells and independently disposed single stage type cell, steams are supplied from upstream to the multistage type cell. A voltage is applied at such a level that the concentration of the steams in the vicinity of the single stage type cell situated at the downmost stream among the cells is not decreased to 0 to electrolyze steams. Then, not yet decomposed steams are introduced to the single stage cell to complete the electrolysis. The device can be simplified and steams can be electrolyzed efficiently. (N.H.)

  16. Estimating Of Etchant Copper Concentration In The Electrolytic Cell Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibrahem

    2013-05-01

    Full Text Available      In  this paper, Artificial Neural Networks (ANN, which are known for their ability to model nonlinear systems, provide accurate approximations of system behavior and are typically much more computationally efficient than phenomenological models  are used to predict the etchant copper concentration in the electrolytic cell in terms of electric potential, operating time, temperature of the electrolytic cell , ratio of surface area of poles per unit volume of solution  and the distance between poles. In this paper 350 sets of data are used to trained and test the network.. The best results were achieved using a model based on a feedforword Artificial Neural Network (ANN with one hidden layer and fifteen neurons in the hidden layer gives a very close prediction of the copper concentration in the electrolytic cell.

  17. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    OpenAIRE

    Longzhou Zhang; Dengwei Jing; Liang Zhao; Jinjia Wei; Liejin Guo

    2012-01-01

    Photovoltaic (PV) power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T), combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system ...

  18. ITABIRITE IRON ORE CONCENTRATION BY PNEUMATIC FLOTATION CELL

    OpenAIRE

    Angelo Quintiliano Nunes da Silva; Luiz Cláudio Monteiro Montenegro; Roberto Galer; Henrique Dias Gatti Turrer; Douglas Batista Mazzinghy; Luiz Carlos de Aquino Junior

    2015-01-01

    The main iron ore processing plants in Brazil operate through reverse cationic flotation. Many studies have been conducted in order to improve flotation efficiency by optimization process variables. The pneumatic flotation cell stands out due to the simplicity to and to the intense contact particle/bubble promoted by the pulp feeding system. In this study, laboratory scale and pilot were conducted using a sample of itabirite iron ore. The objectives are evaluating the performance ...

  19. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  20. A Concentration Behavior for Semilinear Elliptic Systems with Indefinite Weight

    Institute of Scientific and Technical Information of China (English)

    Xue Xiu ZHONG; Wen Ming ZOU

    2014-01-01

    Consider the Schr¨odinger system where Ω ⊂ RN , α,β > 1, α +β 0}shrink to a point x0∈Ω as n→+∞. We obtain the concentration phenomenon. Precisely, we first show that the system has a nontrivial solution (un, vn) corresponding to Qn, then we prove that the sequences (un) and (vn) concentrate at x0 with respect to the H1-norm. Moreover, if the sets {Qn >0} shrink to finite points and (un, vn) is a ground state solution, then we must have that both un and vn concentrate at exactly one of these points. Surprisingly, the concentration of un and vn occurs at the same point. Hence, we generalize the results due to Ackermann and Szulkin [Arch. Rational Mech. Anal., 207, 1075-1089 (2013)].

  1. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), J; David Allison (NOEMAIL), D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  2. Investigation of evacuated tube heated by solar trough concentrating system

    International Nuclear Information System (INIS)

    Two types of solar evacuated tube have been used to measure their heating efficiency and temperature with fluids of water and N2 respectively with a parabolic trough concentrator. Experiments demonstrate that both evacuated tubes present a good heat transfer with the fluid of water, the heating efficiency is about 70-80%, and the water is easy to boil when liquid rate is less than 0.0046 kg/s. However, the efficiency of solar concentrating system with evacuated tube for heating N2 gas is less than 40% when the temperature of N2 gas reaches 320-460 deg. C. A model for evacuated tube heated by solar trough concentrating system has been built in order to further analyze the characteristics of fluid which flow evacuated tube. It is found that the model agrees with the experiments to within 5.2% accuracy. The characteristics of fluid via evacuated tube heated by solar concentrated system are analyzed under the varying conditions of solar radiation and trough aperture area. This study supports research work on using a solar trough concentrating system to perform ammonia thermo-chemical energy storage for 24 h power generation. The current research work also has application to solar refrigeration

  3. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  4. Development of Fresnel-based Concentrated Photovoltaic (CPV System with Uniform Irradiance

    Directory of Open Access Journals (Sweden)

    Irfan Ullah

    2014-12-01

    Full Text Available Different designs have been presented to achieve high concentration and uniformity for the concentrated photovoltaic (CPV system. Most of the designs have issues of low efficiency in terms of irradiance uniformity. To this end, we present a design methodology to increase irradiance uniformity over solar cell. The system consists of an eight-fold Fresnel lens as a primary optical element (POE and an optical lens, which consists of eight parts, as a secondary optical element (SOE. Sunlight is focused through the POE and then light is spread over cell through the SOE. In the design, maximum sunlight is passed over cell by minimizing losses. Results have shown that the proposed CPV design gives good irradiance uniformity. The concentration module based on this novel design is a promising option for the development of a cost-effective photovoltaic solar energy generation.

  5. Experimental Identification of Concentrated Nonlinearity in Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Nayfeh Ali H

    2012-07-01

    Full Text Available Identification of concentrated nonlinearity in the torsional spring of an aeroelastic system is performed. This system consists of a rigid airfoil that is supported by a linear spring in the plunge motion and a nonlinear spring in the pitch motion. Quadratic and cubic nonlinearities in the pitch moment are introduced to model the concentrated nonlinearity. The representation of the aerodynamic loads by the Duhamel formulation yielded accurate values for the flutter speed and frequency. The results show that the use of the Duhamel formulation to represent the aerodynamic loads yields excellent agreement between the experimental data and the numerical predictions.

  6. Study on Flux Distributions Produced by Dish Solar Concentration System

    International Nuclear Information System (INIS)

    Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. This is one of the reasons that we were interested in developing a solar-powered high efficient system which can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. In order to utilize the solar energy at high temperatures, here we used a solar energy collecting system that mainly consists of a parabolic dish concentrator and a cavity receiver. For the system considered, it is essential to minimize thermal losses and maximize the energy density for the procurement of high temperature, high efficiency systems. In solar energy applications, parabolic reflectors are employed to concentrate incoming radiation onto a smaller receiver. This is why concentrators can reduce heat losses in thermal collectors. The characteristics of the focal plane flux distributions produced by a dish solar concentration system were investigated to design and rightly position a cavity receiver. This deemed also very useful to find and correct various errors associated with a dish concentrator. The video graphic flux mapping was used to investigate flux distributions in the focal plane located at the aperture of the cavity receiver. The concentrator used in this study consists of 5 parabolic reflectors, each with 1m in diameter, which are made of 3mm thick back-silvered glass. The nominal focal length of the concentrator is 2.20m. In this study, 1) We estimated the flux density distribution on the target placed at 2.11m, 2.14m, 2.17m, 2.20m, 2.23m, 2.26m from the dish vertex to experimentally determine the focal length. It is observed that the actual focal point exists when the focal length is 2.17m with a maximum flux density of 1.89 MW/m2. 2) By evaluating the position of flux centroid, it was found that there are errors within 2cm from the target center. This validates that our system is well

  7. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  8. A concentrator photovoltaic system based on branched planar waveguides

    Science.gov (United States)

    Arizono, Kazuma; Amano, Ryo; Okuda, Yuuto; Fujieda, Ichiro

    2012-10-01

    We propose a concentrator photovoltaic system based on a planar waveguide. Here, the waveguide has one stem at one end and the other end is divided into multiple branches. A right-angle prism is attached to each end of the branches. A lens-array is stacked on the waveguide such that each prism is placed near a focal point of a corresponding lens. Its 45-degree slope leads the focused sun light into the waveguide via total internal reflection. The light propagates inside the waveguide and its intensity increases at each branching point. A solar cell is coupled to the end of the stem for photoelectric conversion. The branched portion can be either straight or curved. In both cases, according to our ray tracing simulations, the light loss inside the waveguide becomes negligible when we set the focal length of the lens larger than a certain value. For example, this value is 300mm for a 5mm-thick, 150mm-long straight waveguide coupled to a lens-array with a lens diameter of 90mm. This number is reduced to 220mm for a curved waveguide. It is further reduced to 100mm when we assume 100% reflection at the 45-degree slope. In these cases, the efficiency defined as the ratio of the optical power exiting the waveguide to one entering the lens-array is close to 87%. The major loss mechanism is the Fresnel reflections at the lens surfaces (8%) and the prism surfaces (3%). The rest is mostly due to the absorption by the material assumed for the waveguide (PMMA) (1-2%).

  9. The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis

    Science.gov (United States)

    Agbogbo, Frank K.; Coward-Kelly, Guillermo; Torry-Smith, Mads; Wenger, Kevin; Jeffries, Thomas W.

    Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was produced when the initial cell concentrations were high, cell density had no effect on the final ethanol yield. A two-parameter mathematical model was used to predict the cell population dynamics at the different initial cell concentrations. The model parameters, a and b correlate with the initial cell concentrations used with an R 2 of 0.99.

  10. EFFECTS OF PDGF-BB ON INTRACELLULAR CALCIUM CONCENTRATION AND PROLIFERATION IN CULTURED GLOMERULAR MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; ZHANG Chong; BIAN Fan; ZOU Jun; JIANG Geng-ru; ZHU Han-wei

    2006-01-01

    Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured.Intracellular calcium concentrations were measured by confocal Laser Scanning Microscopy and Fura-3 fluorescence dyeing techniques. Cell growth was measured by MTT assay. Results PDGF-BB increased intracellular calcium concentrations in a dose-dependent manner, and at the same time promote the proliferation of mesangial cells. After preincubation with calcium channel blocker nifedipine or angiotensin converting enzyme inhibitor captopril, both the increase of intracellular calcium concentrations and cell proliferations induced by PDGF-BB were inhibited. Tripterigium Wilfordii Glycosides (TMG) significantly inhibited the mesangial cell proliferations, but it had no significant effect on intracellular calcium concentrations. Conclusion There was a positive relationship between the elevation of intracellular calcium concentration and cell proliferation in glomerular mesangial cells, but the increase of in- tracellular calcium concentrations wasn't the only way for proliferation.

  11. Sharp Concentration of Hitting Size for Random Set Systems

    CERN Document Server

    Deering, Jessie; Jamieson, William; Petito, Lucia

    2012-01-01

    Consider the random set system of {1,2,...,n}, where each subset in the power set is chosen independently with probability p. A set H is said to be a hitting set if it intersects each chosen set. The second moment method is used to exhibit the sharp concentration of the minimal size of H for a variety of values of p.

  12. Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass

    Science.gov (United States)

    Benardini, James N.; LaDuc, Myron T.; Diamond, Rochelle

    2012-01-01

    Frequently there is an inability to process and analyze samples of low biomass due to limiting amounts of relevant biomaterial in the sample. Furthermore, molecular biological protocols geared towards increasing the density of recovered cells and biomolecules of interest, by their very nature, also concentrate unwanted inhibitory humic acids and other particulates that have an adversarial effect on downstream analysis. A novel and robust fluorescence-activated cell-sorting (FACS)-based technology has been developed for purifying (removing cells from sampling matrices), separating (based on size, density, morphology), and concentrating cells (spores, prokaryotic, eukaryotic) from a sample low in biomass. The technology capitalizes on fluorescent cell-sorting technologies to purify and concentrate bacterial cells from a low-biomass, high-volume sample. Over the past decade, cell-sorting detection systems have undergone enhancements and increased sensitivity, making bacterial cell sorting a feasible concept. Although there are many unknown limitations with regard to the applicability of this technology to environmental samples (smaller cells, few cells, mixed populations), dogmatic principles support the theoretical effectiveness of this technique upon thorough testing and proper optimization. Furthermore, the pilot study from which this report is based proved effective and demonstrated this technology capable of sorting and concentrating bacterial endospore and bacterial cells of varying size and morphology. Two commercial off-the-shelf bacterial counting kits were used to optimize a bacterial stain/dye FACS protocol. A LIVE/DEAD BacLight Viability and Counting Kit was used to distinguish between the live and dead cells. A Bacterial Counting Kit comprising SYTO BC (mixture of SYTO dyes) was employed as a broad-spectrum bacterial counting agent. Optimization using epifluorescence microscopy was performed with these two dye/stains. This refined protocol was further

  13. Fuel cell based hybrid systems

    OpenAIRE

    Davat, B.; Astier, S.; Bethoux, O.; CANDUSSO,D; Coquery, G.; DE-BERNARDINIS, A; DRUART, F; Francois, M; GARCIA ARREGUI, F; Harel, F.

    2009-01-01

    This paper presents different works which are currently developed in the field of fuel cell hybrid systems indifferent public laboratories in France. These works are presented in three sections corresponding to: 1. Hybrid fuel cell/battery or supercapacitor power sources; 2. Fuel cell multistack power sources; 3. Fuel cell in hybrid power systems for distributed generation. The presented works combine simulation and experimental results.

  14. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin;

    2015-01-01

    thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells, and...... high flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so that these...... determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells...

  15. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.

    Science.gov (United States)

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V; Ryu, Jae Ha; Johnson, Harley T; Nuzzo, Ralph G; Rogers, John A

    2011-01-01

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics. PMID:21673664

  16. Data concentrator requirements for a safety parameter display system

    International Nuclear Information System (INIS)

    To comply with NUREG 0696 several nuclear plants are being fitted with new facilities and data systems; specifically a Technical Support Center (TSC), Operational Support Center (OSC), Emergency Operational Facility (EOF), and Backup Safety Parameter Display System (SPDS), Emergency Response Computer System (ERCS) and Nuclear Data Link (NDL). The TSC, OSC, and EOF are physical locations while the SPDS, ERCS, and NDL are Systems. The SPDS and ERCS are usually separate and independent systems, however, they may share a common front end data acquisition system that acquires and sends SPDS related data to both the SPDS and to the ERCS. In the situation just described an SPDS system must depend upon input data from a source that is SPDS host computer independent. To achieve this independence the front end data acquisition system may employ a concept of intelligent distributed processing. This concept essentially takes functional capabilities that were once found only in realtime host computers and distributes it to front end data acquisition systems. Thus by expanding the functionality of the data acquisition system in a manner that provides more capability, independence from the computer vendor, links to multiple computer systems, processing power and redundancy, the concept of a data concentrator evolved. This paper will define this new distributed functionality, and its related requirements. It will also examine different system configuration approaches

  17. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.

    Science.gov (United States)

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-07-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry. PMID:26392831

  18. Effects of Nonuniform Incident Illumination on the Thermal Performance of a Concentrating Triple Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Fahad Al-Amri

    2014-01-01

    Full Text Available A numerical heat transfer model was developed to investigate the temperature of a triple junction solar cell and the thermal characteristics of the airflow in a channel behind the solar cell assembly using nonuniform incident illumination. The effects of nonuniformity parameters, emissivity of the two channel walls, and Reynolds number were studied. The maximum solar cell temperature sharply increased in the presence of nonuniform light profiles, causing a drastic reduction in overall efficiency. This resulted in two possible solutions for solar cells to operate in optimum efficiency level: (i adding new receiver plate with higher surface area or (ii using forced cooling techniques to reduce the solar cell temperature. Thus, surface radiation exchanges inside the duct and Re significantly reduced the maximum solar cell temperature, but a conventional plain channel cooling system was inefficient for cooling the solar cell at medium concentrations when the system was subjected to a nonuniform light distribution. Nonuniformity of the incident light and surface radiation in the duct had negligible effects on the collected thermal energy.

  19. Does the intracellular ionic concentration or the cell water content (cell volume) determine the activity of TonEBP in NIH3T3 cells?

    DEFF Research Database (Denmark)

    Rødgaard, Tina; Schou, Kenneth; Friis, Martin Barfred;

    2008-01-01

    of the present investigation was to investigate whether cell shrinkage or high intracellular ionic concentration induced the activation of TonEBP. We designed a model system for isotonically shrinking cells over a prolonged period of time. Cells swelled in hypotonic medium and performed a regulatory...... volume decrease (RVD). Upon return to the original isotonic medium, cells shrank initially followed by a regulatory volume increase (RVI). To maintain cell shrinkage, the RVI process was inhibited as follows: Ethyl-isopropyl-amiloride (EIPA) inhibited the Na(+)/H(+) antiport, Bumetanide inhibited the Na......(+)/K(+)/2Cl(-) co-transporter, and Gadolinium inhibited shrinkage-activated Na(+) channels. Cells remained shrunken for at least 4 hours (isotonically shrunken cells). The activity of TonEBP was investigated with a Luciferase assay after isotonic shrinkage and after shrinkage in a high NaCl hypertonic...

  20. Effect of Temperature on the AlGaAs/GaAs Tandem Solar Cell for Concentrator Photovoltaic Performances

    Directory of Open Access Journals (Sweden)

    Hemmani Abderrahmane

    2016-03-01

    Full Text Available Multijunction solar cells for concentrator photovoltaic (CPV systems have attracted increasing attention in recent years for their very high conversion efficiencies. But there is a problem in this type of solar cells (CPV is to increase the temperature if it has been augmenting the concentration ratio. In this paper, we studied the effect of the concentration photovoltaic in a high-efficiency double-junction devices solar cell on temperature solar cell and its impact on the photocurrent, the efficiency and open circuit voltage. In this study, the top cell is made of AlGaAs (1.73 eV while the bottom cell is made of GaAs (1.42 eV between them a tunnel junction.

  1. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    International Nuclear Information System (INIS)

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC

  2. Nivalenol and deoxynivalenol affect rat intestinal epithelial cells: a concentration related study.

    Science.gov (United States)

    Bianco, Giuseppe; Fontanella, Bianca; Severino, Lorella; Quaroni, Andrea; Autore, Giuseppina; Marzocco, Stefania

    2012-01-01

    The integrity of the gastrointestinal tract represents a crucial first level defence against ingested toxins. Among them, Nivalenol is a trichotecenes mycotoxin frequently found on cereals and processed grains; when it contaminates human food and animal feed it is often associated with another widespread contaminant, Deoxynivalenol. Following their ingestion, intestinal epithelial cells are exposed to concentrations of these trichothecenes high enough to cause mycotoxicosis. In this study we have investigated the effects of Nivalenol and Deoxynivalenol on intestinal cells in an in vitro model system utilizing the non-tumorigenic rat intestinal epithelial cell line IEC-6. Both Nivalenol and Deoxynivalenol (5-80 µM) significantly affected IEC-6 viability through a pro-apoptotic process which mainly involved the following steps: (i) Bax induction; (ii) Bcl-2 inhibition, and (iii) caspase-3 activation. Moreover, treatment with Nivalenol produced a significant cell cycle arrest of IEC-6 cells, primarily at the G(0)/G(1) interphase and in the S phase, with a concomitant reduction in the fraction of cells in G(2). Interestingly, when administered at lower concentrations (0.1-2.5 µM), both Nivalenol and Deoxynivalenol affected epithelial cell migration (restitution), representing the initial step in gastrointestinal wound healing in the gut. This reduced motility was associated with significant remodelling of the actin cytoskeleton, and changes in expression of connexin-43 and focal adhesion kinase. The concentration range of Nivalenol or Deoxynivalenol we have tested is comparable with the mean estimated daily intake of consumers eating contaminated food. Thus, our results further highlight the risks associated with intake of even low levels of these toxins. PMID:23251682

  3. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  4. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  5. Dish-based high concentration PV system with Köhler optics.

    Science.gov (United States)

    Coughenour, Blake M; Stalcup, Thomas; Wheelwright, Brian; Geary, Andrew; Hammer, Kimberly; Angel, Roger

    2014-03-10

    We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system. PMID:24922230

  6. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems

    International Nuclear Information System (INIS)

    Simultaneous production of electrical and high grade thermal energy is proposed with a concentrating photovoltaic/thermal (CPVT) system operating at elevated temperature. CPVT collectors may operate at temperatures above 100 oC, and the thermal energy can drive processes such as refrigeration, desalination and steam production. The performance and cost of a CPVT system with single effect absorption cooling are investigated in detail. The results show that under a wide range of economic conditions, the combined solar cooling and power generation plant can be comparable to, and sometimes even significantly better than, the conventional alternative

  7. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise

    NARCIS (Netherlands)

    H. Kempe; A. Schwabe; F. Crémazy; P.J. Verschure; F.J. Bruggeman

    2015-01-01

    Transcriptional stochasticity can be measured by counting the number of mRNA molecules per cell. Cell-to-cell variability is best captured in terms of concentration rather than molecule counts, because reaction rates depend on concentrations. We combined single-molecule mRNA counting with single-cel

  8. Effect of high concentration gadolinium nitrate in reactor moderator system

    International Nuclear Information System (INIS)

    Gadolinium is used as a neutron poison in nuclear reactors to control the reactivity because it has high thermal neutron absorption cross section (∼49,000 b) and good solubility in water. Gadolinium nitrate is added with nitric acid to the moderator heavy water and the pH is maintained in the range of 5.0 to 5.5 to prevent gadolinium precipitation. Usually the concentration of gadolinium (Gd3+) used is ∼15 ppm during the actuation of secondary shutdown system. In the moderator system of a proposed tube type boiling water nuclear reactor of Indian origin, a higher concentration (20-400 ppm) of soluble neutron poison, Gd(NO3)3 is proposed to be used in the emergency safety shutdown system. Effect of this high concentration of gadolinium nitrate in the reactor moderator is evaluated from the angle of generation of molecular products viz. H2 and H2O2 due to radiolysis. H2 yield was found to increase linearly with absorbed dose (10 - 100 kGy). With increasing Gd concentration there was increase in H2 yield but the increase was marginal in 100 to 400 ppm range. Both the initial yield and saturated concentrations of H2O2 (at higher doses) in normal and off - normal conditions were also estimated. It was observed that the head space provided above the liquid phase in irradiation zone has a substantial effect on the generation of H2. With decreasing head space, H2 generation increased and went through a maximum. Production of H2O2 was also observed to be decreased in case of fully filled samples as compared to the ∼ 60% filled cases. Radiolysis of Gd(NO3)3 in high purity D2O was carried out to see the isotope effect and D2 formation was observed to be lowered than H2 for same Gd(NO3)3 concentration solutions in light water. The above results were discussed in detail in this paper. (author)

  9. Energy yield determination of concentrator solar cells using laboratory measurements

    OpenAIRE

    Geisz, John F.; García Vara, Iván; Mcmahon, William E.; Steiner, Myles A.; Ochoa Gómez, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-01-01

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used redict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficie...

  10. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m2 mirror PV/T stage and a 15 m2 mirror heating stage, or a 1.8 m2 mirror PV/T stage and a 30 m2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  11. Remote information concentration and multipartite entanglement in multilevel systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xinwen; Zhang Dengyu; Tang Shiqing; Xie Lijun [Department of Physics and Electronic Information, Hengyang Normal University, Hengyang 421008 (China); Yang Guojian [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2011-10-15

    Remote information concentration (RIC) in d-level systems (qudits) is studied. It is shown that the quantum information initially distributed in three spatially separated qudits can be remotely and deterministically concentrated to a single qudit via an entangled channel without performing any global operations. The entangled channel can be different types of genuine multipartite pure entangled states which are inequivalent under local operations and classical communication. The entangled channel can also be a mixed entangled state, even a bound entangled state which has a similar form to the Smolin state, but has different features from the Smolin state. A common feature of all these pure and mixed entangled states is found; i.e., they have d{sup 2} common commuting stabilizers. The differences of qudit-RIC and qubit-RIC (d=2) are also analyzed.

  12. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Siti Sarah Omar Zaki

    2015-01-01

    Full Text Available Chitosan nanoparticles (CSNPs have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs. CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential. Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW. Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  13. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  14. Highly efficient transduction of repopulating bone marrow cells using rapidly concentrated polymer-complexed retrovirus

    International Nuclear Information System (INIS)

    Using the cationic polymer, Polybrene, and the anionic polymer, chondroitin sulfate C, we concentrated recombinant retrovirus pseudotyped with an ecotropic envelope, which is susceptible to inactivation by high-speed concentration methods. To evaluate gene marking, murine bone marrow was harvested from C3H mice, transduced with polymer-concentrated GFP virus, and transplanted into lethally irradiated recipients. Total gene marking in mice averaged 30-35% at 8 weeks post-transplant and transgene expression remained stable for over 16 weeks. Using the polymer concentration method, a second retroviral vector encoding the drug resistant variant of dihydrofolate reductase (L22Y-DHFR) was concentrated and tested. Approximately 40% of transduced murine bone marrow progenitor cells were protected against trimetrexate concentrations that completely eliminated the growth of non-modified cells. These results show that anionic and cationic polymers can be combined to rapidly concentrate viruses that are normally difficult to concentrate, and the concentrated virus efficiently transduces hematopoietic stem cells

  15. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  16. Platelet and growth factor concentrations in activated platelet-rich plasma: a comparison of seven commercial separation systems.

    Science.gov (United States)

    Kushida, Satoshi; Kakudo, Natsuko; Morimoto, Naoki; Hara, Tomoya; Ogawa, Takeshi; Mitsui, Toshihito; Kusumoto, Kenji

    2014-06-01

    Platelet-rich plasma (PRP) is blood plasma that has been enriched with platelets. It holds promise for clinical use in areas such as wound healing and regenerative medicine, including bone regeneration. This study characterized the composition of PRP produced by seven commercially available separation systems (JP200, GLO PRP, Magellan Autologous Platelet Separator System, KYOCERA Medical PRP Kit, SELPHYL, MyCells, and Dr. Shin's System THROMBO KIT) to evaluate the platelet, white blood cell, red blood cell, and growth factor concentrations, as well as platelet-derived growth factor-AB (PDGF-AB), transforming growth factor beta-1 (TGF-β1), and vascular endothelial growth factor (VEGF) concentrations. PRP prepared using the Magellan Autologous Platelet Separator System and the KYOCERA Medical PRP Kit contained the highest platelet concentrations. The mean PDGF-AB concentration of activated PRP was the highest from JP200, followed by the KYOCERA Medical PRP Kit, Magellan Autologous Platelet Separator System, MyCells, and GLO PRP. TGF-β1 and VEGF concentrations varied greatly among individual samples, and there was almost no significant difference among the different systems, unlike for PDGF. The SELPHYL system produced PRP with low concentrations of both platelets and growth factors. Commercial PRP separation systems vary widely, and familiarity with their individual advantages is important to extend their clinical application to a wide variety of conditions. PMID:24748436

  17. A method for isolating smooth muscle cells from pig urinary bladder with low concentrations of collagenase and papain: the relation between calcium concentration and isolated cell length.

    NARCIS (Netherlands)

    E. van Asselt (Els); R. van Mastrigt (Ron); R. Schot

    1993-01-01

    textabstractThe present study describes a method for isolating single smooth muscle cells from pig urinary bladder using a continuous resuspension device. Low concentrations of collagenase and papain were sufficient to obtain a high yield of viable smooth muscle cells, which remained viable for abou

  18. Bile acids increase intracellular Ca2+ concentration and nitric oxide production in vascular endothelial cells

    OpenAIRE

    Nakajima, Toshiaki; Okuda, Yukichi; Chisaki, Keigo; Shin, Wee-Soo; Iwasawa, Kuniaki; Morita, Toshihiro; Matsumoto, Akihiro; Suzuki, Jun-ichi; Suzuki, Seizi; Yamada, Nobuhiro; Toyo-Oka, Teruhiko; Nagai, Ryozo; Omata, Masao

    2000-01-01

    The effects of bile acids on intracellular Ca2+ concentration [Ca2+]i and nitric oxide production were investigated in vascular endothelial cells.Whole-cell patch clamp techniques and fluorescence measurements of [Ca2+]i were applied in vascular endothelial cells obtained from human umbilical and calf aortic endothelial cells. Nitric oxide released was determined by measuring the concentration of NO2−.Deoxycholic acid, chenodeoxycholic acid and the taurine conjugates increased [Ca2+]i concent...

  19. Airborne fibre and asbestos concentrations in system built schools

    International Nuclear Information System (INIS)

    This paper summarises the airborne fibre concentration data measured in system built schools that contained asbestos insulation board (AIB) enclosed in the support columns by a protective steel casing. The particular focus of this work was the CLASP (Consortium of Local Authorities Special Programme) system buildings. A variety of air monitoring tests were carried out to assess the potential for fibres to be released into the classroom. A peak release testing protocol was adopted that involved static sampling, while simulating direct impact disturbances to selected columns. This was carried out before remediation, after sealing gaps and holes in and around the casing visible in the room (i.e. below ceiling level) and additionally round the tops of the columns, which extended into the suspended ceiling void. Simulated and actual measurements of worker exposures were also undertaken, while sealing columns, carrying out cleaning and maintenance work in the ceiling voids. Routine analysis of these air samples was carried out by phase contrast microscopy (PCM) with a limited amount of analytical transmission electron microscopy (TEM) analysis to confirm whether the fibres visible by PCM were asbestos or non-asbestos. The PCM fibre concentrations data from the peak release tests showed that while direct releases of fibres to the room air can occur from gaps and holes in and around the column casings, sealing is an effective way of minimising releases to below the limit of quantification (0.01 f/ml) of the PCM method for some 95% of the tests carried out. Sealing with silicone filler and taping any gaps and seams visible on the column casing in the room, also gave concentrations below the limit of quantification (LOQ) of the PCM method for 95% of the tests carried out. The data available did not show any significant difference between the PCM fibre concentrations in the room air for columns that had or had not been sealed in the ceiling void, as well as in the room

  20. Performance comparison of CPCs with and without exit angle restriction for concentrating radiation on solar cells

    International Nuclear Information System (INIS)

    Highlights: • CPCs with and without exit angle restriction based PV modules were fabricated and tested. • Performance of both CPVs was investigated and compared. • Results showed that CPV-65 performed slightly but insignificantly better as compared to CPV-90. - Abstract: To perform this comparison, the compound parabolic concentrator with a restricted exit angle of 65° (CPC-65) and the one without exit angle restriction (CPC-90) were fabricated and tested for concentrating radiation on multi-crystalline solar cells. Both CPC-65 and CPC-90 are identical in the acceptance half-angle (20°) and geometrical concentration factor (2×). Theoretical calculations showed that CPC-90 based PV system (CPV-90) annually concentrated about 3–5% more radiation on solar cells as compared to CPC-65 based PV system (CPV-65). For CPV-65, all radiation would arrive on the solar cells at the incidence angle less than 65°, but for CPV-90, about 8–10% of annual collectible radiation would arrive on solar cells at the incidence angle larger than 65°. Measurements at outdoor conditions showed that the CPV-65 performed slightly better than CPV-90 in terms of short-circuit current and power output as the projection incidence angle of solar rays on the cross-section of CPC-troughs (θp) less than the acceptance half-angle, otherwise the CPV-90 did better. Compared to CPV-90, the power output at maximum power points from CPV-65 were slightly higher, and increases of 2.1%, 5.4% and 8.17% were measured for θp = 0°, 10° and 16°, respectively. Analysis indicated that effect of solar flux distribution over solar cells on power output of both CPVs was almost identical and insignificant, and the CPV-65 performed slightly but insignificantly better than the CPV-90 in terms of annual power output except in areas with poor solar resources where the annual power output from both systems was almost identical

  1. Local device parameter extraction of a concentrator photovoltaic cell under solar spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K.; Okullo, W.; van Dyk, E.E.; Vorster, F.J. [Physics Department, Nelson Mandela Metropolitan University, P O Box 77000, Port Elizabeth 6031 (South Africa)

    2010-12-15

    Focused sunlight can act as a localized source of excess minority carriers in a solar cell. Current signal generated by these carriers gives considerable information about the electrical properties of the cell's material. Point by point current-voltage data were measured for a back point-contact concentrator photovoltaic cell when illuminated by focused sunlight. Two numerical curve fitting procedures: a non-linear two-point interval division and particle swarm optimization algorithm were then applied to extract local parameters (i.e. as function of position) from the current-voltage data at each measurement point. Extracted parameters plotted yields relative spatial information about the electrical properties of a solar cell in a two or three dimensional mapping. The curve fitting routines applied to current-voltage data reveal that performance parameters: short circuit current, open circuit voltage, maximum power and fill factor show distinct variations in the vicinity of the observed current reducing feature. The relative values of the diode ideality factors, series resistance, shunt resistance and reverse saturation currents from both methods showed no significant measurable features that could be distinguished. This shows that the observed reduction in photo-induced current was due to severe recombination in the bulk or around the highly diffused point contacts and not the quality of the multiple p-n junctions of the cell. These approaches allow one to obtain a set of parameters at each local point on the cell which are reasonable and representative of the physical system. (author)

  2. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    Science.gov (United States)

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error. PMID:26367685

  3. Photon-enhanced thermionic emission for solar concentrator systems.

    Science.gov (United States)

    Schwede, Jared W; Bargatin, Igor; Riley, Daniel C; Hardin, Brian E; Rosenthal, Samuel J; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T; Shen, Zhi-Xun; Melosh, Nicholas A

    2010-09-01

    Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%. PMID:20676086

  4. Effects of elevated glucose concentration on cultured bovine retinal endothelial (BRE) cells

    International Nuclear Information System (INIS)

    Salient clinical features of diabetic retinopathy include capillary microaneurysm and neovascularization, which progress with the severity of the disease. It has been suggested that exposure of the retinal vascular cells to high glucose concentrations may play a causative role in the retinopathy. In the present study, the effects of variant media glucose concentrations on BRE cell growth were determined. Normal growth curves were obtained with glucose concentrations of 100, 450 and 600 mg%, but the replication rate was decreased with 600 mg%. To determine if elevated glucose concentrations also altered DNA synthesis, BRE cells cultivated with 100 and 600 mg% glucose demonstrated increased thymidine uptake and total DNA content compared to the 100 mg% group. Furthermore, vacuolation and increased cell diameter occurred in BRE cells cultivated 600 mg% compared to 100 mg% glucose. In conclusion, increases in media glucose concentrations result in a decreased cellular replication rate, increased DNA synthesis and increased cell diameter during the log phase of growth

  5. 透镜与电池间距对聚光光伏系统特性影响的实验研究%Experimental investigation on the performance of concentrating photovoltaic system influenced by the distance between Fresnel lens and cell

    Institute of Scientific and Technical Information of China (English)

    肖文波; 何兴道; 王庆; 赖相霖; 黄苏华

    2012-01-01

    The dependences of light intensity,open-circuit voltage,short circuit current and cell′s temperature on the distance between the Fresnel lens and solar cell are investigated in concentrating photovoltaic system.The results show that the efficiency increase of concentrating photovoltaic system mainly results from the improvement of the short-circuit current,but not from the open-circuit voltage.It is found that the output power of solar cell can achieve maximum when the cell is placed at the focal point of the Fresnel lens.But the maximum efficiency of a concentrating photovoltaic cell per unit of light intensity can be obtained only when the cell is placed before the lens focus.It is of great guiding significance for the design and research of the current photovoltaic systems.%实验研究了聚光太阳电池上光照强度、短路电流、开路电压、电池温度和光电转换效率随菲涅耳透镜与电池的距离变化关系。结果表明,聚光条件下,太阳电池性能的提高主要源于短路电流的变化,而不是开路电压;聚光后,太阳电池与透镜距离为焦长时,输出功率可以达到最大值;太阳电池的最大单位光强转换效率需要把太阳电池放到透镜焦点前。本文研究结果对于聚光光伏系统的研制具有指导意义。

  6. Optimum Design Of Grid Connected Photovoltaic System Using Concentrators

    Directory of Open Access Journals (Sweden)

    Eng. Mohammed Fawzy

    2015-08-01

    Full Text Available Abstract Due to the increasing demand of electrical energy in Egypt and also in many neighboring countries around the world the main problem facing electrical energy production using classical methods such steam power stations is the depletion of fossil fuels. The gap between the electrical energy demand and the continuous increase on the fossil fuel cost make the problem of electricity generation more sophisticated. With the continuous decrease of the photovoltaic PV technologies cost it doesnt make sense neglecting the importance of electricity production using solar photovoltaic PV especially that the annual average daily energy received is about 6 kamp12310whmamp123112day in Cairo Egypt 30N.In this work a detailed simulation model including photovoltaic PV module characteristics and climatic conditions of Cairo Egypt is developed. The model compares fixed PV systems electrical energy output with photovoltaic PV system using concentrators and double axis tracker systems. The comparison includes the energy generated area required as well as the cost per kwh generated. The optimality criterion is the cost per kwh generated. The system that gives the minimum cost per kwh is the optimum system. To verify the developed model the simulation results of fixed PV modules and CPV using tracking system obtained by the model are compared with practical measurements of 40KW peak station erected in Cairo Egypt 30N.Very good agreement between measured values and results obtained from detailed simulation model. For fixed PV system the detailed economic analysis showed that it gives minimum cost perkwh generated Comparisons among these systems are presented. For Cairo results showed that a cost of about 6 to 9 US centskwh is attainable.

  7. Evaluation of Background Mercury Concentrations in the SRS Groundwater System

    International Nuclear Information System (INIS)

    Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells

  8. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  9. Improving performances of Fresnel CPV systems: Fresnel-RXI Köhler concentrator.

    Science.gov (United States)

    Buljan, Marina; Miñano, Juan C; Benítez, Pablo; Mohedano, Rubén; Chaves, Julio

    2014-03-10

    The optical design presented here has been done in order to achieve superior optical performance in comparison with the state-of-the-art Fresnel CPV systems. The design consists of a Photovoltaic Concentrator (CPV) comprising a Fresnel lens (F) as a Primary Optical Element (POE) and a dielectric solid RXI as a Secondary Optical Element (SOE), both with free-form surfaces (i.e. neither rotational nor linearly symmetric). It is the first time the RXI-type geometry has been applied to a CPV secondary. This concentrator has ultra-high CAP value ready to accommodate more efficient cells eventually to be developed and used commercially in future. PMID:24922229

  10. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  11. Solar-radiation concentration in the Fresnel lens: an optical medium system

    International Nuclear Information System (INIS)

    One of the tasks of Fresnel lenses (FLs), which are used in solar micromodules jointly with cascade photocells, is to increase the concentration capability. This paper considers the solution of this task at the expense of using optical media (L). A program for the numerical simulation of the concentration characteristics of the FL-L system has been developed with allowance for inaccuracies in FLs and Fresnel losses at the interface of media. It is shown that the average concentration can be increased by 36% in the FL-L system for the case in which there is 95% receiver capture of a flow going from a medium and, as a whole, with allowance for losses at the medium-photocell boundary (they can be regulated), the growth in an average concentration for a silicon solar cell without coating will be 20-25%. At a smaller acceptable percentage of flow capture (if there is a goal to increase concentration), the efficiency of optical media in the FL-L system grows and can reach the values obtained in the paraboloid-optical medium system. (author)

  12. Standard Test Method for Electrical Performance of Concentrator Terrestrial Photovoltaic Modules and Systems Under Natural Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of the electrical performance of photovoltaic concentrator modules and systems under natural sunlight using a normal incidence pyrheliometer. 1.2 The test method is limited to module assemblies and systems where the geometric concentration ratio specified by the manufacturer is greater than 5. 1.3 This test method applies to concentrators that use passive cooling where the cell temperature is related to the air temperature. 1.4 Measurements under a variety of conditions are allowed; results are reported under a select set of concentrator reporting conditions to facilitate comparison of results. 1.5 This test method applies only to concentrator terrestrial modules and systems. 1.6 This test method assumes that the module or system electrical performance characteristics do not change during the period of test. 1.7 The performance rating determined by this test method applies only at the period of the test, and implies no past or future performance level. 1.8...

  13. Modelling of quantum dot solar cells for concentrator PV applications

    OpenAIRE

    Ogura, A; Morioka, T.; García-Linares Fontes, Pablo; Hernández Martín, Estela; Ramiro Gonzalez, Iñigo; Artacho Huertas, Irene; Antolín Fernández, Elisa; Martí Vega, Antonio; Luque López, Antonio; Yamaguchi, M.; Okada, Y.

    2011-01-01

    An equivalent circuit model is applied in order to describe the operation characteristics of quantum dot intermediate band solar cells (QD-IBSCs), which accounts for the recombination paths of the intermediate band (IB) through conduction band (CB), the valence band (VB) through IB, and the VB-CB transition. In this work, fitting of the measured dark J-V curves for QD-IBSCs (QD region being non-doped or direct Si-doped to n-type) and a reference GaAs p-i-n solar cell (no QDs) were carried out...

  14. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  15. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    International Nuclear Information System (INIS)

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  16. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wei Shen; Zhen Cao; Ke-Zeng You; Zhong-Xian Yang; Ye-Yu Xiao; Xiao-Fang Cheng; Yao-Wen Chen

    2012-01-01

    AIM:To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo,using 1H magnetic resonance spectroscopy (1H-MRS).METHODS:1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil.Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis.Point-resolved spectroscopy sequencelocalized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo.T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits.Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis.Choline peak areas were measured relative to unsuppressed water using LCModel.Relaxation attenuation was corrected using the average of T1 and T2 relaxation time.The choline concentration was quantified using a formula,which was tested by a phantom with a known concentration.RESULTS:Apoptosis of hepatic cells was confirmed by TUNEL assay.In phantom experiment,the choline concentration (3.01 mmol/L),measured by 1H-MRS,was in good agreement with the actual concentration (3 mmol/L).The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo,respectively.Choline was quantified in 10 rabbits,once before and once after the injection with sodium selenite.The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD,n =10) after treatment (Z =-2.395,P < 0.05,two-sample paired Wilcoxon test).CONCLUSION:1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference.Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell

  17. Proton pump activity of mitochondria-rich cells: The interpretation of external proton-concentration gradients

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Sørensen, Jens N.; Larsen, Erik Hviid;

    1997-01-01

    Active Cl*O- transport, reheogenic H*O+ pump, unstirred layer, mathematics of diffusion, proton concentration-profiles outside epithelial cells......Active Cl*O- transport, reheogenic H*O+ pump, unstirred layer, mathematics of diffusion, proton concentration-profiles outside epithelial cells...

  18. Development of III-V-based concentrator solar cells and their application in PV-modules

    International Nuclear Information System (INIS)

    Concentrators have a great potential to achieve cost reduction for solar generated electricity. In this work III-V-based concentrator solar cells for high concentration levels were fabricated. Monolithic and mechanically stacked multi-junction cells were investigated achieving efficiencies up to 33.5% at C=308 (AM1.5d, 1000 W/m2, 25 C). The cells are employed in point-focus Fresnel lens modules. All-glass hermetized modules designed for a concentration level of 120 and 500 obtained efficiencies of up to 24.8% and 21.7%, respectively. The modules were characterized under outdoor conditions at Freiburg, Germany. (orig.)

  19. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  20. Analytical Model of Non-Imaging Planar Concentrator for the Application in Dense-Array Concentrator Photovoltaic System

    OpenAIRE

    Wong, Chee Woon; Chong, Kok Keong; Yew, Tiong Keat

    2014-01-01

    Instead of using numerical simulation method that is relatively slow if accuracy is required, an analytical model has been proposed to analyze the optical characteristic of Non-Imaging Planar Concentrator (NIPC) for the application in dense-array concentrator photovoltaic (DACPV) system. Several trigonometry equations have been solved to determine the maximum solar concentration ratio, uniform illumination area and energy within the uniform area by varying the focal distance. The concentratio...

  1. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    OpenAIRE

    Paola Sansoni; Daniela Fontani; Franco Francini; David Jafrancesco; Giacomo Pierucci; Maurizio De Lucia

    2015-01-01

    Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can...

  2. Unitized regenerative fuel cell system

    Science.gov (United States)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  3. Pneumatic System for Concentration of Micrometer-Size Lunar Soil

    Science.gov (United States)

    McKay, David; Cooper, Bonnie

    2012-01-01

    A report describes a size-sorting method to separate and concentrate micrometer- size dust from a broad size range of particles without using sieves, fluids, or other processes that may modify the composition or the surface properties of the dust. The system consists of four processing units connected in series by tubing. Samples of dry particulates such as lunar soil are introduced into the first unit, a fluidized bed. The flow of introduced nitrogen fluidizes the particulates and preferentially moves the finer grain sizes on to the next unit, a flat plate impactor, followed by a cyclone separator, followed by a Nuclepore polycarbonate filter to collect the dust. By varying the gas flow rate and the sizes of various orifices in the system, the size of the final and intermediate particles can be varied to provide the desired products. The dust can be collected from the filter. In addition, electron microscope grids can be placed on the Nuclepore filter for direct sampling followed by electron microscope characterization of the dust without further handling.

  4. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available BACKGROUND: During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS: The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE: The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host

  5. High temperature helical tubular receiver for concentrating solar power system

    Science.gov (United States)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  6. Red blood cells sensitivity to oxidative stress in the presence of low concentrations of uranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, O.G. [Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 167982, Syktyvkar (Russian Federation)

    2014-07-01

    Uranium is a natural radioactive element widespread in biosphere. There are a few works that examined cellular and molecular mechanisms of uranium toxicity. Red blood cells are classical model to investigate toxicity mechanisms on cell membrane system. The aim of present work is to study the effect of uranyl ion in nano-molar concentrations on erythrocytes sensitivity (in vitro) to factors provoking acute oxidative stress. Uranyl ions were added to suspension of mice red blood cells in PBS as UO{sub 2}Cl{sub 2} solution. Samples were incubated in a thermostatic shaker at 37 deg. C during 3-5 hours. Than acute oxidative stress was induced by H{sub 2}O{sub 2} (0.9 mM) or AAPH (5 mM) solutions. Destabilization of the membrane was induced by nonionic detergent Triton X-100. The hemolysis degree and the content of LPO secondary products reacting with 2-thiobarbituric acid in the incubation mixture were determined spectrophotometrically. The ratio of hemoglobin various forms (oxyHb, metHb and ferrylHb) was calculated taking into account extinction coefficients. It was shown that uranyl chloride enhances cell sensitivity to nonionic detergent Triton X-100 effects, indicating alterations of membrane acyl chain order due to contact with the radionuclide ions. Uranium exposure also caused an increase in the cell sensitivity to the AAPH effects, resulted in a decrease in red cell survival rate, a sharp increase in accumulation of hemoglobin oxidation products and a slight increase in the concentration of LPO secondary products. Thus, uranyl ions change physicochemical properties of the erythrocyte membranes that resulted in increased sensitivity to effects of peroxyl radicals formed by thermal decomposition of AAPH. On the contrary, use of another source of free radicals - H{sub 2}O{sub 2} - after uranyl ions exposure resulted in marked decrease of oxidative hemolysis, inhibition of LPO and hemoglobin oxidation. Since the uranium chemical properties similar to properties of

  7. A method for the control of alumina concentration in aluminum reduction cells

    OpenAIRE

    Jens G. Balchen

    1992-01-01

    The paper presents a new method for the control of the concentration of the alumina in electrolysis cells for the production of aluminium. The method is based upon the well known fact that apparent resistivity of the cell is a function of the alumina concentration so that the resistivity has the lowest value around the concentration of three per cent and increases in both directions. The method uses the cross correlation between a perturbation of the feed flow of alumina into the cell and the...

  8. Advances towards reliable identification and concentration determination of rare cells in peripheral blood

    Science.gov (United States)

    Alemany Server, R.; Martens, D.; Jans, K.; Bienstman, P.; Hill, D.

    2016-03-01

    Through further development, integration and validation of micro-nano-bio and biophotonics systems FP7 CanDo is developing an instrument that will permit highly reproducible and reliable identification and concentration determination of rare cells in peripheral blood for two key societal challenges, early and low cost anti-cancer drug efficacy determination and cancer diagnosis/monitoring. A cellular link between the primary malignant tumour and the peripheral metastases, responsible for 90% of cancerrelated deaths, has been established in the form of circulating tumour cells (CTCs) in peripheral blood. Furthermore, the relatively short survival time of CTCs in peripheral blood means that their detection is indicative of tumour progression thereby providing in addition to a prognostic value an evaluation of therapeutic efficacy and early recognition of tumour progression in theranostics. In cancer patients however blood concentrations are very low (=1 CTC/1E9 cells) and current detection strategies are too insensitive, limiting use to prognosis of only those with advanced metastatic cancer. Similarly, problems occur in therapeutics with anti-cancer drug development leading to lengthy and costly trials often preventing access to market. The novel cell separation/Raman analysis technologies plus nucleic acid based molecular characterization of the CanDo platform will provide an accurate CTC count with high throughput and high yield meeting both key societal challenges. Being beyond the state of art it will lead to substantial share gains not just in the high end markets of drug discovery and cancer diagnostics but due to modular technologies also in others. Here we present preliminary DNA hybridization sensing results.

  9. Dual Effects Exerted in Vitro by Micromolar Concentrations of Deoxynivalenol on Undifferentiated Caco-2 Cells

    Science.gov (United States)

    Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia

    2015-01-01

    Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37–1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics. PMID:25690693

  10. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  11. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  12. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  13. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  14. Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth

    OpenAIRE

    Slivac, Igor; Blajić, Višnja; Radošević, Kristina; Kniewald, Zlatko; Gaurina Srček, Višnja

    2010-01-01

    In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium...

  15. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  16. Reuse of the Reflective Light and the Recycle Heat Energy in Concentrated Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Hsin-Chien Chen

    2013-01-01

    Full Text Available A complex solar unit with microcrystalline silicon solar cells placed around the centered GaAs triple junction solar cell has been proposed and carried out. With the same illumination area and intensity, the total resultant power shows that the excess microcrystalline silicon solar cells increase the total output power by 13.2% by absorbing the reflective light from the surface of optical collimators. Furthermore, reusing the residual heat energy generated from the above-mentioned mechanism helps to increase the output power by around 14.1%. This mechanism provides a simple method to enhance the utility rate of concentrated photovoltaic (CPV system. Such concept can be further applied to the aerospace industry and the development of more efficient CPV solar energy applications.

  17. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  18. Control system of boric acid concentration in coolants or moderators

    International Nuclear Information System (INIS)

    Purpose: To control the boric acid concentration in coolants or the likes in a short time and effectively from the viewpoint of changes in the adsorption amount of ion exchange resins relative to the temperature of the coolants or the likes. Constitution: For the increase of the concentration of boric acid dissolved in coolants or the likes for the control of the reactivity in PWR type reactor, high concentration boric acid is supplied to coolants or the likes recycled through the reactor by a concentration regulation pump to thereby regulate the boric acid concentration. For the decrease of the concentration of boric acid, the coolants or the likes are supplied to a boric acid removing column in an saturated state, where boric acid dissolved in the coolants or the likes are adsorbed and removed by ion exchange resins in the column to thereby regulate the boric acid concentration. The boric acid adsorbed to the ion exchange resins in the column is introduced into a boric acid concentration tank, where the ion exchange resins are regenerated by warm purified water, and the warm purified water and high concentration boric acid are regenerated by the evaporation and condensation of the regenerating liquid. (Moriyama, K.)

  19. A Novel Concentrator Photovoltaic (CPV System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-09-01

    Full Text Available This paper proposes a novel concentrator photovoltaic (CPV system with improved irradiation uniformity and system efficiency. CPV technology is very promising its for highly efficient solar energy conversion. A conventional CPV system usually uses only one optical component, such as a refractive Fresnel lens or a reflective parabolic dish, to collect and concentrate solar radiation on the solar cell surface. Such a system creates strongly non-uniform irradiation distribution on the solar cell, which tends to cause hot spots, current mismatch, and degrades the overall efficiency of the system. Additionally, a high-concentration CPV system is unable to collect diffuse solar radiation. In this paper, we propose a novel CPV system with improved irradiation uniformity and collection of diffuse solar radiation. The proposed system uses a Fresnel lens as a primary optical element (POE to concentrate and focus the sunlight and a plano-concave lens as a secondary optical element (SOE to uniformly distribute the sunlight over the surface of multi-junction (MJ solar cells. By using the SOE, the irradiance uniformity is significantly improved in the system. Additionally, the proposed system also captures diffuse solar radiation by using an additional low-cost solar cell surrounding MJ cells. In our system, incident direct solar radiation is captured by MJ solar cells, whereas incident diffuse solar radiation is captured by the low-cost solar cell. Simulation models were developed using a commercial optical simulation tool (LightTools™. The irradiance uniformity and efficiency of the proposed CPV system were analyzed, evaluated, and compared with those of conventional CPV systems. The analyzed and simulated results show that the CPV system significantly improves the irradiance uniformity as well as the system efficiency compared to the conventional CPV systems. Numerically, for our simulation models, the designed CPV with the SOE and low-cost cell provided

  20. A method for the control of alumina concentration in aluminum reduction cells

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1992-01-01

    Full Text Available The paper presents a new method for the control of the concentration of the alumina in electrolysis cells for the production of aluminium. The method is based upon the well known fact that apparent resistivity of the cell is a function of the alumina concentration so that the resistivity has the lowest value around the concentration of three per cent and increases in both directions. The method uses the cross correlation between a perturbation of the feed flow of alumina into the cell and the resulting response in measured voltage across the cell. The cross-correlation is proportional to the slope of the resistivity against concentration curve, making it possible to control the alumina flow, to achieve a desired slope. The method has much in common with other methods presently in use which require a much more complicated computation scheme.

  1. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  2. Coupling flexible solar cell with parabolic trough solar-concentrator-prototype design and performance

    Science.gov (United States)

    Panin, Alexander; Bergquist, Jonathon

    2007-10-01

    Solar cells are still too expensive (5-20/watt) to compete with traditional fossil fuel power generating methods (˜1/watt). Parabolic trough solar concentrator has the advantage of modest concentration ratio (10-100) which is well suited for coupling with solar cell. Thus using small area solar cell placed in the focal line of parabolic trough may be economically viable alternative to flat solar panels. We experiment with flexible solar cell (backed by water cooling pipe) placed in the focus of parabolic trough reflector. Another advantage of parabolic trough concentrator is very relaxed tracking requirement. For example, east-west oriented concentrator (aligned with the ecliptic plane) does not even need any tracking during core 4-6 hours around noon (when maximum illumination is available). The design and the performance of the prototype, as well as possible economical benefits of full scale projects are discussed in the presentation.

  3. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    Science.gov (United States)

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method. PMID:26935857

  4. Application of the wavelet image analysis technique to monitor cell concentration in bioprocesses

    Directory of Open Access Journals (Sweden)

    G. J. R. Garófano

    2005-12-01

    Full Text Available The growth of cells of great practical interest, such as, the filamentous cells of bacterium Streptomyces clavuligerus, the yeast Saccharomyces cerevisiae and the insect Spodoptera frugiperda (Sf9 cell, cultivated in shaking flasks with complex media at appropriate temperatures and pHs, was quantified by the new wavelet transform technique. This image analysis tool was implemented using Matlab 5.2 software to process digital images acquired of samples taken of these three types of cells throughoot their cultivation. The values of the average wavelet coefficients (AWCs of simplified images were compared with experimental measurements of cell concentration and with computer-based densitometric measurements. AWCs were shown to be directly proportional to measurements of cell concentration and to densitometric measurements, making evident the great potential of the wavelet transform technique to quantitatively estimate the growth of several types of cells.

  5. Temperature Characteristics Analysis of Triple-Junction Solar Cell under Concentrated Conditions using Spice Diode Model

    Science.gov (United States)

    Sakurada, Yuya; Ota, Yasuyuki; Nishioka, Kensuke

    2011-12-01

    Using spice diode model, the temperature characteristics of an InGaP/InGaAs/Ge triple-junction solar cell under concentrated light conditions were analyzed in detail. The current-voltage (I-V) characteristics of the single-junction solar cells (InGaP, InGaAs, and Ge solar cells) were measured at various temperatures. From dark I-V characteristics of each single-junction solar cell, the diode parameters and temperature exponents were extracted. The extracted diode parameters and temperature exponents were applied to the equivalent circuit model for the triple-junction solar cell, and the solar cell performance was calculated with considering the temperature characteristics of series resistance. There was good agreement between the measured and calculated I-V characteristics of the triple-junction solar cell at various temperatures under concentrated light conditions.

  6. Directional Migration of MDA-MB-231 Cells Under Oxygen Concentration Gradients.

    Science.gov (United States)

    Yahara, D; Yoshida, T; Enokida, Y; Takahashi, E

    2016-01-01

    To elucidate the initial mechanism of hematogenous metastasis of cancer cells, we hypothesized that cancer cells migrate toward regions with higher oxygen concentration such as intratumor micro vessels along the oxygen concentration gradient. To produce gradients of oxygen concentration in vitro, we devised the gap cover glass (GCG). After placing a GCG onto cultured MDA-MB-231 cells (a metastatic breast cancer cell line), the migration of individual cells under the GCG was tracked up to 12 h at 3 % oxygen in the micro incubator. We quantified the migration of individual cells using forward migration index (FMI). The cell migration perpendicular to the oxygen gradients was random in the direction whereas FMIs of the cell located at 300, 500, 700, and 1500 μm from the oxygen inlet were positive (p < 0.05) indicating a unidirectional migration toward the oxygen inlet. Present results are consistent with our hypothesis that MDA-MB-231 cells migrate toward regions with higher oxygen concentration. PMID:27526134

  7. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  8. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  9. Developing The Solar Tracking System for Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Bich

    2016-01-01

    Full Text Available The efficiency of the trough solar concentrator strongly depends on the position of its absorber surface with the sun.  Controlling the solar radiation concentrated collectors automatically tracking with the sun plays as the key factor to enhance the energy absorption. An automatic controlling device that can rotating the parabolic trough solar concentrator to the sun is calculated, designed, manufactured, and testing successfully. The experimental results show that the device tracks the sun during the day very well. The sensor has adjusted position of collector good when the intensity of solar radiation changes due to weather.

  10. 高聚光条件下砷化镓光伏电池特性的实验研究%ELECTRICAL PROPERTIES OF THE InGaP/InGaAs/Ge TRIPLE-JUNCTION SOLAR CELL UNDER HIGH CONCENTRATION PHOTOVOLTAIC SYSTEM BASED ON FIELD-TEST EXPERIMENTAL

    Institute of Scientific and Technical Information of China (English)

    王子龙; 张华; 赵巍; 刘业凤; 张海涛

    2013-01-01

    设计并搭建了一种碟式聚光光伏发电系统,介绍了系统的结构,阐述了系统工作原理,并对其进行了户外实验研究.根据实验结果,该碟式聚光光伏系统的几何聚光倍数为150倍,其峰值功率为1.5315W/cm2,平均效率为26.58%,电池平均工作温度为46.875℃.太阳直接辐射强度和电池温度是影响三结砷化镓光伏电池性能的主要因素.与现有的单晶硅光伏电池片相比,三结砷化镓聚光光伏电池具有转换效率高、电学性能好等特点,所收集的电池温度、输出功率、效率等数据对碟式聚光光伏系统的进一步研究具有一定参考价值.%A dish-style concentrating photovoltaic system was designed and built in this article. The concentration ratio of this system was 150 and the photovoltaic cell was cooled by heat pipe. The author measured the performance of triple-junction InGaP/InGaAs/Ge solar cell. According to experiment result, the peak output power of the system was 1.5315W/cm2, the average output power was 1.20W/cm2 and the average efficiency was 26.58% , the average working temperature was 46. 875℃ and the maximum working temperature didn' t exceed 62.05℃. The influencing factors of the InGaP/InGaAs/Ge triple-junction solar cell electrical properties mainly include direct solar radiation and solar cell temperature. This system had its own advantage comparing to existing stationary photovoltaic system such as high efficiency and better electrical performance. The cell temperature, output power and efficiency were collected in this experiment which would be valuable reference for further research.

  11. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  12. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  13. Dynamics of glucose and insulin concentration connected to the β‐cell cycle: model development and analysis

    Directory of Open Access Journals (Sweden)

    Gallenberger Martina

    2012-11-01

    Full Text Available Abstract Background Diabetes mellitus is a group of metabolic diseases with increased blood glucose concentration as the main symptom. This can be caused by a relative or a total lack of insulin which is produced by the β‐cells in the pancreatic islets of Langerhans. Recent experimental results indicate the relevance of the β‐cell cycle for the development of diabetes mellitus. Methods This paper introduces a mathematical model that connects the dynamics of glucose and insulin concentration with the β‐cell cycle. The interplay of glucose, insulin, and β‐cell cycle is described with a system of ordinary differential equations. The model and its development will be presented as well as its mathematical analysis. The latter investigates the steady states of the model and their stability. Results Our model shows the connection of glucose and insulin concentrations to the β‐cell cycle. In this way the important role of glucose as regulator of the cell cycle and the capability of the β‐cell mass to adapt to metabolic demands can be presented. Simulations of the model correspond to the qualitative behavior of the glucose‐insulin regulatory system showed in biological experiments. Conclusions This work focusses on modeling the physiological situation of the glucose‐insulin regulatory system with a detailed consideration of the β‐cell cycle. Furthermore, the presented model allows the simulation of pathological scenarios. Modification of different parameters results in simulation of either type 1 or type 2 diabetes.

  14. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage.

    Science.gov (United States)

    Zanichelli, Fulvia; Capasso, Stefania; Di Bernardo, Giovanni; Cipollaro, Marilena; Pagnotta, Eleonora; Cartenì, Maria; Casale, Fiorina; Iori, Renato; Giordano, Antonio; Galderisi, Umberto

    2012-09-01

    Isothiocyanates (ITCs) are molecules naturally present in many cruciferous vegetables (broccoli, black radish, daikon radish, and cauliflowers). Several studies suggest that cruciferous vegetable consumption may reduce cancer risk and slow the aging process. To investigate the effect of ITCs on cellular DNA damage, we evaluated the effects of two different ITCs [sulforaphane (SFN) and raphasatin (RPS)] on the biology of human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, contribute to the homeostatic maintenance of many organs. The choice of SFN and RPS relies on two considerations: they are among the most popular cruciferous vegetables in the diet of western and eastern countries, respectively, and their bioactive properties may differ since they possess specific molecular moiety. Our investigation evidenced that MSCs incubated with low doses of SFN and RPS show reduced in vitro oxidative stress. Moreover, these cells are protected from oxidative damages induced by hydrogen peroxide, while no protection was evident following treatment with the UV ray of a double strand DNA damaging drug, such as doxorubicin. High concentrations of both ITCs induced cytotoxic effects in MSC cultures and further increased DNA damage induced by peroxides. In summary, our study suggests that ITCs, at low doses, may contribute to slowing the aging process related to oxidative DNA damage. Moreover, in cancer treatment, low doses of ITCs may be used as an adjuvant to reduce chemotherapy-induced oxidative stress, while high doses may synergize with anticancer drugs to promote cell DNA damage. PMID:22684843

  15. High density cell culture system

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  16. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  17. Optimization of the emitter region and the metal grid of a concentrator silicon solar cell

    International Nuclear Information System (INIS)

    The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are illustrated. The optimizations are done under 1 sun, 100 suns and 200 suns using the 2D numerical simulation tool TCAD software. The optimum finger spacing and its range decrease with the increase in sheet resistance and concentration ratio. The processes of the diffusion and oxidization in the manufacture flow of the silicon solar cells were simulated to get a series of typical emitter dopant profiles to optimize. The efficiency of the solar cell under 100 suns and 200 suns increased with the decrease in diffusion temperature and the increase in oxidation temperature and time when the diffusion temperature is lower than or equal to 865 °C. The effect of sheet resistance of the emitter on series resistance and the conversion efficiency of the solar cell under concentration was discussed. (semiconductor devices)

  18. Inefficiency of high boron concentrations for cell killing in boron neutron capture therapy

    International Nuclear Information System (INIS)

    This study is to investigate the relationship between the cell-killing effect of the 10B(n, α)7Li capture reaction, intracellular boron concentration, and thermal neutron fluence in boron neutron capture therapy using in vitro cell survival based on a clonogenic assay, and biophysical analysis. Our results showed that the cell-killing yield of the 10B(n, α)7Li capture reaction per unit thermal neutron fluence declined with an increase in the intracellular boron concentration above 45 μg/ml 10B. The cell-killing effect was well described using an empirical power function of the intracellular boron concentration, with exponent 0.443. Knowledge of this effect will help in the optimization of BNCT. (author)

  19. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  20. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration

    International Nuclear Information System (INIS)

    Sonic Hedgehog (Shh), a member of hedgehog peptides family, is expressed in gastric gland epithelium. To elucidate Shh function to gastric mucosal cells, we examined the effect of Shh on the proliferation of a rat normal gastric mucosal cell line, RGM-1. RGM-1 cells express essential components of Shh receptor system, patched-1, and smoothened. Shh enhanced DNA synthesis in RGM-1 cells and elevated intracellular calcium concentration ([Ca2+]i). In addition, Shh as well as calcium ionophore A32187 rapidly activated ERK. However, Shh failed to activate ERK under calcium-free culture condition. Pretreatment of cells with PD98059 attenuated the DNA synthesis promoted by Shh. Moreover, when cells were pretreated with cyclopamine, Shh could not elevate [Ca2+]i, activate ERK or promote DNA synthesis. On the other hand, although Shh induced Gli-1 nuclear accumulation in RGM-1 cells, Shh activated ERK even in cells pretreated with actinomycin D. These results indicate that Shh promotes the proliferation of RGM-1 cells through an intracellular calcium- and ERK-dependent but transcription-independent pathway via Patched/Smoothened receptor system

  1. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  2. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells.

    Science.gov (United States)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki; Mikawa, Tsutomu; Hayashi, Nobuhiro; Shirakawa, Masahiro; Ito, Yutaka

    2013-09-01

    Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca(2+)-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca(2+) concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca(2+) concentration during experiments, human calbindin D9k (P47M+C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D (1)H-(15)N SOFAST-HMQC experiments of calbindin D9k (P47M+C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D9k (P47M+C80) is initially in the Mg(2+)-bound state, and then gradually converted to the Ca(2+)-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca(2+) into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool for in situ monitoring of the "healthiness" of the cells in various in-cell NMR studies. PMID:23933251

  3. First cell magnet system tests

    International Nuclear Information System (INIS)

    The ISABELLE refrigeration system utilizes compressed liquid helium to supply refrigeration to nearly 1100 superconducting bending and focusing magnets. These magnets steer the proton orbits of the accelerator and are arranged into two interlocking rings. The total heat load that the refrigerator must provide is made up of the heat load of the magnets, magnet leads and vessels and the interconnecting piping to the refrigerator. The design and test results of the magnet system during various operating conditions in use on the ISABELLE prototype, the First Cell, are described

  4. Respiratory systems of the Bacillus cereus mother cell and forespore.

    OpenAIRE

    Escamilla, J E; R. Ramírez; Del-Arenal, P; Aranda, A.

    1986-01-01

    The respiratory systems of the mother cells and forespores of Bacillus cereus were compared throughout the maturation stages (III to VI) of sporulation. The results indicated that both cell compartments contain the same assortment of oxidoreductases and cytochromes. However membrane fractions from young forespores were clearly distinct from those of the mother cell, i.e., lower content of cytochrome aa3, lower cytochrome c oxidase activity, higher concentration of cytochrome o, and a lower se...

  5. The application of pulsed concentrated solar radiation with the purpose of immune system correction of rheumatic arthritis patients

    International Nuclear Information System (INIS)

    The investigation results of dosed pulsed concentrated solar radiation(PCSR) influence to rheumatic arthritis patients are given. It was obtained that PCSR especially in the complex with balneological physiotherapy factors corrects regulator functions of cell link and decreases the density of humoral link of immune system. (author). 2 refs., 2 tabs

  6. Determination of optimum sunlight concentration level in space for 3-5 cascade solar cells

    Science.gov (United States)

    Curtis, H. B.

    1982-01-01

    Current-voltage curves were calculated for each cell in a cascade structure using a solar cell diode equation and superposition. Terms for the light generated current, diffusion current, space charge recombination current and series and shunt resistance are included. Individual current voltage curves are added in series with ohmic resistance losses for the cell interconnects to obtain the cascade cell performance. Temperature was varied with concentration, using several models, and ranged from 55 C at one Sun to between 80 and 200 C at 100 Suns. A variety of series resistance and internal resistances were used. Coefficients of the diffusion and recombination terms are strongly temperature dependent. The study indicates that maximum efficiency (30%) occurs in the 50 to 100X Sun concentration range, provided series resistance is below 0.015 ohm-sq cm and cell temperature is 80 C at 100 Suns.

  7. Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells in irradiated bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells after irradiation were studied in the long-term culture of mouse bone marrow cells in vitro. No difference was observed in the survival of the stem cells among cultures in which 0 - 107 cells were re-inoculated on the adherent cell colonies in the culture flask. Stem cells showed a significant proliferation within 1 week and the number of the stem cells exceeded the control in 3 weeks after irradiation in the cultures with less than 106 re-inoculated cells per flask. In contrast, there was a considerable delay in the onset of stem cell proliferation after irradiation in the culture with 107 cells per flask. Based on these results, a possibility that a stimulator of stem cell proliferation, released from irradiated stromal cells, is cancelled by an inhibitory factor produced by irradiated or unirradiated haemopoietic cells is postulated. (author)

  8. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and

  9. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations

    Directory of Open Access Journals (Sweden)

    Qin H

    2014-05-01

    Full Text Available Hui Qin,1,* Chen Zhu,2,* Zhiquan An,1 Yao Jiang,1 Yaochao Zhao,1 Jiaxin Wang,1 Xin Liu,1 Bing Hui,1 Xianlong Zhang,1 Yang Wang1 1Department of Orthopedics, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 2Department of Orthopaedic Surgery, Provincial Hospital Affiliated to Anhui Medical University, HeFei, People's Republic of China *These authors contributed equally to this work Abstract: In tissue engineering, urine-derived stem cells are ideal seed cells and silver nanoparticles (AgNPs are perfect antimicrobial agents. Due to a distinct lack of information on the effects of AgNPs on urine-derived stem cells, a study was conducted to evaluate the effects of silver ions and AgNPs upon the cytotoxicity and osteogenic differentiation of urine-derived stem cells. Initially, AgNPs or AgNO3 were exposed to urine-derived stem cells for 24 hours. Cytotoxicity was measured using the Cell Counting kit-8 (CCK-8 test. The effects of AgNPs or AgNO3 at the maximum safety concentration determined by the CCK-8 test on osteogenic differentiation of urine-derived stem cells were assessed by alkaline phosphatase activity, Alizarin Red S staining, and the quantitative reverse transcription polymerase chain reaction. Lastly, the effects of AgNPs or AgNO3 on "urine-derived stem cell actin cytoskeleton organization" and RhoA activity were assessed by rhodamine-phalloidin staining and Western blotting. Concentration-dependent toxicity was observed starting at an AgNO3 concentration of 2 µg/mL and at an AgNP concentration of 4 µg/mL. At these concentrations, AgNPs were observed to promote osteogenic differentiation of urine-derived stem cells, induce actin polymerization and increase cytoskeletal tension, and activate RhoA; AgNO3 had no such effects. In conclusion, AgNPs can promote osteogenic differentiation of urine-derived stem cells at a suitable concentration, independently of silver ions, and are suitable for incorporation

  10. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  11. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations

    Science.gov (United States)

    Manshian, Bella B.; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J.

    2015-09-01

    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  12. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells

    International Nuclear Information System (INIS)

    Highlights: •We performed time-resolved NMR observations of calbindin D9k in HeLa cells. •Stress-induced increase of cytosolic Ca2+ concentration was observed by in-cell NMR. •Calbindin D9k showed the state-transition from Mg2+- to Ca2+-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca2+-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca2+ concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca2+ concentration during experiments, human calbindin D9k (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D 1H–15N SOFAST–HMQC experiments of calbindin D9k (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D9k (P47M + C80) is initially in the Mg2+-bound state, and then gradually converted to the Ca2+-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca2+ into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of proteins involved in the intracellular signalling systems. Our method provides a very useful tool

  13. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  14. Thermal annealing of GaAs concentrator solar cells. [during electron irradiation

    Science.gov (United States)

    Curtis, H. B.; Brinker, D. J.

    1989-01-01

    The thermal annealing of GaAs concentrator cells after electron irradiation is reported. Results are given for cells annealed at 150, 200, and 250 C. Isochronal annealing was done for 20 min intervals up to 350 C. For cells irradiated with electrons of energies between 0.7 and 2.3 MeV, the recovery decreases with increasing electron energy. Isothermal and isochronal annealing produce the same recovery. Cells irradiated to 3 x 10 to the 15th or 1 x 10 to the 16th e/sq cm recover to similar unannealed fractions. Significant annealing is seen starting at 150 C, although very long times are required.

  15. LES SYSTEMES A CONCENTRATION DANS LA CONVERSION PHOTOVOLTAIQUE : BILAN ET PERSPECTIVES

    OpenAIRE

    Laurent, Bernard

    1982-01-01

    SITUATION DE LA PLACE DE LA CONCENTRATION DANS LE DOMAINE DE LA RECHERCHE ACTUELLE EN CONVERSION PHOTOVOLTAIQUE. ANALYSE DE DEUX EXPERIMENTATIONS DE SYSTEMES A CONCENTRATION PAR LENTILLES DE FRESNEL: SOPHOCLE 100 W ET SOPHOCLE 500 W. COMPARAISON AVEC LES PANNEAUX DE CELLULES SOUS CONCENTRATION PERMETTANT DE DEGAGER LES PERSPECTIVES DE DEVELOPPEMENT DU SYSTEME SOPHOCLE Indisponible

  16. Effect of Hypoxia on Ca2+ Concentration in Broiler's Cardiac Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this research was to study the effect of hypoxia on the Ca2+ concentration in broiler's cardiac muscle cells (CMCs). The concentration of Ca2+ in the CMC was observed using a laser scanning confocal microscope (LSCM). The results showed that hypoxia could significantly increase intracellular Ca2+ (normal oxygen, 99.3 ± 13.1; hypoxia, 129.4±24.3, P<0.01) in CMCs. The Ca2+ antagonist (nifedipine, verapamil) could significantly restrain the Ca2+ influx across the cell membrane of CMC treated by hypoxia (CMC: hypoxia + verapamil, 100.9 ± 28.2; hypoxia + nifedipine, 107.6± 27.7;P < 0.01). The results showed hypoxia could increase intracellular Ca2+ concentration of CMC, and the Ca2+ antagonist could restrain the Ca2+ influx across the cell membrane of CMC treated by hypoxia.

  17. Solar cell thermodynamics including multiple impact ionization and concentration of radiation

    International Nuclear Information System (INIS)

    The simultaneous effect of impact ionization and the concentration of radiation on solar cell performance is analysed. For maximum solar concentration and an infinite number of impact ionizations one obtains a maximum cell efficiency (0.845). This corresponds to an optimum reduced driving force qV/Eg=0.882, given a ratio of Ts/Tp∼300/6000 (q,V and Eg are electron electric charge, voltage and bandgap energy, respectively, while Ts and Tp are ambient and sun temperature, respectively). With full concentration the optimum reduced driving force equals the Carnot factor 1-Tc/Tp exactly (Tc is cell temperature). In the case of no illumination, there is a negative driving force. This is related to the coefficient of performance of a Carnot refrigeration engine. In the limit of an infinite number of impact ionizations, the Carnot factor occurs again, this time as an upper bound to the optimum reduced driving force. (author)

  18. Evaluation of concentrator photovoltaic properties of GaInNAsSb solar cells for multijunction solar cell applications

    Science.gov (United States)

    Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka

    2015-08-01

    In this work, we focus on the growth and characterization of undoped GaInNAsSb layers in solar cells and also study their concentrator photovoltaic properties. Concentrated light current-voltage characteristics of three GaInNAsSb-based solar cells with various thicknesses of GaInNAsSb layers (ti) from 1.0 to 3.0 µm were evaluated. The photogenerated carriers from the GaInNAsSb layers are well collected even for the ti = 2.0 and 3.0 µm devices. The comparison of the solar cell parameters under high concentration conditions showed no significant difference among the devices. This behavior is consistent with the results of series resistance analyses. This suggests that the bulk resistance due to the GaInNAsSb thickness is a minor factor for the series resistance in the present devices.

  19. Organization of Enzyme Concentration across the Metabolic Network in Cancer Cells

    OpenAIRE

    Madhukar, Neel S.; Warmoes, Marc O; Locasale, Jason W.

    2015-01-01

    Rapid advances in mass spectrometry have allowed for estimates of absolute concentrations across entire proteomes, permitting the interrogation of many important biological questions. Here, we focus on a quantitative aspect of human cancer cell metabolism that has been limited by a paucity of available data on the abundance of metabolic enzymes. We integrate data from recent measurements of absolute protein concentration to analyze the statistics of protein abundance across the human metaboli...

  20. Measurement of FRET Efficiency and Ratio of Donor to Acceptor Concentration in Living Cells

    OpenAIRE

    Chen, Huanmian; Puhl, Henry L.; Koushik, Srinagesh V.; Steven S Vogel; Ikeda, Stephen R.

    2006-01-01

    Measurement of fluorescence resonance energy transfer (FRET) efficiency and the relative concentration of donor and acceptor fluorophores in living cells using the three-filter cube approach requires the determination of two constants: 1), the ratio of sensitized acceptor emission to donor fluorescence quenching (G factor) and 2), the ratio of donor/acceptor fluorescence intensity for equimolar concentrations in the absence of FRET (k factor). We have developed a method to determine G and k t...

  1. The prognostic value of YKL-40 concentrations in nonmyeloablative conditioning allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Mørup, Anne Mette; Kornblit, Brian; Johansen, Julia S; Masmas, Tania Nicole; Madsen, Hans O; Vindeløv, Lars; Garred, Peter

    2011-01-01

    plasma YKL-40 concentrations as prognostic biomarkers in a cohort of 149 patients treated with hematopoietic cell transplantation (HCT) after nonmyeloablative conditioning for hematologic malignancies. Recipients with pretransplant YKL-40 concentrations above the age-adjusted 95th percentile (high) had...... function as a biomarker for relapse risk and treatment-related toxicity, and possibly as a tool complementing clinical risk scores such as the HCT comorbidity index....

  2. The prognostic value of YKL-40 concentrations in nonmyeloablative conditioning allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Mørup, Anne Mette; Kornblit, Brian; Johansen, Julia S; Masmas, Tania Nicole; Madsen, Hans O; Vindeløv, Lars; Garred, Peter

    2011-01-01

    plasma YKL-40 concentrations as prognostic biomarkers in a cohort of 149 patients treated with hematopoietic cell transplantation (HCT) after nonmyeloablative conditioning for hematologic malignancies. Recipients with pretransplant YKL-40 concentrations above the age-adjusted 95th percentile (high) had...... could function as a biomarker for relapse risk and treatment-related toxicity, and possibly as a tool complementing clinical risk scores such as the HCT comorbidity index....

  3. Translation in cell-free systems

    International Nuclear Information System (INIS)

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination

  4. The induction of Sinorhizobium meliloti C4-dicarboxylate transport system(Dct)is regulated by oxygen concentration

    Institute of Scientific and Technical Information of China (English)

    WEN Jin; NAN Beiyan; Fergal O'Gara; WANG Yiping

    2005-01-01

    The Sinorhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for symbiotic nitrogen fixation. The dctA gene, encoding the C4-dicarboxylate permease, is expressed in both free living and symbiotic cells. But in free living cells expression of dctD and dctB is absolutely required for the expression of dctA. In this study, in order to investigate the effect of oxygen concentration on the induction of Dct system, E. coli DH5α strain which carries the plasmid-encoded dctABD operon was used in tube assays. It was found that the specific induction of Dct system occurred only at a certain depth under the surface of M63- 0.6% agar media, suggesting that Dct system could respond to oxygen concentration during succinate-induced expression. Furthermore, when measured at different oxygen concentrations, the highest expression level was observed at oxygen concentration of 2%. Thus, we predict that in addition to dicarboxylates, the induction of Dct system may also regulated by oxygen concentration.

  5. Concentric Coplanar Capacitive Sensor System with Quantitative Model

    Science.gov (United States)

    Bowler, Nicola (Inventor); Chen, Tianming (Inventor)

    2014-01-01

    A concentric coplanar capacitive sensor includes a charged central disc forming a first electrode, an outer annular ring coplanar with and outer to the charged central disc, the outer annular ring forming a second electrode, and a gap between the charged central disc and the outer annular ring. The first electrode and the second electrode may be attached to an insulative film. A method provides for determining transcapacitance between the first electrode and the second electrode and using the transcapacitance in a model that accounts for a dielectric test piece to determine inversely the properties of the dielectric test piece.

  6. Absolute beta-catenin concentrations in Wnt pathway-stimulated and non-stimulated cells.

    Science.gov (United States)

    Sievers, S; Fritzsch, C; Grzegorczyk, M; Kuhnen, C; Müller, O

    2006-01-01

    The intracellular level of the proto-oncoprotein beta-catenin is a parameter for the activity of the Wnt pathway, which has been linked to carcinogenesis. The paper introduces a novel sandwich-based ELISA for the determination of the beta-catenin concentration in lysates from cells or tissues. The advantages of the method were proven by determining beta-catenin levels in cell lines and in cells after activation of the Wnt pathway. Analysis revealed high beta-catenin concentrations in the cell lines HeLa, KB, HT1080, MCF-7, U-87 and U-373, which had not been described before. Beta-catenin concentrations were compared in HEK293 and C57MG cells after activation of the Wnt pathway. The beta-catenin concentrations increased by different factors depending on whether the Wnt pathway was activated by incubation with LiCl or with Wnt-3a-conditioned medium. This finding indicated that the beta-catenin level depends on the way and level of Wnt pathway activation. The quantitative analysis of beta-catenin in colorectal tumours revealed high beta-catenin levels in tumours with truncating mutations in the APC gene. PMID:16760136

  7. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications

    Science.gov (United States)

    Matsuda, Yoshiyuki; Shimizu, Takahiro; Mitsushima, Shigenori

    2016-06-01

    The adsorption behavior of CO on the anode around the concentration of 0.2 ppm allowed by ISO 14687-2 is investigated in polymer electrolyte fuel cells (PEFCs). CO and CO2 concentrations in the anode exhaust are measured during the operation of a JARI standard single cell at 60 °C cell temperature and 1000 mA cm-2 current density. CO coverage is estimated from the gas analysis and CO stripping voltammetry. The cell voltage decrease as a result of 0.2 ppm CO is 29 mV and the CO coverage is 0.6 at the steady state with 0.11 mg cm-2 of anode platinum loading. The CO coverage as a function of CO concentration approximately follows a Temkin-type isotherm. Oxygen permeated to the anode through a membrane is also measured during fuel cell operation. The exhaust velocity of oxygen from the anode was shown to be much higher than the CO supply velocity. Permeated oxygen should play an important role in CO oxidation under low CO concentration conditions.

  8. Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes

    OpenAIRE

    Jisun Im; Elizabeth S. Sterner; Swager, Timothy M.

    2016-01-01

    An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT) sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX) vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer) selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom l...

  9. Photovoltaic concentrator module technology

    Science.gov (United States)

    Richards, Elizabeth H.; Chamberlin, Jay L.; Boes, Eldon C.

    Significant developments in the development of photovoltaic (PV) concentrator technology are described. Concentrator cell research, advances in PV concentrator cell technology, and PV concentrator module development are described. Reliability issues currently of concern, including the applicability of wet insulation resistance tests to concentrator modules, correlation of accelerated thermal cycling tests with life expectancy in the field, and the importance of quality assurance during manufacture, are discussed. Two PV concentrator power systems installed in 1989 are discussed. A PV concentrator initiative program established by the DOE is given, and the results of the latest cost study are presented.

  10. A Fresnel lenses based concentrated PV system in a greenhouse

    OpenAIRE

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van, B.A.J.; Janssen, H.J.J.; Gieling, T.H.

    2011-01-01

    The scope of this investigation is the development and testing of a new type of greenhouse with an integrated linear Fresnel lens, receiver module and an innovative system for tracking to exploit all direct radiation in a solar energy system. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) that do not like direct radiation. Removing all direct radiation will drastically reduce the need for cooling under summer conditions and t...

  11. Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes

    OpenAIRE

    Bai, Peng; Bazant, Martin Z.

    2016-01-01

    Lithium-air batteries have been considered as ultimate solutions for the power source of long-range electrified transportation, but state-of-the-art prototypes still suffer from short cycle life, low efficiency and poor power output. Here, a lithium-bromine rechargeable fuel cell using highly concentrated bromine catholytes is demonstrated with comparable specific energy, improved power density, and higher efficiency. The cell is similar in structure to a hybrid-electrolyte Li-air battery, wh...

  12. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  13. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells.

    Science.gov (United States)

    Hammoud, Mohammad; Vlaski, Marija; Duchez, Pascale; Chevaleyre, Jean; Lafarge, Xavier; Boiron, Jean-Michel; Praloran, Vincent; Brunet De La Grange, Philippe; Ivanovic, Zoran

    2012-06-01

    The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool. PMID:21913190

  14. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  15. Adipose-derived regenerative cell (ADRC)-enriched fat grafting: optimal cell concentration and effects on grafted fat characteristics

    OpenAIRE

    Kakudo, Natsuko; Tanaka, Yoshihito; Morimoto, Naoki; Ogawa, Takeshi; Kushida, Satoshi; Hara, Tomoya; Kusumoto, Kenji

    2013-01-01

    Background To overcome the absorption of traditional fat grafting, techniques for adipose-derived regenerative cell (ADRC)-enriched fat grafting are currently being adapted for practical application. The Celution®800/CRS (Cytori Therapeutics, San Diego, CA) has enabled rapid grafting of the patient’s own freshly harvested ADRCs without requiring a culturing step. However, the optimal cell concentration and the effects of ADRCs on the characteristics of grafted fat after free fat grafting rema...

  16. Fuel-cell engine stream conditioning system

    Science.gov (United States)

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. System for concentrating and analyzing particles suspended in a fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fiechtner, Gregory J. (Bethesda, MD); Cummings, Eric B. (Livermore, CA); Singh, Anup K. (Danville, CA)

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  18. Towards The Industrialization Of Concentrator Solar Cells With Efficiencies Above 40%

    Science.gov (United States)

    Guter, W.; Meusel, M.; Köstler, W.; Kern, R.; Siefer, G.; Kellenbenz, R.; Dimroth, F.

    2010-10-01

    III-V Multi-junction solar cells provide today's highest photovoltaic conversion efficiencies and have entered the terrestrial market giving new drive to the concept of concentrator photovoltaics (CPV). Together with Fraunhofer ISE, AZUR SPACE has carried out intensive research regarding device architectures, material studies and processing. Continuous improvement of production processes at AZUR SPACE and the incorporation of a high bandgap top cell have recently led to concentrator cells with an average efficiency of 39.1% (500×AM1.5d). The target for this structure is to achieve close to 40% efficiency after further optimization. Metamorphic cell structures will increase efficiencies to values above 40%. This paper summarizes the current production status of the 3C35 solar cell with efficiencies above 35% as well as the status of the 3C38 design with a lean production process and an average efficienciy of 38%. Furthermore the development of the 3C40 cell structure with high-bandgap top cell is introduced and first results on the transfer of the metamorphic cell design from Fraunhofer ISE to AZUR SPACE are presented.

  19. Study of concentric iridescent ring around the laser-induced pits on the solar cell surface

    International Nuclear Information System (INIS)

    Highlights: • We studied the laser-induced damage on solar cell surface. • Concentric iridescent ring was observed originated from the gradient distribution pattern of the thickness of the oxidized surface film. • The damaged surface film of the m-Si solar cell is SiO2, while that of the GaAs/Ge solar cell is GeO2. - Abstract: The laser-induced damage on the surface of monocrystalline silicon (m-Si) solar cells and GaAs/Gesingle heterojunction solar cells are investigated. The solar cells were irradiated by a continuous wave laser at the wavelength of 532 nm. Concentric iridescent ring appeared on the damaged surfaces when observed with an optical microscope (OM) of broad spectrum. The damaged surface film was characterized by X-ray photoelectron spectroscopy (XPS) and the Contour Meter. The laser-induced temperature in silicon was calculated. The formation mechanism of the film and the cause of the concentric iridescent ring were analyzed

  20. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Science.gov (United States)

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  1. Design and testing of a uniformly solar energy TIR-R concentration lenses for HCPV systems.

    Science.gov (United States)

    Shen, S C; Chang, S J; Yeh, C Y; Teng, P C

    2013-11-01

    In this paper, total internal reflection-refraction (TIR-R) concentration (U-TIR-R-C) lens module were designed for uniformity using the energy configuration method to eliminate hot spots on the surface of solar cell and increase conversion efficiency. The design of most current solar concentrators emphasizes the high-power concentration of solar energy, however neglects the conversion inefficiency resulting from hot spots generated by uneven distributions of solar energy concentrated on solar cells. The energy configuration method proposed in this study employs the concept of ray tracing to uniformly distribute solar energy to solar cells through a U-TIR-R-C lens module. The U-TIR-R-C lens module adopted in this study possessed a 76-mm diameter, a 41-mm thickness, concentration ratio of 1134 Suns, 82.6% optical efficiency, and 94.7% uniformity. The experiments demonstrated that the U-TIR-R-C lens module reduced the core temperature of the solar cell from 108 °C to 69 °C and the overall temperature difference from 45 °C to 10 °C, and effectively relative increased the conversion efficiency by approximately 3.8%. Therefore, the U-TIR-R-C lens module designed can effectively concentrate a large area of sunlight onto a small solar cell, and the concentrated solar energy can be evenly distributed in the solar cell to achieve uniform irradiance and effectively eliminate hot spots. PMID:24514935

  2. Design of a NIR concentrator system integrated in a greenhouse

    NARCIS (Netherlands)

    Sonneveld, Piet; Swinkels, Gert-Jan; Tuijl, B.A.J. van; Janssen, H.J.J.

    2012-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the e

  3. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable e

  4. Community structure dynamics during startup in microbial fuel cells - The effect of phosphate concentrations.

    Science.gov (United States)

    Yanuka-Golub, Keren; Reshef, Leah; Rishpon, Judith; Gophna, Uri

    2016-07-01

    For microbial fuel cells (MFCs) to become a cost-effective wastewater treatment technology, they must produce a stable electro-active microbial community quickly and operate under realistic wastewater nutrient conditions. The composition of the anodic-biofilm and planktonic-cells communities was followed temporally for MFCs operated under typical laboratory phosphate concentrations (134mgL(-1)P) versus wastewater phosphate concentrations (16mgL(-1)P). A stable peak voltage was attained two-fold faster in MFCs operating under lower phosphate concentration. All anodic-biofilms were composed of well-known exoelectrogenic bacterial families; however, MFCs showing faster startup and a stable voltage had a Desulfuromonadaceae-dominated-biofilm, while biofilms co-dominated by Desulfuromonadaceae and Geobacteraceae characterized slower or less stable MFCs. Interestingly,planktonic-cell concentrations of these bacteria followed a similar trend as the anodic-biofilm and could therefore serve as a biomarker for its formation. These results demonstrate that wastewater-phosphate concentrations do not compromise MFCs efficiency, and considerably speed up startup times. PMID:27092994

  5. EIS studies on electro-electrodialysis cell for concentration of hydriodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Sow, Pradeep Kumar; Sant, Sonal; Shukla, Anupam [Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110010 (India)

    2010-09-15

    EIS studies were carried out on an electro-electrodialytic cell used for concentration of hydriodic acid using platinum electrodes and nafion117 membrane. Different impedance spectra were obtained where the concentration of iodine was varied while the concentration of HI was kept fixed at 55 wt%. Equivalent circuit model was used to simulate the experimental data and it was found that the impedance of the cell without membrane can be modeled using a single Warburg element along with ohmic resistance in series. This indicates presence of only diffusion transport resistance at the electrode and absence of any non-electroneutral layer. The impedance spectra for cell with membrane can be modeled using a Warburg element and a CPE with capacitive character along with ohmic resistance in series. This indicates formation of a non-electroneutral (heterogeneous transport) layer at the membrane in addition to a diffusion transport layer. It was found that the ohmic resistance increased with increase in the concentration of iodine while the impedances due Warburg and heterogeneous transport layer decreased with increase in iodine concentration. (author)

  6. The potential of np GaAs solar cells for high efficiency concentrator applications

    Science.gov (United States)

    Flat, A.; Milnes, A. G.

    1979-01-01

    This communication considers the design of the front grid contact of np GaAs solar cells for high efficiency concentrator applications. This design involves shadowing, contact resistance, and active layer sheet resistance losses, and at high concentrations, the power loss due to voltage drop on the resistance of the grid fingers should be considered. Analysis of the performance can be calculated as a function of junction depth and surface recombination velocity. The junction depth can be optimized by considering its effect on the collection efficiency of the dark current-voltage characteristics or the open circuit voltage, and on the series resistance loss or the fill factor for material parameters. The choice of the material parameters, calculation of the short circuit current, the selection of the n layer thickness, and the cell maximum power and efficiency are discussed. It is concluded that optimized multi-grid structures should allow the use of 10 by 10 sq cm cells with good efficiencies at high concentration ratios, and efficiencies of 22 to 25% should be obtainable from large area cells at concentrations of 40 AM1.

  7. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.; Lopacinska, Joanna M.; Skolimowski, Maciej; Chudy, M.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding....... The human lung carcinoma cells (A549) were cultured in the microdevice for several days. The growth and proliferation of cells was monitored using an inverted fluorescence microscope. After the cells' confluence was achieved in the microchambers, the novel method of cells' passaging in the designed...... microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent...

  8. Detection of bacteria in red blood cell concentrates by the Scansystem method.

    Science.gov (United States)

    Ribault, S; Faucon, A; Grave, L; Nannini, P; Faure, I Besson

    2005-05-01

    Bacterial contamination remains one of the major risks associated with blood product transfusion. The kinetics of bacterial growth in red blood cell concentrates (RBCC) is different than otherwise due to storage at 4 degrees C, conditions in which most bacteria do not survive. Psychrophilic bacteria such as Yersinia enterocolitica, however, can proliferate from a very low level of contamination to clinically significant levels at 4 degrees C and are known to cause severe transfusion-related infections. A screening method allowing the early detection of very low levels of bacteria in RBCC would improve transfusion safety. The Scansystem method has been previously described for detection of bacteria in platelet concentrates. We present here a modification of the system for detection of low levels of bacteria in RBCC. The Scansystem RBC kit protocol requires three steps, i.e., the agglutination and selective removal of RBCs, a labeling stage during which bacteria are labeled with a DNA-specific fluorophore, and finally recovery of bacteria on the surface of a black membrane for analysis using the Scansystem. The entire procedure from sampling to result can be completed in 90 min. Both gram-negative and gram-positive bacteria in RBCC are detected with a higher sensitivity than with currently available culture-based methods. The Scansystem RBC kit is shown to be sensitive enough to identify low-level bacterial contamination in a single unit tested in a pool of up to 20 RBCC samples (detection limit of between 1 and 10 CFU/ml depending on the bacterial strain). The method therefore lends itself to incorporation into high-sample-throughput screening programs. PMID:15872251

  9. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  10. Radiation survival of cells from spheroids grown in different oxygen concentrations

    International Nuclear Information System (INIS)

    The position of the internal, chronically hypoxic cells in spheroids was varied by alterations in the oxygen concentration in the growth medium. Such alterations were expected to cause large changes in the size of the radiobiologically hypoxic fraction. This was tested by growing and irradiating spheroids in oxygen concentrations between 5 and 20.3%, ensuring that the irradiation and growth conditions were as similar as possible. The survival curves appeared to be linear below a surviving fraction of 3 x 10-2, and the slopes were intermediate between the slopes of control curves for cells from spheroids irradiated in nitrogen or when fully oxygenated. Thus direct estimates of the hypoxic fractions could not be made. Two models of oxygen diffusion might explain the data. One model assumes that a large fraction of cells was fully hypoxic (radiobiologically) and that these internal, G1-confined, chronically hypoxic cells had a lower inherent radioresistance than the outer proliferating cells. Evidence was presented which indicated that this model was unlikely to be correct. The other model assumes that the inherent radioresistance was equal throughout the spheroid, and that the innermost cells died before the oxygen concentration was reduced sufficiently to cause full hypoxic protection. Theoretical survival curves based on this model were generated using the measured geometries ofthe spheroids and multitarget single-hit survival theory. Acceptable agreement with the postulate that the innermost cells of spheroids die at between 0.2 and 0.4% oxygen was obtained. These data may have implications regarding the relative contributions of chronic and acute hypoxia to the fraction of hypoxic cells in tumors

  11. Development of boron concentration analysis system and techniques for testing performance of BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Kim, Chang Shuk; Byun, Soo Hyun; Lee, Jae Yun; Sun, Gwang Min; Kim, Suk Kwon [Seoul National University, (Korea)

    2000-04-01

    I. Objectives and Necessity of the Project. Development of a boron concentration analysis system used for BNCT. Development of test techniques for BNCT facility. II. Contents and Scopes of the Project. (1) Design of a boron concentration analysis system at HANARO. (2) Component machining and instruments purchase, performance test. (3) Calculation and measurement of diffracted polychromatic beam quality. (4) Test procedures for boron concentration analysis system and BNCT facility. III. Result of the Project (1) Diffracted neutron beam quality for boron concentration analysis. (neutron flux: 1.2 * 10{sup 8} n/cm{sup 2}s, Cd-ratio : 1,600) (2) Components and instruments of the boron concentration analysis system. (3) Diffracted neutron spectrum and flux. (4) Test procedures for boron concentration analysis system and BNCT facility. 69 refs., 44 figs., 14 tabs. (Author)

  12. Equivalent Model for InGaP-Based Solar Cell under High Concentration

    Science.gov (United States)

    Cheknane, Ali; Belghachi, Abderrahmane; Helmaoui, Abderachid

    2008-01-01

    In this study the current-voltage (I-V) characteristics of a monocrystalline InGaP solar cell have been investigated. The experimental examination is carried out under a high concentration of light. The variations of the two reverse saturation currents are consistent with the physical significance of both the diffusion and the space-charge generation-recombination terms through their exponential variations. The simulation results clearly demonstrated that the solar cell is described with reasonable accuracy by a two-diode equivalent model that simulates the effects of the double-exponential dark current-voltage characteristics on the open-circuit voltage, fill factor, and conversion efficiency of the solar cell at a high concentration. The theoretical results are in good agreement with the experimental observations.

  13. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water.

    Science.gov (United States)

    Yuan, Lulu; Yang, Xufei; Liang, Peng; Wang, Lei; Huang, Zheng-Hong; Wei, Jincheng; Huang, Xia

    2012-04-01

    A new technology (CDI-MFC) that combined capacitive deionization (CDI) and microbial fuel cell (MFC) was developed to treat low-concentration salt water with NaCl concentration of 60mg/L. The water desalination rate was 35.6mg/(Lh), meanwhile the charge efficiency was 21.8%. Two desorption modes were investigated: discharging (DC) mode and short circuit (SC) mode. The desalination rate in the DC mode was 200.6±3.1mg/(Lh), 47.8% higher than that in the SC mode [135.7±15.3mg/(Lh)]. The average current in the DC mode was also much higher than that of the SC mode. The energy stored in the CDI cell has been reused to enhance the electron production of MFC by the discharging desorption mode (DC mode), which offers an approach to recover the electrostatic energy in the CDI cell. PMID:22364771

  14. The effects of exposure time and fluorine concentration on cell homeostasis

    Directory of Open Access Journals (Sweden)

    Ewa Kurzeja

    2015-09-01

    Full Text Available ummary Introduction. The fluorine content in food depends on the presence of its compounds in water, soil and air. Owing to the high activity of the fluoride ion and its significant affinity to divalent metals, which are co-factors of many enzymes, changes in the activity of these enzymes may take place, resulting, among other things, in ATP concentration changes and free radical generation. The aim of this work was to assess the effects of length of exposure and fluorine concentration on culture growth, fibroblast energy homeostasis and the production of nitric oxide. Material and methods. The research was conducted on fibroblasts isolated by means of mouse skin tissue explants from the tail and abdomen, BALB/c strain. The culture was bred with added sodium fluoride of final concentration of: 0.03 mmol/l; 0.06 mmol/l and 0.12 mmol/l. The culture growth time was: 1, 3 and 6 days. The culture growth indicator (N/N0 was determined, as well as the ATP concentration and the amount of nitric oxide(II released into the medium. The results obtained were calculated for 12106 cells. Results. The highest values of the growth indicator, ATP concentration and nitric oxide were found in control cultures. The results obtained suggest that the presence of fluoride ions inhibits fibroblast culture growth, decreases ATP synthesis and lowers nitric oxide(II production. The changes depend on the concentration of fluoride and the time of cell culture cultivation. Conclusions. Long-term exposure even to low fluoride concentrations disturbs cell homeostasis.

  15. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E.M.; Masso, J.D. [AOtec, Southbridge, MA (United States)

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  16. A portable and high energy efficient desalination/purification system by ion concentration polarization

    Science.gov (United States)

    Kim, Sung Jae; Kim, Bumjoo; Kwak, Rhokyun; Kim, Geunbae; Han, Jongyoon

    2012-10-01

    The shortage of fresh water is one of the acute challenges that the world is facing now and, thus, energy efficient desalination strategies can provide substantial answers for the water-crisis. Current desalination methods utilizing reverse-osmosis and electrodialysis mechanisms required high power consumptions/large-scale infrastructures which do not make them appropriate for disaster-stricken area or underdeveloped countries. In addition, groundwater contamination by heavy metal compounds, such as arsenic, cadmium and lead, poses significant public health challenges, especially in developing countries. Existing water purification strategies for heavy metal removal are not readily applicable due to technological, environmental, and economical barriers. This presentation elucidates a novel desalination/purification process, where a continuous contaminated stream is divided into filtered and concentrated stream by the ion concentration polarization. The key distinct feature is that both salts and larger particles (cells, viruses, and microorganisms) are pushed away from the membrane, in continuous flow operations, eliminating the membrane fouling that plagues the membrane filtration methods. The power consumption is less than 5Wh/L, comparable to any existing systems. The energy and removal efficiency, and low cost manufacturability hold strong promises for portable, self-powered water purification/desalination system that can have significant impacts on water shortage in developing/rural part of the world.

  17. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  18. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  19. Prototype commercial electrooxidation cell for the recovery of molybdenum and rhenium from molybdenite concentrates

    International Nuclear Information System (INIS)

    As part of the goal to maximize minerals and metals recovery from primary domestic resources, design factors associated with minimizing current leakage in bipolar cell configurations were studied as a means of improving the efficiency of bipolar electrooxidation cells. Initial studies that were conducted in a small bipolar cell operating at 140 to 145 volts and 15.4 A indicated how design factors could be employed to minimize current leakage around adjacent electrodes during cell operation. Based on these results, a 40-electrode, 108-kVA prototype of an industrial-sized cell was constructed and tested for extracting metal values from offgrade molybdenite concentrates. The feasibility of recovering molybdenum and rhenium from the oxidized pulp also was determined. Feed to the process sequence consisted of flotation concentrates containing 16 to 35% Mo as molybdenite and 6 to 15% Cu. Electrooxidation in the prototype cell results in 84 to 97% Mo and Re extraction with a corresponding energy consumption of 9 to 13 kWh/lb Mo extracted

  20. Prototype commercial electrooxidation cell for the recovery of molybdenum and rhenium from molybdenite concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Scheiner, B.J.; Pool, D.L.; Lindstrom, R.E.; McCleland, G.E.

    1979-01-01

    As part of the goal to maximize minerals and metals recovery from primary domestic resources, design factors associated with minimizing current leakage in bipolar cell configurations were studied as a means of improving the efficiency of bipolar electrooxidation cells. Initial studies that were conducted in a small bipolar cell operating at 140 to 145 volts and 15.4 A indicated how design factors could be employed to minimize current leakage around adjacent electrodes during cell operation. Based on these results, a 40-electrode, 108-kVA prototype of an industrial-sized cell was constructed and tested for extracting metal values from offgrade molybdenite concentrates. The feasibility of recovering molybdenum and rhenium from the oxidized pulp also was determined. Feed to the process sequence consisted of flotation concentrates containing 16 to 35% Mo as molybdenite and 6 to 15% Cu. Electrooxidation in the prototype cell results in 84 to 97% Mo and Re extraction with a corresponding energy consumption of 9 to 13 kWh/lb Mo extracted.

  1. Alterations of Intracellular Ca2+ Concentration and Ultrastructure in Spruce Apical Bud Cells during Seasonal Transition

    Institute of Scientific and Technical Information of China (English)

    Jian Lingcheng; Sun Delan; Deng Jiangming; Song Yanmei; Paul H. Li

    2004-01-01

    Potassium antimonite was used to localize Ca2+ in the apical bud cells of spruce from July 1999 to May 2000. During the period of active growth (July 14), Calcium precipitates, an indication of Ca2+ localization, were mainly distributed in vacuoles, intercellular spaces and cell walls. Few Ca2+ deposits localized in the cytosol and nucleus, showing a low level of the cytosolic and nuclear Ca2+ concentration in the warm summer. In August, some Ca2+ deposits appeared in the cytosol and nuclei, indicating that Ca2+ influx occurred in the cytosol and nucleus as the day length became shorter. From September to November, high levels of the cytosolic and nuclear Ca2+ remained. During the mid-winter (December and January), the distribution of Ca2+ deposits and the ultrastructures in the cells were altered dramatically. Plasmolysis occurred in many cells due to the protoplasmic dehydration. In addition plasmalemma invagination and nuclear chromatin aggregation also occurred. A large number of Ca2+ deposits appeared in the space between the plasmalemma and the cell wall. And also some Ca2+ deposits were distributed in the plastids. However, few Ca2+ deposits were observed in the cytosol and nuclei. By spring of the next year (May), when plants were de-acclimated and resumed active growth, Ca2+ subcellular localization essentially restored to that observed in July of the last year, i.e., the cells contained low cytosolic and nuclear Ca2+ concentrations; Ca2+ deposits were mainly distributed in the vacuoles, cell walls and intercellular spaces. The relationships between the seasonal changes of intracellular Ca2+ concentration and the development of dormancy/cold acclimation, as well as plasmolysis associated with dormancy and cold hardiness were discussed.

  2. DESIGN OF THE SEALEVEL SUSPENDED SOLIDS CONCENTRATION MONITORING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-09-17

    The SEAlevel project between Science & Engineering Associates, Inc. (SEA) and the National Energy Technology Laboratory (NETL) in Morgantown, WV (contract DE-AC21-96MC33126) began in direct response to a need expressed by personnel involved with monitoring fluid levels in underground storage tanks at the Hanford Tank Farms. Hanford expressed a desire for an automated monitoring system that could be installed into tanks through liquid observation wells (LOWs). The LOWs are pipes that run from the surface above the tank to the bottom of the tank. The end of the LOW pipe in the tank waste is sealed. Therefore, the LOW provides a clean conduit through which sensors and monitors can be lowered into the tanks. When the SEAlevel project first began, it was understood that the LOWs would be of steel construction, because several existing LOWs at the time were steel pipes and the plans for all future LOW installations were to be with steel pipes. Based on this assumption the SEAlevel monitoring system was to be made using an array of acoustic sensors. However, during the course of the project it was learned that many existing LOWs are of fiberglass construction and that it was the desire of the Tanks Surveillance Group at Hanford to change plans so that all future LOW installations be of fiberglass construction. The Tanks Surveillance Group wanted fiberglass LOWs to allow for a wider range of sensors to be used in the pipes (i.e., sensors that use electromagnetic signals). In response to this, SEA pursued the development of other types of sensors to install in the LOWs in addition to the acoustic sensors that were being developed. It was determined that a capacitance type sensor was well suited for non-metallic LOW pipes. The results of the analysis, testing and design efforts that were undertaken to address the Hanford needs were detailed in a report submitted to the NETL on August 15, 1997, titled, The Sealevel Approach For Monitoring Liquid Levels In DOE Waste Storage

  3. DESIGN OF THE SEALEVEL SUSPENDED SOLIDS CONCENTRATION MONITORING SYSTEM; FINAL

    International Nuclear Information System (INIS)

    The SEAlevel project between Science and Engineering Associates, Inc. (SEA) and the National Energy Technology Laboratory (NETL) in Morgantown, WV (contract DE-AC21-96MC33126) began in direct response to a need expressed by personnel involved with monitoring fluid levels in underground storage tanks at the Hanford Tank Farms. Hanford expressed a desire for an automated monitoring system that could be installed into tanks through liquid observation wells (LOWs). The LOWs are pipes that run from the surface above the tank to the bottom of the tank. The end of the LOW pipe in the tank waste is sealed. Therefore, the LOW provides a clean conduit through which sensors and monitors can be lowered into the tanks. When the SEAlevel project first began, it was understood that the LOWs would be of steel construction, because several existing LOWs at the time were steel pipes and the plans for all future LOW installations were to be with steel pipes. Based on this assumption the SEAlevel monitoring system was to be made using an array of acoustic sensors. However, during the course of the project it was learned that many existing LOWs are of fiberglass construction and that it was the desire of the Tanks Surveillance Group at Hanford to change plans so that all future LOW installations be of fiberglass construction. The Tanks Surveillance Group wanted fiberglass LOWs to allow for a wider range of sensors to be used in the pipes (i.e., sensors that use electromagnetic signals). In response to this, SEA pursued the development of other types of sensors to install in the LOWs in addition to the acoustic sensors that were being developed. It was determined that a capacitance type sensor was well suited for non-metallic LOW pipes. The results of the analysis, testing and design efforts that were undertaken to address the Hanford needs were detailed in a report submitted to the NETL on August 15, 1997, titled, The Sealevel Approach For Monitoring Liquid Levels In DOE Waste Storage

  4. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  5. Effects of extracellular iron concentration on calcium absorption and relationship between Ca2+ and cell apoptosis in Caco-2 cells

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Qing Li; Xiang-Lin Duan; Yan-Zhong Chang

    2005-01-01

    AIM: To determine the method of growing small intestinal epithelial cells in short-term primary culture and to investigate the effect of extracellular iron concentration ([Fe3+]) on calcium absorption and the relationship between the rising intracellular calcium concentration ([Ca2+]i) and cell apoptosis in human intestinal epithelial Caco-2 cells. METHODS: Primary culture was used for growing small intestinal epithelial cells. [Ca2+]i was detected by a confocal laser scanning microscope. The changes in [Ca2+]i were represented by fluorescence intensity (FI). The apoptosis was evaluated by flow cytometry.RESULTS: Isolation of epithelial cells and preservation of its three-dimensional integrity were achieved using the digestion technique of a mixture of collagenase Ⅺ and dispase Ⅰ. Purification of the epithelial cells was facilitated by using a simple differential sedimentation method. The results showed that proliferation of normal gut epithelium in vitro was initially dependent upon the maintenance of structural integrity of the tissue. If 0.25% trypsin was used for digestion, the cells were severely damaged and very difficult to stick to the Petri dish for growing. The Fe3+ chelating agent desferrioxamine (100, 200 and 300 μmol/L) increased the FI of Caco-2 cells from 27.50±13.18 (control,n = 150) to 35.71±13.99 (n = 150, P<0.01), 72.19±35.40 (n = 150, P<0.01) and 211.34±29.03 (n = 150, P<0.01) in a concentration-dependent manner. There was a significant decrease in the FI of Caco-2 cells treated by ferric ammonium citrate (FAC, a Fe3+ donor; 10, 50 and 100 μmol/L). The FIvalue of Caco-2 cells treated by FAC was 185.85±33.77 (n = 150, P<0.01), 122.73±58.47 (n = 150, P<0.01), and 53.29±19.82 (n = 150, P<0.01), respectively, suggesting that calcium absorption was influenced by [Fe3+]. Calcium ionophore A23187 (0.1, 1.0 and 10 μmol/L) increased the FI of Caco-2 cells from 40.45±13.95 (control, n = 150) to 45.19±21.95 (n = 150, P<0

  6. Enhance Efficiency of Solar Cell Using Luminescence PbS Quantum Dots Concentrators.

    Science.gov (United States)

    Reda, S M

    2015-05-01

    Thin film and sheet PbS quantum dots (QDs) concentrators were synthesized by sol-gel method using three different PbS concentrations (0.14, 0.2, and 0.4 mol%). The structure and morphology of the prepared PbS QDs were characterized by X-ray diffraction (XRD), Scan electron microscopy (SEM), and Transmission electron microscopy (TEM). The photostability of the PbS QDs concentrators under outdoor exposure to sunlight for 8 weeks was studied. The results showed that the PbS QDs sheet with PbS concentration (0.14 mol%) has the highest luminescence intensity. The sheet PbS QDs concentrator was used to couple with PV solar cell and the corresponding photoelectric conversion efficiency was measured under sun light illumination. I-V characteristics of the photovoltaic devices, both open circuit voltage and short circuit current were improved as compared to the device without collector. This indicates that the proposed technique is very useful for improving the efficiency of solar cell. PMID:25740343

  7. Effect of Substrate Concentration to Anode Chamber Performance in Microbial Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Libertus Darus

    2015-11-01

    Full Text Available Microbial electrolysis is a promising process for bio-hydrogen production which might be implemented in waste water treatment in a near future. Unfortunately substrate could be converted into methane by acetoclastic methanogens and will reduce the coulombic efficiency (CE. The research objective was to study the competition between electrogens and methanogens for substrate in a continuous Microbial Electrolysis Cell (MEC.The competition was studied in relation to controlling acetate influent concentration (Cin from 35 to 1 mM with a fixed anode potential -350 mV, by assessing activity of electrogens as current density (CD, activity of acetoclastic methanogens as methanogenic consumed acetate (Cmeth, and CE and by measuring anolyte protein content to confirm a steady state condition. Controlling Cin from 35 to 1 mM resulted in tendency of both CD and Cmeth to decrease and CE to increase. At decreasing Cin from 35 to 5 mM which left excess acetate concentration in anolyte, the CEs were between 36.4% and 75.3%. At further decreasing Cin to 1 mM the acetate concentration was limited (Cef 0 mM, but the CE only reached 95.8%. Methanogenesis always occur and electrogens were not able to outcompete the acetoclastic methanogens even though the substrate concentration was limited.Keywords : microbial electrolysis cell, bio-hydrogen, metanogenesis, substrate concentration

  8. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization. PMID:20588569

  9. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    Science.gov (United States)

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization. PMID:20607883

  10. The Effects of Bee Venom on PLA2 and Calcium Concentration in Raw 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jong-Il Yun

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide, sodium nitroprusside and hydrogen peroxide induced expression phospholipase A2 and calcium concentration in RAW 264.7 cells, a murine macrophage cell line. Methods : The expression of phospholipase A2 was determined by western blotting with corresponding antibodies, and the generation of intracellular calcium concentration was investigated by delta scan system in RAW 264.7 cells. Results : 1. Compared with control, expressions of lipopolysaccharide-induced phospholipase A2 were decreased significantly by 1 ㎍/㎕ of bee venom and decreased by 0.5, 5 ㎍/㎕ of bee venom. 2. Compared with control, expressions of sodium nitroprusside-induced phospholipase A2 were decreased significantly by 5 ㎍/㎕ of bee venom but increased by 0.5, 5 ㎍/㎕ of bee venom. 3. Compared with control, expressions of hydrogen peroxide-induced phospholipase A2 were decreased significaltly by 1 ㎍/㎕ of bee venom and decreased by 0.5 ㎍/㎕ of bee venom but increased by 5 ㎍/㎕ of bee venom. 4. Compared with control, lipopolysaccharide, sodium nitroprusside and hydrogen peroxide- induced intracellular calcium concentrations were decreased by 0.5, 1, 5 ㎍/㎕ of bee venom and by indomethacin

  11. On-sun concentrator performance of GaInP/GaAs tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J.; Kurtz, S.R.; Sinha, K.; McMahon, W.E.; Olson, J.M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The GaInP/GaAs concentrator device has been adapted for and tested in a prototype {open_quotes}real-world{close_quotes} concentrator power system. The device achieved an on-sun efficiency of 28% {+-} 1% in the range of approximately 200-260 suns with device operating temperatures of 38{degrees}C to 42{degrees}C. The authors discuss ways of further improving this performance for future devices.

  12. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. PMID:26521697

  13. Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness

    International Nuclear Information System (INIS)

    Taxol is widely used in breast cancer chemotherapy. Its effects are primarily attributed to its anti-mitotic activity. Microtubule perturbators also exert antimetastatic activities which cannot be explained solely by the inhibition of proliferation. Voltage-dependent sodium channels (NaV) are abnormally expressed in the highly metastatic breast cancer cell line MDA-MB-231 and not in MDA-MB-468 cell line. Inhibiting NaV activity with tetrodotoxin is responsible for an approximately 0.4-fold reduction of MDA-MB-231 cell invasiveness. In this study, we focused on the effect of a single, 2-h application of 10 nM taxol on the two cell lines MDA-MB-231 and MDA-MB-468. At this concentration, taxol had no effect on proliferation after 7 days and on migration in any cell line. However it led to a 40% reduction of transwell invasion of MDA-MB-231 cells. There was no additive effect when taxol and tetrodotoxin were simultaneously applied. NaV activity, as assessed by patch-clamp, indicates that it was changed by taxol pre-treatment. We conclude that taxol can exert anti-tumoral activities, in cells expressing NaV, at low doses that have no effect on cell proliferation. This effect might be due to a modulation of signalling pathways involving sodium channels.

  14. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration.

    Science.gov (United States)

    Uggetti, Enrica; Puigagut, Jaume

    2016-10-01

    The aim of this study was to quantitatively assess the net increase in microalgal biomass concentration induced by photosynthetic microbial fuel cells (PMFC). The experiment was conducted on six lab-scale PMFC constituted by an anodic chamber simulating an anaerobic digester connected to a cathodic chamber consisting of a mixed algae consortia culture. Three PMFC were operated at closed circuit (PMFC(+)) whereas three PMFC were left unconnected as control (PMFC(-)). PMFC(+) produced a higher amount of carbon dioxide as a product of the organic matter oxidation that resulted in 1.5-3 times higher biomass concentration at the cathode compartment when compared to PMFC(-). PMID:27455126

  15. Effects of NaCl concentration on anode microbes in microbial fuel cells

    OpenAIRE

    Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2015-01-01

    Understanding of how operational parameters affect the composition of exoelectrogenic microbes is an important step in the development of efficient microbial fuel cells (MFCs). In the present study, single-chamber MFCs were inoculated with rice paddy-field soil and continuously supplied with an acetate medium containing different concentrations of NaCl (0–1.8 M). Polarization analyses showed that power output increased as the NaCl concentration increased to 0.1 M, while it was markedly dimini...

  16. High-efficiency thin-film solar cells for the conversion of concentrated radiation

    Science.gov (United States)

    Andreev, V. M.; Burba, T. S.; Dorgan, V. V.; Trofim, V. G.; Chumak, V. A.

    1987-09-01

    The objective of the study was to investigate the possibility of increasing the efficiency of thin-film solar cells with coplanar back contacts for the conversion of concentrated solar radiation. It is shown that, in the thin-film solar cells described here, the cell shading factor can be reduced to a minimum since it does not depend on the p-contact area but is determined solely by the area of etched grooves in a thin (7 microns) layer of GaAs. The cells used in the study have a shading factor of 2.5 percent, and a further reduction by an order of magnitude is shown to be possible.

  17. High-efficiency thin-film solar cells for the conversion of concentrated radiation

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.M.; Burba, T.S.; Dorgan, V.V.; Trofim, V.G.; Chumak, V.A.

    1987-09-01

    The objective of the study was to investigate the possibility of increasing the efficiency of thin-film solar cells with coplanar back contacts for the conversion of concentrated solar radiation. It is shown that, in the thin-film solar cells described here, the cell shading factor can be reduced to a minimum since it does not depend on the p-contact area but is determined solely by the area of etched grooves in a thin (7 microns) layer of GaAs. The cells used in the study have a shading factor of 2.5 percent, and a further reduction by an order of magnitude is shown to be possible. 6 references.

  18. Effect of tungsten concentration on growth of acetobacter xylinum as a promising agent for eco-friendly recycling system

    Science.gov (United States)

    Nandiyanto, A. B. D.; Halimatul, H. S.; Rosyid, N. H.; Effendi, D. B.

    2016-04-01

    Effect of tungsten (W) concentration on Acetobacter xylinum growth was studied. In the experimental procedure, concentration of W in the bacterial growth medium containing pineapple peels waste was varied from 0.5 to 50 ppm. To confirm the influence of W, the bacterial incubation process was carried out for 72 hours. Spectrophotometer analysis showed that the growth rate of Acetobacter xylinum decreased with increasing concentration of W. The result from fourier transform infra red analysis showed a slightly change on the absorption peak intensities and informing the interaction of W ion and bacteria cell. The result confirmed that Acetobacter xylinum was able to uptake W concentration up to 15 ppm, indicating that Acetobacter xylinum might act as a promising agent for eco-friendly recycling system.

  19. System Studies of Fuel Cell Power Plants

    OpenAIRE

    Kivisaari, Timo

    2001-01-01

    This thesis concerns system studies of power plants wheredifferent types of fuel cells accomplish most of the energyconversion. Ever since William Grove observed the fuel cell effect inthe late 1830s fuel cells have been the subject or more or lessintense research and development. Especially in the USA theseactivities intensified during the second part of the 1950s,resulting in the development of the fuel cells used in theApollo-program. Swedish fuel cell activities started in themid-1960s, w...

  20. Effect of an Activated Platelet Concentrate on Differentiated Cells Involved in Tissue Healing.

    Science.gov (United States)

    Brini, Anna T; Ceci, Caterina; Taschieri, Silvio; Niada, Stefania; Lolato, Alessandra; Giannasi, Chiara; Mortellaro, Carmen; Del Fabbro, Massimo

    2016-05-01

    Tissue healing is a complex process involving several players such as cells and growth factors released from platelets upon activation. Today, platelet concentrates (PCs) are used in many different medical fields including oral, orthopaedic, and reconstructive surgery since they allow growth factors delivery to the injured site, aiming at enhancing tissue regeneration. The purpose of this in vitro study was to evaluate the effect of the acellular plasma of an activated platelet concentrate obtained using a manual protocol, on the proliferation, and biological activity of differentiated cells involved in tissue healing. Human osteoblasts and dermal fibroblasts were grown in serum-free medium supplemented with PC derived from several donors. Human osteoblast and human dermal fibroblast proliferation was assessed by MTT test after 7 days and cells were count up to 12-day incubation. Human osteoblast osteo-differentiation was tested after 7 and 14-day incubation by alkaline phosphatase assay. The addition of PC to the culture medium caused an increased proliferation with respect to cells grown in standard condition. The results of the present study suggest that PC supports the proliferation of terminally differentiated cells involved in wound healing and tissue regeneration, confirming its beneficial clinical application in regenerative therapies. PMID:27054419

  1. Influence of substrate concentration and feed frequency on ammonia inhibition in microbial fuel cells

    Science.gov (United States)

    Tice, Ryan C.; Kim, Younggy

    2014-12-01

    Excessive amounts of ammonia are known to inhibit exoelectrogenic activities in microbial fuel cells (MFCs). However, the threshold ammonia concentration that triggers toxic effects is not consistent among literature papers, indicating that ammonia inhibition can be affected by other operational factors. Here, we examined the effect of substrate concentration and feed frequency on the capacity of exoelectrogenic bacteria to resist against ammonia inhibition. The high substrate condition (2 g L-1 sodium acetate, 2-day feed) maintained high electricity generation (between 1.1 and 1.9 W m-2) for total ammonia concentration up to 4000 mg-N L-1. The less frequent feed condition (2 g L-1 sodium acetate, 6-day feed) and the low substrate condition (0.67 g L-1 sodium acetate, 2-day feed) resulted in substantial decreases in electricity generation at total ammonia concentration of 2500 and 3000 mg-N L-1, respectively. It was determined that the power density curve serves as a better indicator than continuously monitored electric current for predicting ammonia inhibition in MFCs. The chemical oxygen demand (COD) removal gradually decreased at high ammonia concentration even without ammonia inhibition in electricity generation. The experimental results demonstrated that high substrate concentration and frequent feed substantially enhance the capacity of exoelectrogenic bacteria to resist against ammonia inhibition.

  2. Estimation of CO concentration in high temperature PEM fuel cells using electrochemical impedance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Andreasen, Søren Juhl; Kær, Søren Knudsen;

    2013-01-01

    requirements. One of the solutions to this fuel storage problem is using liquid fuels such as methanol that through a chemical reformer converts the fuel into a hydrogen rich gas mixture. Methanol is a liquid fuel, which has low storage requirements and high temperature polymer electrolyte membrane (HTPEM......, a possible solution, an avoidance of the long recharging time is combining them with the use of fuel cells. Fuel cells continuously deliver electrical power as long as a proper fuel supply is maintained. The ideal fuel for fuel cells is hydrogen, which in it’s pure for has high volumetric storage......) fuel cells can eciently run on the reformed hydrogen rich gas, although with reduced performance depending on the contaminants, such as CO, in the gas. By estimating the amount of CO in the fuel cell, it could be possible to adjust the fuel cell system operating parameters to increase performance of...

  3. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Fei-Lu Siaw

    2013-01-01

    Full Text Available This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  4. High glucose concentration in isotonic media alters Caco-2 cell permeability

    OpenAIRE

    Souza, Vanessa M. D; Shertzer, Howard G.; Menon, Anil G.; Pauletti, Giovanni M.

    2003-01-01

    Caco-2 cell permeability was evaluated in isotonic media containing high (25mM) or physiological (5.5mM) glucose concentrations. Transepithelial electrical resistance (TEER) and membrane fluidity were measured to assess glucose-induced alterations in physical barrier properties. In parallel, distribution of the actin filament (F-actin) and zonula occludens-1 (ZO-1) proteins was assessed by confocal microscopy. Transepithelial fluxes of mannitol, hydrocortisone, digoxin, and glycyl sarcosine (...

  5. Subinhibitory Concentrations of Triclosan Promote Streptococcus mutans Biofilm Formation and Adherence to Oral Epithelial Cells

    OpenAIRE

    Bedran, Telma Blanca Lombardo; Grignon, Louis; Spolidorio, Denise Palomari; Grenier, Daniel

    2014-01-01

    Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs) of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range...

  6. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  7. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    Science.gov (United States)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  8. GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetate.

    Science.gov (United States)

    Jahn, Stephan C; Solayman, Mohamed Hassan M; Lorenzo, Ryan J; Langaee, Taimour; Stacpoole, Peter W; James, Margaret O

    2016-06-01

    Dichloroacetate (DCA), commonly used to treat metabolic disorders, is under investigation as an anti-cancer therapy due to its ability to reverse the Warburg effect and induce apoptosis in tumor cells. While DCA's mechanism of action is well-studied, other factors that influence its potential as a cancer treatment have not been thoroughly investigated. Here we show that expression of glutathione transferase zeta 1 (GSTZ1), the enzyme responsible for conversion of DCA to its inactive metabolite, glyoxylate, is downregulated in liver cancer and upregulated in some breast cancers, leading to abnormal expression of the protein. The cellular concentration of chloride, an ion that influences the stability of GSTZ1 in the presence of DCA, was also found to be abnormal in tumors, with consistently higher concentrations in hepatocellular carcinoma than in surrounding non-tumor tissue. Finally, results from experiments employing two- and three-dimensional cultures of HepG2 cells, parental and transduced to express GSTZ1, demonstrate that high levels of GSTZ1 expression confers resistance to the effect of high concentrations of DCA on cell viability. These results may have important clinical implications in determining intratumoral metabolism of DCA and, consequently, appropriate oral dosing. PMID:26850694

  9. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations.

    Science.gov (United States)

    Bradai, Mohamed; Han, Junkyu; Omri, Abdelfatteh El; Funamizu, Naoyuki; Sayadi, Sami; Isoda, Hiroko

    2016-08-01

    Linear alkylbenzene sulfonate (LAS) is a cytotoxic synthetic anionic surfactant widely present in the environment due to its large-scale production and intensive use in the detergency field. In this study, we investigated the effect of LAS (CAS No. 25155-30-0) at non cytotoxic concentrations on human intestinal Caco-2 cells using different in vitro bioassays. As results, LAS increased Caco-2 cell proliferation at concentrations ranging from 1 to 15 ppm, more significantly for shorter exposure time (24 h), confirmed using flow cytometry and trypan blue exclusion methods. Moreover, proteomics analysis revealed that this effect was associated with an over-expression of elongation factor 2 and dipeptidyl peptidase 3, and a down-regulation of 14-3-3 protein theta, confirmed at mRNA level using real-time PCR. These findings suggest that LAS at non cytotoxic concentrations, similar to those observed at wastewater treatment plants outlets, increases the growth rate of colon cancer cells, raising thereby its tumor promotion effect potential. PMID:25999174

  10. Correlation between Nitric oxide (NO & Asymmetric dimethylargininie (ADMA Hemoglobin Concentration in sickle cell patients

    Directory of Open Access Journals (Sweden)

    Kadkhodaei ElyaderaniM

    2010-01-01

    Full Text Available Background and objectives: The importance of Nitric oxide (NO andAsymmetric dimethylargininie (ADMA in pathophysiology of Sickle celldisease (SCD is being increasingly clarified. Since very few of the studieshave been conducted in the word and no study has been carried out in Iran,especially in Khuzestan province where is the main center of Sickle Celldisorder (SCD in Iran, We decided to conduct the present study.Material and Methods: EDTA anticoagulated plasma samples were obtainedfrom 35 healthy controls (Hb AA, 35 heterozygous (HB AS and 35homozygous (HB SS sickle cell anemia patients. Plasma concentration of NOwas measured by Colorimetric and Griess reaction and the concentration ofADMA by employing ELISA method. Then the results were analyzed by tstudenttest and OneWay ANOVA.Results: There is a positive significance correlation between Hemoglobin(Hb and NO in SS (r=0.703 and AS (r=0.366 groups. Also, a negativecorrelation between Hb and ADMA in SS (r=-0.786 and AS (r=-0.478groups is seen. No correlation is found between these parameters in AAgroup.Conclusion: The prevention of Hb concentration decrease and prescription ofNO donors and (or ADMA disintegrators can be helpful for improvingclinical signs of sickle cell patients.Key words: Nitric oxide (NO, Asymmetric dimethylargininie (ADMA,Sickle cell disease (SCD.

  11. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    International Nuclear Information System (INIS)

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells

  12. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Ji Hyun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Kong, Bokyung [Corning Precision Materials (Korea, Republic of); Kim, Dongheun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Graham, Lauren M. [University of Maryland, Department of Chemistry and Biochemistry (United States); Choi, Joon Sig [Chungnam National University, Department of Biochemistry (Korea, Republic of); Lee, Sang Bok, E-mail: slee@umd.edu [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of)

    2015-01-15

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  13. Rapid Method for Assessing Oxygen Consumption Rate of Cells from Transient-state Measurements of Pericellular Dissolved Oxygen Concentration

    OpenAIRE

    Dike, Laura E.; Xia, Haiyan; Guarino, Richard D.; Presnell, Sharon C.; Timmins, Mark R.

    2005-01-01

    Recently we described a method for estimating the oxygen consumption rate (OCR) of cells in static culture from equilibrium measurements of dissolved oxygen concentration (dO2), using an oxygen-sensing microplate and the steady-state solution to Fick's Law (Guarino et al. 2004). Here we describe a complementary method for estimating OCR from the transient-state rate of change of measured dO2. Although the system is open to the atmosphere and subject to a significant lag in sensor response, th...

  14. Ouabain at pathological concentrations might induce damage in human vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-ping REN; Ruo-wen HUANG; Zhuo-ren L(U)

    2006-01-01

    Aim: To examine the time- and dose-dependent effects of ouabain on human umbilical vein endothelial cells (HUVEC) in vivo, and the changes in aortic endothelium and the different expression levels of Kv4.2 in vitro. Methods: The proliferation of HUVEC and cell death were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, the incorporation of [3H]TdR,trypan blue staining, and lactate dehydrogenase (LDH) release. The response of endothelial cells to ouabain was explored with a complementary DNA microarray and a candidate gene was found. "Ouabain-sensitive" hypertensive rats were established by chronic administration of ouabain. Changes in the aortic endothelium were observed by electron microscopy, and the expression level of Ky4.2 in different animals was studied by using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Ouabain stimulated the proliferation of HUVEC at physiological concentrations (0.3-0.9 nmol/L). Ouabain at pathological concentrations (0.9-1.8 nmol/L) inhibited proliferation and induced cell death, mRNA profile analysis indicated that 340 genes were differentially expressed after ouabain treatment: 145 were upregulated, of which 6 were upregulated significantly, including KCND2 (encoding the potassium voltagegated channel shal-related subfamily member 2). The upregulated genes were mainly related to cell metabolism and transcription. In ouabain-sensitive hypertensive rats, the aortic endothelium was damaged and Kv4.2 (coded by KCND2)was over-expressed. Conclusion: The physiological role of ouabain in HUVEC might involve the control of growth and metabolism. Ouabain at pathological concentrations might affect the structure and function of the vascular endothelium by modification of expression of the KCND2 gene, and participate vascular remodeling in hypertension.

  15. The influence of variation of deuterium's concentration on the immunity system

    International Nuclear Information System (INIS)

    Hydrogen's substitution by deuterium represents an environmental alteration at which the organism (in vivo) and the cells (in vitro), respectively, if they can't accommodate will recede. In this way the variations of deuterium's isotopic abundance can be compared with the environmental factors of stress (variations of temperature, quantity of nourishment, radiations, etc). As different forms of existence of life are more or less sensitive at environment's factors variations, so they respond in different ways to concentration variations of deuterium from the living environment/organism. Consequently the mammals' immunity system (IS) presents different feed-backs. The main results are stressed as follows: - a. The use as alimentary adjuvant of deuterium depleted water (DDW) in prolonged periods (21 days) increased the capacity of unspecific immunity defense against the specific bacterial aggression, both in Gram-positive bacteria (Streptococcus pneumoniae558) and of Gram-negative (Klebsiella pneumoniae507); - b. The immunosuppression determined by cyclophosphamide-alquilant agent with medullary depletion of white series reduced the survival of inoculated animals, even in the conditions in which the animals have received dietary supplement with DDW; - c. The immunosuppression through medullary depletion due to irradiation reduced also the survival of inoculated animals, even in the conditions in which the animals have received dietary supplement with DDW. Those mentioned herein lead to the hypothesis that prolonged administration of DDW simulates the unspecific immunity defence, probably through the stimulation of the hematogenic marrow and of lymphopoietic and granulopoietic stem cells. (author)

  16. Management strategies of electric vehicles and Concentrating Photovoltaic systems for microgrids

    OpenAIRE

    Musio, Claudia

    2016-01-01

    The present PhD dissertation is focused on the development of management strate- gies of electric vehicles and concentrating photovoltaic systems in microgrids (MGs). Firstly the MG concept and then the state-of-the-art analysis of the most important components (that are photovoltaic and energy storage systems and electric vehicles) are presented. Then, the first part of the thesis is focused on the concentrating photovoltaic (CPV) systems, the most promising new technology for...

  17. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  18. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NOx concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NOx in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NOx) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  19. A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: Design and simulation model

    International Nuclear Information System (INIS)

    This paper analyzes the thermodynamic performance of high-temperature PhotoVoltaic/Thermal (PVT) solar collectors. The collector is based on a combination of a parabolic dish concentrating solar thermal collector and a high efficiency solar photovoltaic collector. The PVT system under investigation allows one to produce simultaneously electrical energy and high-temperature thermal energy by solar irradiation. The main aim of this study is the design and the analysis of a concentrating PVT which is able to operate at reasonable electric and thermal efficiency up to 180 °C. In fact, the PVT is designed to be integrated in a Solar Heating and Cooling system and it must drive a two-effect absorption chiller. This capability is quite new since conventional PVT collectors usually operate below 45 °C. Among the possible high-temperature PVT systems, this paper is focused on a system consisting in a dish concentrator and in a triple-junction PV layer. In particular, the prototype consists in a parabolic dish concentrator and a planar receiver. The system is equipped with a double axis tracking system. The bottom surface of the receiver is equipped with triple-junction silicon cells whereas the top surface is insulated. In order to analyze the performance of the Concentrating PVT (CPVT) collector a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances on the control volumes of the system. The simulation model allows one to calculate in detail the temperatures of the main components of the system (PV layer, concentrator, fluid inlet and outlet and metallic substrate) and the main energy flows (electrical energy, useful thermal energy, radiative losses, convective losses). The input parameters of the model include all the weather conditions (temperature, insolation, wind velocity, etc.) and the geometrical/material parameters of the systems (lengths, thermal resistances, thicknesses, etc.). Results showed that both electrical

  20. Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration

    International Nuclear Information System (INIS)

    Highlights: • The model can predict voltage variation of a PEMFC operated at a varying-current. • Anode purge strategies are studied by simulation and experiments. • Performances of the PEMFC purged at different nitrogen concentrations are compared. • Anode purge based on current-integration with time is evaluated. - Abstract: When a proton exchange membrane fuel cell is operated in a dead-ended anode mode, its performance gradually decreases due to accumulation of nitrogen and liquid water. Many experimental studies show that nitrogen accumulation is mainly responsible for the performance drop. In this study, a dynamic mathematical model developed in our previous work is employed to predict the nitrogen accumulation in the anode and its corresponding cell voltage. The model is calibrated and validated using experimental data. A purge strategy based on nitrogen concentration in the anode is developed by the calibrated model and implemented into the controller for anode gas management. The performance variations of the single cell operated at a varying-current condition and purged at three nitrogen molar fractions are compared and discussed. Results show that simulated voltage variation agrees with experimental data. When the anode is purged at the nitrogen molar fraction of 0.15, the cell performance shows a dramatic variation. At the end of this study, anode purge based on current-integration with time is also evaluated

  1. Bradykinin enhances membrane electrical activity of pancreatic beta cells in the presence of low glucose concentrations

    Directory of Open Access Journals (Sweden)

    A.S. Moura

    2000-09-01

    Full Text Available In most of cells bradykinin (BK induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts. Therefore, we decided to determine whether BK (100 nM induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM. During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.

  2. Fabrication of Monolithic Integrated Series-Connected GaAs Photovoltaic Cells for Concentrator Applications

    Science.gov (United States)

    Watanabe, Kentaroh; Yamada, Yugo; Senou, Minato; Sugiyama, Masakazu; Nakano, Yoshiaki

    2012-10-01

    Aiming at reducting in Joule energy loss of a photovoltaic cell under sunlight concentration, monolithic integration of GaAs cells has been realized, in which five subcells were connected in series and the total surface area of the cells occupied over 80% of the whole chip area. Using plasma etching with Cl2, a sufficiently sharp mesa for device isolation was obtained. Insulation between etched mesa sidewalls and interconnect electrodes proved to be the most significant issues for the purpose of eliminating shunt resistance and securing a reasonable fill factor; the SiO2 layer deposited by sputtering was much superior to polyimide as an insulator. The fabricated test device showed a short circuit current density of 20.7 mA/cm2 and an open circuit voltage of 4.79 V, which were consistent with the values for a single subcell.

  3. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  4. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  5. Effect of chickpea aqueous extracts, organic extracts, and protein concentrates on cell proliferation.

    Science.gov (United States)

    Girón-Calle, Julio; Vioque, Javier; del Mar Yust, María; Pedroche, Justo; Alaiz, Manuel; Millán, Francisco

    2004-01-01

    Pulses should be part of a healthy diet, and it is also becoming clear that they have health-promoting effects. Nevertheless, most studies on the bioactive or health-promoting properties of pulses have been carried out using soybeans. We have studied cell growth-regulating properties, which may be responsible for anti-cancer properties, in chickpea seeds. Chickpea seeds are a staple in the traditional diet of many Mediterranean, Asian, and South and Central American countries. In addition, chickpea seeds have industrial applications since they can be used for the preparation of protein concentrates and isolates. The cell lines Caco-2 (epithelial intestinal) and J774 (macrophages) have been exposed to chickpea seed extracts and protein preparations in order to screen the different chickpea fractions for effects on cell growth. Both cell growth-promoting and cell growth-inhibiting effects were found. Most interestingly, a fraction soluble in ethanol and acetone specifically and almost completely inhibited the growth of Caco-2 cells exhibiting a cancerous phenotype. It is concluded that chickpea seeds are a source of bioactive components and deserve further study for their possible anti-cancer effect. PMID:15298756

  6. A Sensitive Cell-Based Assay to Measure the Doxycycline Concentration in Biological Samples

    NARCIS (Netherlands)

    W. Kleibeuker; X. Zhou; M. Centlivre; N. Legrand; M. Page; N. Almond; B. Berkhout; A.T. Das

    2009-01-01

    Doxycycline (DOX) is widely used as a pharmacological agent and as an effector molecule in inducible gene expression systems. For most applications, it is important to determine whether the DOX concentration reaches the level required for optimal efficacy. We developed a sensitive bioassay for measu

  7. Effect of cross linker concentration on swelling kinetics of a synthesized ternary co-polymer system

    International Nuclear Information System (INIS)

    Using equal volumes of three monomers (acrylic acid, vinyl acetate and methyl acrylate), ternary co-polymers were synthesized with different concentrations of cross linker, ethylene glycol dimethacrylate (EGDMA). Benzoylperoxide was used as an initiator (concentration of 1% w/v) for the synthesis of hydrogel systems. A number of experiments were carried out to illustrate the swelling behavior of the gel with different concentrations of cross linker. The analysis of swelling data shows that the swelling phenomena is function of concentration of the cross linker used. Graphical and statistical analysis of diffusion exponents shows that the diffusion mechanism for water penetration CC into the synthesized gel system is controlled by concentration of the cross linker, i.e. n=n, where n is diffusion exponent, n(=0.6548) is pre-exponential factor, C (= -0.0345) is cross linker concentration sensitivity coefficient of the gel. (author)

  8. High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array.

    Science.gov (United States)

    Hayashi, Nobuhiko; Inoue, Daijiro; Matsumoto, Mitsuhiro; Matsushita, Akio; Higuchi, Hiroshi; Aya, Youichirou; Nakagawa, Tohru

    2015-06-01

    We propose a thin and compact concentrator photovoltaic (CPV) module, about 20 mm thick, one tenth thinner than those of conventional CPVs that are widely deployed for mega-solar systems, to broaden CPV application scenarios. We achieved an energy conversion efficiency of 37.1% at a module temperature of 25 °C under sunlight irradiation optimized for our module. Our CPV module has a lens array consisting of 10 mm-square unit lenses and micro solar cells that are directly attached to the lens array, to reduce the focal length of the concentrator and to reduce optical losses due to reflection. The optical loss of the lens in our module is about 9.0%, which is lower than that of conventional CPV modules with secondary optics. This low optical loss enables our CPV module to achieve a high energy conversion efficiency. PMID:26072884

  9. 30% Efficient InGaP/GaAs/GaSb Cell-Interconnected-Circuits For Line-Focus Concentrator Arrays

    Science.gov (United States)

    Fraas, Lewis; Avery, James; Iles, Peter; Chu, Charlie; Piszczor, Mike

    2005-01-01

    In 1989, Fraas and Avery demonstrated a world-record 31% efficient AM0 GaAs/GaSb tandem solar cell. This record efficiency still holds today. However, the GaAs/GaSb mechanical-stacked cell was designed to work with concentrated sunlight and at that time, the space community had no experience with concentrated sunlight solar arrays.

  10. An automated HPLC method to determine intracellular vincristine concentrations in mononuclear cells of children with acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Groninger, E; Koopmans, P; Kamps, W; Uges, D

    2003-01-01

    A method to determine intracellular vincristine concentrations in vivo in leukemic cells of patients is useful to investigate mechanisms of vincristine resistance. We developed a high-performance liquid chromatographic (HPLC) method to measure vincristine concentrations in human mononuclear cells (M

  11. An automated HPLC method to determine intracellular vincristine concentrations in mononuclear cells of children with acute lymphoblastic leukemia.

    NARCIS (Netherlands)

    Groninger, E.; Koopmans, P.P.; Kamps, W.A.; Graaf, S.S.N. de; Uges, D.R.A.

    2003-01-01

    A method to determine intracellular vincristine concentrations in vivo in leukemic cells of patients is useful to investigate mechanisms of vincristine resistance. We developed a high-performance liquid chromatographic (HPLC) method to measure vincristine concentrations in human mononuclear cells (M

  12. Estimation of CO concentration in high temperature PEM fuel cells using electrochemical impedance

    OpenAIRE

    Jensen, Hans-Christian Becker; Andreasen, Søren Juhl; Kær, Søren Knudsen; Schaltz, Erik

    2013-01-01

    Storing electrical energy is one of the main challenges for modern society grid systems containing increasing amounts of renewable energy from wind, solar and wave sources. Although batteries are excellent storage devices for electrical energy, their usage is often limited by a low energy density, a possible solution, an avoidance of the long recharging time is combining them with the use of fuel cells. Fuel cells continuously deliver electrical power as long as a proper fuel supply is mainta...

  13. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for Intraoperative Neurochemical Monitoring

    OpenAIRE

    Kimble, Christopher J.; Johnson, David M.; Winter, Bruce A.; Whitlock, Sidney V.; Kressin, Kenneth R.; Horne, April E.; Robinson, Justin C.; Jonathan M. Bledsoe; Susannah J Tye; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J.; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E.

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom ...

  14. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    OpenAIRE

    Lei Jing; Hua Liu; Yao Wang; Wenbin Xu; Hongxin Zhang; Zhenwu Lu

    2014-01-01

    A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy ef...

  15. A design method for closed loop solar energy systems with concentrating collectors

    Science.gov (United States)

    Ryan, W. A.

    1982-01-01

    A method of performance prediction and design for closed loop concentrating solar collector systems is presented, along with a comparison of prediction with results using a compound parabolic concentrating collector. The numerical model is an extension of Collares-Pereira and Rabl (1978) model for concentrating collectors to a closed-loop scenario, using a monthly average utilizability factor and the f-chart technique. The predictions were compared with simulations using the TRNSYS program, considering 1.5, 3.0, and 5.0 concentration factors, and a sensible heat storage system. Performance predictions were found to depart from the simulations by an average of 14.04% for all cases, with the predictions giving consistently lower results. The method is concluded to be useful for optimizing collector areas and concentration ratios in closed-loop systems.

  16. Gas concentration pre-warning system based on fuzzy structured element

    Institute of Scientific and Technical Information of China (English)

    REN Zhi-ling; YU Qun

    2008-01-01

    In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face,used the high-performance and low prices SCM and the low-cost and high transfer efficiency bluetooth technology to forecast the gas concentration in real time.The data tested by SCM,then got the corresponding mathematical model of the data.Put forward the idea of using fuzzy structured element theory to dynamic forecast the gas concentration,analyzed the features in abnormal-effusing on work face and judge whether there was the possibility of abnormal gas-effusion.Simulation results show that mathematical model of this system about gas concentration is correct.This system changes coal mine monitoring system's traditional way of after-alarming into early-warning,and thus enhances its feasibility.

  17. Gas concentration pre-warning system based on fuzzy structured element

    Institute of Scientific and Technical Information of China (English)

    REN Zhi-ling; YU Qun

    2008-01-01

    In order to accurately test gas concentration and effectively pre-warning when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency bluetooth technology to forecast the gas concentration in real time. The data tested by SCM, then got the corresponding mathematical model of the data. Put forward the idea of using fuzzy structured element theory to dynamic forecast the gas concentration, analyzed the features in abnor-mal-effusing on work face and judge whether there was the possibility of abnormal gas-effusion. Simulation results show that mathematical model of this system about gas concentration is correct. This system changes coal mine monitoring system's traditional way of after-alarming into early-warning, and thus enhances its feasibility.

  18. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  19. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  20. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    International Nuclear Information System (INIS)

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect

  1. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com; Guo, Zhengze, E-mail: zhzeguo@163.com; Li, Dehua, E-mail: lidehuafmmu@163.com

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.

  2. A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels

    International Nuclear Information System (INIS)

    Conventional direct methanol fuel cells (DMFCs) have to operate with excessively diluted methanol solutions to limit methanol crossover and its detrimental consequences. Operation with such diluted methanol solutions not only results in a significant penalty in the specific energy of the power pack, limiting the runtime of this type of fuel cell, but also lowers the cell performance and operating stability. In this paper, a microfluidic-structured anode flow field for passive DMFCs with neither liquid pumps nor gas compressors/blowers is developed. This flow field consists of plural micro flow passages. Taking advantage of the liquid methanol and gas CO2 two-phase counter flow, the unique fluidic structure enables the formation of a liquid–gas meniscus in each flow passage. The evaporation from the small meniscus in each flow passage can lead to an extremely large interfacial mass-transfer resistance, creating a bottleneck of methanol delivery to the anode CL. The fuel cell tests show that the innovative flow field allows passive DMFCs to achieve good cell performance with a methanol concentration as high as 18.0 M, increasing the specific energy of the DMFC system by about five times compared with conventional designs.

  3. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    OpenAIRE

    Vömel, H.; K. Diaz

    2010-01-01

    Laboratory measurements of the Electrochemical Concentration Cell (ECC) ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations i...

  4. Modelling anaerobic digestion of concentrated black water and faecal matter in accumulation system

    NARCIS (Netherlands)

    Elmitwalli, T.; Zeeman, G.; Otterpohl, R.

    2011-01-01

    A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste(water) produced from the following systems:

  5. Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Tuijl, van B.A.J.; Janssen, H.J.J.; Campen, J.B.; Bot, G.P.A.

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  6. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  7. Myosin concentration underlies cell size–dependent scalability of actomyosin ring constriction

    Science.gov (United States)

    Wright, Graham D.; Leong, Fong Yew; Chiam, Keng-Hwee; Chen, Yinxiao; Jedd, Gregory; Balasubramanian, Mohan K.

    2011-01-01

    In eukaryotes, cytokinesis is accomplished by an actomyosin-based contractile ring. Although in Caenorhabditis elegans embryos larger cells divide at a faster rate than smaller cells, it remains unknown whether a similar mode of scalability operates in other cells. We investigated cytokinesis in the filamentous fungus Neurospora crassa, which exhibits a wide range of hyphal circumferences. We found that N. crassa cells divide using an actomyosin ring and larger rings constricted faster than smaller rings. However, unlike in C. elegans, the total amount of myosin remained constant throughout constriction, and there was a size-dependent increase in the starting concentration of myosin in the ring. We predict that the increased number of ring-associated myosin motors in larger rings leads to the increased constriction rate. Accordingly, reduction or inhibition of ring-associated myosin slows down the rate of constriction. Because the mechanical characteristics of contractile rings are conserved, we predict that these findings will be relevant to actomyosin ring constriction in other cell types. PMID:22123864

  8. Design factors of sensors for the optical tracking systems of solar concentrators

    International Nuclear Information System (INIS)

    Basic diagrams for the sensors of the optical tracking systems of solar concentrators are considered, the design factors that determine their accuracy are analyzed, a new sensor design is suggested, and its optimal parameters are determined. (authors)

  9. Modulation of the Differentiation of Dental Pulp Stem Cells by Different Concentrations of β-Glycerophosphate

    Directory of Open Access Journals (Sweden)

    Weiping Hu

    2012-01-01

    Full Text Available Dentinogenesis is a necessary prerequisite for dental tissue engineering. One of the steps for dentinogenesis is to obtain large quantities of highly purified odontoblasts. Therefore, we have undertaken an experiment applying different concentrations of β-glycerophosphate (β-GP to induce the differentiation of dental pulp stem cells (DPSCs in a long-term 28-day culture. In the meanwhile, we have studied the time- and maturation-dependent expression of matrix extracellular phosphoglycoprotein (MEPE and that of the odontoblast-like marker-dentin sialoprotein (DSP, in order to investigate an optimized mineralized condition. Western blot results revealed that the expression of DSP became lower when accompanied by the increase of the β-GP concentration, and there was also an influence on MEPE expression when different concentrations of β-GP were applied. Meanwhile, the mineralized groups had an inhibitory function on the expression of MEPE as compared with the control group. Above all, all experimental groups successfully generated mineralized nodules by Alizarin Red S and the 5 mM β-GP group formed more mineralized nodules quantitated using the CPC extraction method. In conclusion, there is a significant modulation of the β-GP during the differentiation of the DPSCs. The degree of odontoblast differentiation is β-glycerophosphate concentration dependent. A low concentration of β-GP (5 mM has been shown to be the optimal concentration for stimulating the maturation of the DPSCs. Moreover, MEPE accompanied with DSP clearly demonstrates the degree of the differentiation.

  10. Does VEGF concentration in pre-eclamptic serum induce sVCAM-1 production in endothelial cell culture?

    Directory of Open Access Journals (Sweden)

    Sri B. Subakir

    2005-03-01

    Full Text Available Serum concentrations of VEGF (Vascular Endothelial Growth Factor are elevated in preeclampsia. In addition to inducing mitosis and increase permeability of endothelial cells, VEGF was reported to activate endothelial cells to produce cell adhesion molecules. Cell adhesion molecules play an important role in the inflammation process by inducing adherence of leukocytes in blood stream to the endothelial cells. The aim of this study is to investigate the effect of VEGF in serum from preeclamptic patients on sVCAM-1 (soluble vascular adhesion molecules-1 production in endothelial cell culture. Twelve sera from women with preeclampsia and 11 from women with normal pregnancy (controls in 20% concentration were added to human umbilical vein endothelial cell culture (HUVEC and incubated for 24 hours. All subjects have agreed to participate in this study and signed the informed consent form. sVCAM-1 concentration in the supernatant was measured by ELISA. VEGF concentration tends to be higher in preeclamptic serum than control, but the difference is not stastitically significant. The production of sVCAM-1 by endothelial cells exposed to preeclamptic serum was significantly higher than the production by endothelial cells exposed to serum from control (p<0.05. No correlation was found between the difference in VEGF concentrations in preeclamptic and control sera, and sVCAM-1 production by endothelial cell culture. (Med J Indones 2005; 14: 3-6Keywords: endothelial cell, preeclampsia, VCAM, VEGF

  11. Mineralogic controls on aqueous neptunium(V) concentrations in silicate systems

    International Nuclear Information System (INIS)

    The presence of radioactive neptunium in commercially spent nuclear fuel is problematic due to its mobility in environmental systems upon oxidation to the pentavalent state. As uranium is the major component of spent fuel, incorporation of neptunium into resulting U(VI) mineral phases would potentially influence its release into environmental systems. Alternatively, aqueous neptunium concentrations may be buffered by solid phase Np2O5. In this study, we investigate both of these controls on aqueous neptunium(V) concentrations. We synthesize two uranyl silicates, soddyite, (UO2)2SiO4·2H2O, and boltwoodite, (K, Na)(UO2)(SiO3OH)·1.5H2O, each in the presence of two concentrations of aqueous Np(V). Electron microscopy and electron diffraction analyses of the synthesized phases show that while significant neptunyl incorporation occurred into soddyite, the Np(V) in the boltwoodite systems largely precipitated as a secondary phase, Np2O5(s). The release of Np(V) from each system into aqueous solution was measured for several days, until steady-state concentrations were achieved. Using existing solubility constants (Ksp) for pure soddyite and boltwoodite, we compared predicted equilibrium aqueous U(VI) concentrations with the U(VI) concentrations released in the solubility experiments. Our experiments reveal that Np(V) incorporation into soddyite increases the concentration of aqueous U in equilibrium with the solid phase, perhaps via the formation of a metastable phase. In the mixed boltwoodite – Np2O5(s) system, the measured aqueous U(VI) activities are consistent with those predicted to be in equilibrium with boltwoodite under the experimental conditions, a result that is consistent with our conclusion that little Np(V) incorporation occurred into the boltwoodite. In the boltwoodite systems, the measured Np concentrations are likely controlled by the presence of Np2O5 nanoparticles, suggesting an additional potential mobility vector for Np in geologic systems. Our

  12. The systems impact of a concentrated solar array on a Jupiter orbiter

    Science.gov (United States)

    Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.

    1981-01-01

    Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.

  13. Microfluidic systems for cell lysis

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Ivona; Grym, Jakub; Klepárník, Karel; Foret, František

    2006. [Annual European Conference on Micro&Nanoscale Technologies for the Biosciences /10./. 14.11.2006-16.11.2006, Montreux] R&D Projects: GA AV ČR IAA400310506; GA AV ČR KAN400310651; GA MŠk LC06023; GA ČR GA203/06/1685 Institutional research plan: CEZ:AV0Z40310501 Keywords : cell lysis * yeast cells * microfluidic device Subject RIV: CB - Analytical Chemistry, Separation

  14. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells

    KAUST Repository

    Nam, Joo-Youn

    2012-12-01

    The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3.3 ± 0.4 mol H2/mole acetate and gas production rate of 2.2 ± 0.2 m3 H2/m3/d were achieved here with an initial anolyte pH = 9 and catholyte NaCl concentration of 98 mM. Further increases in the salt concentration substantially reduced the anolyte pH to as low as 4.6, resulting in reduced MEC performance due to pH inhibition of exoelectrogens. Cathodic hydrogen recovery was high (rcat > 90%) as hydrogen consumption by hydrogenotrophic methanogens was prevented by separating the anode and cathode chambers using a membrane. These results show that the MEC can be optimized for hydrogen production through proper choices in the concentration of a non-buffered saline catholyte and initial anolyte pH in two chamber MECs. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  15. Batroxobin reduces intracellular calcium concentration and inhibits proliferation of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    SONG Qing-bin 宋清斌; WEI Min-jie 魏敏杰; DUAN Zhi-quan 段志泉; ZHANG Hai-qiang 张海强; LB Schwartz; XIN Shi-jie 辛世杰

    2004-01-01

    Background Batroxobin (BX), a serine protease used in defibrinogenation and thrombolysis, also has an effect on c-fos gene and growth factor. This study attempted to determine the effects of BX on the proliferation of vascular smooth muscle cells (VSMCs) and calcium metabolism. Methods VSMCs were treated with BX at concentrations of 0.1, 0.3, or 1.0 mmol/L and cell numbers were determined at 0, 24, 48, and 72 hours. Intracellular calcium concentration ([Ca2+]I) was measured using direct fluorescence methods. Results BX was found to suppress proliferation of VSMCs in a dose-dependent fashion with inhibition rates of 18% and 31% by 48 and 72 hours, respectively. In addition, BX decreases basal [Ca2+]I significantly. The basal level in untreated cells was 162.7±33.8 nmol/L, and decreased to 131.5±27.7 nmol/L, 128.3±28.5 nmol/L, and 125.6±34.3 nmol/L with the three concentrations of BX, respectively. Noradrenaline (NE)-induced [Ca2+]I stimulation was also attenuated by BX (0.1 mmol/L BX, 20%±8% inhibition; 0.3 mmol/L BX, 54%±11% inhibition; 1.0 mmol/L BX, 62%±15% inhibition). The ability of NE to stimulate [Ca2+]I was attenuated in cultures in Ca2+-free medium, as was the ability of BX to blunt NE-induced stimulation. Conclusion These findings demonstrate that BX can effectively inhibit proliferation of VSMCs, probably by blocking the release and uptake of Ca2+, thus influencing [Ca2+]I.

  16. Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water

    Directory of Open Access Journals (Sweden)

    F. Hammes

    2008-06-01

    Full Text Available The general microbial quality of drinking water is normally monitored by heterotrophic plate counts (HPC. This method has been used for more than 100 years and is recommended in drinking water guidelines. However, the HPC method is handicapped because it is time-consuming and restricted to culturable bacteria. Recently, rapid and accurate detection methods have emerged, such as adenosine tri-phosphate (ATP measurements to assess microbial activity in drinking water, and flow cytometry (FCM to determine the total cell concentration (TCC. It is necessary and important for drinking water quality control to understand the relationships among the conventional and new methods. In the current study, all three methods were applied to 200 drinking water samples obtained from two local buildings connected to the same distribution system. Samples were taken both on normal working days and weekends, and the correlations between the different microbiological parameters were determined. TCC in the samples ranged from 0.37–5.61×105 cells/ml, and two clusters, the so-called high (HNA and low (LNA nucleic acid bacterial groups, were clearly distinguished. The results showed that the rapid determination methods (i.e., FCM and ATP correlated well (R2=0.69, but only a weak correlation (R2=0.31 was observed between the rapid methods and conventional HPC data. With respect to drinking water monitoring, both FCM and ATP measurements were confirmed to be useful and complimentary parameters for rapid assessing of drinking water microbial quality.

  17. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  18. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. PMID:26852396

  19. Chip based electroanalytical systems for cell analysis

    DEFF Research Database (Denmark)

    Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.;

    2008-01-01

    ' measurements of processes related to living cells, i.e., systems without lysing the cells. The focus is on chip based amperometric and impedimetric cell analysis systems where measurements utilizing solely carbon fiber microelectrodes (CFME) and other nonchip electrode formats, such as CFME for exocytosis......This review with 239 references has as its aim to give the reader an introduction to the kinds of methods used for developing microchip based electrode systems as well as to cover the existing literature on electroanalytical systems where microchips play a crucial role for 'nondestructive...... studies and scanning electrochemical microscopy (SECM) studies of living cells have been omitted. Included is also a discussion about some future and emerging nano tools and considerations that might have an impact on the future of "nondestructive" chip based electroanalysis of living cells....

  20. A comparative performance study of a photovoltaic concentrator system with discrete mirror and continuos profile for two different absorber shapes

    Energy Technology Data Exchange (ETDEWEB)

    H, Saiful; Rezau, K.M [University of Dhaka, Dhaka (Bangladesh)

    2000-07-01

    Profiles of parabolic concentrators of discrete mirror and continuos surface mirror have been designed for combined electrical thermal photovoltaic systems. In the design the changes of concentration ratio, effect of reflection, angle of incidence over the absorber have been taken into account for maximum energy collection. The performances of the system are studied for solar cells of modified grid finger for illuminations from 1-10 sun. The local concentration ratio (LCR) distribution over the absorbers for both the concentrator, the optical efficiency, thermal efficiency, electrical and thermal power output and overall efficiency have been evaluated for different values of beam radiation concentration ratio and focal distance. [Spanish] Se han disenado perfiles de concentradores parabolicos de espejo discreto y de superficie continua para sistemas fotovoltaicos combinados electricos y termicos. En el diseno los cambios de la proporcion de concentracion, del efecto de la reflexion, del angulo de incidencia sobre el observador se han tenido en cuenta para una maxima recoleccion de energia. Los rendimientos del sistema se han estudiado para celdas solares de parrilla modificada para iluminaciones solares de 1-10. Han sido evaluados para diferentes valores de la proporcion de la concentracion de la radiacion en el rayo y la distancia focal la proporcion de concentracion local (LCR) de la distribucion en los absorbedores, para el concentrador la eficiencia optica, la eficiencia termica, electrica, la produccion de energia termica y electrica y la eficiencia total.

  1. IRON CONCENTRATIONS IN SOIL, PASTURE AND BLOOD PLASMA OF BEEF CATTLE REARED IN SUCKLING COWS SYSTEM

    Directory of Open Access Journals (Sweden)

    Aleš Pavlík

    2013-02-01

    Full Text Available The objective of this study was to compare concentrations of iron (Fe in soil, pasture sward and blood plasma of extensive reared Aberdeen Angus bulls and heifers on a farm in the foothills of the Orlické Mountains. We sampled soil, pasture sward from pasture areas and blood from 22 bulls and 22 heifers in the period from birth to weaning at regular intervals (81, 151, 189 and 273 days of age. Concentrations of iron were analysed. Not significant relationships were noted between soil and pasture iron concentrations (r = 0.32, pasture and blood plasma iron concentration (r = 0.39. In this study, there were not found relationships between iron-soil, forage and blood concentration in beef cattle reared in suckling cows The objective of this study was to compare concentrations of iron (Fe in soil, pasture sward and blood plasma of extensive reared Aberdeen Angus bulls and heifers on a farm in the foothills of the Orlické Mountains. We sampled soil, pasture sward from pasture areas and blood from 22 bulls and 22 heifers in the period from birth to weaning at regular intervals (81, 151, 189 and 273 days of age. Concentrations of iron were analysed. Not significant relationships were noted between soil and pasture iron concentrations (r = 0.32, pasture and blood plasma iron concentration (r = 0.39. In this study, there were not found relationships between iron-soil, forage and blood concentration in beef cattle reared in suckling cows system.

  2. Lensless imaging system to quantify cell proliferation

    Science.gov (United States)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  3. Buffer layer between a planar optical concentrator and a solar cell

    International Nuclear Information System (INIS)

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile

  4. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane;

    2014-01-01

    at six different levels of nitrogen supply ranging from 48 to 288kg nitrogen ha-1 was analyzed for major cell wall components and mineral elements. Enzymatic digestion of the straw was carried out to evaluate the saccharification efficiency. The nitrogen concentration in the straw dry matter...... supplies. The enzymatic saccharification efficiency was negatively correlated with the rate of nitrogen supply. We conclude that the level of nitrogen supply to wheat plants alters the composition of cell wall components in the straw and that this may result in reduced saccharification efficiency. © 2014......Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...

  5. Buffer layer between a planar optical concentrator and a solar cell

    Science.gov (United States)

    Solano, Manuel E.; Barber, Greg D.; Lakhtakia, Akhlesh; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.

    2015-09-01

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  6. Heterotrimeric G protein participated in modulation of cytoplasmic calcium concentration in pollen cells

    Institute of Scientific and Technical Information of China (English)

    SHANG Zhonglin; MA Ligeng; WANG Xuechen; SUN Daye

    2003-01-01

    Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.

  7. Novel design of a multitube microbial fuel cell (UM2FC) for energy recovery and treatment of membrane concentrates

    International Nuclear Information System (INIS)

    A two-stage treatment process, consisting of a flat sheet membrane system and a novel upflow multitube microbial fuel cell (UM2FC), was investigated to simultaneously treat concentrate streams—as well as produce electricity. This study tested the treatment of the retained part (i.e membrane concentrate) of the membrane process and electricity production using an air-cathode UM2FC inoculated with sediment sample collected from Golden Horn, Istanbul. The electrochemical behaviors were investigated using electrochemical methods to identify how membrane concentrates effects the reactor performance. The treatment of domestic wastewater was performed using a lab-scale cross-flow filtration apparatus with a UH050 membrane and the chemical oxygen demand (COD) removal efficiency as a result of membrane treatment was 87%. Then the UM2FC was fed sequentially from the feed tank when desired retained ratios (25% and 50%) observed. The maximum power density obtained was 25.138 mW m−2 in the 50% concentrate or a volume concentration ratio (VCR) of 2 fed UM2FC which was 244% higher than that achieved using raw wastewater (7.303 mW m−2) and COD removal was >65% in UM2FC. The contribution of different resistances such as ohmic, charge transfer and mass transfer resistances of the reactor under different stages was ascertained through the measurements using electrochemical impedance spectroscopy (EIS) and the results showed that an increasing organic loading reduced the internal resistance and enhanced power. On the whole, study reported new findings such as a new treatment technology for membrane concentrate treatment and gives insight to literature on reactor design. - Highlights: • A novel design multitube microbial fuel cell (UM2FC) was used to generate electricity. • The study provides new findings with MFC design. • Disposal of membrane concentrate was performed by UM2FC. • A higher organic loading rate resulted in enhanced metabolic activity. • Increasing

  8. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  9. Electrochemical behavior of heavily cycled nickel electrodes in Ni/H2 cells containing electrolytes of various KOH concentrations

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    A study has been made of charge and discharge voltage changes with cycling of Ni/H2 cells containing electrolytes of various KOH concentrations. A study has also been made of electrochemical behavior of the nickel electrodes from the cycled Ni/H2 cells as a function of overcharge amounts. Discharge voltages depressed gradually with cycling for cells having high KOH concentrations (31 to 36 percent), but the voltages increased for those having low KOH concentrations (21 to 26 percent). To determine if there was a crystallographic change of the active material due to cycling, electrochemical behavior of nickel electrodes was studied in an electrolyte flooded cell containing either 31 or 26 percent KOH electrolyte as a function of the amount of overcharge. The changes in discharge voltage appear to indicate crystal structure changes of active material from gamma-phase to beta-phase in low KOH concentrations, and vice versa in high KOH concentration.

  10. Aged mice have increased inflammatory monocyte concentration and altered expression of cell-surface functional receptors

    Indian Academy of Sciences (India)

    Kelley Strohacker; Whitney L Breslin; Katie C Carpenter; Brian K McFarlin

    2012-03-01

    The expression of monocyte cell-surface receptors represents one index of immune dysfunction, which is common with aging. Although mouse models of aging are prevalent, monocyte subset assessment is rare. Our purpose was to compare cell receptor expression on classic (CD115+/Gr-1high) and non-classic (CD115+/Gr-1low) monocytes from 80- or 20-week-old CD-1 mice. Three-colour flow cytometry was used to determine the concentration of monocyte subsets and their respective cell-surface expression of TLR2, TLR4, CD80, CD86, MHC II and CD54. These receptors were selected because they have been previously associated with altered monocyte function. Data were analysed with independent -tests; significance was set at < 0.05. Old mice had a greater concentration of both classic (258%, =0.003) and non-classic (70%, =0.026) monocytes. The classic : non-classic monocyte ratio doubled in old as compared with that in young mice (=0.006), indicating a pro-inflammatory shift. TLR4 ($\\downarrow$27%, =0.001) and CD80 ($\\downarrow$37%, =0.004) were decreased on classic monocytes from old as compared with those from young mice. TLR2 ($\\uparrow$24%, =0.002) and MHCII ($\\downarrow$21%, =0.026) were altered on non-classic monocytes from old as compared with those from young mice. The increased classic : non-classic monocyte ratio combined with changes in the cell-surface receptor expression on both monocyte subsets is indicative of immune dysfunction, which may increase age-associated disease risk.

  11. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  12. Toxicity DNA damage and inhibition of DNA repair synthesis in human melanoma cells by concentrated sunlight

    International Nuclear Information System (INIS)

    A water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line, DNA strand breaks and DNA protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers and DNA interstrand crosslinking could not be detected. The solar fluence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D0 value and then declining; but semiconservative DNA synthesis remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis. (author)

  13. Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations

    Directory of Open Access Journals (Sweden)

    Tourkova Irina L

    2009-07-01

    Full Text Available Abstract The dose-delivery schedule of conventional chemotherapy, which determines its efficacy and toxicity, is based on the maximum tolerated dose. This strategy has lead to cure and disease control in a significant number of patients but is associated with significant short-term and long-term toxicity. Recent data demonstrate that moderately low-dose chemotherapy may be efficiently combined with immunotherapy, particularly with dendritic cell (DC vaccines, to improve the overall therapeutic efficacy. However, the direct effects of low and ultra-low concentrations on DCs are still unknown. Here we characterized the effects of low noncytotoxic concentrations of different classes of chemotherapeutic agents on human DCs in vitro. DCs treated with antimicrotubule agents vincristine, vinblastine, and paclitaxel or with antimetabolites 5-aza-2-deoxycytidine and methotrexate, showed increased expression of CD83 and CD40 molecules. Expression of CD80 on DCs was also stimulated by vinblastine, paclitaxel, azacytidine, methotrexate, and mitomycin C used in low nontoxic concentrations. Furthermore, 5-aza-2-deoxycytidine, methotrexate, and mitomycin C increased the ability of human DCs to stimulate proliferation of allogeneic T lymphocytes. Thus, our data demonstrate for the first time that in low noncytotoxic concentrations chemotherapeutic agents do not induce apoptosis of DCs, but directly enhance DC maturation and function. This suggests that modulation of human DCs by noncytotoxic concentrations of antineoplastic drugs, i.e. chemomodulation, might represent a novel approach for up-regulation of functional activity of resident DCs in the tumor microenvironment or improving the efficacy of DCs prepared ex vivo for subsequent vaccinations.

  14. Flow Injection Analysis for Simultaneous Quantification of Prolactin Concentration and Glycosylation Macroheterogeneity in Cell Culture Samples

    OpenAIRE

    Reinecke, Martin; Stephanopoulos, Gregory

    2000-01-01

    A flow injection analysis (FIA) system is presented for a twostep immunoassay-based determination of the total humanprolactin (hPRL) concentration along with its degree ofglycosylation. Separate measurement of total hPRL and nonglysosylated human prolactin (nG-hPRL) were made using twoflow-through cartridges each containing immobilized antibodiesof different specificity. The antibodies are immobilized on thesurface of a carrier. Glycosylated hPRL (G-hPRL) and, thus, thedegree of glycosylation...

  15. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity.

    Science.gov (United States)

    Lieberman, M M; Patterson, G M; Moore, R E

    2001-11-01

    In vitro growth inhibition assays were performed using human cancer cell lines at various concentrations with experimental anticancer drugs such as the cryptophycins and other cytotoxins. The effect of variations in assay parameters on the observed growth inhibition of these anticancer therapeutic agents was determined. The results demonstrated that the observed inhibitory activity of these compounds varied inversely with the cell concentrations used. The observed differences in activity between different cytotoxins were not necessarily proportionate. Thus, the relative activities of two toxins also varied with cell concentration. Furthermore, the sensitivity of these cell lines to the cytostatic purine analog, 6-mercaptopurine (used as a control), varied with cell concentration as well. The activity of this compound was dependent on the medium used for cell growth, yielding good activity in Eagle's minimum essential medium, but not in Ham's F-12 (Kaigin) medium. Moreover, growth inhibition by cryptophycin as well as 6-mercaptopurine was also dependent on the serum concentration in the medium. Finally, the sensitivity of the cancer cell lines to various organic solvents commonly used as drug vehicles for in vitro testing, such as ethanol, dimethylformamide, and dimethylsulfoxide, was likewise found to vary inversely with cell concentration. PMID:11578805

  16. Study of a micro-concentrated photovoltaic system based on Cu(In,Ga)Se2 microcells array.

    Science.gov (United States)

    Jutteau, Sebastien; Guillemoles, Jean-François; Paire, Myriam

    2016-08-20

    We study a micro-concentrated photovoltaic (CPV) system based on micro solar cells made from a thin film technology, Cu(In,Ga)Se2. We designed, using the ray-tracing software Zemax OpticStudio 14, an optical system adapted and integrated to the microcells, with only spherical lenses. The designed architecture has a magnification factor of 100× for an optical efficiency of 85% and an acceptance angle of ±3.5°, without anti-reflective coating. An experimental study is realized to fabricate the first generation prototype on a 5  cm×5  cm substrate. A mini-module achieved a concentration ratio of 72× under AM1.5G, and an absolute efficiency gain of 1.8% for a final aperture area efficiency of 12.6%. PMID:27556986

  17. Water balance in fuel cells systems

    International Nuclear Information System (INIS)

    Fuel cell systems are attractive for their high efficiency (i.e., electric power generated per weight/volume of fuel,) and lower emissions. These systems are being developed for applications that include transportation (propulsion and auxiliary), remote stationary, and portable. Where these systems use on-board fuel processing of available fuels, the fuel processor requires high-purity water. For utility applications, this water may be available on-site, but for most applications, the process water must be recovered from the fuel cell system exhaust gas. For such applications, it is critically important that the fuel cell system be a net water-producing device. A variety of environmental conditions (e.g., ambient temperature, pressure), fuel cell system design, and operating conditions determine whether the fuel cell system is water-producing or water-consuming. This paper will review and discuss the conditions that determine the net-water balance of a generic fuel cell system and identify some options that will help meet the water needs of the fuel processor

  18. Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes

    Directory of Open Access Journals (Sweden)

    Jisun Im

    2016-02-01

    Full Text Available An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom layer, which enables the simultaneous concentrating and sensing within a few seconds. The selectivity can be achieved by functionalizing cellulose acetate with a pentafluorophenylacetyl selector that interacts strongly with the target BTX analytes. A new design of the integrated cellulose concentrator/SWCNT sensing system allows high sensitivity with limits of detection for benzene, toluene, and m-xylene vapors of 55 ppm, 19 ppm, and 14 ppm, respectively, selectivity, and fast responses (<10 s to reach equilibrium, exhibiting the potential ability for on-site, real-time sensing applications. The sensing mechanism involves the selective adsorption of analytes in the concentrator film, which in turn mediates changes in the electronic potentials at the polymer-SWCNT interface and potentially changes in the tunneling barriers between nanotubes.

  19. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  20. Organization of enzyme concentration across the metabolic network in cancer cells.

    Directory of Open Access Journals (Sweden)

    Neel S Madhukar

    Full Text Available Rapid advances in mass spectrometry have allowed for estimates of absolute concentrations across entire proteomes, permitting the interrogation of many important biological questions. Here, we focus on a quantitative aspect of human cancer cell metabolism that has been limited by a paucity of available data on the abundance of metabolic enzymes. We integrate data from recent measurements of absolute protein concentration to analyze the statistics of protein abundance across the human metabolic network. At a global level, we find that the enzymes in glycolysis comprise approximately half of the total amount of metabolic proteins and can constitute up to 10% of the entire proteome. We then use this analysis to investigate several outstanding problems in cancer metabolism, including the diversion of glycolytic flux for biosynthesis, the relative contribution of nitrogen assimilating pathways, and the origin of cellular redox potential. We find many consistencies with current models, identify several inconsistencies, and find generalities that extend beyond current understanding. Together our results demonstrate that a relatively simple analysis of the abundance of metabolic enzymes was able to reveal many insights into the organization of the human cancer cell metabolic network.

  1. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    Science.gov (United States)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  2. The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Figulla Hans R

    2004-05-01

    Full Text Available Abstract Background Statins are cholesterol-lowering drugs that are widely used to reduce the risk of cardiac infarction. Their beneficial clinical effects, however, are not restricted to their influence on cholesterol production. As several studies have shown that they have a potency of relaxing blood vessels. Methods We measured the effects of statins on the intracellular free calcium concentration ([Ca2+]i in human umbilical vein endothelial cells (HUVEC after acute application and 24-h-preincubation of statins. Results Incubation of the cells for 24 h with cerivastatin or fluvastatin significantly increased the resting [Ca2+]i. For cerivastatin this effect manifested at a concentration of 1 μM. Increase of resting [Ca2+]i in the presence of cerivastatin also occurred when the nitric oxide synthase was inhibited. Transient Ca2+ release induced by histamine was not affected. Conclusions The increase of resting [Ca2+]i after incubation with cerivastatin or fluvastatin may provide an explanation for the direct effects of statins on the endothelial-dependent vasodilatation and restoration of endothelial activity in vivo.

  3. Quasi-Fermi level splitting evaluation based on electroluminescence analysis in multiple quantum-well solar cells for investigating cell performance under concentrated light

    Science.gov (United States)

    Inoue, Tomoyuki; Toprasertpong, Kasidit; Delamarre, Amaury; Watanabe, Kentaroh; Paire, Myriam; Lombez, Laurent; Guillemoles, Jean-François; Sugiyama, Masakazu; Nakano, Yoshiaki

    2016-03-01

    Insertion of InGaAs/GaAsP strain-balanced multiple quantum wells (MQWs) into i-regions of GaAs p-i-n solar cells show several advantages against GaAs bulk p-i-n solar cells. Particularly under high-concentration sunlight condition, enhancement of the open-circuit voltage with increasing concentration ratio in thin-barrier MQW cells has been reported to be more apparent than that in GaAs bulk cells. However, investigation of the MQW cell mechanisms in terms of I-V characteristics under high-concentration sunlight suffers from the increase in cell temperature and series resistance. In order to investigate the mechanism of the steep enhancement of open-circuit voltage in MQW cells under high-concentration sunlight without affected by temperature, the quasi-Fermi level splitting was evaluated by analyzing electroluminescence (EL) from a cell. Since a cell under current injection with a density Jinjhas similar excess carrier density to a cell under concentrated sunlight with an equivalent short-circuit current Jsc = Jinj, EL measurement with varied Jinj can approximately evaluate a cell performance under a variety of concentration ratio. In addition to the evaluation of quasi-Fermi level splitting, the external luminescence efficiency was also investigated with the EL measurement. The MQW cells showed higher external luminescence efficiency than the GaAs reference cells especially under high-concentration condition. The results suggest that since the MQW region can trap and confine carriers, the localized excess carriers inside the cells make radiative recombination more dominant.

  4. Growth Inhibition Occurs Independently of Cell Mortality in Tomato (Solanum lycopersicum) Exposed to High Cadmium Concentrations

    Institute of Scientific and Technical Information of China (English)

    Christine Delpérée; Stanley Lutts

    2008-01-01

    In order to analyze the adaptation potential of tomato shoots to a sudden increase in Cd concentration, tomato plants (Solanum lycopersicum L. var. Ailsa Craig) were exposed under controlled environmental conditions to a high dose of this heavy metal (250 μM CdCl2>) in nutrient solution for 7 and 14 d. Both root and shoot growth was completely inhibited but all plants remained alive until the end of the treatment. Cell viability remained unaffected but the activity of the mitochondrial alternative pathway was stimulated by Cd stress at the expense of the cytochrome pathway. Cadmium concentration was higher in roots than in shoots and a decrease In the rate of net Cd translocation was noticed during the second week of stress. Cadmium decreased both leaf conductance (g1>) and chlorophyll concentration. However, the effect on net CO2 assimilation remained limited and soluble sugars accumulated in leaves. Photochemical efficiency of PSll (FvlFm) was not affected despite a decrease in the number of reaction centers and an inhibition of electron transfer to acceptors of PSII. It is concluded that tomato shoot may sustain short term exposure to high doses of cadmium despite growth inhibition. This property implies several physiological strategies linked to both avoidance and tolerance mechanisms.

  5. Effects of NaCl concentration on anode microbes in microbial fuel cells.

    Science.gov (United States)

    Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2015-12-01

    Understanding of how operational parameters affect the composition of exoelectrogenic microbes is an important step in the development of efficient microbial fuel cells (MFCs). In the present study, single-chamber MFCs were inoculated with rice paddy-field soil and continuously supplied with an acetate medium containing different concentrations of NaCl (0-1.8 M). Polarization analyses showed that power output increased as the NaCl concentration increased to 0.1 M, while it was markedly diminished over 0.3 M. The increase in power output was associated with an increased abundance of anode microbes as assessed by protein assays. Notably, the power increase was also accompanied by an increase in the abundance ratio of Geobacter bacteria to total anode bacteria as assessed by pyrosequencing of 16S rRNA gene amplicons and specific quantitative PCR. Although most Geobacter species are known to exhibit high growth rates in freshwater media without NaCl, the present study shows that 0.1 M NaCl facilitates the growth of Geobacter in MFC anode biofilms. This result suggests that the optimum salt concentration in MFC is determined by the balance of two factors, namely, the solution conductivity and salt tolerance of exoelectrogens. PMID:26061773

  6. Activation/Inhibition of mast cells by supra-optimal antigen concentrations.

    Science.gov (United States)

    Huber, Michael

    2013-01-01

    Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with "its own Ag", thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5'-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra

  7. Underwater Optical Fiber Fluorescent System for Measuring Chlorophyll-a Concentration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on-line measurement for alga concentration using He-Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.

  8. Parametric performance analysis of a concentrated photovoltaic co-generation system equipped with a thermal storage tank

    International Nuclear Information System (INIS)

    Highlights: • Both thermal and electrical powers varied by changing surface area of collector. • Thermal stratification and total system power were increased at critical flow rate. • Parametric analysis of the CPVC system offers to determine the desired outcome. • Thermal and electrical outputs varied by changing the focal length of Fresnel lens. - Abstract: This article presents a parametric study of a concentrated photovoltaic co-generation (CPVC) system with an attached thermal storage tank. The CPVC system utilized dual-axis tracker and multiple solar energy collector (SEC) modules and forced cooling system. Each SEC module comprised 16 triple-junction solar cells, copper tube absorbers, and 16 Fresnel lenses were aligned against each solar cell. This study investigated all possible parameters that can affect the CPVC system performance, including the collector area, solar irradiation, inlet temperature, and mass flow rate. The surface area of the collector and the thermal power were increased by increasing the number of SEC modules connected in series; however, the electrical power output decreased from the first to the fourth SEC module consecutively. At the measured optimal flow rate, mixing and thermal diffusion in the storage tank were decreased, and the total power generation from the CPVC system was increased. Variations in the thermal and electrical power outputs were also observed when the focal length of the Fresnel lens was changed. This parametric analysis enables the CPVC system to obtain the desired output by varying the combination of operational and geometrical parameters

  9. Peripheral and gastrointestinal immune systems of healthy cattle raised outdoors at pasture or indoors on a concentrate-based ration

    Directory of Open Access Journals (Sweden)

    Reilly Petrina

    2010-03-01

    Full Text Available Abstract Background Despite an increasing preference of consumers for beef produced from more extensive pasture-based production systems and potential human health benefits from the consumption of such beef, data regarding the health status of animals raised on pasture are limited. The objective of this study was to characterise specific aspects of the bovine peripheral and the gastrointestinal muscosal immune systems of cattle raised on an outdoor pasture system in comparison to animals raised on a conventional intensive indoor concentrate-based system. Results A number of in vitro functional tests of immune cells suggested subtle differences between the animals on the outdoor versus indoor production systems. There was a decrease in the number of neutrophils and monocytes engaged in phagocytosis in outdoor cattle (P P P P P P P Conclusion Despite distinctly contrasting production systems, only subtle differences were identified in the peripheral immune parameters measured between cattle raised at pasture in comparison to animals raised on a conventional intensive indoor concentrate-based production system.

  10. Operation of a Thin-Film Inflatable Concentrator System Demonstrated in a Solar Thermal Vacuum Environment

    Science.gov (United States)

    Wong, Wayne A.

    2002-01-01

    Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.

  11. Cell-free DNA concentration and integrity as a screening tool for cancer

    Directory of Open Access Journals (Sweden)

    Ebtsam R Zaher

    2013-01-01

    Full Text Available Aim of the Study: This study aims to evaluate cell-free DNA (CFDNA concentration and integrity in patients with malignant and nonmalignant diseases and in controls to investigate their value as a screening test for cancer, and to correlate them with clinicopathological parameters of cancer patients. Materials and Methods: The study included three groups; group I: 120 cancer patients, group II: 120 patients with benign diseases and group III: 120 normal healthy volunteers as control. One plasma sample was collected from each subject. CFDNA was purified from the plasma then its concentration was measured and integrity was assessed by PCR amplification of 100, 200, 400, and 800 bp bands. Results: There was a highly significant difference in CFDNA levels between cancer group and each of benign and control groups. AUC of ROC curve for cancer group versus normal and benign groups were 0.962 and 0.895, which indicated the efficiency of CFDNA as a marker of cancer. As for integrity, normal and benign subjects showed only two bands at 100 and 200 bp, while all cancer patients demonstrated the 400 bp band and 78% of them had the 800 bp whose presence correlated with vascular invasion. Conclusion: The combined use of CFDNA concentration and integrity is a candidate for a universal screening test of cancer. Upon setting suitable boundaries for the test it might be applied to identify cancer patients, particularly among subjects with predisposing factors. Being less expensive, CFDNA concentration could be applied for mass screening and for patients with values overlapping those of normal and benign subjects, the use of the more expensive, yet more specific, integrity test is suggested.

  12. Microscale measurements of oxygen concentration across the thickness of diffusion media in operating polymer electrolyte fuel cells

    Science.gov (United States)

    Epting, William K.; Litster, Shawn

    2016-02-01

    Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.

  13. An evaluation of radioxenon detection techniques for use with a fluid-based concentration system

    International Nuclear Information System (INIS)

    A portable monitoring system to measure the quantity of radioxenon (131mXe, 133Xe, 133mXe, and 135Xe) in the atmosphere is being developed which incorporates a fluid-based concentration system with a detection system. To this end a number of radioxenon detection techniques have been evaluated to determine the best method of analyzing the output of the concentration system, which may contain significant amounts of radon in addition to concentrated xenon. Three detector configurations have been tested to measure the characteristic electron/photon coincidence radiation: plastic scintillator/NaI(Tl), gas proportional detector/NaI(Tl), and liquid scintillator/NaI(Tl). In addition to standard coincidence measurements, some additional gating criteria were also used; pulse height discrimination, pulse shape discrimination, and delayed coincidence. While the lowest relative minimum detectable activity was achieved using the liquid scintillator with delayed coincidence gating, the best performance for fieldable detection systems depends on the ratio of xenon to radon in the output of the concentration system. A high ratio favors the use of a gas proportional/NaI(Tl) detector using coincidence gating with pulse height discrimination. The use of a plastic scintillator/NaI(Tl) detector using coincidence gating with pulse shape discrimination is preferred when the ratio is low. A portable system that monitors the abundance and ratios of atmospheric radioxenon isotopes is required for use in the field to detect nuclear weapons testing

  14. [Concentrated red blood cells transfusion in Yaoundé, Cameroon: what quality?].

    Science.gov (United States)

    Mbanya, D; Nouthe, B; Tayou Tagny, C; Moudourou, S; Ngogang, J

    2007-11-01

    As part of a quality assurance process in the transfusion service of a hospital blood bank of Yaoundé, Cameroon, a selection of units of red cell concentrates (RCC) were evaluated for volume, haemoglobin, and haematocrit levels as well as blood cell content. Blood samples were all collected into standard double blood bags containing an anticoagulant, citrate-phosphate-dextrose and adenine. During a three-month period, 35 bags intended for the preparation of the RCC were analysed. After relevant screening for transfusion transmissible infections ,and ABO and rhesus (RH1) blood grouping, the bags were centrifuged to obtain RCC. The resultant red cell bags were weighed and the volumes estimated. Full blood counts were performed on samples of the RCC using an electronic particle counter (DIANA 5, HYCEL Diagnostics, Reims, France). The results obtained showed that, based on ISO 9001: 2000 norms, there were 57, 66 and 80% of RCC respectively with volumes, hemoglobin levels as well as hematocrit that were in conformity with the norms. When the data was analysed based on the Algerian norms, 83, 66 and 95% respectively conformed. The significance of these findings and the need for establishing local norms for quality assurance in our community are discussed. PMID:18295526

  15. Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes

    CERN Document Server

    Bai, Peng

    2016-01-01

    Lithium-air batteries have been considered as ultimate solutions for the power source of long-range electrified transportation, but state-of-the-art prototypes still suffer from short cycle life, low efficiency and poor power output. Here, a lithium-bromine rechargeable fuel cell using highly concentrated bromine catholytes is demonstrated with comparable specific energy, improved power density, and higher efficiency. The cell is similar in structure to a hybrid-electrolyte Li-air battery, where a lithium metal anode in nonaqueous electrolyte is separated from aqueous bromine catholytes by a lithium-ion conducting ceramic plate. The cell with a flat graphite electrode can discharge at a peak power density around 9mW cm-2 and in principle could provide a specific energy of 791.8 Wh kg-1, superior to most existing cathode materials and catholytes. It can also run in regenerative mode to recover the lithium metal anode and free bromine with 80-90% voltage efficiency, without any catalysts. Degradation of the sol...

  16. Melaleuca alternifolia Concentrate Inhibits in Vitro Entry of Influenza Virus into Host Cells

    Directory of Open Access Journals (Sweden)

    Lifang Jiang

    2013-08-01

    Full Text Available Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.

  17. Melaleuca alternifolia concentrate inhibits in vitro entry of influenza virus into host cells.

    Science.gov (United States)

    Li, Xinghua; Duan, Songwei; Chu, Cordia; Xu, Jun; Zeng, Gucheng; Lam, Alfred King-Yin; Zhou, Junmei; Yin, Yue; Fang, Danyun; Reynolds, Maxwell John; Gu, Huaiyu; Jiang, Lifang

    2013-01-01

    Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC) is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure. PMID:23966077

  18. Neurochemical and functional characterisation of the Melanin-concentrating hormone system in the rat brain

    OpenAIRE

    Appl, Thomas

    2007-01-01

    The central melanin-concentrating hormone (MCH) system has been intensively studied for its involvement in the regulation of feeding behaviour and body weight regulation. The importance of the neuropeptide MCH in the control of energy balance has been underlined by MCH knock out and Melanin-concentrating hormone receptor subtype 1 (MCHR-1) knock-out animals. The anorectic and anti-obesity effects of selective MCHR-1 antagonists have confirmed the notion that pharmacological blockade of MCHR-1...

  19. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  20. The effect of concentrator field layout on the performance of point-focus distributed receiver systems

    Energy Technology Data Exchange (ETDEWEB)

    Pons, R.L.; Dugan, A.F.

    1984-02-01

    The effect of concentrator field layout on the technical-economic performance of a point-focusing distributed receiver (PFDR) solar thermal power plant is presented. The plant design is based on the small community prototype system currently under development by Ford Aerospace for JPL/DOE; parabolic dish concentrators are employed and small heat engines are used to generate electricity at each dish. The effect of field size, array proportions, dish-to-dish spacing and packing fraction (concentrator-land area ratio) are presented for typical PFDR layouts. Economic analyses are carried out to determine optimum packing fraction as a function of site cost.

  1. The effect of concentrator field layout on the performance of point-focus distributed receiver systems

    Science.gov (United States)

    Pons, R. L.; Dugan, A. F.

    1984-02-01

    The effect of concentrator field layout on the technical-economic performance of a point-focusing distributed receiver (PFDR) solar thermal power plant is presented. The plant design is based on the small community prototype system currently under development for JPL/DOE; parabolic dish concentrators are employed, and small heat engines are used to generate electricity at each dish. The effect of field size, array proportions, dish-to-dish spacing and packing fraction (concentrator-land area ratio) are presented for typical PFDR layouts. Economic analyses are carried out to determine optimum packing fraction as a function of site cost.

  2. Effect of concentrator field layout on the performance of point-focus distributed receiver systems

    Energy Technology Data Exchange (ETDEWEB)

    Pons, R.L.; Dugan, A.F.

    1984-02-01

    The effect of concentrator field layout on the technical-economic performance of a point-focusing distributed receiver (PFDR) solar thermal power plant is presented. The plant design is based on the small community prototype system currently under development for JPL/DOE. Parabolic dish concentrators are employed, and small heat engines are used to generate electricity at each dish. The effect of field size, array proportions, dish-to-dish spacing and packing fraction (concentrator-land area ratio) are presented for typical PFDR layouts. Economic analyses are carried out to determine optimum packing fraction as a function of site cost. 6 references.

  3. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Yokoyama, Atsuro; Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co., Ltd., Otsubashi Bldg. 4F, 3-4-10, Marunouchi, Naka-ku, Nagoya, 460-0002 (Japan); Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan)

    2010-04-06

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  4. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    International Nuclear Information System (INIS)

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  5. Determination of the critical micelle concentration in simulations of surfactant systems

    Science.gov (United States)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z.

    2016-01-01

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the "free" (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit).

  6. Automatic tracking system for the guidance of a parabolic concentrator in the sun

    International Nuclear Information System (INIS)

    Full text: This paper presents the results of a study on the creation of auto-tracking system for the guidance of the parabolic concentrator in the Sun, which was at the core of the high-temperature solar installation. The work deals with Sun tracking increased accuracy, reliability of the auto-tracking system and the efficiency of solar energy, as well as the security of the tracking system as a whole

  7. Enhanced energy harvesting and analysis of a High Concentration Photovoltaic / Thermal System with support of Cooling fluid and Increased Mass Flow Rates

    Directory of Open Access Journals (Sweden)

    A S R Murty

    2016-04-01

    Full Text Available In this paper a high concentration photovoltaic (HCPV system is considered. A parabolic dish collector focuses the incident energy on to a triple junction solar system. High concentration ratios ranging from 10 x to 1000x increases the cell temperature, resulting in a decrease in electrical efficiency. Thermal analysis of a water based cooling system is modeled to enhance the electrical efficiency and also to study the thermal efficiency of such HCPV system. It is to be noted that with an increase in mass flow rate of water, the electrical efficiency increases and the thermal efficiency decreases. Finally, a comparison of efficiencies with and without cooling are presented.

  8. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  9. Field inter-comparison of three systems for NH3 concentration and flux measurements

    Science.gov (United States)

    Voglmeier, Karl; Ammann, Christof; Neftel, Albrecht; Häni, Christoph; Richter, Undine; Brümmer, Christian

    2016-04-01

    Ambient air ammonia analyzer systems that are not only used for concentration but also for flux measurements have to meet special requirements. They either have to provide a fast response detection (c. 1 sec) for the application of the eddy covariance technique (EC) or they have to resolve relatively small horizontal or vertical concentration gradients. The Posieux intercomparison experiment in fall 2015 was designed to compare three advanced and different approaches to determine concentration and fluxes of NH3 of a grazed pasture during several weeks. The methods involved: [1] a two channel reactive N converter measuring in parallel the sum of oxidized N species with the exception of N2O and the sum of the total reactive N species. The difference of the two channels corresponds to the sum of reduced reactive N species; [2] a QC laser analyzer with a special designed inlet system that minimize wall effects and separates particles from the gas sampling stream; [3] two MiniDOAS instruments for line integrated concentration without any inlet system. The experimental setup and the environmental conditions resulted in a high temporal and spatial dynamic of NH3 concentrations and fluxes. Systems [1] and [2] are designed to perform flux measurements by the Eddy Covariance technique, whereas the DOAS technique has a temporal resolution of 1 min. Fluxes are calculated from the horizontal concentration increase across an emitting surface with back lagrangian stochastic trajectory dispersion model. We present a comparison of the measured concentrations and fluxes and discuss the advantages and limitations of the three chosen systems.

  10. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  11. Comparative Evaluation of Reflective and Refractive Optical Concentration Systems in Tropical Climate

    Directory of Open Access Journals (Sweden)

    Abdulkarim Hamza El-Ladan

    2014-09-01

    Full Text Available Convergence of global economic inequalities and greenhouse emissions makes it imperative that fossil-fuel dependence be replaced by renewable energy revolution. Sunlight is the only truly free and abundant global energy resource capable of replacing fossil fuels. Historically, thermal and electrical forms of energy have been generated through Concentrated Solar Power (CSP systems. A major disadvantage of existing CSP systems lies in their long lead times, large start-up costs and integration with an advanced electricity transmission grid. Research work reported here is focused on evaluation of reflective and refractive optical concentration systems in tropical climate with the aim of developing small scale distributed electricity generation systems linked to micro grids. Evaluation of seven optical concentrators in reflection and refraction modes in tropical Malaysian climate has been carried out. The experimental methodology was based on measurement of temperature at the focal point of the optical systems as a function of time and solar irradiance. Highest temperatures achieved with reflective systems were in 200-300°C range, in contrast, Fresnel-lens based refractive systems approached temperatures in excess of ~1300°C. For the Fresnel lenses investigated, an approximate logarithmic temperature dependence on lens diameter was determined. For the Malaysian climate, sunlight to thermal energy conversion of refractive systems was determined to be significantly superior to reflective systems.

  12. Regenerative fuel cell systems R and D

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  13. Concentration-dependent repression of the soluble and membrane components of the Streptococcus mutans phosphoenolpyruvate: sugar phosphotransferase system by glucose.

    OpenAIRE

    Hamilton, I R; L. Gauthier; Desjardins, B; Vadeboncoeur, C

    1989-01-01

    Growth of Streptococcus mutans Ingbritt in continuous culture (pH 7.0, dilution rate of 0.1 h-1) at medium glucose concentrations above 2.6 mM resulted in repression of the sugar-specific membrane components, enzyme IIGlc (EIIGlc) and EIIMan, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In one experiment, significant repression (27-fold) was observed with 73 mM glucose when the glycolytic capacity of the cells was reduced by only 2-fold and when the culture was still gluc...

  14. Sediment-copper distributions in hyper-concentrated turbulent solid-liquid system

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; NI Jin-ren

    2007-01-01

    This study presents a special problem on vertical distribution for sediment and copper in hyper-concentrated turbulent solid-liquid system that is essentially different from the ordinary low-concentrated turbulent system. A resonance type turbulent simulation equipment is used for the experimental study in which a vertically uniform turbulent field of the mixture of loess and water is produced in a testing cylinder with a grille stirrer that moves up and down harmoniously with varying vibration frequencies. In order to compare the variations of the vertical profiles of sediment and copper in low- and hyper-concentrated solid-liquid system, different scenarios for input sediment content ranging from 5 to 800 kg/m3 was considered in the experimental studies. It was found that solids copper content increases with input sediment content, S0, and reaches its peak as S0 goes to 10 kg/m3 and then decreases rapidly with increasing input sediment content. Such a behavior is possibly resulted from the joint effect of the specific adsorption of copper on loess, precipitation of carbonate and hydroxide of copper due to high carbonate content in the loess and the so-called "particulate concentration effect" due to the present of the sediment variation in water. The vertical sediment concentration distribution resulted from the uniform turbulence is generally uniform, but slight non-uniformity does occur as sediment concentration exceeds certain value. However, the vertical concentration distributions of soluble copper seem not affected much by the variation of sediment concentrations.

  15. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    International Nuclear Information System (INIS)

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions

  16. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  17. The ER to Golgi interface is the major concentration site of secretory proteins in the exocrine pancreatic cell.

    Science.gov (United States)

    Oprins, A; Rabouille, C; Posthuma, G; Klumperman, J; Geuze, H J; Slot, J W

    2001-11-01

    By using quantitative immuno-electron microscopy of two-sided labeled resin sections of rat exocrine pancreatic cells, we have established the relative concentrations of the secretory proteins amylase and chymotrypsinogen in the compartments of the secretory pathway. Their total concentration over the entire pathway was approximately 11 and approximately 460 times, respectively. Both proteins exhibited their largest increase in concentration between the endoplasmic reticulum and cis-Golgi, where they were concentrated 3-4 and 50-70 times, respectively. Over the further pathway, increases in concentration were moderate, albeit two times higher for chymotrypsinogen than for amylase. From trans-Golgi to secretory granules, where the main secretory protein concentration is often thought to occur, relatively small concentration increases were observed. Additional observations on a third secretory protein, procarboxypeptidase A, showed a concentration profile very similar to chymotrypsinogen. The relatively high concentration of amylase in the early compartments of the secretory route is consistent with its exceptionally slow intracellular transport. Our data demonstrate that secretory proteins undergo their main concentration between the endoplasmic reticulum and cis-Golgi, where we have previously found concentration activity associated with vesicular tubular clusters (Martínez-Menárguez JA, Geuze HJ, Slot JW, Klumperman J. Cell 1999; 98: 81-90). PMID:11733050

  18. A multi-host front end concentrator system for asynchronous consoles

    CERN Document Server

    Palandri, E M

    1974-01-01

    Describes a front end concentrator system for asynchronous time sharing consoles which has recently been put into operation at CERN. The concentrator will control up to 36 consoles at speeds up to 9600 bits per second and has the capability of dynamically connecting these consoles to several large Host processors. Features of the system include specially designed hardware and software to connect a wide range of different types of consoles in a flexible and expandable way, and the use of special purpose microcode to optimise console handling and facilitate the implementation of the system. The system runs in an HP2100 computer initially front-ending CDC 6000 series computers using the INTERCOM time sharing system. (6 refs).

  19. Validation of the FACSCount AF system for determination of sperm concentration in boar semen

    DEFF Research Database (Denmark)

    Hansen, C.; Christensen, P.; Stryhn, H.;

    2002-01-01

    Biosciences) was compared with microscopic counting using a Burker-Turk haemocytometer. In addition, sperm concentration was determined using the Corning 254 spectrophotometer which is used routinely by Danish artificial insemination stations for boars. The results show that the agreement between flow...... with the spectrophotometric method ( CV = 6.3%). These results indicate that the FACSCount AF System is a valuable tool for precise and accurate assessment of sperm concentration in boar semen and that use of this system may lead to production of more uniform insemination doses containing a specific number of sperm per dose....

  20. Rapid Method To Determine Intracellular Drug Concentrations in Cellular Uptake Assays: Application to Metformin in Organic Cation Transporter 1-Transfected Human Embryonic Kidney 293 Cells.

    Science.gov (United States)

    Chien, Huan-Chieh; Zur, Arik A; Maurer, Tristan S; Yee, Sook Wah; Tolsma, John; Jasper, Paul; Scott, Dennis O; Giacomini, Kathleen M

    2016-03-01

    Because of the importance of intracellular unbound drug concentrations in the prediction of in vivo concentrations that are determinants of drug efficacy and toxicity, a number of assays have been developed to assess in vitro unbound concentrations of drugs. Here we present a rapid method to determine the intracellular unbound drug concentrations in cultured cells, and we apply the method along with a mechanistic model to predict concentrations of metformin in subcellular compartments of stably transfected human embryonic kidney 293 (HEK293) cells. Intracellular space (ICS) was calculated by subtracting the [(3)H]-inulin distribution volume (extracellular space, ECS) from the [(14)C]-urea distribution volume (total water space, TWS). Values obtained for intracellular space (mean ± S.E.M.; μl/10(6) cells) of monolayers of HEK cells (HEK-empty vector [EV]) and cells overexpressing human organic cation transporter 1 (HEK-OCT1), 1.21± 0.07 and 1.25±0.06, respectively, were used to determine the intracellular metformin concentrations. After incubation of the cells with 5 µM metformin, the intracellular concentrations were 26.4 ± 7.8 μM and 268 ± 11.0 μM, respectively, in HEK-EV and HEK-OCT1. In addition, intracellular metformin concentrations were lower in high K(+) buffer (140 mM KCl) compared with normal K(+) buffer (5.4 mM KCl) in HEK-OCT1 cells (54.8 ± 3.8 μM and 198.1 ± 11.2 μM, respectively; P < 0.05). Our mechanistic model suggests that, depending on the credible range of assumed physiologic values, the positively charged metformin accumulates to particularly high levels in endoplasmic reticulum and/or mitochondria. This method together with the computational model can be used to determine intracellular unbound concentrations and to predict subcellular accumulation of drugs in other complex systems such as primary cells. PMID:26700958

  1. Effects of solution mass transport on the ECC ozonesonde background current. [Electrochemical Concentration Cell

    Science.gov (United States)

    Thornton, D. C.; Niazy, N.

    1983-01-01

    A technique is developed to measure the effective mass transport parameter for the electrochemical concentration cell (ECC) ozonesonde in order to determine the mass transport rate constant for the ECC as a function of pressure. It is shown that a pressure dependent factor in the background current originates in a convective mass transport parameter. It is determined that for atmospheric pressures greater than 100 mb the mass transport parameter is a constant, while at pressures less than 100 mb it decreases logarithmically with pressure. It is suggested that the background current correction is directly correlated to the mass transport parameter pressure dependence. The presently used background current correction, which is based on the partial pressure of oxygen, is found to lead to an overestimation of the integrated ozone value in the troposphere for the ECC ozonesonde data.

  2. Thermodynamic relation between voltage-concentration dependence and salt adsorption in electrochemical cells.

    Science.gov (United States)

    Rica, R A; Ziano, R; Salerno, D; Mantegazza, F; Brogioli, D

    2012-10-12

    Electrochemical cells containing two electrodes dipped in an ionic solution are widely used as charge accumulators, either with polarizable (supercapacitor) or nonpolarizable (battery) electrodes. Recent applications include desalination ("capacitive deionization") and energy extraction from salinity differences ("capacitive mixing"). In this Letter, we analyze a general relation between the variation of the electric potential as a function of the concentration and the salt adsorption. This relation comes from the evaluation of the electrical and mechanical energy exchange along a reversible cycle, which involves salt adsorption and release by the electrodes. The obtained relation thus describes a connection between capacitive deionization and capacitive mixing. We check this relation with experimental data already reported in the literature, and moreover by some classical physical models for electrodes, including polarizable and nonpolarizable electrodes. The generality of the relation makes it very useful in the study of the properties of the electric double layer. PMID:23102339

  3. GUM approach to uncertainty estimations for online 220Rn concentration measurements using Lucas scintillation cell

    International Nuclear Information System (INIS)

    It is now widely recognized that, when all of the known or suspected components of errors have been evaluated and corrected, there still remains an uncertainty, that is, a doubt about how well the result of the measurement represents the value of the quantity being measured. Evaluation of measurement data - Guide to the expression of Uncertainty in Measurement (GUM) is a guidance document, the purpose of which is to promote full information on how uncertainty statements are arrived at and to provide a basis for the international comparison of measurement results. In this paper, uncertainty estimations following GUM guidelines have been made for the measured values of online thoron concentrations using Lucas scintillation cell to prove that the correction for disequilibrium between 220Rn and 216Po is significant in online 220Rn measurements

  4. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    Energy Technology Data Exchange (ETDEWEB)

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively

  5. Mammalian Cell-Based Sensor System

    Science.gov (United States)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  6. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

    Science.gov (United States)

    Shen, Liye; Ma, Jingxing; Song, Pengfei; Lu, Zhihao; Yin, Yao; Liu, Yongdi; Cai, Lankun; Zhang, Lehua

    2016-10-01

    A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0  %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19  %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms. PMID:27282165

  7. Cigarette Smoking Is Associated with a Lower Concentration of CD105+ Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Shaul Beyth

    2015-01-01

    Full Text Available Cigarette smoking is associated with musculoskeletal degenerative disorders, delayed fracture healing, and nonunion. Bone marrow progenitor cells (BMPCs, known to express CD105, are important in local trophic and immunomodulatory activity and central to musculoskeletal healing/regeneration. We hypothesized that smoking is associated with lower levels of BMPC. Iliac bone marrow samples were collected from individuals aged 18–65 years during the first steps of pelvic surgery, under IRB approval with informed consent. Patients with active infectious or neoplastic disease, a history of cytotoxic or radiation therapy, primary or secondary metabolic bone disease, or bone marrow dysfunction were excluded. Separation process purity and the number of BMPCs recovered were assessed with FACS. BMPC populations in self-reported smokers and nonsmokers were compared using the two-tailed t-test. 13 smokers and 13 nonsmokers of comparable age and gender were included. The average concentration of BMPCs was 3.52 × 105/mL ± 2.45 × 105/mL for nonsmokers versus 1.31 × 105/mL ± 1.61 × 105/mL for smokers (t= 3.2, P=0.004. This suggests that cigarette smoking is linked to a significant decrease in the concentration of BMPCs, which may contribute to the reduced regenerative capacity of smokers, with implications for musculoskeletal maintenance and repair.

  8. Characterization of carrier concentration in CIGS solar cells by scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Thin films of copper indium gallium selenide (CIGS) designed for highly efficient solar cell material were investigated to characterize the two-dimensional carrier distribution using scanning capacitance microscopy (SCM). We optimized a preparation method of the cross-section samples and concluded that bevel polishing by 25° to 30° was effective for crumbly polycrystalline materials such as CIGS, so as to provide not the surface property of cracked crystalline grains but the cross-section property of individual cut grains. Because of improvement in this preparation procedure, changes in carrier distribution have been observed directly in the active CIGS layer before and after turning on a 100 W halogen lamp irradiation. A calibration curve between carrier concentration N and SCM's dC/dV signals was applied for qualitatively calculating relative values of N in CIGS. Increased carrier concentration peaks on the grains were estimated to become about three times as high as those with the light on. (paper)

  9. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    Directory of Open Access Journals (Sweden)

    Samuel C. Kim

    2015-10-01

    Full Text Available Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922 treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method.

  10. Anaerobic biodegradability and digestion in accumulation systems for concentrated black water and kitchen organic-wastes.

    Science.gov (United States)

    Elmitwalli, T A; van Leeuwen, M; Kujawa-Roeleveld, K; Sanders, W; Zeeman, G

    2006-01-01

    The feasibility of two accumulation-systems (AC) for anaerobic digestion and storage of concentrated black water with (AC1) or without (AC2) urine + kitchen organic-wastes was investigated. The waste(water) was collected by two vacuum toilet/transport systems. The influent-total COD of the AC2 (53,000 mg/L) was more concentrated by four times than that of the AC1. The suspended COD represented the major part (71-73%) of influent total COD of the two systems. The batch-experiments results showed a high anaerobic biodegradability of the waste(water) (> 85%). The AC systems demonstrated stable performance. There was no inhibition effect of NH4 and VFA concentration decreased in time. Total COD removal of 58% was achieved in both systems, after 105 days at 20 degrees C. Moreover, if only the supernatant in AC1 is withdrawn and the settled sludge stays for the next runs, only 20% of the influent total COD will be in the supernatant. In AC2, 74% of influent ortho-P was removed by precipitation. Therefore, the settled sludge in the AC2 had a high total-P concentration of 1,300 mg/L. The C:N:P ratios of the supernatant and the sludge were 26:13:1 and 35:4.5:1, respectively, in the AC1, and were 28:14:1 and 32:2.4:1, respectively, in AC2. PMID:16784201

  11. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  12. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  13. Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction

    DEFF Research Database (Denmark)

    Shitu, J. O.; Chartrain, M.; Woodley, John

    2009-01-01

    The presence of high concentrations of substrate or product may impede the optimal functioning of a biocatalyst, more so in the case of whole cell biocatalysts where the metabolic status of the cells may be compromised. In this article we investigate these effects using as an example the Baeyer-Villiger...

  14. Intracellular PPi concentration is not directly dependent on amount of inorganic pyrophosphatase in Escherichia coli K-12 cells.

    Science.gov (United States)

    Kukko-Kalske, E; Lintunen, M; Inen, M K; Lahti, R; Heinonen, J

    1989-08-01

    No correlation was observed between the level of inorganic pyrophosphatase (PPase) and the intracellular concentration of PPi in Escherichia coli cells. In exponentially growing cells the intracellular PPi concentration was in every case 1.5 nmol/mg (dry weight) or about 0.5 mM, even though the amount of PPase was varied from 15 to 2,600% of the control amount by mutation or by using a multicopy plasmid with an inserted gene (ppa) encoding PPase. The PPi concentration could, however, be increased or decreased from the control level under some stressful conditions. PMID:2546923

  15. Action of caffeine on x-irradiated HeLa cells. IV. Progression delays and enhanced cell killing at high caffeine concentrations

    International Nuclear Information System (INIS)

    The response of x-irradiated and unirradiated HeLa S3 cells to treatment with caffeine at concentrations between 1 and 10 nM has been examined with respect to both delay in progression through the cell generation cycle and enhancement of the expression of potentially lethal x-ray damage. Progression is delayed in a concentration-dependent fashion: the generation time is doubled at about 4 mM. The duration of G1 is lengthened, and the rate of DNA synthesis is reduced, although the kinetics are different in the two phases; the rate of DNA synthesis is usually unaffected at 1 or 2 mM, while there is no concentration threshold for the slowing of progression through G1. Progression through G2 appears to be unaffected by concentrations up to at least 10 mM. Killing of irradiated cells in G2 is somewhat greater after treatment with the higher caffeine concentrations than reported previously for 1 mM. Moreover, an additional mode of killing is observed in irradiated G1 cells which had been found previously to be only slightly affected by 1 mM caffeine; they suffer extensive killing at concentrations above 5 mM. The time-survival curves for irradiated, caffeine-treated G1 and G2 cells have characteristically different shapes. The dose-survival curves for cells treated with the higher caffeine concentrations display steeper terminal slopes and narrower shoulders

  16. Cleaning Process Research of MVR High Concentration Salty Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Wang Na

    2015-01-01

    Full Text Available A mechanical vapor re-compression (MVR evaporation system for the treatment of the highly-concentrated inorganic salt wastewater was investigated, and its process characteristics were analyzed taking sodium chloride salt wastewater as the treated solution. In this paper, by adding “H2O2 oxidation + filter +flash evaporation + hot filter” technology on the basis of original traditional MVR treatment system, the optimum technological conditions were determined through the experiment: The pH value is 8.5; the oxidation time is 24.0h; H2O2 amount accounting for 1% of the total wastewater under the condition of outlet test MVR system respectively fell 88.5% and 90.1% than the traditional process of effluent COD and NH3-N removal rate. MVR system for the sodium chloride salt qualified rate was increased from 83.2% to 98.2%. On the other hand, this process avoided the highly-concentrated outside of mother liquor by flashing evaporation recycling volatile solvent; the optimization process results were found to be consistent with published practical industrial data. Compared with the new process MVR system, the operation load of MVR system was lower. Therefore, the system can be used to treat the highly-concentrated inorganic salt wastewater and save energy. Therefore, the cleaning process can achieve remarkable energy saving and consumption, and reduce the pollution and the pollution and environmental protection effect.

  17. In-line filtration of platelet concentrates obtained with the Omnix blood cell separator.

    Science.gov (United States)

    Moog, R; Müller, N; Nieper, A

    1995-12-01

    The quality of platelet concentrates (PC) obtained with the blood cell separator Omnix was investigated before and after in-line filtration. PC were filtered 2h (protocol A) and 4 h (protocol B) after the termination of apheresis. Platelet (PLT) yield after filtration was similar in both protocols (median 3.7 vs. 3.4 x 10(11)). Median white blood cell (WBC) contamination after leucocyte depletion was 0.07 x 10(6) (range 0.02-3.27 x 10(6)) in protocol A and 0.06 x 10(6) (range 0.02-2.1 x 10(6)) in protocol B. Glucose, lactate, lactate dehydrogenase, morphology score and pH value were not statistically different before and after filtration in both protocols. We conclude that in-line filtration results in sufficient leucocyte depletion of the PC. The prefiltration storage time did not influence the studied parameters of product quality. PMID:8646295

  18. Development of a 10 Hz measurement system for atmospheric aerosol concentration

    International Nuclear Information System (INIS)

    The goal is to develop an aerosol charger based on a corona discharge for atmospheric concentration measurements (103-105 cm-3) within a response time of 100 ms. Two ion sources, point-to-hole and wire-to-slit have been characterized. The increase of the ion flow in the post-discharge by EHD ion confinement in both the discharge gap and the hole has been shown. At first, using an experimental survey driven in two mixing configurations, concentric and face-to-face, we have confirmed the aerosol diffusion charging law which depends on aerosol diameter and Ni.t product, with Ni, the ions concentration and t, the charging time. Thus, the originality of this charger relies on the very high heterogeneity of unipolar ion densities (Ni0 ≥109 cm-3) required to compensate the charging time of 50 ms. In these conditions, we have shown that aerosol diameter and the charging dynamic (which depends also on the diameter) control the aerosol trajectory. The chargers have, next, been compared in different operating conditions, mainly in terms of the maximal charging and the minimal losses. In the chosen charger (point-to-hole ion source and concentric mixing), the relations charge/mobility and losses according to diameter have been characterized. We have also shown the linearity of the charged particles current with the aerosol concentration which allows the current-concentration data inversion. The preliminary measurement system composed by the charger, the separator and the particle current measurements, satisfies the objectives of the study in terms of the concentration detection limit (103 cm-3) and the response time (100 ms). We have thus shown the feasibility of an atmospheric aerosol concentration measurement system at 10 Hz using a corona discharge charger provided that the separation power is improved. Furthermore, knowing that aerosol losses are negligible and the lower limit of the partial charging, the developed charger is adaptable with other application. (author)

  19. Investigation of concentration overpotential distribution in a polymer electrolyte fuel cell. Paper no. IGEC-1-081

    International Nuclear Information System (INIS)

    Simultaneous measurement of current and high frequency resistance (HFR) distributions has been performed using a segmented polymer electrolyte fuel cell operated with H2/air. Each flow plate consisted of twelve segments along a serpentine flow field. Two types of gas diffusion layer (GDL), a treated hydrophobic carbon cloth coated with a microporous layer (MPL) on one side, and an untreated hydrophilic carbon cloth without MPL, were studied and contrasted. The total voltage loss is divided into three overpotentials: the activation, ohmic and concentration; and the concentration overpotential and its distribution are analyzed in detail. While the fuel cell using the GDL with MPL features a nearly uniform concentration overpotential profile, the one without-MPL shows an increase in concentration overpotential along the cathode flow. When the local concentration overpotential is plotted against the local oxygen concentration, the carbon cloth GDL without MPL showed a steeply increasing concentration overpotential with decreasing oxygen concentration, indicating a high sensitivity to the oxygen content. The same trend was observed for the GDL without MPL under lower relative humidity gases. It is thus found that the increase in concentration overpotential with decreasing oxygen concentration is related to the absence of MPL. (author)

  20. Dynamic Modeling of Anode Function in Enzyme-Based Biofuel Cells Using High Mediator Concentration

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2012-07-01

    Full Text Available The working principle of enzyme-based biofuel cells (EBFCs is the same as that of conventional fuel cells. In an EBFC system, the electricity-production process is very intricate. Analysis requires a mathematical model that can adequately describe the EBFC and predict its performance. This paper develops a dynamic model simulating the discharge performance of the anode for which supported glucose oxidase and mediator immobilize in the EBFC. The dynamic transport behavior of substrate, redox state (ROS of enzyme, enzyme-substrate complex, and the mediator creates different potential changes inside the anode. The potential-step method illustrates the dynamic phenomena of substrate diffusion, ROS of enzyme, production of enzyme-substrate complex, and reduction of the mediator with different potential changes.

  1. Estimation of indigestible NDF in forages and concentrates from cell wall composition

    DEFF Research Database (Denmark)

    Krämer, Monika; Weisbjerg, Martin Riis; Lund, Peter;

    2012-01-01

    within plant type, where INDF is defined as the portion of plant cell walls not digested after 288 h rumen incubation in Dacron bags with 12 μm pore size. INDF is one of the more important parameters determining the net energy (NE) value of a diet in some recently developed ruminant feed evaluation...... systems. Effects of maturity and cut number on INDF in three legumes and 18 grasses were determined based on an experiment in which each forage was cut at three times of primary growth and once in each of the following three regrowths. These data were supplemented with data from earlier experiments to...... develop regression equations for INDF intended for use in practice based on a total of 321 samples. Plant type and species within plant type affected (P<0.001) all cell wall fractions. The INDF/lignin(sa) ratio varied substantially from the 2.4 factor used in the Cornell Net Carbohydrate and Protein...

  2. Study on Extracting Low Concentration Cadmium from Zinc Hydrometallurgy System by Liquid Membrane Crystallizing Technique

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The extraction of low concentration cadmium from a system containing high concentration zinc was studied and got CdS product directly. A new liquid membrane system taking DIPSA, TIBPS as carriers, (NH4)2S as precipitating agent was reported. Precipitating Cd2+ in the internal aq. phase that is used to treat sulfuric acid leaching solution of zinc oxide in zinc hydrometallurgy has gotten satisfied results of extracting cadmium from high concentration zinc. After one-stage of batch process under the optimum liquid membrane conditions, 98.6% transferring rate and 98.1% extracting rate of cadmium was obtained with only less than 1.0% transferring rate of zinc, and the feed solution can be purified very well.

  3. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Introduced with a brief discussion of the key role of ventilation in controlling mine atmospheres, the effects of the design of the ventilation system on the control of radon daughter concentrations are illustrated with specific reference to Alcan's Director Mine, St-Lawrence, Nfld. (This fluorspar mine was found to have high radon concentrations due to mine water bringing in dissolved radon.) After a discussion of the health physics history of the mine, the various phases of the ventilation system design and the general results are detailed. The author draws some conclusions having general application to the design of any mine with a radon or thoron daughter concentration. These include minimizing the 'age' of the air; the need for continuous ventilation in all areas; the value of remote control and monitoring; and the benefits of mine pressurization

  4. Relation between photovoltaic characteristics and acceptor concentration at the interface of indium oxide/indium phosphide heterojunction solar cell

    International Nuclear Information System (INIS)

    Photovoltaic characteristics of a heterojunction solar cell composed of reactively evaporated indium oxide (In2O3) film and single crystalline p-type indium phosphide (InP) was found to depend on acceptor concentration at the interface. The value of acceptor concentration was preferable to be high to obtain a high performance cell because larger open-circuit voltage can be obtained due to decrease of diode saturation current of the cell with the increase of the acceptor concentration. The acceptor concentration of the cell was increased by annealing during forming an ohmic contact. The increase of acceptor concentration by annealing thought to be able to explain in terms of out diffusion of the interstitial zinc atoms in InP bulk. Further, the value of acceptor concentration is modified by substrate heating during deposition of transparent and conductive In2O3 film. In order to produce a high performance cell, low substrate temperature (200 deg C) was preferable during deposition of In2O3 (Authors)

  5. Fuel cell using a hydrogen generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  6. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    Science.gov (United States)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  7. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  8. Control and optimization in fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cells are electrochemical energy converters. They convert the chemical energy contained in the fuel into electricity while producing water and heat. Compared to the traditional energy converters, such as batteries and internal combustion engines, fuel cells are marked by high conversion efficiency and very low emissions.This work contains a computer study of optimization and control of fuel cells systems. An analytical study of the fuel (Hydrogen and air) supply system was performed taking into account compressor, cooling and humidification subsystems. In addition, the stack system, which consists of a lot of cells, was analyzed using the experimental equations of Nafion 117 membrane. The model of the whole system was then implemented in MATLAB/Simulink environment. The effect of the cathode pressure and the membrane water content on the polarization curves of the cell was examined. To validate the model, the responses of the model to step changes in the compressor voltage and the current drawn from the stack, were used. More attention was given to the net power which can be provided by the system, taking into account the power wasted by the compressor. (author)

  9. Continuous glutamate production using an immobilized whole-cell system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S.; Ryu, D.D.Y.

    1982-10-01

    For the purpose of saving the energy and raw materials required in a glutamate fermentation, an immobilized whole-cell system was prepared and its performance in a continuous reactor system was evaluated. Corynebacterium glutamicum (a mutant strain of ATCC 13058) whole cell was immobilized in k-carrageenan matrix and the gel structure was strengthened by treatment with a hardening agent. The effective diffusivities of carrageenan gel for glucose and oxygen were formed to decrease significantly with an increase in carrageenan concentration, while the gel strength showed an increasing trend. Based on the physical and chemical properties of carrageenan gel, the immobilized method was improved and the operation of the continuous reactor system was partially optimized. In an air-stirred fermentor, the continuous production of glutamate was carried out. The effect of the dilution rate of glutamate production and operation stability was investigated. The performance of the continuous wbole-cell reactor system was evaluated by measuring glutamate productivity for a period of 30 days; it was found to be far superior to the performance of convention batch reactor systems using free cells.

  10. Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil

    OpenAIRE

    WU, BI-BO; Gong, Yi-Ping; Wu, Xin-Hong; Chen, Yuan-Yuan; Chen, Fang-Fang; Jin, Li-Ting; Cheng, Bo-Ran; Hu, Fen; Xiong, Bin

    2015-01-01

    Background In order to provide personalized treatment to patients with breast cancer, an accurate, reliable and cost-efficient analytical technique is needed for drug screening and evaluation of tumor response to chemotherapy. Methods Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used as a tool to assess cancer cell response to chemotherapy. MCF-7 cells (human breast adenocarcinoma cell line) were treated with different concentrations of 5-fluorouracil (5...

  11. Endotoxin concentration in poultry houses for laying hens kept in cages or in alternative housing systems

    OpenAIRE

    Huneau-Salaün, Adeline; Le Bouquin, Sophie; Bex-Capelle, Valérie; Huonnic, Didier; Balaine, Loïc; Guillam, Marie-Thérèse; Squizani, Fabrice; Ségala, Claire; Michel, Virginie

    2011-01-01

    Abstract 1. Endotoxins as components of organic dust may have adverse effects on the respiratory health of workers in poultry buildings. The move towards more welfare-friendly housing systems for layers may increase worker exposure to air contaminants due to the use of litter. 2. The endotoxin concentrations in the inhalable fraction of airborne dust (below 100 ?m) from cage and alternative system henhouses (on-floor, free range and aviaries) were compared under both experiment...

  12. Development of an Optical system for the determination of concentration of fine particulate material

    International Nuclear Information System (INIS)

    We have developed a new system of passive recollection of fine particulate material present in ambient air. Preliminary measurements under field conditions show the success of the new design with an increased collection efficiency. In addition, we have used a simple optical system as an alternative to the regular gravimetric technique for the determination of particle concentration. Laboratory tests of the optical method display good correlation with standard mass measurements. (Author)

  13. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    OpenAIRE

    Muhammad Umair; Atsushi Akisawa; Yuki Ueda

    2014-01-01

    Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...

  14. A concentrator system for BI-CPVT with static linear Fresnel lenses

    OpenAIRE

    Swinkels, G.L.A.M.; Sonneveld, P.J.; Tuijl, van, B.A.J.; Janssen, H.J.J.; Zwart, de, A.M.

    2011-01-01

    A greenhouse with Fresnel lenses in the south facing roof and a receiver for concentrated Photovoltaic with water cooling (CPVT system) will result in electrical and thermal energy output from the solar energy excess entering a greenhouse. The PV system converts about half of the direct radiation into heat and electricity. During periods with direct radiation this will significantly reduce the heat load on the greenhouse For an optimal performance the roof elements must be asymmetric with a s...

  15. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Science.gov (United States)

    Gou, Shanmiao; Cui, Pengfei; Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease. PMID:23667692

  16. Concentration of metals in shrimps and crabs from Thane-Bassein creek system, Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamurti, A; Nair, V.R.

    Levels of Cu, Zn, Cd, Pb and Ni in shrimps and crabs from Thane-Bassein creek system, Maharashtra, India were evaluated for a period of one year and reported as baseline for future monitoring of this vital ecosystem. The pattern of concentration...

  17. Effect of increased systemic concentrations of urea nitrogen in crossbred heifers on in vitro fertilization (IVF)

    Science.gov (United States)

    Elevated levels of dietary N and hence systemic concentrations of urea-N have been shown to have a deleterious effect on reproductive processes. The objective of this study was to determine the effect of feeding pubertal crossbred heifers diets with moderate (M-N; 64.8% corn silage, 30.0% alfalfa h...

  18. Optical-mechanical system for on-combine segregation of wheat by grain protein concentration

    Science.gov (United States)

    Grain segregation by grain protein concentration (GPC) may help growers maximize revenues in markets that offer protein premiums. Our objective was to develop an on-combine system for automatically segregating wheat (Triticum aestivum L.) by GPC during harvest. A multispectral optical sensor scans...

  19. Modelling anaerobic digestion of concentrated black water and faecal matter in accumulation system.

    Science.gov (United States)

    Elmitwalli, Tarek; Zeeman, Grietje; Otterpohl, Ralf

    2011-01-01

    A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste (water) produced from the following systems: vacuum toilet for black water (VBW), vacuum toilet for faeces with urine separation (VF), dry toilet (DT), dry toilets for faeces with urine separation (DF), separated faecal matter from conventional black water by filter bag (FB). For evaluation of the AC system treating the proposed waste (water) sources at 20 and 35 degrees C, two options were studied: (1) The filling period of the AC system was constant for all waste (water) sources (either 1, 3 or 6 months) and for each period, the seed sludge volume was varied; (2) The volume of the AC system was constant for all proposed waste (water) sources. The results showed that the filling period of the AC system was the main parameter affecting the system performance, followed by operational temperature, while the increase of the seed sludge volume slightly enhanced the performance of the system. The model results indicated that the filling period of the AC system should be higher than 150 days for obtaining a stable performance. It was found that the hydrolysis of biodegradable particulate chemical oxygen demand (COD) is the rate limiting step, as volatile fatty acid concentration is very low in all experimental conditions (< 200 mgCOD/L at 20 degrees C and < 100 mgCOD/L at 35 degrees C). Based on the results of the two options, it was found that the concentrated waste (water) sources have better performance than the diluted waste (water) sources, like VBW waste (water). Furthermore, smaller volume will be required for the AC system. PMID:21902047

  20. 50 kW on-site concentrating solar photovoltaic power system. Phase I: design. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P F

    1979-03-30

    This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.

  1. Water injected fuel cell system compressor

    Science.gov (United States)

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  2. An Automatic Indirect Immunofluorescence Cell Segmentation System

    OpenAIRE

    2014-01-01

    Indirect immunofluorescence (IIF) with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA) in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an...

  3. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m2, the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  4. Solar Concentrator for Space Electric Power System%聚光式空间太阳能电源系统

    Institute of Scientific and Technical Information of China (English)

    童靖宇; 杨亦强

    2012-01-01

    介绍了聚光式太阳能电源系统的分类、原理及国外的研究与应用进展,分析了反射式与折射式空间太阳能聚光系统的优点与不足,指出了高精度太阳指向控制、耐环境薄膜材料、薄膜太阳电池、高密度热流热控等技术难点及需要解决的关键技术,对我国开展空间太阳能聚光系统技术研究提出了建议。%The paper introduces the types and principle of solar concentrator for space electric power system and reviews the overseas development of this field. The advantages and disadvanta- ges of reflective and refractive space solar concentrator are analyzed. The problems and critical technologies to develop the solar concentrator are discussed, such as control method for high ac- curacy solar pointing, space environment-resistant film materials, film solar cell, thermal control method of high density heat flux, etc. Then, some viewpoints about solar concentrator develop- ment in China are given.

  5. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  6. Single-cell-based sensors and synchrotron FTIR spectroscopy: a hybrid system towards bacterial detection.

    Science.gov (United States)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C; Bertozzi, Carolyn; Zhang, Miqin

    2007-09-30

    Microarrays of single macrophage cell-based sensors were developed and demonstrated for potential real-time bacterium detection by synchrotron FTIR microscopy. The cells were patterned on gold electrodes of silicon oxide substrates by a surface engineering technique, in which the gold electrodes were immobilized with fibronectin to mediate cell adhesion and the silicon oxide background was passivated with polyethylene glycol (PEG) to resist protein adsorption and cell adhesion. Cell morphology and IR spectra of single, double, and triple cells on gold electrodes exposed to lipopolysaccharide (LPS) of different concentrations were compared to reveal the detection capability of this cell-based sensing platform. The single-cell-based system was found to generate the most significant and consistent IR spectrum shifts upon exposure to LPS, thus providing the highest detection sensitivity. Changes in cell morphology and IR shifts upon cell exposure to LPS were found to be dependent on the LPS concentration and exposure time, which established a method for the identification of LPS concentration and infected cell population. Possibility of using this single-cell system with conventional IR spectroscopy as well as its limitation was investigated by comparing IR spectra of single-cell arrays with gold electrode surface areas of 25, 100, and 400 microm2 using both synchrotron and conventional FTIR spectromicroscopes. This cell-based platform may potentially provide real-time, label-free, and rapid bacterial detection, and allow for high-throughput statistical analyses, and portability. PMID:17560777

  7. Robust encoding of stimulus identity and concentration in the accessory olfactory system.

    Science.gov (United States)

    Arnson, Hannah A; Holy, Timothy E

    2013-08-14

    Sensory systems represent stimulus identity and intensity, but in the neural periphery these two variables are typically intertwined. Moreover, stable detection may be complicated by environmental uncertainty; stimulus properties can differ over time and circumstance in ways that are not necessarily biologically relevant. We explored these issues in the context of the mouse accessory olfactory system, which specializes in detection of chemical social cues and infers myriad aspects of the identity and physiological state of conspecifics from complex mixtures, such as urine. Using mixtures of sulfated steroids, key constituents of urine, we found that spiking responses of individual vomeronasal sensory neurons encode both individual compounds and mixtures in a manner consistent with a simple model of receptor-ligand interactions. Although typical neurons did not accurately encode concentration over a large dynamic range, from population activity it was possible to reliably estimate the log-concentration of pure compounds over several orders of magnitude. For binary mixtures, simple models failed to accurately segment the individual components, largely because of the prevalence of neurons responsive to both components. By accounting for such overlaps during model tuning, we show that, from neuronal firing, one can accurately estimate log-concentration of both components, even when tested across widely varying concentrations. With this foundation, the difference of logarithms, log A - log B = log A/B, provides a natural mechanism to accurately estimate concentration ratios. Thus, we show that a biophysically plausible circuit model can reconstruct concentration ratios from observed neuronal firing, representing a powerful mechanism to separate stimulus identity from absolute concentration. PMID:23946396

  8. Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water

    International Nuclear Information System (INIS)

    Highlights: ► Factors for performance degradation of silicon CPV cells in DI water were investigated. ► Long term immersion results showed no significant degradation on bare silicon CPV cell in 65° C DI water. ► Isc, not Voc of tabbed cells decreased with exposure time, notably under sunlight. ► The occurrence of galvanic corrosion on tabbed CPV cells has been confirmed. ► Performance recovery of tabbed cells after cleaning indicated that the cells are not damaged after long-time immersion. - Abstract: Direct de-ionized (DI) water immersion cooling has been verified to be an effective method of managing the operating temperature of silicon solar cells under concentration. However, the stable electrical performance is difficult to be achieved. Possible factors from bare cell self, materials for tabbing cells were investigated in this study for understanding the degradation mechanism. Long term immersion results showed that no significant degradation on bare cells operated in DI water at 65 °C. When cells were tabbed using lead-based solder and flux, the short circuit current (Isc) of cells decreased with exposure time, notably under sunlight, but it was not observed for cell open circuit voltage (Voc). The epoxy tabbed cells test also demonstrated that the tabbed cells without lead-based solder and flux involved were also found drop in Isc, but with slower rate. The presence of lead and tin black oxides on the lead based-soldered tabbed cells and red deposition on the epoxy tabbed cells confirmed the occurrence of galvanic corrosion. However, particular cleaning recovers the I–V towards its initial values for the former tabbed cells, and partial recovery for the latter tabbed cells, which indicates that the cells are not damaged after long-time DI water immersion.

  9. Determination of the critical micelle concentration in simulations of surfactant systems

    International Nuclear Information System (INIS)

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)

  10. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH)3(s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  11. Determination of the critical micelle concentration in simulations of surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-01-28

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)

  12. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  13. APOLLON. Multi-APprOach for high efficiency integrated and inteLLigent cONcentrating PV modules (Systems). Deliverable 7.10. Publication of environmental LCI dataset

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L. [ECN Solar Energy, Petten (Netherlands)

    2013-10-15

    This deliverable makes available the life-cycle inventory used to calculate the energy payback time and the carbon footprint of the Apollon final concentrating photovoltaics (CPV) design developed.. The data below relates to one Apollon module. The results are to be published in Environmental Science and Technology, in a paper, 'Sustainability of Materials and Costs of Materials in a Mirror-based Concentrating Photovoltaic System'. Reference is made to the results for the Spectrolab triple junction solar cell in the following two studies: (1) 'Life cycle assessment of high-concentration photovoltaic systems' (Prog. Photovolt: Res. Appl., vol. 21, pp. 379-388, 2013), and (2) 'Life Cycle Analysis of Two New Concentrator PV Systems', in 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2008.

  14. Neutron activation analysis application for determining iron concentration in forage grasses used in intensive cattle production system

    International Nuclear Information System (INIS)

    Iron is an essential element to the life. It is an important hemoglobin component and it is involved in the transport of oxygen to cells. A deficiency of iron results in an unsuitable synthesis of hemoglobin and a delay in the growth. Iron contents above the tolerable level in animal feed can cause serious damages to the health and the death in extreme cases. The forages are the main source of feed to cattle in grazing. It is known from the literature, that the growth and the nutritious value of the forage are influenced by specie and physiologic age of the plant, soil fertility and environmental conditions. Therefore, an agronomical evaluations of the forages are necessary before to introduce in an intensive cattle production systems to program adequate grazing management. Neutron activation analysis was applied to evaluate the Fe concentration in the main tropical forage grasses used in intensive dairy cattle production systems in Sao Carlos, SP, Brazil. Iron concentrations were smaller in the rain season than in the dry one. Comparison of results obtained in the analyses of forages with daily requirements of iron in dry matter, showed that the Fe concentration in forages was adequate. (author)

  15. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  16. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    International Nuclear Information System (INIS)

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser79 and Raptor at Ser792, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α1 and α2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  17. Research on the detection system of liquid concentration base on birefringence light transmission method

    Science.gov (United States)

    Li, Tianze; Zhang, Xia; Hou, Luan; Jiang, Chuan

    2010-10-01

    The characteristics of the beam transmitting in the optical fiber and the liquid medium are analyzed in this paper. On this basis, a new type of semiconductor optical position sensitive detector is used for a receiving device, a light transmission method of birefringence is presented,and a set of opto-electrical detection system which is applied to detect liquid concentration is designed. The system is mainly composed of semiconductor lasers,optical systems, Psd signal conditioning circuit, Single-chip System, A/D conversion circuit and display circuit. Through theoretical analysis and experimental simulations, the accuracy of this system has been verified. Some main factors affecting the test results are analyzed detailedly in this paper. The experiments show that the temperature drift and the light intensity have a very small impact on this system. The system has some advantages, such as the simple structure, high sensitivity, good stability, fast response time, high degree of automation, and so on. It also can achieve the real-time detection of liquid concentration conveniently and accurately. The system can be widely applied in chemical, food, pharmacy and many other industries. It has broad prospects of application.

  18. Nonrecirculating hydroponic systems suitable for uptake studies at very low nutrient concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gutschick, V.P.; Kay, L.E. (New Mexico State Univ., Las Cruces (USA))

    1991-04-01

    The authors describe the mechanical, electronic, hydraulic, and structural design of a nonrecirculating hydroponic system. The system is particularly suited to sutides at very low nutrient concentratons, for which on-line concentration monitoring methods either do not exist or are costly and limited to monitoring relatively few indivitual plants. Solutions are mised automatically to chosen concentrations, which can be set differently for every pump fed from a master supply of deionized water and nutrient concentrates. Pumping rates can be varied over a 50-fold range, up to 400 liters per day, which suffices to maintain a number of large, post-seedling plants in rapid growth at (sub)micromolar levels of N and P. The outflow of each pump is divided among as many as 12 separate root chambers. In each changer one may monitor uptake by individual plant roots or segments thereof, by measuring nutrient depletion in batch samples of solution. The system is constructed from nontoxic materials that do not adsorb nutrient ions; no transient shifts of nitrate and phosphate concentrations are observable at the submicromolar level. Nonrecirculaton of solution limits porblems of pH shifts, microbial contamination, and cumulative imbalances in unmonitored nutrients. They note several disadvantages, principally related to high consumption of deionized water and solutes. The reciprocating pumps can be constructed inexpensively, particularly by the researcher. They also report previously unattainable control of passive temperature rise of chambers exposed to full sunlight, by use of white epoxy paint.

  19. Augmented Switching Linear Dynamical System Model for Gas Concentration Estimation with MOX Sensors in an Open Sampling System

    Directory of Open Access Journals (Sweden)

    Enrico Di Lello

    2014-07-01

    Full Text Available In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX sensors in Open Sampling System (OSS. Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  20. Determination of tolerable fatty acids and cholera toxin concentrations using human intestinal epithelial cells and BALB/c mouse macrophages.

    Science.gov (United States)

    Tamari, Farshad; Tychowski, Joanna; Lorentzen, Laura

    2013-01-01

    The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections. PMID:23748896

  1. Osteosarcoma tissues and cell lines from patients with differing serum alkaline phosphatase concentrations display minimal differences in gene expression patterns.

    Science.gov (United States)

    Rodrigues, L C de Sá; Holmes, K E; Thompson, V; Piskun, C M; Lana, S E; Newton, M A; Stein, T J

    2016-06-01

    Serum alkaline phosphatase (ALP) concentration is a prognostic factor for osteosarcoma in multiple studies, although its biological significance remains incompletely understood. To determine whether gene expression patterns differed in osteosarcoma from patients with differing serum ALP concentrations, microarray analysis was performed on 18 primary osteosarcoma samples and six osteosarcoma cell lines from dogs with normal and increased serum ALP concentration. No differences in gene expression patterns were noted between tumours or cell lines with differing serum ALP concentration using a gene-specific two-sample t-test. Using a more sensitive empirical Bayes procedure, defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was increased in both the tissue and cell lines of the normal ALP group. Using quantitative PCR (qPCR), differences in DCUN1D1 expression between the two groups failed to reach significance. The homogeneity of gene expression patterns of osteosarcoma associated differing serum ALP concentrations are consistent with previous studies suggesting serum ALP concentration is not associated with intrinsic differences of osteosarcoma cells. PMID:25643733

  2. Near-optimum design of GaAs-based concentrator space solar cells for 80 C operation

    Science.gov (United States)

    Goradia, C.; Ghalla-Goradia, M.; Curtis, H.

    Using a detailed computer simulation model and reasonable values of optical, geometrical and material parameters from current published literature, parameter optimization studies were performed on two cell geometries, namely, the circular geometry for a Cassegrainian concentrator with 100 AM0, 80 C operation and the rectangular geometry for a venetian blind concentrator with 20 AM0, 80 C operation. For each cell geometry, three cell configurations were considered: p/n AlGaAs/GaAs; n/p AlGaAs/GaAs; and, n/p GaAs shallow homojunction. The studies show the possibility of designing GaAs-based space solar cells with beginning-of-life efficiencies exceeding 22 percent at 20 to 100 AM0, 80 C and probable efficiency degradation of less than 15 percent after a 70 percent reduction in diffusion length in each cell region.

  3. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  4. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    OpenAIRE

    Norwood, Zachary Mills

    2011-01-01

    The result of several years of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design that is predicted to convert sunlight to heat at 8-10% solar-electric efficiency while simultaneously capturing ~60% of that initial sunlight as usable heat (at 100ºC). In contrast to similarly sized photovoltaic systems in the U.S. that cost ~$7.90/Watt of generator rated peak electrical output, in mass production the proposed collector and generator system sized a...

  6. Differential systems of flux and concentrations of a mixture in the separation by a plant (1963)

    International Nuclear Information System (INIS)

    The study of transient flux and concentrations of a mixture in the separation by a plant with different interdependent stages leads to an examination of the solutions of certain types of differential systems. These systems are obtained from the representative graph of the plant and have a structural form. By Olga TAUSSKY's theorem and the introduction of steerable distances, the solutions of these systems are chiefly examined in their asymptotic behaviour. The appendix shows that solutions of partial differential equations relative to plants made of cascades with a slight separation have analogous properties. (author)

  7. Hemicellulosic Ethanol Production by Immobilized Wild Brazilian Yeast Scheffersomyces shehatae UFMG-HM 52.2: Effects of Cell Concentration and Stirring Rate.

    Science.gov (United States)

    Antunes, F A F; Santos, J C; Chandel, A K; Milessi, T S S; Peres, G F D; da Silva, S S

    2016-02-01

    The use of sugarcane bagasse hemicellulosic hydrolysates presents an interesting alternative to second generation (2G) ethanol production. Techniques to enhance the fermentation process, e.g., the use of immobilized cells, is one of the key factors for efficient production. Here, the effect of two important parameters (cell concentration in immobilized system and stirring rate) on the 2G ethanol production using the wild Brazilian yeast S. shehatae UFMG-HM 52.2 immobilized in calcium alginate matrix are presented. A 2(2) full factorial design of experiments was carried out to evaluate the effect of cell concentrations in sodium alginate solution for immobilized bead production (3.0, 6.0, and 9.0 g/L) and stirring rate (150, 200, and 250 rpm) for 2G ethanol production. Statistical analysis showed that the use of both variables at low levels enhanced ethanol yield (YP/S). Under these process conditions, YP/S of 0.31 g/g and ethanol productivity (Qp) of 0.12 g/L h were achieved. Results showed the potential of this immobilized yeast in 2G ethanol production from C5 sugars and demonstrate the importance of adequate cell concentration in immobilized systems, a finding that stands to increase bioprocesses yields and productivity. PMID:26507335

  8. Cs-137 Concentration factors in a 'Soil-Plant-Honey' system

    International Nuclear Information System (INIS)

    Concentration factors for Cs-137 in a 'soil-plant-honey' system of a mountainous region are estimated. The activity of Cs-137 in the samples of soils, meadow plants and honey was determined on a HP Ge detector by gamma spectrometry. The total standard error of the method was 15%. The 'soil-plant' Cs-137 concentration factor is in the range of 0,1-2,0 due to type of soil, activity of Cs-137 and plant itself. The 'plant-honey' concentration factor is of order 0.001 regardless the type of meadow flowers and therefore the Cs-137 activity in honey is within the narrow range of 2 Bq/kg. (author)

  9. Photovoltaic concentrator optical system design: Solar energy engineering from physics to field

    Science.gov (United States)

    Coughenour, Blake Michael

    This dissertation describes the design, development, and field validation of a concentrator photovoltaic (CPV) solar energy system. The challenges of creating a highly efficient yet low-cost system architecture come from many sources. The solid-state physics of photovoltaic devices present fundamental limits to photoelectron conversion efficiency, while the electrical and thermal characteristics of widely available materials limit the design arena. Furthermore, the need for high solar spectral throughput, evenly concentrated sunlight, and tolerance to off-axis pointing places strict illumination requirements on the optical design. To be commercially viable, the cost associated with all components must be minimized so that when taken together, the absolute installed cost of the system in kWh is lower than any other solar energy method, and competitive with fossil fuel power generation. The work detailed herein focuses specifically on unique optical design and illumination concepts discovered when developing a viable commercial CPV system. By designing from the ground up with the fundamental physics of photovoltaic devices and the required system tolerances in mind, a select range of optical designs are determined and modeled. Component cost analysis, assembly effort, and development time frame further influence design choices to arrive at a final optical system design. When coupled with the collecting mirror, the final optical hardware unit placed at the focus generates more than 800W, yet is small and lightweight enough to hold in your hand. After fabrication and installation, the completed system's illumination, spectral, and thermal performance is validated with on-sun operational testing.

  10. Tissue transglutaminase treatment leads to concentration-dependent changes in dendritic cell phenotype - implications for the role of transglutaminase in coeliac disease

    Directory of Open Access Journals (Sweden)

    Dalleywater William J

    2012-04-01

    Full Text Available Abstract Dendritic cells (DCs are part of the innate immune system with a key role in initiating and modulating T cell mediated immune responses. Coeliac disease is caused by inappropriate activation of such a response leading to small intestinal inflammation when gluten is ingested. Tissue transglutaminase, an extracellular matrix (ECM protein, has an established role in coeliac disease; however, little work to date has examined its impact on DCs. The aim of this study was to investigate the effect of small intestinal ECM proteins, fibronectin (FN and tissue transglutaminase 2 (TG-2, on human DCs by including these proteins in DC cultures. The study used flow cytometry and scanning electron microscopy to determine the effect of FN and TG-2 on phenotype, endocytic ability and and morphology of DCs. Furthermore, DCs treated with FN and TG-2 were cultured with T cells and subsequent T cell proliferation and cytokine profile was determined. The data indicate that transglutaminase affected DCs in a concentration-dependent manner. High concentrations were associated with a more mature phenotype and increased ability to stimulate T cells, while lower concentrations led to maintenance of an immature phenotype. These data provide support for an additional role for transglutaminase in coeliac disease and demonstrate the potential of in vitro modelling of coeliac disease pathogenesis.

  11. Energy Simulation of a Holographic PVT Concentrating System for Building Integration Applications

    Directory of Open Access Journals (Sweden)

    Julia Marín-Sáez

    2016-07-01

    Full Text Available A building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel and Avignon (France—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented. The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon to 20% (Sde Boker. Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.

  12. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research

    Science.gov (United States)

    Stover, Alexander E.; Herculian, Siranush; Banuelos, Maria G.; Navarro, Samantha L.; Jenkins, Michael P.; Schwartz, Philip H.

    2016-01-01

    This paper describes how to use a custom manufactured, commercially available enclosed cell culture system for basic and preclinical research. Biosafety cabinets (BSCs) and incubators have long been the standard for culturing and expanding cell lines for basic and preclinical research. However, as the focus of many stem cell laboratories shifts from basic research to clinical translation, additional requirements are needed of the cell culturing system. All processes must be well documented and have exceptional requirements for sterility and reproducibility. In traditional incubators, gas concentrations and temperatures widely fluctuate anytime the cells are removed for feeding, passaging, or other manipulations. Such interruptions contribute to an environment that is not the standard for cGMP and GLP guidelines. These interruptions must be minimized especially when cells are utilized for therapeutic purposes. The motivation to move from the standard BSC and incubator system to a closed system is that such interruptions can be made negligible. Closed systems provide a work space to feed and manipulate cell cultures and maintain them in a controlled environment where temperature and gas concentrations are consistent. This way, pluripotent and multipotent stem cells can be maintained at optimum health from the moment of their derivation all the way to their eventual use in therapy. PMID:27341536

  13. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  14. Fuel cell technology for prototype logistic fuel cell mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Sederquist, R.A.; Garow, J.

    1995-08-01

    Under the aegis of the Advanced Research Project Agency`s family of programs to develop advanced technology for dual use applications, International Fuel Cells Corporation (IFC) is conducting a 39 month program to develop an innovative system concept for DoD Mobile Electric Power (MEP) applications. The concept is to integrate two technologies, the phosphoric acid fuel cell (PAFC) with an auto-thermal reformer (ATR), into an efficient fuel cell power plant of nominally 100-kilowatt rating which operates on logistic fuels (JP-8). The ATR fuel processor is the key to meeting requirements for MEP (including weight, volume, reliability, maintainability, efficiency, and especially operation on logistic fuels); most of the effort is devoted to ATR development. An integrated demonstration test unit culminates the program and displays the benefits of the fuel cell system, relative to the standard 100-kilowatt MEP diesel engine generator set. A successful test provides the basis for proceeding toward deployment. This paper describes the results of the first twelve months of activity during which specific program aims have remained firm.

  15. Photodynamic pathogen inactivation in red cell concentrates with the silicon phthalocyanine Pc 4

    Science.gov (United States)

    Ben-Hur, Ehud; Chan, Wai-Shun; Yim, Zachary; Zuk, Maria M.; Dayal, Vinay; Roth, Nathan; Heldman, Eli; Lazlo, A.; Valeri, C. R.; Horowitz, Bernard

    2000-03-01

    The silicon phthalocyanine Pc 4, a photosensitizer activated with red light, has been studied for pathogen inactivation in red blood cell concentrates (RBCC). Pc 4 targets the envelope of pathogenic viruses such as HIV. To protect RBC during the process two main approaches are used: 1) Inclusion of quenches of reactive oxygen species produced during treatment. Tocopherol succinate was found to be most effective for this purpose. 2) Formulation of Pc 4, a lipophilic compound, in liposomes that reduce its binding to RBC but not to viruses. As a light source we used a light emitting diode array emitting at 660-680 nm. An efficient mixing device ensures homogeneous light exposure during treatment of intact RBCC. Treatment of RBCC with 5 (mu) M Pc 4 a d light results in the inactivation of >= 5.5 log10 HIV, >= 6.6 log10 VSV, and >= 5 log10 of PRV and BVDV. Parasites that can be transmitted by blood transfusion are even more sensitive than viruses. Following treatment, RBCC can be stored for 28 days at 4 degrees C with hemolysis below 1 percent. Baboon RBC circulate with an acceptable 24 hour recovery and half-life. Genetic toxicological studies of Pc 4 with or without light exposure are negative. We conclude that a process using Pc 4 and red light can potentially reduce the risk of transmitting pathogens in RBCC used for transfusion.

  16. Cell-based bioassays in microfluidic systems

    Science.gov (United States)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  17. Influence of metal grid spacing on the conversion efficiency of concentration solar cell at different illumination levels

    International Nuclear Information System (INIS)

    Highlights: • Grid shadowing ratio dominated the performance of SC at low concentration levels. • Grid shadowing ratio and resistance need optimal balance at high concentration levels. • Pioneering study (theoretical and experimental): the effect of metallic grid patterns on SC. - Abstract: The design of front metal grid spacing of linear grid pattern for III–V multi-junction concentrated solar cells is a critical issue when high density photocurrent is induced under concentrated sunlight and a poor grid spacing results in resistive losses. In the present work we have performed outdoor experiment and investigated both theoretically and experimentally the effect of ten different metal grid spacing on the electrical performance of high efficiency GaInP/GaInAs/Ge concentrated solar cells under various concentrating level of sunlight. The shadowing ratio of metal grids was adjusted from 3.07% to 6.66%. We have observed that the variation of experimentally obtained variation of power conversion efficiency data with grid spacing is consistent with the variation of theoretical estimation of total power loss with grid spacing. Moreover, the total power loss was dominated by grid shadowing effect at lower concentration levels; while at higher concentration levels the lowest total power loss condition was found when a compromise occurred mainly between grid shadowing effect and resistance of metal lines

  18. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2010-06-01

    Full Text Available Abstract Background Antibiotics are not only small molecules with therapeutic activity in killing or inhibiting microbial growth, but can also act as signaling molecules affecting gene expression in bacterial communities. A few studies have demonstrated the effect of tobramycin as a signal molecule on gene expression at the transcriptional level and its effect on bacterial physiology and virulence. These have shown that subinhibitory concentrations (SICs of tobramycin induce biofilm formation and enhance the capabilities of P. aeruginosa to colonize specific environments. Methods Environmental P. aeruginosa strain PUPa3 was grown in the presence of different concentrations of tobramycin and it was determined at which highest concentration SIC, growth, total protein levels and translation efficiency were not affected. At SIC it was then established if phenotypes related to cell-cell signaling known as quorum sensing were altered. Results In this study it was determined whether tobramycin sensing/response at SICs was affecting the two independent AHL QS systems in an environmental P. aeruginosa strain. It is reasonable to assume that P. aeruginosa encounters tobramycin in nature since it is produced by niche mate Streptomyces tenebrarius. It was established that SICs of tobramycin inhibited the RhlI/R system by reducing levels of C4-HSL production. This effect was not due to a decrease of rhlI transcription and required tobramycin-ribosome interaction. Conclusions Tobramycin signaling in P. aeruginosa occurs and different strains can have a different response. Understanding the tobramycin response by an environmental P. aeruginosa will highlight possible inter-species signalling taking place in nature and can possible also have important implications in the mode of utilization for human use of this very important antibiotic.

  19. Bioethanol Production by Calcium Alginate-Immobilised St1 Yeast System: Effects of Size of Beads, Ratio and Concentration

    Directory of Open Access Journals (Sweden)

    Masniroszaime Md Zain

    2011-12-01

    Full Text Available Immobilized yeast-cell technology posses several advantages in bioethanol production due to its potential to increase the ethanol yield by eliminating unit process used. Thus, process expenses in cell recovery and reutilization can be minimised. The aim of this study is to investigate the influence of three parameters (substrate concentrations, size of alginate beads and ratio of volume of beads to volume of medium on local isolated yeast (ST1 which immobilized using calcium alginate fermentation system. The most affected ethanol production by calcium alginate-immobilised ST1 yeast system were ratio of volume of the beads to the volume of substrate and concentration of LBS. Highest theoretical yield, 78% was obtained in ST1-alginate beads with the size of beads 0.5cm, ratio volume of beads to the volume of LBS media 0.4 and 150g/l concentration of LBS.ABSTRAK: Teknologi sel yis pegun memiliki beberapa kelebihan dalam penghasilan bioetanol kerana ia berpotensi meningkatkan pengeluaran etanol dengan menyingkirkan unit proses yang digunakan. Maka, proses pembiayaan dalam perolehan sel dan penggunaan semula boleh dikurangkan. Tujuan kajian ini adalah untuk mengkaji pengaruh tiga parameter (kepekatan substrat, saiz manik alginat dan nisbah isipadu manik terhadap isipadu bahantara ke atas sel tempatan terasing (local isolated yeast (ST1 yang dipegun menggunakan sistem penapaian kalsium alginat. Penghasilan etanol yang paling berkesan dengan menggunakan sistem yis ST1 kalsium alginat-pegun adalah dengan kadar nisbah isipadu manik terhadap isipadu substrat dan kepekatan LBS. Kadar hasil teori tertinggi iaitu 78% didapati menerusi manik alginat-ST1 dengan saiz manik 0.5cm, nisbah isipadu 0.4 terhadap perantara LBS dan kepekatan LBS sebanyak 150g/l. Normal 0 false false false EN-US X-NONE X-NONE

  20. Influence of precipitation on 7Be concentrations in air as measured by CTBTO global monitoring system

    International Nuclear Information System (INIS)

    Data collected by the International Monitoring System (IMS) during 2009–2012 were used to study influence of precipitation and relative humidity on changes in 7Be concentrations in atmosphere. The significant decrease in 7Be concentrations, corresponding to measurements collected by stations located within Intertropical Convergence Zone (ITCZ) is demonstrated. This effect can be attributed to the process of enhanced wet deposition within the ITCZ. To quantify this effect data collected by IMS stations within ITCZ were thoroughly analyzed. It was found that the atmospheric content of 7Be strongly decreases under the rain conditions. The rain mediated depletion of 7Be to half of its before rain value, needs about 62 h in case of light precipitation, while in the case of moderate precipitation about 38 h is needed. In addition the evaluated impact of humidity showed that increase in relative humidity by 20%, for example from 70% ± 5% to 90% ± 5% causes almost a double decrease in beryllium concentration in surface air. - Highlights: • Latitudinal distribution of 7Be concentrations in air is demonstrated. • The apparent residence time of 7Be aerosols may vary between 10 and 25 days. • The removal of 7Be increases with increasing air humidity and precipitation. • The significant decrease in 7Be concentrations within ITCZ is demonstrated