WorldWideScience

Sample records for cell cleavage

  1. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N;

    1997-01-01

    The urokinase-type plasminogen activator (uPA) binds to a specific cell-surface receptor, uPAR. On several cell types uPAR is present both in the full-length form and a cleaved form, uPAR(2+3), which is devoid of binding activity. The formation of uPAR(2+3) on cultured U937 cells is either directly...... by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U......937 cell lysates, had the same amino termini as uPAR(2+3), generated by uPA in a purified system. In both cases cleavage had occurred at two positions in the hinge region connecting domain 1 and 2, between Arg83-Ala84 and Arg89-Ser90, respectively. The uPA-catalyzed cleavage of uPAR is a new negative...

  2. Initial activation of EpCAM cleavage via cell-to-cell contact

    International Nuclear Information System (INIS)

    Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and β-catenin, and drives cell proliferation. EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems. EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce c-myc and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects. Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine)

  3. Delay of HeLa cell cleavage into interphase using dihydrocytochalasin B: retention of a postmitotic spindle and telophase disc correlates with synchronous cleavage recovery

    OpenAIRE

    1995-01-01

    The molecular signals that determine the position and timing of the cleavage furrow during mammalian cell cytokinesis are presently unknown. We have studied in detail the effect of dihydrocytochalasin B (DCB), a drug that interferes with actin assembly, on specific late mitotic events in synchronous HeLa cells. When cleavage furrow formation is blocked at 10 microM DCB, cells return to interphase by the criteria of reformation of nuclei with lamin borders, degradation of the cyclin B componen...

  4. Proteolytic Cleavage of the Red Blood Cell Glycocalyx in a Genetic Form of Hypertension

    OpenAIRE

    Pot, Cécile; Chen, Angela Y.; Ha, Jessica N.; Schmid-Schönbein, Geert W

    2011-01-01

    Recent evidence suggests that the spontaneously hypertensive rat (SHR) has an elevated level of proteases, including matrix metalloproteinases (MMPs), involved in cell membrane receptor cleavage. We hypothesize that SHR red blood cells (RBCs) may be subject to an enhanced glycocalyx cleavage compared to the RBCs of the normotensive Wistar-Kyoto (WKY) rats. By direct observation of RBC rouleaux, we found no significant difference in RBC aggregation for unseparated SHR and WKY RBCs. However, li...

  5. Cleavage patterns, cell-lineages and cell specification are clues to phyletic lineages in Spiralia.

    Science.gov (United States)

    van den Biggelaar, J A; Dictus, W J; van Loon, A E

    1997-08-01

    Embryos of molluscs, annelids, nemerteans and platyhelminthes show remarkable intra- and interphyletic resemblances and differences in mesentoblast, dorso-ventral axis and trochoblast specification. These variations have been used to investigate their evolutionary relationship. In molluscs and annelids a heterochronic shift parallels evolutionary relations based on adult characters. Nemerteans and platyhelminthes lack trochal cells and differ in the specification of the mesodermal precursor cell. Nemerteans also differ fundamentally with respect to axis specification related to the first cleavage. Therefore, close phylogenetic relations exist between molluscs and annelids, whereas nemerteans and platyhelminthes are only remotely related with each other and with molluscs and annelids. PMID:15001075

  6. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg;

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) and...... penetratin(43-58), was through Fmoc (fluoren-9-ylmethoxycarbonyl) chemistry. Metabolic degradation kinetics of the tested CPP in contact with three cell-cultured epithelial models, MDCK (Madin-Darby canine kidney), Calu-3 and TR146, was evaluated by reversed-phase HPLC. Identification of the resulting...... models and the CPP. The Calu-3 model exhibited the highest proteolytic activity. The patterns of metabolic cleavage of hCT(9-32) were similar in all three models. Initial cleavage of this peptide occurred at the N-terminal domain, possibly by endopeptidase activity yielding both the N- and the C...

  7. Global identification of target recognition and cleavage by the Microprocessor in human ES cells.

    Science.gov (United States)

    Seong, Youngmo; Lim, Do-Hwan; Kim, Augustine; Seo, Jae Hong; Lee, Young Sik; Song, Hoseok; Kwon, Young-Soo

    2014-11-10

    The Microprocessor plays an essential role in canonical miRNA biogenesis by facilitating cleavage of stem-loop structures in primary transcripts to yield pre-miRNAs. Although miRNA biogenesis has been extensively studied through biochemical and molecular genetic approaches, it has yet to be addressed to what extent the current miRNA biogenesis models hold true in intact cells. To address the issues of in vivo recognition and cleavage by the Microprocessor, we investigate RNAs that are associated with DGCR8 and Drosha by using immunoprecipitation coupled with next-generation sequencing. Here, we present global protein-RNA interactions with unprecedented sensitivity and specificity. Our data indicate that precursors of canonical miRNAs and miRNA-like hairpins are the major substrates of the Microprocessor. As a result of specific enrichment of nascent cleavage products, we are able to pinpoint the Microprocessor-mediated cleavage sites per se at single-nucleotide resolution. Unexpectedly, a 2-nt 3' overhang invariably exists at the ends of cleaved bases instead of nascent pre-miRNAs. Besides canonical miRNA precursors, we find that two novel miRNA-like structures embedded in mRNAs are cleaved to yield pre-miRNA-like hairpins, uncoupled from miRNA maturation. Our data provide a framework for in vivo Microprocessor-mediated cleavage and a foundation for experimental and computational studies on miRNA biogenesis in living cells.

  8. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells.

    Science.gov (United States)

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven C L; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing. PMID:25621616

  9. Polarity and cell division orientation in the cleavage embryo: from worm to human

    Science.gov (United States)

    Ajduk, Anna; Zernicka-Goetz, Magdalena

    2016-01-01

    Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos. PMID:26660321

  10. Trichomonas vaginalis metalloproteinase induces mTOR cleavage of SiHa cells.

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook; Lee, Young-Ha

    2014-12-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.

  11. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    OpenAIRE

    CLAUDIA STANCA; V.B. CÂRSTEA; DANIELA ILIE; ELEN GOCZA; I. VINTILĂ

    2007-01-01

    In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989), but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass), i...

  12. Early Activation of Caspases during T Lymphocyte Stimulation Results in Selective Substrate Cleavage in Nonapoptotic Cells

    OpenAIRE

    Alam, Antoine; Cohen, Luchino Y.; Aouad, Salah; Sékaly, Rafick-Pierre

    1999-01-01

    Apoptosis induced by T cell receptor (TCR) triggering in T lymphocytes involves activation of cysteine proteases of the caspase family through their proteolytic processing. Caspase-3 cleavage was also reported during T cell stimulation in the absence of apoptosis, although the physiological relevance of this response remains unclear. We show here that the caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD) blocks proliferation, major histocompatibility complex...

  13. MODELS FOR MOUSE CHIMERA PRODUCTION: AGGREGATION OF ES CELLS WITH CLEAVAGE STAGE EMBRYOS

    Directory of Open Access Journals (Sweden)

    STANCA CLAUDIA

    2007-01-01

    Full Text Available In a mutant ES cells↔ wild-type embryo chimera, ES cells behave more like epiblastcells. They can contribute to the primitive ectoderm layers, which give rise to all theembryonic tissues and some extraembryonic tissues (Beddington and Robertson,1989, but not to trophectoderm or primitive endoderm. Using transgenic ES celllines, aggregated with cleavage stage host embryo, ES cells can integrate randomlyin the embryo proper. If they will be take part in the formation of ICM (inner cellmass, it will be possible to obtain germline chimera animals. To generate ES cells↔ cleavage stage host embryo chimeras, we used (CD-1 mice as donors of hostembryos as well as recipients of manipulated embryos. For chimera production, weused fluorescent-labeled ES cell line (CD1/EGFP, because in this case we canfollow the fate of ES cells during the embryonic development. We produced thechimers using “aggregation chimera technique”. 8 cells stage zona pellucida free,mouse embryos were aggregated in an aggregation plates, with a clump of ES cells(10 – 15 cells. The chimera embryos were cultivated for 24 hours in the incubator(at 37 °C, 5% CO2 in air. The chimera blastocysts resulted after cultivation, weretransferred to the uterus of the 2.5-dpc pseudo pregnant females.

  14. T-cell receptor downregulation by ceramide-induced caspase activation and cleavage of the zeta chain

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J;

    2001-01-01

    gamma L-based motif-dependent and the tyrosine kinase-dependent pathways. This pathway is dependent on ceramide-induced activation of caspases and correlate with caspase-mediated cleavage of the zeta chain. Thus, a 10--15% downregulation of the TCR was induced following the treatment of the T cells with...... ceramide for 4 h. A close correlation between TCR downregulation, caspase activation, and cleavage of the zeta chain was found. Furthermore, the caspase inhibitors abolished the cleavage of the zeta chain and TCR downregulation in parallel with the inhibition of the caspase activity....

  15. Cleavage of Armadillo/beta-catenin by the caspase DrICE in Drosophila apoptotic epithelial cells

    Directory of Open Access Journals (Sweden)

    Kessler Thomas

    2009-02-01

    Full Text Available Abstract Background During apoptosis cells become profoundly restructured through concerted cleavage of cellular proteins by caspases. In epithelial tissues, apoptotic cells loose their apical/basal polarity and are extruded from the epithelium. We used the Drosophila embryo as a system to investigate the regulation of components of the zonula adherens during apoptosis. Since Armadillo/beta-catenin (Arm is a major regulator of cadherin-mediated adhesion, we analyzed the mechanisms of Arm proteolysis in apoptosis. Results We define early and late apoptotic stages and find that early in apoptosis Dα-catenin remains relatively stable, while Arm and DE-cadherin protein levels are strongly reduced. Arm is cleaved by caspases in embryo extracts and we provide evidence that the caspase-3 homolog drICE cleaves Arm in vitro and in vivo. Cleavage by drICE creates a stable protein fragment that remains associated with the plasma membrane early in apoptosis. To further understand the role of caspase-mediated cleavage of Arm, we examined potential caspase cleavage sites and found that drICE cleaves Arm at a unique DQVD motif in the N-terminal domain of the protein. Mutation of the drICE cleavage site in Arm results in a protein that is not cleaved in vitro and in vivo. Furthermore we provide evidence that cleavage of Arm plays a role in the removal of DE-cadherin from the plasma membrane during apoptosis. Conclusion This study defines the specificity of caspase cleavage of Arm in Drosophila apoptotic cells. Our data suggest that N-terminal truncation of Arm by caspases is evolutionarily conserved and thus might provide a principal mechanism involved in the disassembly of adherens junctions during apoptosis.

  16. Pelargonium quercetorum Agnew induces apoptosis without PARP or cytokeratin 18 cleavage in non-small cell lung cancer cell lines

    Science.gov (United States)

    Aztopal, Nazlihan; Cevatemre, Buse; Sarimahmut, Mehmet; Ari, Ferda; Dere, Egemen; Ozel, Mustafa Zafer; Firat, Mehmet; Ulukaya, Engin

    2016-01-01

    Pelargonium species have various uses in folk medicine as traditional remedies, and several of them have been screened for their biological activity, including anticancer. Pelargonium quercetorum Agnew (P. quercetorum) is traditionally used for its anthelminthic activity. However, little is known about its biological activity or its effect on cancer cells. The aim of the present study was to determine the cytotoxic activity of P. quercetorum extract on lung cancer cell lines with varying properties. Following the analyses of its chemical composition, the cytotoxic activity was screened by the adenosine triphosphate viability test. M30-Apoptosense® and M65 EpiDeath® enzyme-linked immunosorbent assays were used to determine the cell death mode (apoptosis vs. necrosis). For apoptosis, additional methods, including Annexin-V-fluorescein isothiocyanate (FITC) and Hoechst 33342 staining, were employed. The cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP) was assayed by western blotting to further dissect the apoptosis mechanism. The methanol extract of P. quercetorum caused cytotoxic activity in a dose-dependent manner. The mode of cell death was apoptosis, as evidenced by the positive staining of the cells for Annexin-V-FITC and the presence of pyknotic nuclei. Notably, neither PARP cleavage nor cytokeratin 18 fragmentation were observed. P.quercetorum caused cell death by an apoptosis mechanism that is slightly different from classical apoptosis. Therefore, future in vivo experiments are required for further understanding of the effect of this plant on cancer cells. PMID:27446448

  17. Pelargonium quercetorum Agnew induces apoptosis without PARP or cytokeratin 18 cleavage in non-small cell lung cancer cell lines

    Science.gov (United States)

    Aztopal, Nazlihan; Cevatemre, Buse; Sarimahmut, Mehmet; Ari, Ferda; Dere, Egemen; Ozel, Mustafa Zafer; Firat, Mehmet; Ulukaya, Engin

    2016-01-01

    Pelargonium species have various uses in folk medicine as traditional remedies, and several of them have been screened for their biological activity, including anticancer. Pelargonium quercetorum Agnew (P. quercetorum) is traditionally used for its anthelminthic activity. However, little is known about its biological activity or its effect on cancer cells. The aim of the present study was to determine the cytotoxic activity of P. quercetorum extract on lung cancer cell lines with varying properties. Following the analyses of its chemical composition, the cytotoxic activity was screened by the adenosine triphosphate viability test. M30-Apoptosense® and M65 EpiDeath® enzyme-linked immunosorbent assays were used to determine the cell death mode (apoptosis vs. necrosis). For apoptosis, additional methods, including Annexin-V-fluorescein isothiocyanate (FITC) and Hoechst 33342 staining, were employed. The cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP) was assayed by western blotting to further dissect the apoptosis mechanism. The methanol extract of P. quercetorum caused cytotoxic activity in a dose-dependent manner. The mode of cell death was apoptosis, as evidenced by the positive staining of the cells for Annexin-V-FITC and the presence of pyknotic nuclei. Notably, neither PARP cleavage nor cytokeratin 18 fragmentation were observed. P.quercetorum caused cell death by an apoptosis mechanism that is slightly different from classical apoptosis. Therefore, future in vivo experiments are required for further understanding of the effect of this plant on cancer cells.

  18. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    Directory of Open Access Journals (Sweden)

    Postenka Carl O

    2011-01-01

    Full Text Available Abstract Background Osteopontin (OPN is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. Methods To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN, mutant OPN lacking the thrombin cleavage domain (468-ΔTC or an empty vector (468-CON and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. Results All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p Conclusions The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer.

  19. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells.

    Science.gov (United States)

    Alam, A; Cohen, L Y; Aouad, S; Sékaly, R P

    1999-12-20

    Apoptosis induced by T cell receptor (TCR) triggering in T lymphocytes involves activation of cysteine proteases of the caspase family through their proteolytic processing. Caspase-3 cleavage was also reported during T cell stimulation in the absence of apoptosis, although the physiological relevance of this response remains unclear. We show here that the caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD) blocks proliferation, major histocompatibility complex class II expression, and blastic transformation during stimulation of peripheral blood lymphocytes. Moreover, T cell activation triggers the selective processing and activation of downstream caspases (caspase-3, -6, and -7), but not caspase-1, -2, or -4, as demonstrated even in intact cells using a cell-permeable fluorescent substrate. Caspase-3 processing occurs in different T cell subsets (CD4(+), CD8(+), CD45RA(+), and CD45RO(+)), and in activated B lymphocytes. The pathway leading to caspase activation involves death receptors and caspase-8, which is also processed after TCR triggering, but not caspase-9, which remains as a proenzyme. Most importantly, caspase activity results in a selective substrate specificity, since poly(ADP-ribose) polymerase (PARP), lamin B, and Wee1 kinase, but not DNA fragmentation factor (DFF45) or replication factor C (RFC140), are processed. Caspase and substrate processing occur in nonapoptotic lymphocytes. Thus, caspase activation is an early and physiological response in viable, stimulated lymphocytes, and appears to be involved in early steps of lymphocyte activation. PMID:10601362

  20. Curcumin Induces Apoptosis in Pre-B Acute Lymphoblastic Leukemia Cell Lines Via PARP-1 Cleavage.

    Science.gov (United States)

    Mishra, Deepshikha; Singh, Sunita; Narayan, Gopeshwar

    2016-01-01

    Curcumin, a polyphenolic compound isolated from the rhizomes of an herbaceous perennial plant, Curcuma longa, is known to possess anticancerous activity. However, the mechanism of apoptosis induction in cancers differs. In this study, we have (1) investigated the anticancerous activity of curcumin on REH and RS4;11 leukemia cells and (2) studied the chemo-sensitizing potential of curcumin for doxorubicin, a drug presently used for leukemia treatment. It was found that curcumin induced a dose dependent decrease in cell viability because of apoptosis induction as visualized by annexin V-FITC/ PI staining. Curcumin-induced apoptosis of leukemia cells was mediated by PARP-1 cleavage. An increased level of caspase-3, apoptosis inducing factor (AIF), cleaved PARP-1 and decreased level of Bcl2 was observed in leukemia cells after 24h of curcumin treatment. In addition, curcumin at doses lower than the IC50 value significantly enhanced doxorubicin induced cell death. Therefore, we conclude that curcumin induces apoptosis in leukemia cells via PARP-1 mediated caspase-3 dependent pathway and further may act as a potential chemo-sensitizing agent for doxorubicin. Our study highlights the chemo-preventive and chemo-sensitizing role of curcumin. PMID:27644631

  1. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    International Nuclear Information System (INIS)

    Osteopontin (OPN) is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN), mutant OPN lacking the thrombin cleavage domain (468-ΔTC) or an empty vector (468-CON) and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p < 0.001), decreased mRNA expression of MCAM, maspin and TRAIL (p < 0.01), and increased uPA expression and activity (p < 0.01) in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p < 0.01) and increased primary tumor growth and lymph node metastatic burden (p < 0.001) compared to 468-OPN and 468-CON cells. The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer

  2. Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability

    OpenAIRE

    Sigurdsson, Stefan; Dirac-Svejstrup, A. Barbara; Svejstrup, Jesper Q.

    2010-01-01

    Summary During transcript elongation in vitro, backtracking of RNA polymerase II (RNAPII) is a frequent occurrence that can lead to transcriptional arrest. The polymerase active site can cleave the transcript during such backtracking, allowing transcription to resume. Transcript cleavage is either stimulated by elongation factor TFIIS or occurs much more slowly in its absence. However, whether backtracking actually occurs in vivo, and whether transcript cleavage is important to escape it, has...

  3. Efficient cleavage of p220 by poliovirus 2Apro expression in mammalian cells: effects on vaccinia virus.

    Science.gov (United States)

    Aldabe, R; Feduchi, E; Novoa, I; Carrasco, L

    1995-10-24

    Poliovirus protease 2A cleaves p220, a component of initiation factor eIF-4F. Polyclonal antibodies that recognize p220 and the cleaved products from different species have been raised. Transfection of several cell lines with poliovirus 2Apro cloned in different plasmids leads to efficient cleavage of p220 upon infection with VT7, a recombinant vaccinia virus that expresses the T7 RNA polymerase. Under these conditions vaccinia virus protein synthesis is severely inhibited, while expression of poliovirus protein 2C from a similar plasmid has no effect. These results show by the first time the effects of p220 cleavage on vaccinia virus translation in the infected cells.

  4. Galpha/LGN-mediated asymmetric spindle positioning does not lead to unequal cleavage of the mother cell in 3-D cultured MDCK cells

    OpenAIRE

    Xiao, Zhuoni; Wan, Qingwen; Du, Quansheng; Zheng, Zhen

    2012-01-01

    The position of the mitotic spindle plays a key role in spatial control of cell division. It is generally believed that when a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are usually unequal in size due to eccentric cleavage of the mother cell. Molecular mechanisms underlying the generation of unequal sized daughter cells have been extensively studied in Drosophila neuroblast and C elegans zygote where the Gα subunit of the heterotrimeric G proteins a...

  5. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    Science.gov (United States)

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity.

  6. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    Science.gov (United States)

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity. PMID:21709916

  7. Proteolytic cleavage of pertussis toxin S1 subunit is not essential for its activity in mammalian cells

    Directory of Open Access Journals (Sweden)

    Plaut Roger D

    2005-02-01

    Full Text Available Abstract Background Pertussis toxin (PT is an exotoxin virulence factor produced by Bordetella pertussis, the causative agent of whooping cough. PT consists of an active subunit (S1 that ADP-ribosylates the alpha subunit of several mammalian G proteins, and a B oligomer (S2–S5 that binds glycoconjugate receptors on cells. PT appears to enter cells by endocytosis, and retrograde transport through the Golgi apparatus may be important for its cytotoxicity. A previous study demonstrated that proteolytic processing of S1 occurs after PT enters mammalian cells. We sought to determine whether this proteolytic processing of S1 is necessary for PT cytotoxicity. Results Protease inhibitor studies suggested that S1 processing may involve a metalloprotease, and processing does not involve furin, a mammalian cell protease that cleaves several other bacterial toxins. However, inhibitor studies showed a general lack of correlation of S1 processing with PT cellular activity. A combination of replacement, insertion and deletion mutations in the C-terminal region of S1, as well as mass spectrometry data, suggested that the cleavage site is located around residue 203–204, but that cleavage is not strongly sequence-dependent. Processing of S1 was abolished by each of 3 overlapping 8 residue deletions just downstream of the putative cleavage site, but not by smaller deletions in the same region. Processing of the various mutant forms of PT did not correlate with cellular activity of the toxin, nor with the ability of the bacteria producing them to infect the mouse respiratory tract. In addition, S1 processing was not detected in transfected cells expressing S1, even though S1 was fully active in these cells. Conclusions S1 processing is not essential for the cellular activity of PT. This distinguishes it from the processing of various other bacterial toxins, which has been shown to be important for their cytotoxicity. S1 processing may be mediated primarily by a

  8. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo

    Directory of Open Access Journals (Sweden)

    Elena Boggio

    2016-01-01

    Full Text Available Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE, by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α4β1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases.

  9. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.

    Directory of Open Access Journals (Sweden)

    Jin Hee Kim

    Full Text Available When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i there are no publicly available cloning vectors harboring a 2A peptide gene and (ii comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts. Here, we generated four expression plasmids each harboring different 2A peptides derived from the foot-and-mouth disease virus, equine rhinitis A virus, Thosea asigna virus and porcine teschovirus-1, respectively, and evaluated their cleavage efficiency in three commonly used human cell lines, zebrafish embryos and adult mice. Western blotting and confocal microscopic analyses revealed that among the four 2As, the one derived from porcine teschovirus-1 (P2A has the highest cleavage efficiency in all the contexts examined. We anticipate that the 2A-harboring cloning vectors we generated and the highest efficiency of the P2A peptide we demonstrated would help biomedical researchers easily adopt the 2A technology when bicistronic or multicistronic expression is required.

  10. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    Directory of Open Access Journals (Sweden)

    Erin J Walker

    Full Text Available Human Rhinovirus (HRV infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis.

  11. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  12. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes. PMID:26254483

  13. A novel COX-independent mechanism of sulindac sulfide involves cleavage of epithelial cell adhesion molecule protein.

    Science.gov (United States)

    Liggett, Jason L; Min, Kyung-Won; Smolensky, Dmitriy; Baek, Seung Joon

    2014-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively used over the counter to treat headaches and inflammation as well as clinically to prevent cancer among high-risk groups. The inhibition of cyclooxygenase (COX) activity by NSAIDs plays a role in their anti-tumorigenic properties. NSAIDs also have COX-independent activity which is not fully understood. In this study, we report a novel COX-independent mechanism of sulindac sulfide (SS), which facilitates a previously uncharacterized cleavage of epithelial cell adhesion molecule (EpCAM) protein. EpCAM is a type I transmembrane glycoprotein that has been implemented as an over-expressed oncogene in many cancers including colon, breast, pancreas, and prostate. We found EpCAM to be down-regulated by SS in a manner that is independent of COX activity, transcription regulation, de novo protein synthesis, and proteasomal degradation pathway. Our findings clearly demonstrate that SS drives cleavage of the extracellular portion of EpCAM near the N-terminus. This SS driven cleavage is blocked by a deleting amino acids 55-81 as well as simply mutating arginine residues at positions 80 and 81 to alanine of EpCAM. Proteolysis of EpCAM by SS may provide a novel mechanism by which NSAIDs affect anti-tumorigenesis at the post-translational level. PMID:24859349

  14. Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis.

    Science.gov (United States)

    Somfai, Tamás; Inaba, Yasushi; Aikawa, Yoshio; Ohtake, Masaki; Kobayashi, Shuji; Konishi, Kazuyuki; Imai, Kei

    2010-04-01

    This study was conducted to study the kinetics of initial cell divisions in relation with the cleavage patterns in viable (with the ability to develop to the blastocyst stage) and non-viable bovine embryos and parthenotes. The kinetics of in vitro development and cleavage patterns were observed by time lapse cinematography. The length of the first and second but not third cell cycle differed significantly between the viable and non-viable embryos after IVF or parthenogenesis. Viable embryos had significantly shorter first and second cell cycles than non-viable ones. The presence of fragments, protrusions and unequally-sized blastomeres was associated with an extended one-cell stage and reduced ability to develop to the blastocyst stage; however, the lengths of the second and third cell cycles were not altered. Oocytes showing direct division from one cell to 3 or 4 blastomeres showed similar developmental ability and embryonic cell numbers to those showing normal division, although, with a high frequency of chromosomal abnormalities. Our results suggest that the differences in the first cell cycles between viable and non-viable embryos were not sperm-related, whereas direct cleavage of 1-cell embryos to 3 or more blastomeres and protrusion formation are related to sperm-driven factors. The length of the first and second cell cycles and the cleavage pattern should be examined simultaneously to predict developmental competence of embryos at early cleavage stages. PMID:20035110

  15. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Science.gov (United States)

    Kong, Xiangyi; Yang, Shuting; Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  16. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    Science.gov (United States)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  17. Cu(II) complexes of glyco-imino-aromatic conjugates in DNA binding, plasmid cleavage and cell cytotoxicity

    Indian Academy of Sciences (India)

    Amit Kumar; Atanu Mitra; Amrendra Kumar Ajay; Manoj Kumar Bhat; Chebrolu P Rao

    2012-11-01

    Binding of metal complexes of C2-glucosyl conjugates with DNA has been established by absorption and fluorescence studies. Conformational changes occurred in DNA upon binding have been studied by circular dichroism. All these studies are suggestive that the metal complexes bind to DNA through intercalation. Binding of di-nuclear copper complex 5 was found to be stronger when compared to the other complexes studied. Copper complexes were found to cleave the plasmid DNA in the absence of oxidizing or reducing agent, whereas, zinc complexes do not cleave. Metal complexes have shown toxicity to the HeLa and MCF-7 cell lines.Morphological studies, western blot and FACS analysis are suggestive of apoptotic cell death induced by the metal complexes. Di-nuclear copper complexes were found to be better as compared to the mononuclear ones in binding, plasmid cleavage and also in causing more cell death.

  18. Procalcitonin NH2-terminal cleavage peptide has no mitogenic effect on normal human osteoblast-like cells

    International Nuclear Information System (INIS)

    The NH2-terminal cleavage peptide of procalcitonin (N-proCT) recently was reported to be a bone cell mitogen. The authors have investigated the effect of N-proCT on the proliferation of normal human cells that have the phenotype of mature osteoblasts (hOB cells). N-proCT treatment for 24, 48, or 96 h in concentrations from 1 nM to 1 microM did not significantly increase [3H]thymidine uptake (means ranged from -19% to 38% of control, no significant differences) in hOB cells (6-10 cell strains per experiment) plated at four different densities. However, the hOB cells responded significantly to treatment with transforming growth factor β (3 ng/ml), bovine insulin (300 micrograms/ml), or 30% fetal calf serum, which were included in all experiments as positive controls. The [3H]thymidine uptake data were confirmed in a direct cell count experiment tested at 96 h. Thus they data do not support the hypothesis that N-proCT is a potent mitogen for normal human osteoblasts

  19. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  20. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  1. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation

  2. Bortezomib sensitizes human glioblastoma cells to induction of apoptosis by type I interferons through NOXA expression and Mcl-1 cleavage.

    Science.gov (United States)

    Wang, Ruishan; Davidoff, Andrew M; Pfeffer, Lawrence M

    2016-09-01

    Glioblastomas are highly invasive and aggressive primary brain tumors. Type I interferons have significant, pleiotropic anticancer activity. However, through various pathways many cancers become interferon-resistant, limiting interferon's clinical utility. In this study, we demonstrated that the proteasomal inhibitor bortezomib sensitized human glioblastoma cells to the antiproliferative action of interferons, which involved the induction of caspase-dependent apoptosis but not necroptosis. We found that death ligands such as TRAIL (TNF-related apoptosis-inducing ligand) were not involved in interferon/bortezomib-induced apoptosis, although interferon induced TRAIL expression. However, apoptosis was induced through an intrinsic pathway involving increased NOXA expression and Mcl-1 cleavage. Our findings may provide an important rationale for combining type I interferons with bortezomib for glioblastoma therapy. PMID:27450810

  3. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  4. Radiation-Induced RhoGDIβ Cleavage Leads to Perturbation of Cell Polarity: A Possible Link to Cancer Spreading.

    Science.gov (United States)

    Fujiwara, Mamoru; Okamoto, Mayumi; Hori, Masato; Suga, Hiroshi; Jikihara, Hiroshi; Sugihara, Yuka; Shimamoto, Fumio; Mori, Toshio; Nakaoji, Koichi; Hamada, Kazuhiko; Ota, Takahide; Wiedemuth, Ralf; Temme, Achim; Tatsuka, Masaaki

    2016-11-01

    The equilibrium between proliferation and apoptosis is tightly balanced to maintain tissue homeostasis in normal tissues and even in tumors. Achieving and maintaining such a balance is important for cancer regrowth and spreading after cytotoxic treatments. Caspase-3 activation and tumor cell death following anticancer therapy as well as accompanying cell death pathways are well characterized, but their association to homeostasis of cancerous tissue and tumor progression remains poorly understood. Here we proposed a novel mechanism of cancer spreading induced by caspase-3. RhoGDIβ, known as a direct cleavage substrate of caspase-3, is overexpressed in many epithelial cancers. The N-terminal-truncated RhoGDIβ (ΔN-RhoGDIβ) is accumulated in caspase-3-activated cells. Stable expression of ΔN-RhoGDIβ in HeLa cells did not induce apoptosis, but impaired directional cell migration in a wound-healing assay accompanied by a perturbed direction of cell division at the wound edge. Subcellular protein fractionation experiments revealed that ΔN-RhoGDIβ but not wild-type RhoGDIβ was present in the detergent-soluble cytoplasmic and nuclear fractions and preferentially associated with Cdc42. Furthermore, Cdc42 activity was constitutively inhibited by stable expression of ΔN-RhoGDIβ, resulting in increased radiation-induced compensatory proliferation linking to RhoA activation. Thus, ΔN-RhoGDIβ dominant-negatively regulates Cdc42 activity and contributes to loss of polarity-related functions. The caspase-3-cleaved RhoGDIβ is a possible determinant to promote cancer spreading due to deregulation of directional organization of tumor cell population and inhibition of default equilibrium between proliferation and apoptosis after cytotoxic damage. J. Cell. Physiol. 231: 2493-2505, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919575

  5. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage.

    Directory of Open Access Journals (Sweden)

    Peter D Newell

    Full Text Available In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit--from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger.

  6. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells.

    Science.gov (United States)

    Rosado, Juan A; Redondo, Pedro C; Salido, Ginés M; Sage, Stewart O; Pariente, Jose A

    2005-01-01

    We recently reported that store-operated Ca(2+) entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca(2+) channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca(2+) entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca(2+) influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca(2+) store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type.

  7. VE-cadherin cleavage by ovarian cancer microparticles induces β-catenin phosphorylation in endothelial cells.

    Science.gov (United States)

    Al Thawadi, Hamda; Abu-Kaoud, Nadine; Al Farsi, Haleema; Hoarau-Véchot, Jessica; Rafii, Shahin; Rafii, Arash; Pasquier, Jennifer

    2016-02-01

    Microparticles (MPs) are increasingly recognized as important mediators of cell-cell communication in tumour growth and metastasis by facilitating angiogenesis-related processes. While the effects of the MPs on recipient cells are usually well described in the literature, the leading process remains unclear. Here we isolated MPs from ovarian cancer cells and investigated their effect on endothelial cells. First, we demonstrated that ovarian cancer MPs trigger β-catenin activation in endothelial cells, inducing the upregulation of Wnt/β-catenin target genes and an increase of angiogenic properties. We showed that this MPs mediated activation of β-catenin in ECs was Wnt/Frizzled independent; but dependent on VE-cadherin localization disruption, αVβ3 integrin activation and MMP activity. Finally, we revealed that Rac1 and AKT were responsible for β-catenin phosphorylation and translocation to the nucleus. Overall, our results indicate that MPs released from cancer cells could play a major role in neo-angiogenesis through activation of beta catenin pathway in endothelial cells. PMID:26700621

  8. Blastomeres show differential fate changes in 8-cell Xenopus laevis embryos that are rotated 90 degrees before first cleavage

    Science.gov (United States)

    Huang, S.; Johnson, K. E.; Wang, H. Z.

    1998-01-01

    To study the mechanisms of dorsal axis specification, the alteration in dorsal cell fate of cleavage stage blastomeres in axis-respecified Xenopus laevis embryos was investigated. Fertilized eggs were rotated 90 degrees with the sperm entry point up or down with respect to the gravitational field. At the 8-cell stage, blastomeres were injected with the lineage tracers, Texas Red- or FITC-Dextran Amines. The distribution of the labeled progeny was mapped at the tail-bud stages (stages 35-38) and compared with the fate map of an 8-cell embryo raised in a normal orientation. As in the normal embryos, each blastomere in the rotated embryos has a characteristic and predictable cell fate. After 90 degrees rotation the blastomeres in the 8-cell stage embryo roughly switched their position by 90 degrees, but the fate of the blastomeres did not simply show a 90 degrees switch appropriate for their new location. Four types of fate change were observed: (i) the normal fate of the blastomere is conserved with little change; (ii) the normal fate is completely changed and a new fate is adopted according to the blastomere's new position: (iii) the normal fate is completely changed, but the new fate is not appropriate for its new position; and (4) the blastomere partially changed its fate and the new fate is a combination of its original fate and a fate appropriate to its new location. According to the changed fates, the blastomeres that adopt dorsal fates were identified in rotated embryos. This identification of dorsal blastomeres provides basic important information for further study of dorsal signaling in Xenopus embryos.

  9. Pre-mRNA 3’ Cleavage is Reversibly Inhibited In Vitro by Cleavage Factor Dephosphorylation

    OpenAIRE

    Ryan, Kevin

    2007-01-01

    During 3' end formation most pre-mRNAs undergo endonucleolytic cleavage and polyadenylation in the 3' untranslated region. Very little is known concerning the role that post-translational modifications play in the function and regulation of the factors required for 3' cleavage. Using the reconstituted pre-mRNA cleavage reaction, we find that non-specific dephosphorylation of HeLa cell nuclear extract leads to the loss of 3' cleavage activity. A variety of serine/threonine phosphatases inhibit...

  10. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells

    OpenAIRE

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven CL; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC ...

  11. Resolution of telomere associations by TRF1 cleavage in mouse embryonic stem cells

    NARCIS (Netherlands)

    Lisaingo, Kathleen; Uringa, Evert-Jan; Lansdorp, Peter M.

    2014-01-01

    Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein compl

  12. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    Science.gov (United States)

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.

  13. The Herpes Simplex Virus vhs Protein Induces Endoribonucleolytic Cleavage of Target RNAs in Cell Extracts

    OpenAIRE

    Elgadi, Mabrouk M.; Hayes, Christopher E.; Smiley, James R.

    1999-01-01

    The herpes simplex virus virion host shutoff (vhs) protein (UL41 gene product) is a component of the HSV virion tegument that triggers shutoff of host protein synthesis and accelerated mRNA degradation during the early stages of HSV infection. Previous studies have demonstrated that extracts from HSV-infected cells and partially purified HSV virions display vhs-dependent RNase activity and that vhs is sufficient to trigger accelerated RNA degradation when expressed as the only HSV protein in ...

  14. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell

    Directory of Open Access Journals (Sweden)

    C Chaussain

    2009-11-01

    Full Text Available Dentin Matrix Protein 1 (DMP1 plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2 is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury.

  15. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell.

    Science.gov (United States)

    Chaussain, Catherine; Eapen, Asha Sarah; Huet, Eric; Floris, Caroline; Ravindran, Sriram; Hao, Jianjun; Menashi, Suzanne; George, Anne

    2009-01-01

    Dentin Matrix Protein 1 (DMP1) plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2) is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain) domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP) and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury. PMID:19908197

  16. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  17. Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    2014-01-01

    in the rapid accumulation of a second site substitution within the 2A sequence (L2P), which also blocked VP1/2A cleavage. This suggests a linkage between the E83K change in VP1 and cleavage of the VP1/2A junction. Cells infected with viruses containing the VP1 K210E or the 2A L2P substitutions contained......The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited...... cleavage of this junction and produced 'self-tagged' virus particles. A second site substitution (E83K) within VP1 was also observed within the rescued virus [Gullberg et al. (2013). J Virol 87: , 11591-11603]. It was shown here that introduction of this E83K change alone into a serotype O virus resulted...

  18. The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons

    Directory of Open Access Journals (Sweden)

    Lingfeng Meng

    2015-06-01

    Full Text Available Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network.

  19. CD40 ligand induced cytotoxicity in carcinoma cells is enhanced by inhibition of metalloproteinase cleavage and delivery via a conditionally-replicating adenovirus

    Directory of Open Access Journals (Sweden)

    Young Lawrence S

    2010-03-01

    Full Text Available Abstract Background CD40 and its ligand (CD40L play a critical role in co-ordinating immune responses. CD40 is also expressed in lymphoid malignancies and a number of carcinomas. In carcinoma cells the physiological outcome of CD40 ligation depends on the level of receptor engagement with low levels promoting cell survival and high levels inducing cell death. The most profound induction of cell death in carcinoma cells is induced by membrane-bound rather than recombinant soluble CD40L, but like other TNF family ligands, it is cleaved from the membrane by matrix metalloproteinases. Results We have generated a replication-deficient adenovirus expressing a mutant CD40L that is resistant to metalloproteinase cleavage such that ligand expression is retained at the cell membrane. Here we show that the mutated, cleavage-resistant form of CD40L is a more potent inducer of apoptosis than wild-type ligand in CD40-positive carcinoma cell lines. Since transgene expression via replication-deficient adenovirus vectors in vivo is low, we have also engineered a conditionally replicating E1A-CR2 deleted adenovirus to express mutant CD40L, resulting in significant amplification of ligand expression and consequent enhancement of its therapeutic effect. Conclusions Combined with numerous studies demonstrating its immunotherapeutic potential, these data provide a strong rationale for the exploitation of the CD40-CD40L pathway for the treatment of solid tumours.

  20. EGFR-mediated carcinoma cell metastasis mediated by integrin αvβ5 depends on activation of c-Src and cleavage of MUC1.

    Directory of Open Access Journals (Sweden)

    Steven K M Lau

    Full Text Available Receptor tyrosine kinases and integrins play an essential role in tumor cell invasion and metastasis. We previously showed that EGF and other growth factors induce human carcinoma cell invasion and metastasis mediated by integrin αvβ5 that is prevented by Src blockade. MUC1, a transmembrane glycoprotein, is expressed in most epithelial tumors as a heterodimer consisting of an extracellular and a transmembrane subunit. The MUC1 cytoplasmic domain of the transmembrane subunit (MUC1.CD translocates to the nucleus where it promotes the transcription of a metastatic gene signature associated with epithelial to mesenchymal transition. Here, we demonstrate a requirement for MUC1 in carcinoma cell metastasis dependent on EGFR and Src without affecting primary tumor growth. EGF stimulates Src-dependent MUC1 cleavage and nuclear localization leading to the expression of genes linked to metastasis. Moreover, expression of MUC1.CD results in its nuclear localization and is sufficient for transcription of the metastatic gene signature and tumor cell metastasis. These results demonstrate that EGFR and Src activity contribute to carcinoma cell invasion and metastasis mediated by integrin αvβ5 in part by promoting proteolytic cleavage of MUC1 and highlight the ability of MUC1.CD to promote metastasis in a context-dependent manner. Our findings may have implications for the use and future design of targeted therapies in cancers known to express EGFR, Src, or MUC1.

  1. Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment.

    Science.gov (United States)

    Shao, Zhifei; Morser, John; Leung, Lawrence L K

    2014-09-26

    Thrombin cleavage alters the function of osteopontin (OPN) by exposing an integrin binding site and releasing a chemotactic C-terminal fragment. Here, we examined thrombin cleavage of OPN in the context of dendritic cell (DC) migration to define its functional domains. Full-length OPN (OPN-FL), thrombin-cleaved N-terminal fragment (OPN-R), thrombin- and carboxypeptidase B2-double-cleaved N-terminal fragment (OPN-L), and C-terminal fragment (OPN-CTF) did not have intrinsic chemotactic activity, but all potentiated CCL21-induced DC migration. OPN-FL possessed the highest potency, whereas OPNRAA-FL had substantially less activity, indicating the importance of RGD. We identified a conserved (168)RSKSKKFRR(176) sequence on OPN-FL that spans the thrombin cleavage site, and it demonstrated potent pro-chemotactic effects on CCL21-induced DC migration. OPN-FLR168A had reduced activity, and the double mutant OPNRAA-FLR168A had even lower activity, indicating that these functional domains accounted for most of the pro-chemotactic activity of OPN-FL. OPN-CTF also possessed substantial pro-chemotactic activity, which was fully expressed upon thrombin cleavage and its release from the intact protein, because OPN-CTF was substantially more active than OPNRAA-FLR168A containing the OPN-CTF sequence within the intact protein. OPN-R and OPN-L possessed similar potency, indicating that the newly exposed C-terminal SVVYGLR sequence in OPN-R was not involved in the pro-chemotactic effect. OPN-FL and OPN-CTF did not directly bind to the CD44 standard form or CD44v6. In conclusion, thrombin cleavage of OPN disrupts a pro-chemotactic sequence in intact OPN, and its loss of pro-chemotactic activity is compensated by the release of OPN-CTF, which assumes a new conformation and possesses substantial activity in enhancing chemokine-induced migration of DCs. PMID:25112870

  2. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes

    OpenAIRE

    Fine, Eli J; Appleton, Caleb M.; Douglas E. White; Brown, Matthew T.; Harshavardhan Deshmukh; Kemp, Melissa L.; Gang Bao

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in c...

  3. Centralspindlin in Rappaport's cleavage signaling.

    Science.gov (United States)

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  4. Cleavage of nucleic acids

    Science.gov (United States)

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage: imaging in living cells and tissues.

    Science.gov (United States)

    Wang, Rui; Chen, Lingxin; Liu, Ping; Zhang, Qin; Wang, Yunqing

    2012-09-01

    Cy-NiSe and Cy-TfSe were designed and synthesized as sensitive near-infrared (NIR) fluorescent probes for detecting thiols on the basis of Se-N bond cleavage both in cells and in tissues. Since a donor-excited photoinduced electron transfer (d-PET) process occurs between the modulator and the fluorophore, Cy-NiSe and Cy-TfSe have weak fluorescence. On titration with glutathione, the free dye exhibits significant fluorescence enhancement. The two probes are sensitive and selective for thiols over other relevant biological species. They can function rapidly at pH 7.4, and their emission lies in the NIR region. Confocal imaging confirms that Cy-NiSe and Cy-TfSe can be used for detecting thiols in living cells and tissues. PMID:22829328

  6. Coupled adaptations affecting cleavage of the VP1/2A junction by 3C protease in foot-and-mouth disease virus infected cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Belsham, Graham

    , introduction of the 2A L2P substitution alone, or with the VP1 K210E change, into this virus resulted in the production of viable viruses. Cells infected with viruses containing the VP1 K210E and/or the 2A L2P substitutions contained the uncleaved VP1-2A protein; the 2A L2P substitution rendered the VP1/2A......The foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the 3C protease to produce VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210) within the VP1 protein, close to the VP1/2A cleavage site, inhibited cleavage...... of this junction and resulted in the production of “self-tagged” virus particles containing the 2A peptide. A second site substitution (E83K) within VP1 was also observed within the rescued virus (Gullberg et al., 2013). It is now shown that introduction of this E83K change alone into a serotype O virus resulted...

  7. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Natalia Rivera-Torres

    Full Text Available With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs, as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.

  8. Combretastatin-A4 prodrug induces mitotic catastrophe in chronic lymphocytic leukemia cell line independent of caspase activation and poly(ADP-ribose) polymerase cleavage.

    Science.gov (United States)

    Nabha, Sanaa M; Mohammad, Ramzi M; Dandashi, Mahmoud H; Coupaye-Gerard, Brigitte; Aboukameel, Amro; Pettit, George R; Al-Katib, Ayad M

    2002-08-01

    We have previously reported that combretastatin-A4 prodrug (CA4P), anantitubulin/antiangiogenic agent isolated from the South African willow tree Combretum caffrum, induced cell death primarily through mitotic catastrophe in a panel of human B-lymphoid tumors. In this study, we investigated the molecular aspects of the mitotic catastrophe and whether or not it shares the same pathways of apoptosis. For this we studied the effect of CA4P on selected markers of apoptosis [caspases 9 and 3, poly(ADP-ribose) polymerase (PARP), bcl-2, and bax] and G2-M protein regulators (p53, MDM2, 14-3-3sigma, GADD45, cdc2, cdc25, chk1, wee1, p21, and cyclin B1). The chronic lymphocytic leukemia cell line WSU-CLL was used for this purpose. Western blot analysis showed that 24 h of CA4P (5 nM) exposure induces caspase 9 activation and PARP cleavage. However, the addition of Z-Val-Ala-Asp-fluoromethylketone (a general caspase inhibitor) or Z-Leu-Glu(OMe)-His-Asp(OMe)-CH2F (a caspase 9 inhibitor) before CA4P treatment did not block cell death. No change in bcl-2 or bax protein expression was observed. Exposure of WSU-CLL cells to 4 and 5 nM CA4P was associated with overproduction of total p53 and no dramatic change in MDM2, 14-3-3sigma, GADD45, the cyclin-dependent kinase cdc2, its inhibitory phosphorylation, the cdc2-inhibitory kinase (wee1), chk1, or cdc25 hyperphosphorylation. The overaccumulation of p21 and cyclin B1 protein was obvious at 24 h. Furthermore, CA4P treatment showed an increase in the expression of a marker of mitosis (mitotic protein monoclonal-2 antibody) and an overaccumulation of the cyclin B in the nucleus. Our findings suggest that CA4P induces mitotic catastrophe and arrest of WSU-CLL cells mostly in the M phase independent of p53 and independent of chk1 and cdc2 phosphorylation pathways. Apoptosis is a secondary mechanism of death in a small proportion of cells through activation of caspase 9 and PARP cleavage. The two mechanisms of cell death, i.e., mitotic

  9. TRAIL and proteasome inhibitors combination induces a robust apoptosis in human malignant pleural mesothelioma cells through Mcl-1 and Akt protein cleavages

    International Nuclear Information System (INIS)

    Malignant pleural mesothelioma (MPM) is an aggressive malignancy closely associated with asbestos exposure and extremely resistant to current treatments. It exhibits a steady increase in incidence, thus necessitating an urgent development of effective new treatments. Proteasome inhibitors (PIs) and TNFα-Related Apoptosis Inducing Ligand (TRAIL), have emerged as promising new anti-MPM agents. To develop effective new treatments, the proapoptotic effects of PIs, MG132 or Bortezomib, and TRAIL were investigated in MPM cell lines NCI-H2052, NCI-H2452 and NCI-H28, which represent three major histological types of human MPM. Treatment with 0.5-1 μM MG132 alone or 30 ng/mL Bortezomib alone induced a limited apoptosis in MPM cells associated with the elevated Mcl-1 protein level and hyperactive PI3K/Akt signaling. However, whereas 10–20 ng/ml TRAIL alone induced a limited apoptosis as well, TRAIL and PI combination triggered a robust apoptosis in all three MPM cell lines. The robust proapoptotic activity was found to be the consequence of a positive feedback mechanism-governed amplification of caspase activation and cleavage of both Mcl-1 and Akt proteins, and exhibited a relative selectivity in MPM cells than in non-tumorigenic Met-5A mesothelial cells. The combinatorial treatment using TRAIL and PI may represent an effective new treatment for MPMs

  10. Assessment of the Pathogenic Potential of Asbestiform vs. Nonasbestiform Particulates (Cleavage Fragments) in In Vitro (Cell or Organ Culture) Models and Bioassays

    OpenAIRE

    MOSSMAN, BROOKE T.

    2007-01-01

    Asbestos fibers are highly fibrous silicate fibers that are distinguished by having a large aspect (length to diameter) ratio and are crystallized in an asbestiform habit that causes them to separate into very thin fibers or fibrils. These fibers are distinct from nonasbestiform cleavage fragments and may appear as thick, short fibers which break along cleavage planes without the high strength and flexibility of asbestiform fibers. Since cleavage fragments of respirable dimensions have genera...

  11. p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53.

    OpenAIRE

    Gottlieb, E; Oren, M.

    1998-01-01

    In the interleukin-3 (IL-3)-dependent lymphoid cell line DA-1, functional p53 is required for efficient apoptosis in response to IL-3 withdrawal. Activation of p53 in these cells, by either DNA damage or p53 overexpression, results in a vital growth arrest in the presence of IL-3 and in accelerated apoptosis in its absence. Thus, IL-3 can control the choice between p53-dependent cell-cycle arrest and apoptosis. Here we report that the cross-talk between p53 and IL-3 involves joint control of ...

  12. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    NARCIS (Netherlands)

    S.W. Paugh (Steven); E.J. Bonten (Erik J.); D. Savic (Daniel); L.B. Ramsey (Laura B.); W.E. Thierfelder (William E.); P. Gurung (Prajwal); R.K.S. Malireddi (R. K. Subbarao); M. Actis (Marcelo); A. Mayasundari (Anand); J. Min (Jaeki); D.R. Coss (David R.); L.T. Laudermilk (Lucas T.); J.C. Panetta (John); J.R. McCorkle (J. Robert); Y. Fan (Yiping); K.R. Crews (Kristine R.); G. Stocco (Gabriele); M.R. Wilkinson (Mark R.); A.M. Ferreira (Antonio M.); C. Cheng (Cheng); W. Yang (Wenjian); S.E. Karol (Seth E.); C.A. Fernandez (Christian A.); B. Diouf (Barthelemy); C. Smith (Colton); J.K. Hicks (J Kevin); A. Zanut (Alessandra); A. Giordanengo (Audrey); D.J. Crona; J.J. Bianchi (Joy J.); L. Holmfeldt (Linda); C.G. Mullighan (Charles); M.L. den Boer (Monique); R. Pieters (Rob); S. Jeha (Sima); T.L. Dunwell (Thomas L.); F. Latif (Farida); D. Bhojwani (Deepa); W.L. Carroll (William L.); C.-H. Pui (Ching-Hon); R.M. Myers (Richard M.); R.K. Guy (R Kiplin); T.-D. Kanneganti (Thirumala-Devi); M.V. Relling (Mary); W.E. Evans (William)

    2015-01-01

    textabstractGlucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia ce

  13. A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

    International Nuclear Information System (INIS)

    20-O-(β-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponin formed from ginsenosides Rb1, Rb2, and Rc, is suggested to be a potential chemopreventive agent. Here, we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (12 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. Treatment of HepG2 cells with IH901 also induced the cleavage of cytosolic factors such as Bid and Bax and translocation of truncated Bid (tBid) to mitochondria. A time-dependent release of cytochrome c from mitochondria was observed, which was accompanied by activation of caspase-9. A broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), and a specific inhibitor for caspase-8, N-benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone (zIETD-fmk), abrogated Bid processing and translocation, and caspase-3 activation. Cytochrome c release was inhibited by zVAD-fmk, however, the inhibition by zIETD-fmk was not complete. The activation of caspase-8 was inhibited not only by zIETD-fmk but also by zVAD-fmk. The results, together with the kinetic change of caspase activation, indicate that activation of caspase-8 occurred downstream of caspase-3 and -9. Our data suggest that the activation of caspase-8 after early caspase-3 activation might act as an amplification loop necessary for successful apoptosis. Primary hepatocytes isolated from normal Sprague-Dawley rats were not affected by IH901 (0-60 μM). The very low toxicity in normal hepatocytes and high activity in hepatoblastoma HepG2 cells suggest that IH901 is a promising experimental cancer chemopreventive agent

  14. In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity.

    Science.gov (United States)

    Murono, Eisuke P; Derk, Raymond C; Akgul, Yucel

    2006-02-01

    Methoxychlor (MC) was developed as a replacement for the banned pesticide DDT. After in vivo administration, it is metabolized in the liver to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been shown to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen and androgen receptors, respectively. Although in vitro studies using cultured rat Leydig cells have reported that HPTE inhibits both basal and hCG-stimulated testosterone formation, the response of circulating testosterone levels to in vivo MC has been more variable. Therefore, the current studies evaluated whether the daily in vivo administration of MC (0, 5, 40 and 200 mg/kg body weight) for a short duration (days 54-60 of age) by gavage altered serum testosterone levels and ex vivo Leydig cell testosterone formation in young adult male rats. These results demonstrate that both fluid-retained and fluid-expressed seminal vesicle weights declined to 44 and 60% of control, respectively, in the 200 mg/kg MC-exposed animals. Similarly, serum testosterone and dehydroepiandrosterone levels declined to 41 and 45% of control, respectively, in the 200 mg/kg MC-exposed animals; however, serum LH and FSH levels were unaffected. Ex vivo Leydig cell basal testosterone formation over 4h declined to 49% of control in animals exposed to 200 mg/kg MC, and ex vivo Leydig cell P450 cholesterol side-chain cleavage activity declined to 79 and 50% of control in animals exposed to 40 and 200 mg/kg of MC, respectively, supporting previous in vitro studies which demonstrated the sensitivity of this step to MC.

  15. Vasoactive intestinal peptide-induced expression of cytochrome P450 cholesterol side-chain cleavage and 17 alpha-hydroxylase enzyme activity in hen granulosa cells.

    Science.gov (United States)

    Johnson, A L; Li, Z; Gibney, J A; Malamed, S

    1994-08-01

    Experiments were conducted to determine whether vasoactive intestinal peptide (VIP) can regulate expression of cytochrome P450 side-chain cleavage (P450scc) and P450 17 alpha-hydroxylase (P450 17 alpha-OH) mRNA levels and enzyme activity in granulosa cells from nonhierarchal (6-8-mm) follicles. Initial studies demonstrated that immunoreactive VIP is localized within the theca (but not granulosa) layer of both resting (< 0.5-mm follicles) and 6-8-mm follicles, thus providing a potential paracrine mechanism of action for VIP. While short-term (3 h) incubation of granulosa cells with VIP (0.001-1.0 microM) failed to stimulate progesterone production from 6-8-mm follicle granulosa cells, a 4-h culture period in the presence of VIP resulted in increased cyclic AMP (cAMP) accumulation, and a 24-h culture period resulted in progesterone synthesis and increased P450scc mRNA levels; control levels of each endpoint measurement were not altered within the period observed. By contrast, culture with the growth factor transforming growth factor alpha (TGF alpha) in the presence of VIP (1 microM) prevented increases in P450scc mRNA levels and progesterone production. Similar effects of VIP and TGF alpha in the presence of VIP were demonstrated for P450 17 alpha-OH mRNA levels and enzyme activity. Finally, there was an additive effect of VIP (0.1 microM) plus recombinant human (rh) FSH (100 mIU) on the initiation of progesterone production in cultured 6-8-mm follicle granulosa cells compared to the addition of VIP or rhFSH alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA

    OpenAIRE

    Chandrananda, Dineika; Thorne, Natalie P.; Bahlo, Melanie

    2015-01-01

    Background High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to n...

  17. The polyadenylation factor subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A key factor of programmed cell death and a regulator of immunity in arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2014-04-04

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. Indeed, incompatible plant-pathogen interactions are well known to induce the hypersensitive response, a localized cell death. Mutational analyses have identified several key PCD components, and we recently identified the mips1 mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for the key enzyme catalyzing the limiting step of myoinositol synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD by screening for mutants that display transcriptomic profiles opposing that of the mips1 mutant. Our screen identified the oxt6 mutant, which has been described previously as being tolerant to oxidative stress. In the oxt6 mutant, a transfer DNA is inserted in the CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30) gene, which encodes a polyadenylation factor subunit homolog. We show that CPSF30 is required for lesion formation in mips1 via SA-dependent signaling, that the prodeath function of CPSF30 is not mediated by changes in the glutathione status, and that CPSF30 activity is required for Pseudomonas syringae resistance. We also show that the oxt6 mutation suppresses cell death in other lesion-mimic mutants, including lesion-simulating disease1, mitogen-activated protein kinase4, constitutive expressor of pathogenesis-related genes5, and catalase2, suggesting that CPSF30 and, thus, the control of messenger RNA 3′ end processing, through the regulation of SA production, is a key component of plant immune responses. © 2014 American Society of Plant Biologists. All rights reserved.

  18. The methoxychlor metabolite, HPTE, directly inhibits the catalytic activity of cholesterol side-chain cleavage (P450scc) in cultured rat ovarian cells.

    Science.gov (United States)

    Akgul, Yucel; Derk, Raymond C; Meighan, Terence; Rao, K Murali Krishna; Murono, Eisuke P

    2008-01-01

    Exposure to the pesticide methoxychlor in rodents is linked to impaired steroid production, ovarian atrophy and reduced fertility. Following in vivo administration, it is rapidly converted by the liver to 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), the reported active metabolite. Both methoxychlor and HPTE have weak estrogenic and antiandrogenic activities, and these effects are thought to be mediated through the estrogen and androgen receptors, respectively. Previous in vivo studies on methoxychlor exposure to female animals have demonstrated decreased progesterone production but no change in serum estrogen levels. We recently showed that HPTE specifically inhibits the P450 cholesterol side-chain cleavage (P450scc, CYP11A1) step resulting in decreased androgen production by cultured rat testicular Leydig cells. The current studies examined the mechanism of action of HPTE on progesterone production by cultured ovarian cells (granulosa and theca-interstitial) from pregnant mare serum gonadotropin-primed immature rats. In addition, we evaluated whether the effects of HPTE on rat ovarian cell progesterone biosynthesis were mediated through the estrogen or androgen receptors. Exposure to HPTE (0, 10, 50 or 100nM) alone progressively inhibited progesterone formation in cultured theca-interstitial and granulosa cells and the P450scc catalytic activity in theca-interstitial cells in a dose-dependent manner with significant declines starting at 50nM. However, HPTE did not change mRNA levels of the P450scc system (P450scc, adrenodoxin reductase and adrenodoxin) as well as P450scc protein levels. Of interest, estradiol, xenoestrogens (bisphenol-A or 4-tert-octylphenol), a pure antiestrogen (ICI 182,780), or antiandrogens (4-hydroxyflutamide or the vinclozolin metabolite M-2), had no effect on progesterone production even at 1000nM. Co-treatment of HPTE with ICI 182,780 did not block the effect of HPTE on progesterone formation. These studies suggest that the

  19. Effects of ionomycin on cleavage of E-cadherin in SW480 cells and SWO38 cells%离子霉素对SW480和SWO-38细胞中E-cadherin裂解的影响

    Institute of Scientific and Technical Information of China (English)

    王超; 杜展; 马继伟; 张勇; 闫雍容; 钟雪云

    2013-01-01

    目的:观察可促进钙离子内流的工具药离子霉素(ionomycin),对不同肿瘤细胞株SW480及SWO-38其C末端片段2(E-cad/CTF2)的表达裂解的影响.方法:应用MTT法确定ionomycin作用于SW480及SW0-38细胞的最佳浓度;Western blotting检测ionomycin作用不同时间后E-cadherin全长及其C末端片段2(E-cad/CTF2)的表达水平;共聚焦显微镜动态检测SWO-38细胞胞内Ca2+浓度变化.结果:Ionomycin对SW480及SWO-38细胞均有细胞毒性作用,半数抑制浓度均为12 μmol/L,ionomycin可促进SW480细胞中Ca2+浓度增加,E-cadherin裂解,E-Cad/CTF2片段水平升高,ionomycin没有引起SWO-38细胞中的大量钙内流,对E-cadherin裂解没有明显作用.结论:Ionomycin可促进钙离子内流,引起SW480肿瘤细胞E-cadherin裂解,但对SWO-38细胞E-cadherin裂解无明显影响.%AIM:To observe the effect of ionomycin on the cleavage of E-cadherin in SW480 cells and SW038 cells.METHODS:MTT assay was used to determine the optimal concentration of ionomycin for SW480 cells and SWO-38 cells.The levels of full-length E-cadherin and E-cadherin C-terminal fragment 2 (E-Cad/CTF2) after ionomycin treatment at different time points were detected by Western blotting.The variation of cytosolie free calcium concentration in SW0-38 cells after treatment with ionomycin was monitored under confocal microscope.RESULTS:Ionomycin had cytotoxic effect on SW480 cells and SW0-38 cells.The IC50 for both cell lines was 12 μ mol/L.Treatment with ionomycin resulted in increased cytosolic free calcium concentration in SW480 cells,leading to cleavage of E-cadherin and increasing the level of E-Cad/CTF2.However,ionomycin did not induce significant calcium influx in SW0-38 cells.Consequently,the cleavage of E-cadherin was not detectable.CONCLUSION:Ionomycin triggers calcium influx and induces cleavage of E-cadherin in SW480 cells.

  20. Cleavage of endogenous γENaC and elevated abundance of αENaC are associated with increased Na+ transport in response to apical fluid volume expansion in human H441 airway epithelial cells

    OpenAIRE

    Tan, Chong D.; Selvanathar, Indusha A.; Baines, Deborah L.

    2011-01-01

    Using human H441 airway epithelial cells cultured at air–liquid interface (ALI), we have uniquely correlated the functional response to apical fluid volume expansion with the abundance and cleavage of endogenous α- and γENaC proteins in the apical membrane. Monolayers cultured at ALI rapidly elevated I sc when inserted into fluid-filled Ussing chambers. The increase in I sc was not significantly augmented by the apical addition of trypsin, and elevation was abolished by the protease inhibitor...

  1. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny;

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast.......001). More 3PN IVF than ICSI embryos displayed early cleavage into 3 cells (p time demonstrates differences in the cleavage pattern between 3PN IVF and ICSI embryos....

  2. [On the classification of the cleavage patterns in amphibian embryos].

    Science.gov (United States)

    Desnitskiĭ, A G

    2014-01-01

    This paper presents a brief survey and preliminary classification of embryonic cleavage patterns in the class Amphibia. We use published data on 41 anuran and 22 urodele species concerning the character of the third cleavage furrow (latitudinal or longitudinal) and the stage of transition from synchronous to asynchronous blastomere divisions in the animal hemisphere (4-8-celled stage, 8-16-celled stage or later). Based on this, four patterns of amphibian embryonic cleavage are recognized, and an attempt to elucidate the evolutionary relationships among these patterns is undertaken. The so-called "standard" cleavage pattern (the extensive series of synchronous blastomere divisions including latitudinal furrows of the third cleavage) with the typical model species Ambystoma mexicanum and Xenopus laevis seems to be derived and probably originated independently in the orders Anura and Caudata. The ancestral amphibian cleavage pattern seems to be represented by species with longitudinal furrows of the third cleavage and the loss ofsynchrony as early as the 8-celled stage (such as in primitive urodele species from the family Cryptobranchidae). PMID:25720261

  3. Invasive cleavage of nucleic acids

    Science.gov (United States)

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Mutational analysis of the encephalomyocarditis virus primary cleavage.

    OpenAIRE

    Hahn, H.; Palmenberg, A C

    1996-01-01

    Sixteen substitution mutations of the conserved DvExNPGP sequence, implicated in cardiovirus and aphthovirus primary polyprotein cleavage, were created in encephalomyocarditis virus cDNA, expressed, and characterized for processing activity. Nearly all the mutations severely decreased the efficiency of the primary cleavage reaction during cell-free synthesis of viral precursors, indicating a stringent requirement for the natural sequence in this processing event. When representative mutations...

  5. Evidence for intramolecular self-cleavage of picornaviral replicase precursors.

    OpenAIRE

    Palmenberg, A C; Rueckert, R R

    1982-01-01

    It has previously been shown that when encephalomyocarditis viral RNA is translated in cell-free extracts of rabbit reticulocytes, it synthesizes a virus-coded protease, p22, which is derived by cleavage of a precursor protein, C. Protein C is shown here to be cleaved by two different mechanisms, which were distinguished by their sensitivity to dilution. One mechanism was sensitive to dilution; the other was not. The biphasic cleavage behavior was unchanged by diluting incubation mixtures wit...

  6. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-01

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered.

  7. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62.

    OpenAIRE

    Lobigs, M; Garoff, H

    1990-01-01

    The precursor protein p62 of the prototype alphavirus Semliki Forest virus (SFV) undergoes during transport to the cell surface a proteolytic cleavage to form the mature envelope glycoprotein E2. To investigate the biological significance of this cleavage event, single amino acid substitutions were introduced at the cleavages site through mutagenesis of cDNA corresponding to the structural region of the SFV genome. The phenotypes of the cleavage site mutants were studied in BHK cells by using...

  8. Cleavage behaviors in nuclear vessel steels

    International Nuclear Information System (INIS)

    Cleavage behaviors of nuclear vessel steels in the transition temperature range are reviewed. Viewpoints are presented to assist understanding of cleavage crack speed, cleavage initiation, cleavage arrest, and the sensitivity of fracture toughness to constraint and temperature. The importance of high local stress elevations by high strain rate is emphasized. This report is designated as HSST Report No. 149

  9. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

    OpenAIRE

    Vitiello, D; Pecchia, D B; Burke, J M

    2000-01-01

    Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without int...

  10. A pathway sensor for genome-wide screens of intracellular proteolytic cleavage

    OpenAIRE

    Ketteler, Robin; Sun, Zairen; Kovacs, Karl F; He, Wei-Wu; Seed, Brian

    2008-01-01

    Protein cleavage is a central event in many regulated biological processes. We describe a system for detecting intracellular proteolysis based on non-conventional secretion of Gaussia luciferase (GLUC). GLUC exits the cell without benefit of a secretory leader peptide, but can be anchored in the cell by fusion to \\(\\beta\\)-actin. By including protease cleavage sites between GLUC and \\(\\beta\\)-actin, proteolytic cleavage can be detected. Using this assay, we have identified regulators of autop...

  11. Intrinsic transcript cleavage activity of RNA polymerase.

    OpenAIRE

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  12. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    Energy Technology Data Exchange (ETDEWEB)

    He, Kaiyu [Department of Microbiology and Molecular Genetics (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Zhou, Hui-Ren [Food Science and Human Nutrition (United States); Pestka, James J., E-mail: pestka@msu.edu [Department of Microbiology and Molecular Genetics (United States); Food Science and Human Nutrition (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  13. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    International Nuclear Information System (INIS)

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  14. Mutagenesis of the yellow fever virus NS2B/3 cleavage site: determinants of cleavage site specificity and effects on polyprotein processing and viral replication.

    OpenAIRE

    Chambers, T J; Nestorowicz, A.; Rice, C.M.

    1995-01-01

    The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated ...

  15. Sequence-Specific Ultrasonic Cleavage of DNA

    OpenAIRE

    Grokhovsky, Sergei L.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Golovkin, Michail V.; Panchenko, Larisa A.; Polozov, Robert V.; Nechipurenko, Yury D.

    2011-01-01

    We investigated the phenomenon of ultrasonic cleavage of DNA by analyzing a large set of cleavage patterns of DNA restriction fragments using polyacrylamide gel electrophoresis. The cleavage intensity of individual phosphodiester bonds was found to depend on the nucleotide sequence and the position of the bond with respect to the ends of the fragment. The relative intensities of cleavage of the central phosphodiester bond in 16 dinucleotides and 256 tetranucleotides were determined by multiva...

  16. Cleavage of E-Cadherin by Matrix Metalloproteinase-7 Promotes Cellular Proliferation in Nontransformed Cell Lines via Activation of RhoA

    Directory of Open Access Journals (Sweden)

    Conor C. Lynch

    2010-01-01

    Full Text Available Perturbations in cell-cell contact machinery occur frequently in epithelial cancers and result in increased cancer cell migration and invasion. Previously, we demonstrated that MMP-7, a protease implicated in mammary and intestinal tumor growth, can process the adherens junction component E-cadherin. This observation leads us to test whether MMP-7 processing of E-cadherin could directly impact cell proliferation in nontransformed epithelial cell lines (MDCK and C57MG. Our goal was to investigate the possibility that MMP-7 produced by cancer cells may have effects on adjacent normal epithelium. Here, we show that MMP-7 processing of E-cadherin mediates, (1 loss of cell-cell contact, (2 increased cell migration, (3 a loss of epithelial cell polarization and (4 increased cell proliferation via RhoA activation. These data demonstrate that MMP-7 promotes epithelial cell proliferation via the processing of E-cadherin and provide insights into the molecular mechanisms that govern epithelial cell growth.

  17. RNase II is important for A-site mRNA cleavage during ribosome pausing

    OpenAIRE

    Garza-Sánchez, Fernando; Shoji, Shinichiro; Fredrick, Kurt; Hayes, Christopher S.

    2009-01-01

    In Escherichia coli, translational arrest can elicit cleavage of codons within the ribosomal A site. This A-site mRNA cleavage is independent of RelE, and has been proposed to be an endonucleolytic activity of the ribosome. Here, we show that the 3′→5′ exonuclease RNase II plays an important role in RelE-independent A-site cleavage. Instead of A-site cleavage, translational pausing in ΔRNase II cells produces transcripts that are truncated +12 and +28 nucleotides downstream of the A-site codo...

  18. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    International Nuclear Information System (INIS)

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe3O4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138−CD34− cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138−CD34− cells were evaluated by a variety of assays in vitro. The results showed that the CD138−CD34− cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138−CD34− cells. PTX-NPs significantly inhibited CD138− CD34− cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138−CD34− phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138−CD34− CSCs. The findings may provide a guideline for PTX-NPs’ treatment of MM CSCs in preclinical investigation

  19. Fe{sub 3}O{sub 4} nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cuiping [Medical School, Southeast University, Department of Pathogenic Biology and Immunology (China); He, Xiangfeng [Affiliated Tumor Hospital of Nantong University, Department of Medical Oncology (China); Chen, Junsong; Chen, Dengyu; Liu, Yunjing [Medical School, Southeast University, Department of Pathogenic Biology and Immunology (China); Xiong, Fei [Southeast University, School of Biological Science and Medical Engineering (China); Shi, Fangfang [Zhongda Hospital, Southeast University, Department of Oncology (China); Dou, Jun, E-mail: njdoujun@yahoo.com.cn [Medical School, Southeast University, Department of Pathogenic Biology and Immunology (China); Gu, Ning, E-mail: guning@seu.edu.cn [Southeast University, School of Biological Science and Medical Engineering (China)

    2013-08-15

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe{sub 3}O{sub 4} nanoparticles (PTX-NPs) with an average size range of 7.17 {+-} 1.31 nm on MM CSCs in vitro. The characteristics of CD138{sup -}CD34{sup -} cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138{sup -}CD34{sup -} cells were evaluated by a variety of assays in vitro. The results showed that the CD138{sup -}CD34{sup -} cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138{sup -}CD34{sup -} cells. PTX-NPs significantly inhibited CD138{sup -} CD34{sup -} cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138{sup -}CD34{sup -} phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138{sup -}CD34{sup -} CSCs. The findings may provide a guideline for PTX-NPs' treatment of MM CSCs in preclinical investigation.

  20. Viability of corneal epithelial cells and cleavage of corneal basement after ethanol effect%乙醇对角膜上皮瓣活性及基底膜分离定位研究

    Institute of Scientific and Technical Information of China (English)

    陈颖欣; 蓝平; 高明宏; 范忠义; 宋福林; 徐旭; 于静

    2008-01-01

    Objective To evaluate the viability of corneal epithelial cells and to determine the anatomic cleavage on the epithelial basement membrane after various exposure times to 20% ethanol during epithelial flap preparation in laser-assisted subepithelial keratectomy(LASEK)in cadaver eyes.Methods Six human cadaver eyes were exposed to 20% ethanol for 20,30 and 40 seconds(2 eyes for each group),and another one eye was used as the control.PCNA staining was performed to determine the viability of corneal epithelial cells.Immunofluorescence staining using monoclonal antibodies against collagen Ⅶ,and immunohistological staining using monoclonal antibodies against laminin were performed to detect the anatomic location of the cleavage plane on the corneal epithelial flaps created by 20 seconds exposure to 20% ethanol in cadaver eyes.Results Hematoxylin and eosin staining of epithelial flaps revealed a coherent stratified epithelium.The PCNA positive rates of the epithelial cells in the flap decreased in the 20-second group,30-seconcl group and 40-second group successively.Immunohistological staining to laminin was patchy in the lifted flap and the remaining corneal basement membrane.Immunofluorescence to collagen Ⅶ,the main component of anchoring fibrils remained exclusively in the corneal bed.Conclusions Viability of the epithelial flap decreased with longer time exposure to ethanol.The cleavage plane of the ethanol-treated corneal epithelial flap is located between the lamina lucida and the lamina densa of the basement membrane where laminin forms hemidesmesome.%目的 探讨不同乙醇作用时间对角膜上皮瓣活性的影响,并确定角膜上皮瓣的解剖分离层面.方法 按标准准分子激光角膜上皮瓣下磨镶术(LASEK)方法制备7只尸体眼角膜上皮瓣,其中对照组1只眼,其余6只分为A、B、C 3个组,每组2只眼,乙醇浸润时间分别为20、30和40 S.对7只眼进行HE、增殖细胞核抗原(PCNA)、层黏连蛋白免疫组化

  1. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32

    Directory of Open Access Journals (Sweden)

    Sugiyama Hideaki

    2011-05-01

    Full Text Available Abstract Background Elevated numbers of regulatory T cells (Tregs have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32, also known as Glycoprotein A Repetitions Predominant (GARP, has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32. Results Using naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs. Conclusions A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.

  2. Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    International Nuclear Information System (INIS)

    Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration. We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA. We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by

  3. Kinetics of hairpin ribozyme cleavage in yeast.

    OpenAIRE

    Donahue, C P; Fedor, M J

    1997-01-01

    Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA...

  4. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

    Science.gov (United States)

    Vitiello, D; Pecchia, D B; Burke, J M

    2000-04-01

    Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell. PMID:10786853

  5. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders. PMID:25180466

  6. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  7. Specific pre-cleavage and post-cleavage complexes involved in the formation of SV40 late mRNA 3' termini in vitro.

    OpenAIRE

    Zarkower, D; Wickens, M

    1987-01-01

    Complexes form between processing factors present in a crude nuclear extract from HeLa cells and a simian virus 40 (SV40) late pre-mRNA which spans the polyadenylation [poly(A)] site. A specific 'pre-cleavage complex' forms on the pre-mRNA before cleavage. Formation of this complex requires the highly conserved sequence AAUAAA: it is prevented by mutations in AAUAAA, and by annealing DNA oligonucleotides to that sequence. After cleavage, the 5' half-molecule is found in a distinct 'post-cleav...

  8. Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles

    OpenAIRE

    Lee, Meng-Ju; Lee, Robert Kuo-Kuang; Lin, Ming-Huei; Hwu, Yuh-Ming

    2012-01-01

    We examined whether there is a correlation among early embryo cleavage, speed of cleavage, and implantation potential for in-vitro fertilization (IVF) treatment and intracytoplasmic sperm injection (ICSI). This retrospective study examined 112 cycles of IVF and 82 cycles of ICSI in patients less than 40 years of age. Early cleavage was defined as embryonic mitosis occurring 25–27 h after insemination. These day-3 embryos were then grouped according to cleavage speed (rapid, normal, and slow) ...

  9. APP cleavage in live cells guided by C99%C99引导淀粉样蛋白前体裂解过程的活体细胞研究

    Institute of Scientific and Technical Information of China (English)

    李晓晴; 梁燕玲; 常丽英; 张苏明; 骆清铭; 张旻; 张智红; 邢变枝; 杨华静; 郭守刚; 黎逢光

    2008-01-01

    Objective To construct recombinant eukaryotic expression plasmid encoding Swedish and Flemish mutations of amyloid precursor protein (APP) fused with fluorescent protein and to investigate the APP cleavage progress. Methods The last 300 bases of APP (named as C99 containing Flemish mutation), together with cyan and yellow fluorescence sequence (named as CFP and YFP,respectively) were obtained by polymerase chain reaction (PCR). The 54 bases in the middle of APP sequence were synthesized (named as 54 bp containing Swedish mutation). The 4 fragments mentioned above (CFP, YFP, C99 as well as 54 bp) were inserted into the vector pcDNA3.0. By genetic engineering, the recombinant plasmid pcDNA3.0-CFP-54bp-YFP-C99 was constructed and identified by enzyme digestion, PCR and sequencing. Then the plasmid was transfected into SH-SY5Y cells. Its expression was examined by fluorescence confocal microscopy and the fluorescence resonance energy transfer (FRET) signal was collected. The amyloid beta (A) deposition was detected by immunocytochemistry. Results (1) DNA sequencing showed the sequence of the constructed recombinant plasmid was correct. (2) FRET and two types of fluorescence could be seen by the spectrum confocal fluorescence microscopy. (3) The expression product of fusion gene was correct and cleaved by and secretases. (4) The A deposition was detected in the cell membrane, cytoplasma and intercellular space. Conclusion (1) The fusion protein can generate A by and γproteolytic processing. (2) It is for the first time to observe the APP cleavage by FRET. (3) It is also the first time to find that APP may be cleaved during its transportation from cell plasma to cell membrane. (4) C99 is very important for the correct cleavage of APP. Our test data strongly suggest that C99 may function as the signal peptide. It might guide and direct the APP to the right location for the cleavage.%目的 构建含有Swedish突变和Flemish突变的荧光真核表达系统,研究淀粉

  10. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs.

    Science.gov (United States)

    Valli, Adrian A; Santos, Bruno A C M; Hnatova, Silvia; Bassett, Andrew R; Molnar, Attila; Chung, Betty Y; Baulcombe, David C

    2016-04-01

    We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species,Chlamydomonas reinhardtii Among the mutants from this screen, there were three atDicer-like 3that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type anddcl3mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant indcl3mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing inC. reinhardtiidiffers from that of higher plants and informs about the evolution and function of this pathway in eukaryotes. PMID:26968199

  11. Fracto—emissions in Catastrophic Cleavage Process

    Institute of Scientific and Technical Information of China (English)

    HonglaiTAN; WeiYANG

    1996-01-01

    Fracto-emissions accompanying crack propagation are observed in the recent experiments.The energy impulses during and after fracture stimulate the fracto-emissions.Model concerning atomic scale cleavage processes is proposed to formulate a catastrophic fracure theory relevant to these phenomena.A criterion for catastrophic jump of the cleavage potential is applied to representative crystals.

  12. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release.

    Science.gov (United States)

    Liutkus, Mantas; Fraser, Samuel A; Caron, Karine; Stigers, Dannon J; Easton, Christopher J

    2016-05-17

    Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis. PMID:26918308

  13. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    Directory of Open Access Journals (Sweden)

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  14. Microstructure and cleavage in lath martensitic steels

    Directory of Open Access Journals (Sweden)

    John W Morris Jr, Chris Kinney, Ken Pytlewski and Y Adachi

    2013-01-01

    Full Text Available In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified 'classic' lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  15. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  16. Hyperphosphorylation and cleavage at D421 enhance tau secretion.

    Directory of Open Access Journals (Sweden)

    Vanessa Plouffe

    Full Text Available It is well established that tau pathology propagates in a predictable manner in Alzheimer's disease (AD. Moreover, tau accumulates in the cerebrospinal fluid (CSF of AD's patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF.

  17. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly.

    OpenAIRE

    Ryner, L C; Takagaki, Y; Manley, J L

    1989-01-01

    To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upst...

  18. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    OpenAIRE

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C...

  19. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments

    Science.gov (United States)

    Visscher, P.T.; Kiene, R.P.; Taylor, B.F.

    1994-01-01

    Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of,intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 ?? mol DMSP l-1 slurry h-1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 ??mol DMSP l-1 h-1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 x 107 cells cm-3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 x 105 cells cm-3 in the diatom mat (23% cleavers, 77% demethylators), and 9 x 104 cells cm-3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.

  20. Experiments on schistosity and slaty cleavage

    Science.gov (United States)

    Becker, George Ferdinand

    1904-01-01

    Schistosity as a structure is important, and it is a part of the business of geologists to explain its origin. Slaty cleavage has further and greater importance as a possible tectonic feature. Scarcely a great mountain range exists, or has existed, along the course of which belts of slaty rock are not found, the dip of the cleavage usually approaching verticality. Are these slate belts equivalent to minutely distributed step faults of great total throw, or do they indicate compression perpendicular to the cleavage without attendant relative dislocation? Evidently the answer to this question is of first importance in the interpretation of orogenic phenomena.

  1. The short transcript of Leishmania RNA virus is generated by RNA cleavage.

    OpenAIRE

    MacBeth, K J; Patterson, J. L.

    1995-01-01

    Leishmania RNA virus 1 produces a short viral RNA transcript corresponding to the 5' end of positive-sense single-stranded RNAs both in virally infected cells and in in vitro polymerase assays. We hypothesized that this short transcript was generated via cleavage of full-length positive-sense single-stranded RNA. A putative cleavage site was mapped by primer extension analysis to nucleotide 320 of the viral genome. To address the hypothesis that the short transcript is generated via cleavage ...

  2. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus.

    OpenAIRE

    Stark, R; Meyers, G; Rümenapf, T.; Thiel, H J

    1993-01-01

    The polyprotein of classical swine fever virus starts with the nonstructural protein p23, which is followed by the nucleocapsid protein p14. Proteolytic cleavage between p23 and p14 was demonstrated in a cell-free transcription-translation system. Successive truncation of the cDNA used for the transcription indicated that the proteolytic activity responsible for the cleavage between p23 and p14 resides within p23. In order to determine the cleavage site between these two proteins, the respect...

  3. Preferential DNA Cleavage under Anaerobic Conditions by a DNA Binding Ruthenium Dimer

    OpenAIRE

    Janaratne, Thamara K.; Ongeri, Fiona; Yadav, Abishek; MacDonnell, Frederick M.

    2007-01-01

    In the absence of O2, the cationic complex, [(phen)2Ru(tatpp)Ru(phen)2]4+ (P4+), undergoes in situ reduction by glutathione (GSH) to form a species that induces DNA cleavage. Exposure to air strongly attenuates the cleavage activity, even in the presence of a large excess of reducing agent (e.g., 40 equiv GSH per P4+) suggesting the complex may be useful in targeting cells with a low oxygen microenvironment (hypoxia) for destruction via DNA cleavage. The active species is identified as the do...

  4. Mechanisms of RNAi: mRNA cleavage fragments may indicate stalled RISC

    OpenAIRE

    Holen, Torgeir

    2005-01-01

    The molecular mechanism of RNA interference (RNAi) is under intense investigation. We previously demonstrated the existence of inactive siRNAs and also of mRNA cleavage in vivo in human cells. Here it is shown that some siRNAs with low activity leave mRNA cleavage fragments while an siRNA with higher activity does not. The pattern is consistent with both short-term (4-24 hours) and long-term (1-4 days) time-series. Analysis of the putative 3′ mRNA cleavage product showed high GC content immed...

  5. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

    Science.gov (United States)

    Taneja, Nilay; Fenix, Aidan M.; Rathbun, Lindsay; Millis, Bryan A.; Tyska, Matthew J.; Hehnly, Heidi; Burnette, Dylan T.

    2016-01-01

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis. PMID:27432211

  6. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    Science.gov (United States)

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.

  7. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay

    OpenAIRE

    Ausländer, Simon; Fuchs, David; Hürlemann, Samuel; Ausländer, David; Fussenegger, Martin

    2016-01-01

    Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA archit...

  8. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    Science.gov (United States)

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  9. Observation of Early Cleavage in Animal Development: A Simple Technique for Obtaining the Eggs of Rhabditis (Nematoda)

    Science.gov (United States)

    Hinchliffe, J. R.

    1973-01-01

    Outlines the advantages of using the readily available eggs of the nematode Rhabditis in studying the early cleavage stages of animal development. Discusses the identification and life history of Rhabditis, how to culture and examine the organism, the cleavage stages and cell lineage, and sources of visual aids. (JR)

  10. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2011-12-01

    Full Text Available SARS coronavirus (SCoV nonstructural protein (nsp 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.

  11. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2016-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p quality and the cleavage stage of the embryo produced. PMID:26858565

  12. Ectodomain cleavage of the EGF ligands HB-EGF, neuregulin1-beta, and TGF-alpha is specifically triggered by different stimuli and involves different PKC isoenzymes.

    Science.gov (United States)

    Herrlich, Andreas; Klinman, Eva; Fu, Jonathan; Sadegh, Cameron; Lodish, Harvey

    2008-12-01

    Metalloproteinase cleavage of transmembrane proteins (ectodomain cleavage), including the epidermal growth factor (EGF) ligands heparin-binding EGF-like growth factor (HB-EGF), neuregulin (NRG), and transforming growth factor-alpha (TGF-alpha), is important in many cellular signaling pathways and is disregulated in many diseases. It is largely unknown how physiological stimuli of ectodomain cleavage--hypertonic stress, phorbol ester, or activation of G-protein-coupled receptors [e.g., by lysophosphatidic acid (LPA)]--are molecularly connected to metalloproteinase activation. To study this question, we developed a fluorescence-activated cell sorting (FACS)- based assay that measures cleavage of EGF ligands in single living cells. EGF ligands expressed in mouse lung epithelial cells are differentially and specifically cleaved depending on the stimulus. Inhibition of protein kinase C (PKC) isoenzymes or metalloproteinase inhibition by batimastat (BB94) showed that different regulatory signals are used by different stimuli and EGF substrates, suggesting differential effects that act on the substrate, the metalloproteinase, or both. For example, hypertonic stress led to strong cleavage of HB-EGF and NRG but only moderate cleavage of TGF-alpha. HB-EGF, NRG, and TGF-alpha cleavage was not dependent on PKC, and only HB-EGF and NRG cleavage were inhibited by BB94. In contrast, phorbol 12-myristate-13-acetate (TPA) -induced cleavage of HB-EGF, NRG, and TGF-alpha was dependent on PKC and sensitive to BB94 inhibition. LPA led to significant cleavage of only NRG and TGF-alpha and was inhibited by BB94; only LPA-induced NRG cleavage required PKC. Surprisingly, specific inhibition of atypical PKCs zeta and iota [not activated by diacylglycerol (DAG) and calcium] significantly enhanced TPA-induced NRG cleavage. Employed in a high-throughput cloning strategy, our cleavage assay should allow the identification of candidate proteins involved in signal transduction of different

  13. Precocious (pre-anaphase) cleavage furrows in Mesostoma spermatocytes.

    Science.gov (United States)

    Forer, Arthur; Pickett-Heaps, Jeremy

    2010-08-01

    It generally is assumed that cleavage furrows start ingression at anaphase, but this is not always true. Cleavage furrows are initiated during prometaphase in spermatocytes of the flatworm Mesostoma, becoming detectable soon after the spindles achieve bipolarity. The furrows deepen during prometaphase, but ingression soon arrests. After anaphase the pre-existing furrow recommences its ingression and rapidly cleaves the cell. Such "precocious" furrowing also commonly occurs in diatoms and other algae. The position of the "precocious" cleavage furrow changes when there are changes in the distribution of chromosomes. Each of the 4 unipolarly-oriented univalent chromosomes moves to a pole at the start of prometaphase but later in prometaphase may move to the opposite pole. The furrow position adjusts during prometaphase according to the numbers of univalents at the two poles: when there are two univalent chromosomes at each pole the furrow is symmetrical at the spindle equator, but when there are unequal numbers at the poles the furrow shifts 2-3 microm toward the half-spindle with fewer univalents. Nocodazole causes spindle microtubules to disappear. After addition of nocodazole, bivalents become detached from one pole and move toward the other, which causes the furrow to shift 2-3 microm toward the pole with fewer chromosomes. Furrow positioning thus is sensitive to the positioning of chromosomes in the spindle and furrow positions change in the absence of spindle microtubules. PMID:20434231

  14. 荧光标记的突变型淀粉样前体蛋白裂解过程的细胞研究%Cleavage of mutant amyloid precursor protein labeled by fluorescent protein in cells

    Institute of Scientific and Technical Information of China (English)

    李晓晴; 张苏明; 骆清铭; 张旻; 张智红; 薛峥

    2008-01-01

    the conrse of APP transportation from cell plasma to cell membrane.(3)C99 is very important for the correct cleavage of APP. Our test data strongly suggest that C99 may function as the signal-like peptide. It may guide and direct the APP to the right location for the cleavage.(4)Before the Aβ deposition is formed outside of the cell, Aβ intracellular accumulation results in the change of cell shape.%目的 研究淀粉样前体蛋白(amyloid precursor protein,APP)酶解过程,构建含有Swedish和APP717两种突变的荧光真核表达系统.方法 以pcDNA3.0-APP为模板,通过聚合酶链式反应(PCR)得到含有APP717突变的APP最后300个碱基片段(C99);以pcDNA3.0-CFP-CaM-YFP酶切产物为模板,通过PCR分别得到编码蓝色荧光蛋白(CFP)和黄色荧光蛋白(YFP)碱基序列;生物合成含有Swedish突变的APP中间54个碱基片段(54 bp).利用基因工程技术将CFP、54 bp、YFP、C99片段克隆至载体质粒pcDNA3.0中,通过酶切、PCR、测序鉴定最终得到重组质粒pcDNA3.0-CFP-54bp-YFP-C99和pcDNA3.0-CFP-54 bp-YFP,并将其转染至人神经母细胞瘤(SH-SY5Y)细胞中,利用多光子共聚焦显微镜观察荧光表达,检测荧光共振能量转移(FRET)以及免疫细胞化学染色观察B淀粉样蛋白(Aβ).结果 (1)基因序列分析证明重组质粒构建成功.(2)利用多光子共聚焦显微镜观察转染细胞,显示融合基因能够准确表达蓝色和黄色荧光.(3)表达CFP-54bp-YFP的细胞有FRET现象,而表达CFP-54bp-YFP-C99的细胞中观察不到FRET现象.(4)利用多光子共聚焦显微镜发现CFP-54bp-YFP-C99转染的细胞中有YFP标记的A13产生并沉积在胞质胞膜以及细胞间隙中.(5)免疫细胞化学检测证实CFP-54bp-YFP-C99经过裂解可以产生Aβ,Aβ在细胞膜、细胞质、细胞间隙聚集沉积.结论 (1)融合基因的表达产物能够完成APP的有序裂解产生Aβ.(2)Aβ有可能产生于APP由胞质至胞膜的运输过程中.(3)研究显示C99对于APP

  15. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    Science.gov (United States)

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  16. Selective cleavage of pepsin by molybdenum metallopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110 (Thailand); Buranaprapuk, Apinya, E-mail: apinyac@swu.ac.th [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110 (Thailand)

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  17. Selective cleavage of pepsin by molybdenum metallopeptidase

    International Nuclear Information System (INIS)

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 °C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH4)6Mo7O24·4H2O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: ► This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. ► The cleavage reaction undergoes at mild conditions. ► No need of reducing agents. ► Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of ∼23, ∼19 and ∼16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) was incubated at 37 °C for 24 h. No self cleavage of pepsin occurs at 37 °C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH4)6Mo7O24·4H2O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein backbone.

  18. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Sarah L. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Giorgio, Todd D., E-mail: todd.d.giorgio@vanderbilt.edu [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN (United States)

    2009-05-05

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  19. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    International Nuclear Information System (INIS)

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  20. Dataset of cocoa aspartic protease cleavage sites.

    Science.gov (United States)

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  1. Eurosceptism: the Birth of a New Cleavage?

    Directory of Open Access Journals (Sweden)

    Lorenzo Viviani

    2010-05-01

    Full Text Available Euroscepticism is an ambivalent and polysemic concept, consisting of the theme of the European identity, the construction of European Union as new polity, the development of an opposition as expression of new social cleavage, and finally the perspective of an ideological politicization of the european integration by national and supranational political actors. The article attempts to make light on the nature and on the dynamics of development of the euroscepticism through a sequence of analysis that starts from the identity of Europe (what we mean by euroscepticism, then addresses the social dimension of Europe (what we mean by the new european cleavage, and it finally examines the political dimension (the risks and opportunities of politicization by political parties of the european cleavage.

  2. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans.

  3. Holoblastic early cleavage of Tetrodontophora bielanensis (Collembola) eggs, with special reference to its irregularity.

    Science.gov (United States)

    Klag, J; Jura, C; Krzysztofowicz, A; Kisiel, E

    1999-01-01

    The fertilized eggs of Tetrodontophora bielanensis start to cleave 6 to 8 days after oviposition and initially only karyokineses occur. The cytokinesis begins after two karyokineses, when four nuclei are observed in the ooplasm. Two cleavage furrows, perpendicular to each other, appear simultaneously at the egg poles where polar bodies are located and gradually the furrows encompass the whole egg diameter. The furrow formation is initiated by the bundle of microfilaments that contract and pull superficial fragments of the oolemma into the yolk and subsequently new membranes, separating the daughter cells, start to form. However, they do not grow towards the egg centre but bifurcate, leaving the central part of the ooplasm outside of the newly formed blastomeres. Starting from the fourth or fifth cleavage division, the bifurcations permanently occur and multiple cleavage furrows are formed on the embryo surface. Moreover, fragments of the ooplasm, enclosed within the cell membrane but devoid of cell nucleus are observed. During further development such cell fragments become reincorporated into the embryo. This mode of cleavage leads eventually to the formation of cellular blastoderm on the embryo surface. The results presented in the paper suggest that the control of cleavage in T. bielanensis acts not at the level of cytoplasmic determinants but rather at the level of positional information of blastomeres. PMID:10482251

  4. The short transcript of Leishmania RNA virus is generated by RNA cleavage.

    Science.gov (United States)

    MacBeth, K J; Patterson, J L

    1995-01-01

    Leishmania RNA virus 1 produces a short viral RNA transcript corresponding to the 5' end of positive-sense single-stranded RNAs both in virally infected cells and in in vitro polymerase assays. We hypothesized that this short transcript was generated via cleavage of full-length positive-sense single-stranded RNA. A putative cleavage site was mapped by primer extension analysis to nucleotide 320 of the viral genome. To address the hypothesis that the short transcript is generated via cleavage at this site, two substrate RNAs that possessed viral sequence encompassing the putative cleavage site were created. When incubated with sucrose-purified viral particles, these substrate RNAs were site-specifically cleaved. The cleavage site of the in vitro-processed RNAs also mapped to viral nucleotide 320. The short-transcript-generating activity could be specifically abolished by proteinase K treatment of sucrose-purified viral particles and high concentrations of EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid], suggesting that the activity requires a proteinaceous factor and possibly intact viral particles. The cleavage activity is directly associated with short-transcript-generating activity, since only viral particle preparations which were capable of generating the short transcript in polymerase assays were also active in the cleavage assay. Furthermore, the short-transcript-generating activity is independent of the viral polymerase's transcriptase and replicase activities. We present a working model whereby cleavage of Leishmaniavirus RNA transcripts functions in the maintenance of a low-level persistent infection. PMID:7745692

  5. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors

    OpenAIRE

    de Vries, H.; Rüegsegger, U.; Hübner, W; Friedlein, A.; van Langen, H; Keller, W.

    2000-01-01

    Six different protein factors are required in vitro for 3' end formation of mammalian pre-mRNAs by endonucleolytic cleavage and polyadenylation. Five of the factors have been purified and most of their components cloned, but cleavage factor II(m) (CF II(m)) remained uncharacterized. We have purified CF II(m) from HeLa cell nuclear extract by several chromatographic steps. During purification, CF II(m) activity separated into two components, one essential (CF IIA(m)) and one stimulatory (CF II...

  6. Cleavage site analysis in picornaviral polyproteins

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Hansen, Jan; Blaas, Dieter;

    1996-01-01

    are indeed cleaved awaits experimental verification. Additionally, we report several errors detected in the protein databases. A computer server for prediction of cleavage sites by picornaviral proteinases is publicly available at the e-mail address NetPicoRNA@cbs.dtu.dk or via WWW at http://www.cbs.dtu.dk/services/NetPicoRNA...

  7. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand;

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin...

  8. Reductive cleavage of the peptide bond

    Science.gov (United States)

    Holian, J.; Garrison, W. M.

    1973-01-01

    In many biological research efforts, long chain organic molecules are studied by breaking large molecules into smaller components. Cleavage technique of recent interest is the use of solvated electrons. These are formed when aqueous solutions are bombarded with gamma radiation. Solvated electron is very reactive and can reduce most any species present, even to form free radicals.

  9. ADAM17-mediated CD44 cleavage promotes orasphere formation or stemness and tumorigenesis in HNSCC

    International Nuclear Information System (INIS)

    CD44, an extracellular matrix (ECM) receptor, has been described as a cancer stem cell marker in multiple cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC orasphere formation or stemness was characterized by cleavage of CD44, and thus we hypothesized that this proteolytic processing may be critical to stemness and tumorigenesis. We tested this hypothesis by examining the mechanisms that regulate this process in vitro and in vivo, and by exploring its clinical relevance in human specimens. Sphere assays have been used to evaluate stemness in vitro. Spheres comprised of HNSCC cells or oraspheres and an oral cancer mouse model were used to examine the significance of CD44 cleavage using stable suppression and inhibition approaches. These mechanisms were also examined in HNSCC specimens. Oraspheres exhibited increased levels of CD44 cleavage compared to their adherent counterparts. Given that disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a major matrix metalloproteinase known to cleave CD44, we chemically inhibited and stably suppressed ADAM17 expression in HNSCC cells and found that these treatments blocked CD44 cleavage and abrogated orasphere formation. Furthermore, stable suppression of ADAM17 in HNSCC cells also diminished tumorigenesis in an oral cancer mouse model. Consistently, stable suppression of CD44 in HNSCC cells abrogated orasphere formation and inhibited tumorigenesis in vivo. The clinical relevance of these findings was confirmed in matched primary and metastatic human HNSCC specimens, which exhibited increased levels of ADAM17 expression and concomitant CD44 cleavage compared to controls. CD44 cleavage by ADAM17 is critical to orasphere formation or stemness and HNSCC tumorigenesis

  10. Extra Copper-mediated Enhancement of the DNA Cleavage Activity Supported with Wild-type Cu, Zn Superoxide Dismutase

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ruo-Yu; JIANG Wei; ZHANG Li-Na; WANG Li; LIU Chang-Lin

    2008-01-01

    It is well known that the primary function of wild type Cu, Zn superoxide dismutase (holo SOD) is to catalyze the conversion of the superoxide anion to H2O2 and O2 as an antioxidant enzyme. However, the aberrant copper-mediated oxidation chemistry in the enzyme (including its mutation forms) that damages nucleic acids, proteins including itself and cell membrane has attracted extensive attention in the past decade. The present study examined the hydrogen peroxide-dependent DNA cleavage activity supported with the combinations between holo SOD and extra copper (holo SOD+nCu(Ⅱ)). The results indicate that the presence of extra copper can enhance the DNA cleavage activity and a cooperative effect between holo SOD and the extra Cu(Ⅱ) occurs in DNA cleavage. The relative activity and kinetic assay showed that the DNA cleavage activity of holo SOD+nCu(Ⅱ) was enhanced upon addition of extra Cu(Ⅱ). The favorable pH regions for the DNA cleavage were observed to be 3.6-5.6 and 9.0-10, suggesting the species responsible for the DNA cleavage are different in different pH regions. In addition,to obtain an insight into DNA cleavage pathways, the effect of free radical scavengers and inhibitors on the DNA cleavage activity was probed.

  11. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage

    OpenAIRE

    Brännvall, Mathias; Kikovska, Ema; Kirsebom, Leif A.

    2004-01-01

    To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2′OH at the RNase P cleavage site (at −1) and/or at position +73 had been replaced with a 2′ amino group (or 2′H). Our data showed that the presence of 2′ modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2′ amino substituted substrates at different pH showed ...

  12. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Directory of Open Access Journals (Sweden)

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  13. Autoproteolytic Cleavage and Activation of Human Acid Ceramidase*

    OpenAIRE

    Shtraizent, Nataly; Eliyahu, Efrat; Park, Jae-Ho; He, Xingxuan; Shalgi, Ruth; Schuchman, Edward H.

    2008-01-01

    Herein we report the mechanism of human acid ceramidase (AC; N-acylsphingosine deacylase) cleavage and activation. A highly purified, recombinant human AC precursor underwent self-cleavage into α and β subunits, similar to other members of the N-terminal nucleophile hydrolase superfamily. This reaction proceeded with first order kinetics, characteristic of self-cleavage. AC self-cleavage occurred most rapidly at acidic pH, but also at neutral pH. Site-directed mutagene...

  14. Establishment of cell lines stably co-expressing Japanese encephalitis virus prM and E protein with a mutant in prM furin cleavage site%流行性乙型脑炎prM蛋白剪切位点突变的prM-E蛋白表达细胞系的建立

    Institute of Scientific and Technical Information of China (English)

    李业南; 陈振师; 步志高; 华荣虹

    2013-01-01

    In order to establish the BHK-21 cell lines stably co-expressing prM-E fusion protein of Japanese encephalitis virus (JEV) with a mutant furin site to disable the pre-peptide cleavage of prM, BHK-21 cells was transfected with the recombinant plasmid pCAG-JEV-prM(R89A)E, which was constructed by introducing a point mutation at the cleavage site of prM gene by PCR and cloned into eukaryotic vector pCAG-neo with E gene. Cells stably co-expressing prM-E fusion protein were selected in the present of G418 and identified by indirect immunofluorescence assay and western blot, In addition, the cells displaying high-level protein expression were purified through limiting dilution cloning. Eventfully, the results showed that the cell line was able to express the intact prM of prM-E fusion protein. The established cell line would provide a basis for further study the effect of the cleavage event on mature mechanism of JEV and the development of JEV subunit vaccine.%为建立稳定共表达乙型脑炎病-毒(JEV)完整M前体蛋白(prM)和E蛋白的BHK-21细胞系,本研究在prM蛋白furin蛋白酶剪切位点编码基因中引入突变,将突变后的prM基因克隆于质粒中构建重组表达质粒pCAG-JEV-prM(R89A)E.将重组质粒转染BHK-21细胞,转染48 h后细胞用含G418的选择性培养基选择培养,进一步经细胞克隆纯化制备表达剪切位点突变的JEV prM-E蛋白的稳定细胞系.经IFA和western blot鉴定表明,该细胞系能表达JEV prM与E蛋白,所表达的prM蛋白未发生剪切;细胞经多次传代后仍能够稳定地共表达prM与E蛋白.该细胞系的建立为研究prM蛋白剪切对JEV粒子形成的影响以及亚单位疫苗的制备奠定了基础.

  15. Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin

    OpenAIRE

    1996-01-01

    Calcium signaling is known to be associated with cytokinesis; however, the detailed spatio-temporal pattern of calcium dynamics has remained unclear. We have studied changes of intracellular free calcium in cleavage-stage Xenopus embryos using fluorescent calcium indicator dyes, mainly Calcium Green-1. Cleavage formation was followed by calcium transients that localized to cleavage furrows and propagated along the furrows as calcium waves. The calcium transients at the cleavage furrows were o...

  16. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  17. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  18. Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio

    Science.gov (United States)

    Xu, Ting-Hai; Yan, Yan; Kang, Yanyong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    Mutations in the amyloid precursor protein (APP) gene and the aberrant cleavage of APP by γ-secretase are associated with Alzheimer’s disease (AD). Here we have developed a simple and sensitive cell-based assay to detect APP cleavage by γ-secretase. Unexpectedly, most familial AD (FAD)-linked APP mutations make APP partially resistant to γ-secretase. Mutations that alter residues N terminal to the γ-secretase cleavage site Aβ42 have subtle effects on cleavage efficiency and cleavage-site selectivity. In contrast, mutations that alter residues C terminal to the Aβ42 site reduce cleavage efficiency and dramatically shift cleavage-site specificity toward the aggregation-prone Aβ42. Moreover, mutations that remove positive charge at residue 53 greatly reduce the APP cleavage by γ-secretase. These results suggest a model of γ-secretase substrate recognition, in which the APP region C terminal to the Aβ42 site and the positively charged residue at position 53 are the primary determinants for substrate binding and cleavage-site selectivity. We further demonstrate that this model can be extended to γ-secretase processing of notch receptors, a family of highly conserved cell-surface signaling proteins. PMID:27625790

  19. Apoptosis Mediated by HIV Protease is Preceded by Cleavage of Bcl-2

    Science.gov (United States)

    Strack, Peter R.; West Frey, Michelle; Rizzo, Christopher J.; Cordova, Beverly; George, Henry J.; Meade, Raymond; Ho, Siew Peng; Corman, Jeanne; Tritch, Radonna; Korant, Bruce D.

    1996-09-01

    Expression of the human immunodeficiency virus type 1 (HIV) protease in cultured cells leads to apoptosis, preceded by cleavage of bcl-2, a key negative regulator of cell death. In contrast, a high level of bcl-2 protects cells in vitro and in vivo from the viral protease and prevents cell death following HIV infection of human lymphocytes, while reducing the yields of viral structural proteins, infectivity, and tumor necrosis factor α . We present a model for HIV replication in which the viral protease depletes the infected cells of bcl-2, leading to oxidative stress-dependent activation of NFkappa B, a cellular factor required for HIV transcription, and ultimately to cell death. Purified bcl-2 is cleaved by HIV protease between phenylalanine 112 and alanine 113. The results suggest a new option for HIV gene therapy; bcl-2 muteins that have noncleavable alterations surrounding the HIV protease cleavage site.

  20. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  1. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin;

    2009-01-01

    This investigation was stimulated by reports that one-electron reductions of monoaryldialkylsulfonium salts never give aryl bond cleavage whereas reductions of diarylmonoalkylsulfonium salts preferentially give aryl bond cleavage. We studied the product ratios from the reductive cleavage of di-4......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical...

  2. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara;

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression.......Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N...

  3. Proteolytic cleavage in an endolysosomal compartment is required for Toll-like receptor 9 activation

    OpenAIRE

    Park, Boyoun; Brinkmann, Melanie M.; Spooner, Eric; Lee, Clarissa C.; Kim, You-Me; Ploegh, Hidde L.

    2008-01-01

    Toll-like receptors (TLRs) activate the innate immune system in response to pathogens. Here we showed that TLR9 proteolytic cleavage is a prerequisite for TLR9 signaling. Inhibition of lysosomal proteolysis rendered TLR9 inactive. The C-terminal fragment of TLR9 thus generated included a portion of the TLR9 ectodomain, as well as the transmembrane and cytoplasmic domains. This cleavage fragment bound to the TLR9 ligand CpG, and, when expressed in Tlr9−/− dendritic cells, restored CpG-induced ...

  4. Sequence Features of Drosha and Dicer Cleavage Sites Affect the Complexity of IsomiRs

    OpenAIRE

    Julia Starega-Roslan; Witkos, Tomasz M.; Paulina Galka-Marciniak; Krzyzosiak, Wlodzimierz J.

    2015-01-01

    The deep-sequencing of small RNAs has revealed that different numbers and proportions of miRNA variants called isomiRs are formed from single miRNA genes and that this effect is attributable mainly to imprecise cleavage by Drosha and Dicer. Factors that influence the degree of cleavage precision of Drosha and Dicer are under investigation, and their identification may improve our understanding of the mechanisms by which cells modulate the regulatory potential of miRNAs. In this study, we focu...

  5. Prenatal organophosphates exposure alternates the cleavage plane orientation of apical neural progenitor in developing neocortex.

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Chen

    Full Text Available Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN and chlorpyrifos (CPF pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP, another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors.

  6. The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin Heliocidaris erythrogramma.

    Science.gov (United States)

    Henry, J J; Wray, G A; Raff, R A

    1990-11-01

    Previous fate mapping studies as well as the culture of isolated blastomeres have revealed that the dorsoventral axis is specified as early as the 2-cell stage in the embryos of the direct developing echinoid, Heliocidaris erythrogramma. Normally, the first cleavage plane includes the animal-vegetal axis and bisects the embryo between future dorsal and ventral halves. Experiments were performed to establish whether the dorsoventral axis is set up prior to the first cleavage division in H. erythrogramma. Eggs were elongated and fertilized in silicone tubes of a small diameter in order to orient the cleavage spindle and thus the first plane of cell division. Following first cleavage, one of the two resulting blastomeres was then microinjected with a fluorescent cell lineage tracer dye. Fate maps were made after culturing these embryos to larval stages. The results indicate that the first cleavage division can be made to occur at virtually any angle relative to the animal-vegetal and dorsoventral axes. Therefore, the dorsoventral axis is specified prior to first cleavage. We argue that this axis resides in the unfertilized oocyte rather than being set up as a consequence of fertilization.

  7. Regulated Cleavage of Prothrombin by Prothrombinase: REPOSITIONING A CLEAVAGE SITE REVEALS THE UNIQUE KINETIC BEHAVIOR OF THE ACTION OF PROTHROMBINASE ON ITS COMPOUND SUBSTRATE*♦

    OpenAIRE

    Bradford, Harlan N.; Micucci, Joseph A.; Krishnaswamy, Sriram

    2009-01-01

    Prothrombinase converts prothrombin to thrombin via cleavage at Arg320 followed by cleavage at Arg271. Exosite-dependent binding of prothrombin to prothrombinase facilitates active site docking by Arg320 and initial cleavage at this site. Precise positioning of the Arg320 site for cleavage is implied by essentially normal cleavage at Arg320 in recombinant prothrombin variants...

  8. 2ʹ-O-methyl nucleotide modified DNA substrates influence the cleavage efficiencies of BamHI and BglII

    Indian Academy of Sciences (India)

    Zhaoxue Tong; Bin Zhao; Guojie Zhao; Hong Shang; Yifu Guan

    2014-09-01

    Induction of endonucleolytic DNA cleavage is an essential event that links the initiating stimuli to the final effects of cells. The cleavage efficiency and thus the final yield could be affected by many factors, including structures of DNA substrates, composite structures of enzymes–substrates or enzymes–nucleic analogs and so on. However, it is not clear whether a nucleotide derivative-substituted in DNA substrates can influence the efficiency of enzymatic cleavage. To investigate the effect of sugar pucker conformation on DNA–protein interactions, we used 2′--methyl modified nucleotides (OMeN) to modify DNA substrates of isocaudemers BamHI and BglII in this study, and used FRET assay as an efficient method for analysis of enzyme cleavage. Experimental results demonstrated that OMeN-substituted recognition sequences influenced the cleavage rates significantly in a position-dependent manner. OMeN substitutions can reduce the cleavage as expected. Surprisingly, OMeN substitutions can also enhance the cleavage rates. The kinetics parameters of max and m have been obtained by fitting the Michaelis-Menten kinetic equation. These 2′-OMe nucleotides could behave as a regulatory element to modulate the enzymatic activity in vitro, and this property could enrich our understanding about the endonuclease cleavage mechanism and enhance our ability to regulate the enzymatic cleavage efficiency for applications in synthetic biology.

  9. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    Directory of Open Access Journals (Sweden)

    Chenyu Zhang

    Full Text Available Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial

  10. A Historical Trend of Ethnic Cleavages in Contemporary Iran

    Directory of Open Access Journals (Sweden)

    Hussein Mohammadzadeh

    2013-10-01

    Full Text Available The goal of this study is evaluation social and historical content of social cleavage in contemporary Iran. Analytical framework rooted in Rokan theory. Rokan believed that social cleavage appearance post of revolutions. Method of study was historical comparatives.The method of this research is comparative historical in which we used of historical documents and data. In this field, I have compared data of indexes of socio-economic of ethnic states.Assessment of data and documents show that social cleavages and particularly ethnic cleavages rise after Reza shah revolution. He established centralized and dictated government and divided society of Iran and institutionalization the inequality in social structure. Sense of deprivation about inequality and suited circumstance activated ethnic cleavage in Iran. Decrease of inequality and justice could decrease of social deprivation and deactivated social cleavages.

  11. SVM-based prediction of caspase substrate cleavage sites

    OpenAIRE

    Wee, Lawrence JK; Tan, Tin Wee; Ranganathan, Shoba

    2006-01-01

    Background Caspases belong to a class of cysteine proteases which function as critical effectors in apoptosis and inflammation by cleaving substrates immediately after unique sites. Prediction of such cleavage sites will complement structural and functional studies on substrates cleavage as well as discovery of new substrates. Recently, different computational methods have been developed to predict the cleavage sites of caspase substrates with varying degrees of success. As the support vector...

  12. Modeling and Inferring Cleavage Patterns in Proliferating Epithelia

    OpenAIRE

    Patel, Ankit B.; Gibson, William T.; Gibson, Matthew C; Radhika Nagpal

    2009-01-01

    The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorp...

  13. A Python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites

    Directory of Open Access Journals (Sweden)

    Bruce Southey

    2008-12-01

    Full Text Available Neuropeptides and hormones are signaling molecules that support cell-cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html, a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.

  14. A python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites.

    Science.gov (United States)

    Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2008-01-01

    Neuropeptides and hormones are signaling molecules that support cell-cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.

  15. Continuous phosphatidylinositol metabolism is required for cleavage of crane fly spermatocytes.

    Science.gov (United States)

    Saul, Daniel; Fabian, Lacramioara; Forer, Arthur; Brill, Julie A

    2004-08-01

    Successful cleavage of animal cells requires co-ordinated regulation of the actomyosin contractile ring and cleavage furrow ingression. Data from a variety of systems implicate phosphoinositol lipids and calcium release as potential regulators of this fundamental process. Here we examine the requirement for various steps of the phosphatidylinositol (PtdIns) cycle in dividing crane fly (Nephrotoma suturalis) spermatocytes. PtdIns cycle inhibitors were added to living cells after cleavage furrows formed and began to ingress. Inhibitors known to block PtdIns recycling (lithium), PtdIns phosphorylation (wortmannin, LY294002) or phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] hydrolysis [U73122 (U7)] all stopped or slowed furrowing. The effect of these drugs on cytokinesis was quite rapid (within 0-4 minutes), so continuous metabolism of PtdIns appears to be required for continued cleavage furrow ingression. U7 caused cleavage furrow regression concomitant with depletion of F-actin from the contractile ring, whereas the other inhibitors caused neither regression nor depletion of F-actin. That U7 depletes furrow-associated actin seems counterintuitive, as inhibition of phospholipase C would be expected to increase cellular levels of PtdIns(4,5)P(2) and hence increase actin polymerization. Our confocal images suggest, however, that F-actin might accumulate at the poles of U7-treated cells, consistent with the idea that PtdIns(4,5)P(2) hydrolysis may be required for actin filaments formed at the poles to participate in contractile ring assembly at the furrow. PMID:15265984

  16. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy.

    Science.gov (United States)

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Tšuiko, Olga; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris R

    2016-05-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term "heterogoneic division" to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals. PMID:27197242

  17. Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation.

    OpenAIRE

    Dubay, J W; Dubay, S R; Shin, H. J.; Hunter, E

    1995-01-01

    Endoproteolytic cleavage of the glycoprotein precursor to the mature SU and TM proteins is an essential step in the maturation of retroviral glycoproteins. Cleavage of the precursor polyprotein occurs at a conserved, basic tetrapeptide sequence and is carried out by a cellular protease. The glycoprotein of the human immunodeficiency virus type 1 contains two potential cleavage sequences immediately preceding the N terminus of the TM protein. To determine the functional significance of these t...

  18. Synthesis, photochemistry, DNA cleavage/binding and cytotoxic properties of fluorescent quinoxaline and quinoline hydroperoxides.

    Science.gov (United States)

    Chowdhury, Nilanjana; Gangopadhyay, Moumita; Karthik, S; Pradeep Singh, N D; Baidya, Mithu; Ghosh, S K

    2014-01-01

    Novel fluorescent quinoxaline and quinoline hydroperoxides were shown to perform dual role as both fluorophores for cell imaging and photoinduced DNA cleaving agents. Photophysical studies of newly synthesized quinoxaline and quinoline hydroperoxides showed that they all exhibited moderate to good fluorescence. Photolysis of quinoxaline and quinoline hydroperoxides in acetonitrile using UV light above 350nm resulted in the formation of corresponding ester compounds via γ-hydrogen abstraction by excited carbonyl chromophore. Single strand DNA cleavage was achieved on irradiation of newly synthesized hydroperoxides by UV light (⩾350nm). Both hydroxyl radicals and singlet oxygen were identified as reactive oxygen species (ROS) responsible for the DNA cleavage. Further, we showed quinoline hydroperoxide binds to ct-DNA via intercalative mode. In vitro biological studies revealed that quinoline hydroperoxide has good biocompatibility, cellular uptake property and cell imaging ability. Finally, we showed that quinoline hydroperoxide can permeate into cells efficiently and may cause cytotoxicity upon irradiation by UV light.

  19. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available BACKGROUND: Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. METHODOLOGY/PRINCIPAL FINDING: To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. CONCLUSIONS: Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  20. prpC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site

    Institute of Scientific and Technical Information of China (English)

    Cathryn L Haigh; Victoria A Lewis; Laura J Vella; Colin L Masters; Andrew F Hill; Victoria A Lawson; Steven J Collins

    2009-01-01

    The copper-binding, membrane-anchored, cellular prion protein (PrPC) has two constitutive cleavage sites pro-ducing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RKI3 cells expressing either human PrPC, mouse PrPC or mouse PrPC carrying the 3F4 epitope, this study explored the influence of the PrPC primary sequence on endoproteolytic cleavage and one putative PrPC function, MAP kinase signal transduction, in response to exoge-nous copper with or without a perturbed membrane environment. PrPC primary sequence, especially that around the N1/C1 cleavage site, appeared to influence basal levels of proteolysis at this location and extracellular signal-regulat-ed kinase 1/2 (ERK1/2) phosphorylation, with increased processing demonstrating an inverse relationship with basal ERK1/2 activation. Human PrPC showed increased N1/C1 cleavage in response to copper alone, accompanied by spe-cific p38 and JNK/SAPK phosphorylation. Combined exposure to copper plus the cholesterol-sequestering antibiotic filipin resulted in a mouse PrPC-specific substantial increase in signal protein phosphorylation, accompanied by an increase in N1/C1 cleavage. Mouse PrPC harboring the human N1/C1 cleavage site assumed more human-like profiles basally and in response to copper and altered membrane environments. Our results demonstrate that the PrPC pri-mary sequence around the N1/C1 cleavage site influences endoproteolytic processing at this location, which appears linked to MAP kinase signal transduction both basally and in response to copper. Further, the primary sequence ap-pears to confer a mutual dependence of N1/C1 cleavage and membrane integrity on the fidelity of prpC-related signal transduction in response to exogenous stimuli.

  1. ADAM10 overexpression shifts lympho- and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch.

    Science.gov (United States)

    Gibb, David R; Saleem, Sheinei J; Kang, Dae-Joong; Subler, Mark A; Conrad, Daniel H

    2011-04-01

    Although the physiological consequences of Notch signaling in hematopoiesis have been extensively studied, the differential effects of individual notch cleavage products remain to be elucidated. Given that ADAM10 is a critical regulator of Notch and that its deletion is embryonically lethal, we generated mice that overexpress ADAM10 (ADAM10 transgenic [A10Tg]) at early stages of lympho- and myeloid development. Transgene expression resulted in abrogated B cell development, delayed T cell development in the thymus, and unexpected systemic expansion of CD11b(+)Gr-1(+) cells, also known as myeloid-derived suppressor cells. Mixed bone marrow reconstitution assays demonstrated that transgene expression altered hematopoiesis via a cell-intrinsic mechanism. Consistent with previously reported observations, we hypothesized that ADAM10 overexpression dysregulated Notch by uncoupling the highly regulated proteolysis of Notch receptors. This was confirmed using an in vitro model of hematopoiesis via culturing A10Tg hematopoietic Lineage(-)Sca-1(+)c-Kit(+) cells with OP-9 stromal cells in the presence or absence of Delta-like 1, a primary ligand for Notch. Blockade of the site 2 (S2) and site 3 (S3) cleavage of the Notch receptor demonstrated differential effects on hematopoiesis. OP9-DL1 cultures containing the ADAM10 inhibitor (S2 cleavage site) enhanced and rescued B cell development from wild-type and A10Tg Lineage(-)Sca-1(+)c-Kit(+) cells, respectively. In contrast, blockade of γ-secretase at the S3 cleavage site induced accumulation of the S2 product and consequently prevented B cell development and resulted in myeloid cell accumulation. Collectively, these findings indicate that the differential cleavage of Notch into S2 and S3 products regulated by ADAM10 is critical to hematopoietic cell-fate determination.

  2. Control of cleavage spindle orientation in Caenorhabditis elegans: The role of the genes par-2 and par-3

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, N.N.; Kirby, C.M.; Kemphues, K.J. [Cornell Univ., Ithaca, NY (United States)

    1995-02-01

    Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity of these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.

  3. Inclusion Complex of Zerumbone with Hydroxypropyl- β -Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

    OpenAIRE

    Nabilah Muhammad Nadzri; Ahmad Bustamam Abdul; Mohd Aspollah Sukari; Siddig Ibrahim Abdelwahab; Eid, Eltayeb E. M.; Syam Mohan; Behnam Kamalidehghan; Theebaa Anasamy; Kuan Beng Ng; Suvitha Syam; Ismail Adam Arbab; Heshu Sulaiman Rahman; Hapipah Mohd Ali

    2013-01-01

    Zerumbone (ZER) isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl- β -cyclodextrin (HP β CD) to enhance ZER's solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HP β CD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G...

  4. Presence of Meiotic Spindles Indicates Early Cleavage of Embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To assess whether the detection of the meiotic spindle could anticipate the appearance of early cleavage.Methods Oocytes were obtained from stimulated ovaries of consenting patients undergoing oocytes retrieval for ICSI.Spindles were imaged with the Polscope.After ICSI,oocytes with or without spindles were cultured for examination of early cleavage and embryo development.A total of 328 oocytes from 50 cycles were examined with the Polscope and inseminated by ICSI.Results Spindles were imaged in 81.7% of oocytes.After ICSI,more oocytes with spindles (78.4%) fertilized normally than oocytes without spindles (53.3%)(P<0.001).At 25-27 h post ICSI.more fertilized oocytes developed from oocytes with spindles (81.9%) were detected early cleavage than those from oocytes without spindles(28.1%)(P<0.001).Significantly more embryos with early cleavage (82.2%) developed to high quality embryos at d 3 compared with the embryos without early cleavage(48.3%)(P=0.001).The value of rs related to the relationship between spindles and early cleavage was 0.420(P<0.0001).Conclusion The existing of the early cleavage may have a predictive value on the opportunity of high quality embryos and the existing of the spindle may have a predictive value in the appearance of early cleavage.

  5. Deletion Mapping of the Encephalomyocarditis Virus Primary Cleavage Site

    OpenAIRE

    Hahn, Harry; Palmenberg, Ann C.

    2001-01-01

    The cotranslational, primary self-cleavage reaction of cardiovirus polyprotein relies on a highly conserved, short segment of amino acids at the 2A-2B protein boundary. The amino terminus of the required element for encephalomyocarditis virus has now been mapped to include Tyr126 of the 2A protein, the 18th amino acid before the cleavage site.

  6. Si(111) cleavage and the (2 x 1) reconstruction process

    Science.gov (United States)

    Pearson, E. M.; Halicioglu, T.; Tiller, W. A.

    1987-01-01

    Using a computer simulation technique with a semiempirical potential, a Si crystal was cleaved along the (111) plane. The pi-bonded chain structural features of the Si(111) cleavage surface are observed and found to be a consequence of the dynamics of this cleavage process and seem not to be influenced by the final energetics.

  7. A photoinduced cleavage of DNA useful for determining T residues.

    OpenAIRE

    Simoncsits, A; Török, I

    1982-01-01

    Irradiation of 5'-[32P]-phosphate labeled DNA fragments with ultraviolet light in the presence of primary amines followed by piperidine treatment resulted in base-specific cleavage of the DNA chain at T residues, accompanied by a less intensive G reaction. This simple, T greater than G cleavage offers an alternative method for determining T residues in chemical DNA sequencing.

  8. The N-terminal domain allosterically regulates cleavage and activation of the epithelial sodium channel.

    Science.gov (United States)

    Kota, Pradeep; Buchner, Ginka; Chakraborty, Hirak; Dang, Yan L; He, Hong; Garcia, Guilherme J M; Kubelka, Jan; Gentzsch, Martina; Stutts, M Jackson; Dokholyan, Nikolay V

    2014-08-15

    The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.

  9. The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel*

    Science.gov (United States)

    Kota, Pradeep; Buchner, Ginka; Chakraborty, Hirak; Dang, Yan L.; He, Hong; Garcia, Guilherme J. M.; Kubelka, Jan; Gentzsch, Martina; Stutts, M. Jackson; Dokholyan, Nikolay V.

    2014-01-01

    The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation. PMID:24973914

  10. Cleavage of resveratrol in fungi: characterization of the enzyme Rco1 from Ustilago maydis.

    Science.gov (United States)

    Brefort, Thomas; Scherzinger, Daniel; Limón, M Carmen; Estrada, Alejandro F; Trautmann, Danika; Mengel, Carina; Avalos, Javier; Al-Babili, Salim

    2011-02-01

    Ustilago maydis, the causative agent of corn smut disease, contains two genes encoding members of the carotenoid cleavage oxygenase family, a group of enzymes that cleave double bonds in different substrates. One of them, Cco1, was formerly identified as a β-carotene cleaving enzyme. Here we elucidate the function of the protein encoded by the second gene, termed here as Ustilago maydis Resveratrol cleavage oxygenase 1 (Um Rco1). In vitro incubations of heterologously expressed and purified UM Rco1 with different carotenoid and stilbene substrates demonstrate that it cleaves the interphenyl Cα-Cβ double bond of the phytoalexin resveratrol and its derivative piceatannol. Um Rco1 exhibits a high degree of substrate specificity, as suggested by the lack of activity on carotenoids and the other resveratrol-related compounds tested. The activity of Um Rco1 was confirmed by incubation of U. maydis rco1 deletion and over-expression strains with resveratrol. Furthermore, treatment with resveratrol resulted in striking alterations of cell morphology. However, pathogenicity assays indicated that Um rco1 is largely dispensable for biotrophic development. Our work reveals Um Rco1 as the first eukaryotic resveratrol cleavage enzyme identified so far. Moreover, Um Rco1 represents a subfamily of fungal enzymes likely involved in the degradation of stilbene compounds, as suggested by the cleavage of resveratrol by homologs from Aspergillus fumigatus, Chaetomium globosum and Botryotinia fuckeliana.

  11. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nicholas D., E-mail: nweber@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Aubert, Martine, E-mail: maubert@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Dang, Chung H., E-mail: cdang@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Stone, Daniel, E-mail: dstone2@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Jerome, Keith R., E-mail: kjerome@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Department of Microbiology, University of Washington, Seattle, WA 98195 (United States)

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  12. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    International Nuclear Information System (INIS)

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies

  13. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    Science.gov (United States)

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  14. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases

    Directory of Open Access Journals (Sweden)

    Siniša Urban

    2014-09-01

    Full Text Available Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.

  15. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation

    OpenAIRE

    Furger, AM; Neve, J; Burger, K; Patel, R.; Gullerova, M; Li, W.; Hoque, M.; Tian, B.

    2015-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we employed a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected t...

  16. Oxygen-Dependent Cleavage of the p75 Neurotrophin Receptor Triggers Stabilization of HIF-1α

    OpenAIRE

    Le Moan, Natacha; Houslay, Daniel M.; Christian, Frank; Houslay, Miles D.; Akassoglou, Katerina

    2011-01-01

    Homeostatic control of oxygen availability allows cells to survive oxygen deprivation. Although the transcription factor hypoxia-inducible factor 1α (HIF-1α) is the main regulator of the hypoxic response, the upstream mechanisms required for its stabilization remain elusive. Here, we show that p75 neurotrophin receptor (p75NTR) undergoes hypoxia-induced γ-secretase-dependent cleavage to provide a positive feed-forward mechanism required for oxygen-dependent HIF-1α stabilization. The intracell...

  17. Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

    OpenAIRE

    Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter

    2012-01-01

    Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. W...

  18. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle

    OpenAIRE

    1994-01-01

    By quantitative immunoelectron microscopy and HPLC, we have studied the effect of disrupting pH gradients, by ammonium chloride, on proinsulin conversion in the insulin-producing B-cells of the islets of langerhans. Proinsulin content and pH in single secretory vesicles were measured on consecutive serial sections immunostained alternately with anti-proinsulin or anti-dinitrophenol (to reveal the pH-sensitive probe DAMP) antibodies. Radioactivity labeled proinsulin, proinsulin cleavage interm...

  19. Use of Cleavage as an Aid in the Optical Determination of Minerals.

    Science.gov (United States)

    Ehlers, Ernest G.

    1980-01-01

    Described is the use of cleavage as an aid to microscopic determination of unknown minerals by immersion methods. Cleavages are examined in relation to fragment shapes, types of extinction, and cleavage-optical relationships. (Author/DS)

  20. A cleavage toughness master curve model

    International Nuclear Information System (INIS)

    Development of fusion power will require a fracture toughness database, derived largely from small specimen tests, closely integrated with methods to assess first wall and blanket structural integrities. A master curve-shift (MC-ΔT) method has been proposed as an engineering expedient to treat the effects of structural geometry, irradiation, loading rates and safety margins. However, a number of issues related to the MC-ΔT method remain to be resolved, including the universality of MC shapes. A new micromechanical model of fracture toughness in the cleavage transition regime is proposed that combines analytical representations of finite element analysis simulations of crack-tip stress fields with a local critical stress-critical stressed area (σ*-A*) fracture criterion. This model, has been successful in predicting geometry effects, as well as high loading rate and irradiation hardening-induced Charpy shifts. By incorporating a modest temperature dependence in σ*(T), an inconsistency between model predictions and an observed universal-type MC shape is resolved

  1. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP.

    Science.gov (United States)

    Mantena, Sudheer K; Sharma, Som D; Katiyar, Santosh K

    2006-10-01

    Chemotherapeutic approach using non-toxic botanicals may be one of the strategies for the management of the skin cancers. Here we report that in vitro treatment of human epidermoid carcinoma A431 cells with berberine, a naturally occurring isoquinoline alkaloid, decreased cell viability (3-77%, P berberine-induced G(1) cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), a simultaneous decrease in Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and enhanced binding of Cdki-Cdk. In additional studies, treatment of A431 cells with berberine (15-75 microM) for 72 h resulted in a significant dose-dependent increase in apoptosis (31-60%, P berberine-treated control (11.7%), which was associated with an increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl-2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase. Pretreatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway. Together, this study for the first time identified berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 cells in vitro, further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers.

  2. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta

    Science.gov (United States)

    Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

  3. Development of early composite cleavage in pelites from West Donegal

    Science.gov (United States)

    Meneilly, A. W.

    In the Portnoo-Rosbeg area of west Donegal the main penetrative cleavage, S2, generally dips to the south with F2 folds facing up to the north. In places the S2 cleavage is cut by a gently SW-dipping crenulation cleavage ( S3) verging and facing south on the long limbs of F2 folds. A series of structural domains have been mapped in which the relationship of S2 and S3 changes from cross-cutting at a large angle (Rosbeg domain) to the development of a composite S {2}/{3} cleavage (Portnoo domain). The relationship between the two phases and the composite cleavage was investigated by mapping out cleavages (megascopic scale), detailed mesoscopic field observations and on a microscopic scale using textural relationships to widespread post D2-pre D3 garnet porphyroblasts. In addition to demonstrating the composite nature of the cleavage, the examples of D2/ D3 interference and the rotation of, and drag patterns around, the garnet porphyroblasts allow discussion of the kinematics of D3. D3 appears to have involved either bulk pure shear or north-directed bulk simple shear, or any intermediate type of deformation history, and was promoted by southerly directed active slip parallel to S2.

  4. Bundled slaty cleavage in laminated argillite, north-central minnesota

    Science.gov (United States)

    Southwick, D.L.

    1987-01-01

    Exceptional bundled slaty cleavage (defined herein) has been found in drill cores of laminated, folded, weakly metamorphosed argillite at several localities in the early Proterozoic Animikie basin of north-central Minnesota. The cleavage domains are more closely spaced within the cleavage bundles than outside them, the mean tectosilicate grain size of siltstone layers, measured normal to cleavage, is less in the cleavage bundles than outside them, and the cleavage bundles are enriched in opaque phases and phyllosilicates relative to extra-bundle segments. These facts suggest that pressure solution was a major factor in bundle development. If it is assumed that opaque phases have been conserved during pressure solution, the modal differences in composition between intra-bundle and extra-bundle segments of beds provide a means for estimating bulk material shortening normal to cleavage. Argillite samples from the central part of the Animikie basin have been shortened a minimum of about 22%, as estimated by this method. These estimates are similar to the shortening values derived from other strain markers in other rock types interbedded with the argillite, and are also consistent with the regional pattern of deformation. ?? 1987.

  5. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  6. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.;

    2002-01-01

    We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks...

  7. Localized Calcium Signals along the Cleavage Furrow of the Xenopus Egg Are Not Involved in Cytokinesis

    OpenAIRE

    Noguchi, Tatsuhiko; Mabuchi, Issei

    2002-01-01

    It has been proposed that a localized calcium (Ca) signal at the growing end of the cleavage furrow triggers cleavage furrow formation in large eggs. We have examined the possible role of a Ca signal in cleavage furrow formation in the Xenopus laevis egg during the first cleavage. We were able to detect two kinds of Ca waves along the cleavage furrow. However, the Ca waves appeared after cleavage furrow formation in late stages of the first cleavage. In addition, cleavage was not affected by ...

  8. Granule swelling and cleavage of mitogen-activated protein kinases in human neutrophils undergoing apoptosis

    International Nuclear Information System (INIS)

    Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-α and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.

  9. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  10. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  11. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  12. Observation of amyloid precursor protein cleavage and Aβ generation in living cells by using multiphoton laser scanning microscopy%多光子激光扫描成像技术对活细胞内淀粉样前体蛋白裂解和β-淀粉样蛋白生成的观察

    Institute of Scientific and Technical Information of China (English)

    李晓晴; 张苏明; 杨华静; 张智红

    2007-01-01

    Objective To investigate the proteolytic mechanism of amyloid precursor protein (APP) and to explore amyloidbeta (Aβ) generation in living neurons. Methods DNA fragments were amplified by PCR or synthesized. The four fragments- CFP- 54bp- YFP and C99 were ligated into pcDNAS.O vector to construct the recombinant plasmids pcDNA3.0-CFP-54bp-YFP and pcDNA3.0-CFP-54bp-YFP-C99. The SH-SY5Y cells were transiently transfected with pcDNA3.0-CFP-54bp-YFP or pcDNA3.0-CFP-54bp-YFP-C99.The SH-SY5Y cells were transiently transfected with pcDNA3.0-CFP-54bp-YFP or pcDNA3.0-CFP-54bp-YFP-C99.The expression of fusion gene was examined under a multiphoton laser scanning microscope.Fluorescence resonance energy transfer (FRET) was used to measure the p cleavage and y cleavage of APP.Aβ generation was confirmed by immunocytochemistry and multiphoton laser scanning microscopy.Cell viability was tested by MTT assay at different time points.Results (1) The double restriction endonuclease digestion and sequencing analysis confirmed the authenticity of the recombinant plasmids pcDNA3.0-CFP-54bp-YFP and pcDNA3.0-CFP-54bp-YFP-C99.(2) Blue and yellow fluorescences were detected in the transfected cells.(3) FRET occurred in pcDNA3.0-CFP-54bp-YFP-transfected cells but not in pcDNA3.0-CFP-54bp-YFP-C99-transfected cells.(4) Aβ was produced in the pcDNA3.0-CFP-54bp-YFP-C99 transfected cells.(5) Aβ-deposition was widespread in the cell.(6) Cell viability decreased along with the intracellular Aβ deposition.Conclusion C99 is important for the APP β cleavage.Aβ may be generated and deposited in cells at the early stage of Alzheimer's disease.Intracellular Aβ accumulation brings deleterious effects on cells.%目的 在活细胞内探究淀粉样前体蛋白(amyloid precursor protein,APP)的裂解和β-淀粉样蛋白(amyloid beta,Aβ)的生成机制.方法 利用PCR扩增CFP(编码蓝色荧光蛋白),YFP(编码黄色荧光蛋白)和C99(编码APP最后99个氨基酸)三片段.含有54

  13. Inclusion Complex of Zerumbone with Hydroxypropyl-β-Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

    Directory of Open Access Journals (Sweden)

    Nabilah Muhammad Nadzri

    2013-01-01

    Full Text Available Zerumbone (ZER isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl-β-cyclodextrin (HPβCD to enhance ZER’s solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HPβCD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HPβCD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HPβCD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans.

  14. Synthesis and Cleavage Activity of Artifical Minic Polypeptides

    Institute of Scientific and Technical Information of China (English)

    Yong YE; Xiao Lian HU; Ping LI; Ming Yu NIU; Li Feng CAO; Yu Fen ZHAO

    2006-01-01

    Two artificial minic polypeptides which are synthetic analogues of natural products with DNA affinity were synthesized, and theirs cleavage activity with DNA were examined. The structures of these compounds was confirmed by 1H NMR, MS and IR.

  15. Detection of nucleic acids by multiple sequential invasive cleavages 02

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Mast, Andrea L. (Madison, WI); Brow, Mary Ann D. (Madison, WI)

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  16. Implementation of a combinatorial cleavage and deprotection scheme

    DEFF Research Database (Denmark)

    Nielsen, John; Rasmussen, Palle H.

    1996-01-01

    Phthalhydrazide libraries are synthesized in solution from substituted hydrazines and phthalimides in several different library formats including single compounds, indexed sub-libraries and a full library. When carried out during solid-phase synthesis, this combinatorial cleavage and deprotection...

  17. Detection of nucleic acids by multiple sequential invasive cleavages

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  18. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  19. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    Science.gov (United States)

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  20. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  1. A Historical Trend of Ethnic Cleavages in Contemporary Iran

    OpenAIRE

    Hussein Mohammadzadeh

    2013-01-01

    The goal of this study is evaluation social and historical content of social cleavage in contemporary Iran. Analytical framework rooted in Rokan theory. Rokan believed that social cleavage appearance post of revolutions. Method of study was historical comparatives.The method of this research is comparative historical in which we used of historical documents and data. In this field, I have compared data of indexes of socio-economic of ethnic states.Assessment of data and documents show that so...

  2. Microbial cleavage of organic C-S bonds

    Science.gov (United States)

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  3. Cleavage of a viral polyprotein by a cellular proteolytic activity.

    OpenAIRE

    Tian, Y. C.; Shih, D S

    1986-01-01

    The 200,000-dalton polyprotein encoded by the bottom component RNA of cowpea mosaic virus was synthesized in rabbit reticulocyte lysates, and this in vitro-synthesized protein was isolated from the lysate reaction mixture by sucrose density gradient centrifugation. Incubation of the isolated polyprotein with buffer caused no change in the protein, but incubation with reticulocyte lysates or with fractionated lysate proteins resulted in cleavage of the protein into the expected cleavage produc...

  4. The effects of proteasome inhibitor lactacystin on mouse oocyte meiosis and first cleavage

    Institute of Scientific and Technical Information of China (English)

    TAN; Xin; PENG; An; WANG; Yongchao; TANG; Zuoqing

    2005-01-01

    In order to study the effects of ubiquitin-proteasome pathway (UPP) on mouse oocyte meiosis and cleavage, oocytes undergoing maturation and parthenogenetic activation and 1-cell embryos were treated with lactacystin, a specific inhibitor of proteasome. The results indicared that the rate of GVBD was not influenced by the treatment, but polar body extrusion, parthenogenesis and first cleavage were inhibited. Immunofluorescent staining using anti β-tubulin antibody indicated that the continuous treatment of lactacystin from GV stage disorganized microtubules and spindle assembly. When metaphase stage oocytes were treated with the drug,the already formed spindle structure was not affected, but the oocytes were arrested at metaphases. The 1-cell embryos were arrested at interphase or metaphase of first mitosis when they were incubated in the drug. Proteasome regulatory subunit PA700 was located in the spindle region, as indicated by immunofluorescence. These results suggest that UPP has effects on the process of oocyte meiosis and early cleavage in many aspects, including normal organization of spindle at prophase and segregation of chromosomes at anaphase for normal meiosis.

  5. Airway protease/antiprotease imbalance in atopic asthmatics contributes to increased influenza A virus cleavage and replication

    Science.gov (United States)

    Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA) protein binds to sialic add residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host ce...

  6. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.

    Science.gov (United States)

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Keller, Ulrich Auf dem; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-01-01

    Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with

  7. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    Science.gov (United States)

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  8. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    Science.gov (United States)

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  9. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm.

    Science.gov (United States)

    Gaur, Shailly; Mandelbaum, Max; Herold, Mona; Majumdar, Himani Datta; Neilson, Karen M; Maynard, Thomas M; Mood, Kathy; Daar, Ira O; Moody, Sally A

    2016-06-01

    The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn, and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activities are required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased the expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologs of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. genesis 54:334-349, 2016. © 2016 Wiley Periodicals, Inc. PMID:27092474

  10. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.

    Directory of Open Access Journals (Sweden)

    Nicole Hofmann

    Full Text Available ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity.The exact site where ABCA3 is cleaved was localized using mass spectrometry (MS. Proteases involved in ABCA3 processing were identified using small molecule inhibitors and siRNA mediated gene knockdown. Results were verified by in vitro digestion of a synthetic peptide substrate mimicking ABCA3's cleavage region, followed by MS analysis.We found that cleavage of ABCA3 occurs after Lys174 which is located in the proteins' first luminal loop. Inhibition of cathepsin L and, to a lesser extent, cathepsin B resulted in attenuation of ABCA3 cleavage. Both enzymes showed activity against the ABCA3 peptide in vitro with cathepsin L being more active.We show here that, like some other proteins of the lysosomal membrane, ABCA3 is a substrate of cathepsin L. Therefore, cathepsin L may represent a potential target to therapeutically influence ABCA3 activity in ABCA3-associated lung disease.

  11. Small molecule activators of pre-mRNA 3′ cleavage

    OpenAIRE

    Ryan, Kevin; Khleborodova, Asya; Pan, Jingyi; Ryan, Xiaozhou P.

    2009-01-01

    3′ Cleavage and polyadenylation are obligatory steps in the biogenesis of most mammalian pre-mRNAs. In vitro reconstitution of the 3′ cleavage reaction from human cleavage factors requires high concentrations of creatine phosphate (CP), though how CP activates cleavage is not known. Previously, we proposed that CP might work by competitively inhibiting a cleavage-suppressing serine/threonine (S/T) phosphatase. Here we show that fluoride/EDTA, a general S/T phosphatase inhibitor, activates in ...

  12. Cleavage entropy as quantitative measure of protease specificity.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs

    2013-04-01

    Full Text Available A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  13. Copper-obatoclax derivative complexes mediate DNA cleavage and exhibit anti-cancer effects in hepatocellular carcinoma.

    Science.gov (United States)

    Su, Jung-Chen; Chang, Jung-Hua; Huang, Jui-Wen; Chen, Peter P-Y; Chen, Kuen-Feng; Tseng, Ping-Hui; Shiau, Chung-Wai

    2015-02-25

    Obatoclax is an indole-pyrrole compound that induces cancer cell apoptosis through targeting the anti-apoptotic Bcl-2 protein family. Previously, we developed a series of obatoclax derivatives and studied their STAT3 inhibition-dependent activity against cancer cell lines. The obatoclax analog, prodigiosin, has been reported to mediate DNA cleavage in cancer cells by coordinating with copper complexes. To gain an understanding of copper-obatoclax complex activity, we applied obatoclax derivatives to examine their copper-mediated nuclease activity as a means to establish a basis for structure activity relationship. Replacement of the indole ring of obatoclax with furanyl, thiophenyl or Boc-indolyl rings reduced the DNA cleavage ability. The same effect was achieved through the replacement of the obatoclax pyrrolyl ring with thiazolidinedione and thioacetal. Among the compounds tested, we demonstrated that the complex of obatoclax or compound 7 with copper exhibited potent DNA strand scission which correlated with HCC cell growth inhibition.

  14. Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff?

    Science.gov (United States)

    Kerekatte, V; Keiper, B D; Badorff, C; Cai, A; Knowlton, K U; Rhoads, R E

    1999-01-01

    Infection of cells by picornaviruses of the rhinovirus, aphthovirus, and enterovirus groups results in the shutoff of host protein synthesis but allows viral protein synthesis to proceed. Although considerable evidence suggests that this shutoff is mediated by the cleavage of eukaryotic translation initiation factor eIF4G by sequence-specific viral proteases (2A protease in the case of coxsackievirus), several experimental observations are at variance with this view. Thus, the cleavage of other cellular proteins could contribute to the shutoff of host protein synthesis and stimulation of viral protein synthesis. Recent evidence indicates that the highly conserved 70-kDa cytoplasmic poly(A)-binding protein (PABP) participates directly in translation initiation. We have now found that PABP is also proteolytically cleaved during coxsackievirus infection of HeLa cells. The cleavage of PABP correlated better over time with the host translational shutoff and onset of viral protein synthesis than did the cleavage of eIF4G. In vitro experiments with purified rabbit PABP and recombinant human PABP as well as in vivo experiments with Xenopus oocytes and recombinant Xenopus PABP demonstrate that the cleavage is catalyzed by 2A protease directly. N- and C-terminal sequencing indicates that cleavage occurs uniquely in human PABP at 482VANTSTQTM downward arrowGPRPAAAAAA500, separating the four N-terminal RNA recognition motifs (80%) from the C-terminal homodimerization domain (20%). The N-terminal cleavage product of PABP is less efficient than full-length PABP in restoring translation to a PABP-dependent rabbit reticulocyte lysate translation system. These results suggest that the cleavage of PABP may be another mechanism by which picornaviruses alter the rate and spectrum of protein synthesis.

  15. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  16. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  17. Analytical model for intergrain expansion and cleavage: random grain boundaries

    International Nuclear Information System (INIS)

    A description of rigid-body grain boundary relaxation and cleavage in tungsten is performed using a pair-wise Morse interatomic potential in real and reciprocal spaces. Cleavage energies and grain boundary dilatation of random grain boundaries were formulated and computed using atomic layer interaction energies. These values were determined using a model for a relaxed random grain boundary that consists of rigid grains on either side of the boundary plane that are allowed to float to reach the equilibrium position. Expressions are given that describe in real space the energy of interatomic interaction on random grain boundaries with twist orientation. It was shown that grain-boundary expansion and cleavage energies of the most widespread random grain boundaries are mainly determined by grain boundary atomic density

  18. Three-dimensional interpretation of cleavage fracture tests of cladded specimens with local approach to cleavage fracture

    International Nuclear Information System (INIS)

    Electricite de France has conducted during these last years an experimental and numerical research programme in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels integrity assessment, regarding the risk of brittle fracture. Two cladded specimens made of ferritic steel A508 Cl3 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature to obtain cleavage failure. The crack instability was obtained in base metal by cleavage fracture, without crack arrest. The tests have been interpreted by local approach to cleavage fracture (Beremin model) using three-dimensional finite element computations. After the elastic-plastic computation of stress intensity factor KJ along the crack front, the probability of cleavage failure of each specimen is evaluated using m, σu Beremin model parameters identified on the same material. The failure of two specimens is conservatively predicted by both analyses. The elastic-plastic stress intensity factor KJ in base metal is always greater than base metal fracture toughness K1c. The calculated probabilities of cleavage failure are in agreement with experimental results. The sensitivity of Beremin model to numerical aspects is finally exposed. (orig.)

  19. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  20. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid int

  1. The pattern of DNA cleavage intensity around indels.

    Science.gov (United States)

    Chen, Wei; Zhang, Liqing

    2015-01-01

    Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensities in the 200 base pair regions surrounding these indels. Our results show that DNA cleavage intensities close to the start and end points of indels are significantly lower than other regions, for both small human germline and somatic indels and also for mouse small indels. Compared to small indels, the patterns of DNA cleavage intensity around large indels are more complex, and there are two low intensity regions near each end of the indels that are approximately 13 bp apart from each other. Detailed analyses of a subset of indels show that there is slight difference in cleavage intensity distribution between insertion indels and deletion indels that could be contributed by their respective enrichment of different repetitive elements. These results will provide new insight into indel generation mechanisms. PMID:25660536

  2. Perceiving Social Cleavages and Inequalities: The Case of Israeli Adolescents.

    Science.gov (United States)

    Dar, Yechezkel; Erhard, Rachel; Resh, Nura

    1998-01-01

    An analysis of perceptions of social cleavage and inequality among approximately 9000 Israeli eighth and ninth graders showed students accurately comprehended a multifaceted society with major social divisions. A social map with inequality was revealed in which ethnicity played the least prominent role. Personal and social traits influenced…

  3. Selective cleavage enhanced by acetylating the side chain of lysine.

    Science.gov (United States)

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  4. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    Science.gov (United States)

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  5. Hermes is a localized factor regulating cleavage of vegetal blastomeres in Xenopus laevis.

    Science.gov (United States)

    Zearfoss, N R; Chan, A P; Wu, C F; Kloc, M; Etkin, L D

    2004-03-01

    We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA. PMID:14975717

  6. Crack tip blunting and cleavage under dynamic conditions

    Science.gov (United States)

    Rajan, V. P.; Curtin, W. A.

    2016-05-01

    In structural materials with both brittle and ductile phases, cracks often initiate within the brittle phase and propagate dynamically towards the ductile phase. The macroscale, quasistatic toughness of the material thus depends on the outcome of this microscale, dynamic process. Indeed, dynamics has been hypothesized to suppress dislocation emission, which may explain the occurrence of brittle transgranular fracture in mild steels at low temperatures (Lin et al., 1987). Here, crack tip blunting and cleavage under dynamic conditions are explored using continuum mechanics and molecular dynamics simulations. The focus is on two questions: (1) whether dynamics can affect the energy barriers for dislocation emission and cleavage, and (2) what happens in the dynamic "overloaded" situation, in which both processes are energetically possible. In either case, dynamics may shift the balance between brittle cleavage and ductile blunting, thereby affecting the intrinsic ductility of the material. To explore these effects in simulation, a novel interatomic potential is used for which the intrinsic ductility is tunable, and a novel simulation technique is employed, termed as a "dynamic cleavage test", in which cracks can be run dynamically at a prescribed energy release rate into a material. Both theory and simulation reveal, however, that the intrinsic ductility of a material is unaffected by dynamics. The energy barrier to dislocation emission appears to be identical in quasi-static and dynamic conditions, and, in the overloaded situation, ductile crack tip behavior ultimately prevails since a single emission event can blunt and arrest the crack, preventing further cleavage. Thus, dynamics cannot embrittle a ductile material, and the origin of brittle failure in certain alloys (e.g., mild steels) appears unrelated to dynamic effects at the crack tip.

  7. School Desegregation and Racial Cleavage, 1954-1970: A Review of the Literature

    Science.gov (United States)

    Carithers, Martha W.

    1970-01-01

    Reviews the empirical studies dealing with school desegregation and racial cleavage which have appeared since the 1954 Supreme Court decision. Focuses on patterns and consequences of interracial association, and attitude change relevant to racial cleavage. (DM)

  8. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1.

    Directory of Open Access Journals (Sweden)

    Owen M Woodward

    Full Text Available Autosomal Dominant Polycystic Kidney Disease (ADPKD is a genetic disorder resulting in large kidney cysts and eventual kidney failure. Mutations in either the PKD1 or PKD2/TRPP2 genes and their respective protein products, polycystin-1 (PC1 and polycystin-2 (PC2 result in ADPKD. PC2 is known to function as a non-selective cation channel, but PC1's function and the function of PC1 cleavage products are not well understood. Here we identify an endogenous PC1 cleavage product, P100, a 100 kDa fragment found in both wild type and epitope tagged PKD1 knock-in mice. Expression of full length human PC1 (FL PC1 and the resulting P100 and C-Terminal Fragment (CTF cleavage products in both MDCK and CHO cells significantly reduces the store operated Ca(2+ entry (SOCE resulting from thapsigargin induced store depletion. Exploration into the roles of P100 and CTF in SOCE inhibition reveal that P100, when expressed in Xenopus laevis oocytes, directly inhibits the SOCE currents but CTF does not, nor does P100 when containing the disease causing R4227X mutation. Interestingly, we also found that in PC1 expressing MDCK cells, translocation of the ER Ca(2+ sensor protein STIM1 to the cell periphery was significantly altered. In addition, P100 Co-immunoprecipitates with STIM1 but CTF does not. The expression of P100 in CHO cells recapitulates the STIM1 translocation inhibition seen with FL PC1. These data describe a novel polycystin-1 cleavage product, P100, which functions to reduce SOCE via direct inhibition of STIM1 translocation; a function with consequences for ADPKD.

  9. Injection of an antibody against a p21 c-Ha-ras protein inhibits cleavage in axolotl eggs.

    OpenAIRE

    Baltus, E; Hanocq-Quertier, J; Hanocq, F.; Brachet, J.

    1988-01-01

    The presence of a ras protein was demonstrated in cleaving axolotl eggs by selective immunoprecipitation with a polyclonal antibody against a peptide encoded by the c-Ha-ras oncogene, cellular homolog of the v-Ha-ras oncogene of Harvey rat sarcoma virus. Injection of this antibody into axolotl oocytes subjected to progesterone treatment does not prevent meiotic maturation. Injection of the same antibody into a blastomere of axolotl eggs at the 2- or 4-cell stage causes cleavage arrest in the ...

  10. Cleavage of colicin Ia by the Escherichia coli K-12 outer membrane is not mediated by the colicin Ia receptor.

    OpenAIRE

    Bowles, L K; Konisky, J

    1981-01-01

    Colicin Ia can be cleaved by isolated outer membranes prepared from sensitive and resistant (lacking the colicin Ia receptor) strains of Escherichia coli. Both active and heat-denatured colicin Ia are extensively fragmented. Such proteolysis does not occur when colicin Ia is added to whole sensitive or resistant cells. These results demonstrate that cleavage of colicin Ia is not mediated by its outer membrane receptor.

  11. The effect of structure in a long target RNA on ribozyme cleavage efficiency.

    OpenAIRE

    Campbell, T B; McDonald, C K; Hagen, M.

    1997-01-01

    Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites i...

  12. Mutational analysis of a type II topoisomerase cleavage site: distinct requirements for enzyme and inhibitors.

    OpenAIRE

    Freudenreich, C H; Kreuzer, K. N.

    1993-01-01

    We have analyzed the DNA sequence requirements for cleavage of a 30 bp oligonucleotide that contains a strong bacteriophage T4 type II topoisomerase site. A novel method was used to generate substrates with each of the four nucleotides at 10 positions surrounding the cleavage site, and mutant substrates were also prepared for the four internal positions of the staggered cleavage site. The substrates were tested for cleavage in the presence of several inhibitors that induce enzyme-mediated cle...

  13. Cleavage patterns and the topology of the metazoan tree of life

    OpenAIRE

    Valentine, James W.

    1997-01-01

    Several major alliances of metazoan phyla have been identified by small subunit rRNA sequence comparisons. It is possible to arrange the phyla to produce a parsimonious distribution of cleavage types, requiring only one change from a radial ancestral condition to spiral cleavage and one other to “idiosyncratic” cleavage; this arrangement is consistent with most of the recent molecular phylogenies. The cleavage shifts are correlated with changes in many of the features that once were used to d...

  14. Differential neuregulin 1 cleavage in the prefrontal cortex and hippocampus in schizophrenia and bipolar disorder: preliminary findings.

    Directory of Open Access Journals (Sweden)

    Ketan Marballi

    Full Text Available BACKGROUND: Neuregulin 1 (NRG1 is a key candidate susceptibility gene for both schizophrenia (SCZ and bipolar disorder (BPD. The function of the NRG1 transmembrane proteins is regulated by cleavage. Alteration of membrane bound-NRG1 cleavage has been previously shown to be associated with behavioral impairments in mouse models lacking expression of NRG1-cleavage enzymes such as BACE1 and gamma secretase. We sought to determine whether alterations in NRG1 cleavage and associated enzymes occur in patients with SCZ and BPD. METHODOLOGY/PRINCIPAL FINDINGS: Using human postmortem brain, we evaluated protein expression of NRG1 cleavage products and enzymes that cleave at the external (BACE1, ADAM17, ADAM19 and internal (PS1-gamma secretase sides of the cell membrane. We used three different cohorts (Controls, SCZ and BPD and two distinct brain regions: BA9-prefrontal cortex (Controls (n = 6, SCZ (n = 6 and BPD (n = 6 and hippocampus (Controls (n = 5, SCZ (n = 6 and BPD (n = 6. In BA9, the ratio of the NRG1 N-terminal fragment relative to full length was significantly upregulated in the SCZ cohort (Bonferroni test, p = 0.011. ADAM17 was negatively correlated with full length NRG1 levels in the SCZ cohort (r = -0.926, p = 0.008. In the hippocampus we found significantly lower levels of a soluble 50 kDa NRG1 fragment in the two affected groups compared the control cohort (Bonferroni test, p = 0.0018. We also examined the relationship of specific symptomatology criteria with measures of NRG1 cleavage using the Bipolar Inventory of Signs and Symptoms Scale (BISS and the Montgomery Åsberg Depression Rating Scale (MADRS. Our results showed a positive correlation between ADAM19 and psychosis (r = 0.595 p = 0.019; PS1 and mania (r = 0.535, p = 0.040; PS1 and depression (r = 0.567, p = 0.027 in BA9, and BACE1 with anxiety (r = 0.608, p = 0.03 in the hippocampus. CONCLUSION/SIGNIFICANCE: Our preliminary findings suggest region-specific alterations in NRG1

  15. Axis establishment and microtubule-mediated waves prior to first cleavage in Beroe ovata.

    Science.gov (United States)

    Houliston, E; Carré, D; Johnston, J A; Sardet, C

    1993-01-01

    The single axis (oral-aboral) and two planes of symmetry of the ctenophore Beroe ovata become established with respect to the position of zygote nucleus formation and the orientation of first cleavage. Bisection of Beroe eggs at different times revealed that differences in egg organisation are established in relation to the presumptive oral-aboral axis before first cleavage. Lateral fragments produced after but not before the time of first mitosis developed into larvae lacking comb-plates on one side. Time-lapse video demonstrated that waves of cytoplasmic reorganisation spread through the layer of peripheral cytoplasm (ectoplasm) of the egg during the 80 minute period between pronuclear fusion and first cleavage, along the future oral-aboral axis. These waves are manifest as the progressive displacement and dispersal of plaques of accumulated organelles around supernumerary sperm nuclei, and a series of surface movements. Their timing and direction of propagation suggest they may be involved in establishing cytoplasmic differences with respect to the embryonic axis. Inhibitor experiments suggested that the observed cytoplasmic reorganisation involves microtubules. Nocodazole and taxol, which prevent microtubule turnover,blocked plaque dispersal and reduced surface movements. The microfilament-disrupting drug cytochalasin B did not prevent plaque dispersal but induced abnormal surface contractions. We examined changes in microtubule organisation using immunofluorescence on eggs fixed at different times and in live eggs following injection of rhodamine-tubulin. Giant microtubule asters become associated with each male pronucleus after the end of meiosis. Following pronuclear fusion they disappear successively, those nearest the zygote nucleus shrinking first, to establish gradients of aster size within single eggs. Regional differences in microtubule behaviour around the time of mitosis were revealed by brief taxol treatment, which induced the formation of small

  16. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    Science.gov (United States)

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  17. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy;

    2016-01-01

    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...... phycobiliproteins present in the extract of Arthrospira platensis by methanolysis is investigated. Different initial concentrations (25 mg/mL, 10 mg/mL, and 5 mg/mL) of proteins are used in order to investigate the effect of protein aggregation on process yield. A kinetic model is developed by fitting...... the experimental data for methanolysis. Results show that the kinetics follows a pseudo first order kinetics and remains unaffected due to the different initial concentration of phycobiliproteins. Moreover, yield of PCB in the cleavage process is found to be proportional to the initial concentration...

  18. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.;

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites...... was assayed. The following PNAs were used: T10-LysNH2, T5CT4-LysNH2 and T2CT2CT4-LysNH2 and the corresponding targets cloned into pUC 19 were flanked by BamH1, Sal1 or Pstl sites, respectively. In all cases it was found that complete inhibition of restriction enzyme cleavage was obtained...

  19. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    OpenAIRE

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid into the aldehydes nonanal and 9-oxo-nonanoic acid or into pelargonic and azelaic acid. Considerable hazards, including explosion risks, are associated with the use of ozone, and alternative processes...

  20. Developing a programmed restriction endonuclease for highly specific DNA cleavage

    OpenAIRE

    Eisenschmidt, Kristin; Lanio, Thomas; Simoncsits, András; Jeltsch, Albert; Pingoud, Vera; Wende, Wolfgang; Pingoud, Alfred

    2005-01-01

    Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4–8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotid...

  1. The pattern of DNA cleavage intensity around indels

    OpenAIRE

    Wei Chen; Liqing Zhang

    2015-01-01

    Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensiti...

  2. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER

    2015-01-01

    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  3. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ye-Ji [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Lee, Seung-Hae [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Youn, Young-So; Choi, Ji-Yeon [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Song, Keung-Sub [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Cho, Min-Sun [Department of Pathology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Kang, Jihee Lee, E-mail: jihee@ewha.ac.kr [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  4. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    International Nuclear Information System (INIS)

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  5. Regioselective Cleavage of Thioether Linkages in Microcystin Conjugates.

    Science.gov (United States)

    Zemskov, Ivan; Kropp, Heike M; Wittmann, Valentin

    2016-07-25

    Microcystins are cyanobacterial toxins that can be found in fresh and coastal waters during algal blooms. Microcystin contamination of water can cause severe poisoning of animals and humans. Quantification of these toxins in biological samples is complicated because a major proportion of microcystins is covalently linked to proteins through thioether bonds formed through a Michael-type addition of cysteine residues of proteins to an N-methyldehydroalanine residue in the microcystins. We investigated chemical methods that can be used to cleave such thioether bonds by means of an elimination reaction that leaves the microcystin backbone intact for subsequent analysis. The known reagent O-mesitylenesulfonylhydroxylamine (MSH) led to regioselective thioether cleavage, but a large excess of reagent was needed, thus making purification challenging. An unexpected side reaction observed during the investigation of the base-induced elimination inspired us to develop a new thioether-cleavage methodology based on the addition of propargylamine as a nucleophile that can trap the elimination product. This methodology could be successfully applied to the quantitative cleavage of a microcystin-LF-glutathione conjugate. The alkyne moiety introduced by this procedure offers the possibility for further reactions with azides by using click chemistry, which might be useful for the derivatization or isolation of microcystins. PMID:27346324

  6. Cleavage mechanoluminescence in elemental and III-V semiconductors

    CERN Document Server

    Chandra, B P; Gour, A S; Chandra, V K; Gupta, R K

    2003-01-01

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value I sub m at the time t sub m corresponding to completion of the cleavage of the semiconductor, and then it d...

  7. Examination of Early Cleavage an its Importance in IVF Treatment

    Directory of Open Access Journals (Sweden)

    Fancsovits P

    2006-01-01

    Full Text Available Since the introduction of assisted reproduction, the number of multiple pregnancies has increased due to the high number of transferred embryos. There is an urgent need for IVF specialists to reduce the number of embryos transferred without the risk of decreasing pregnancy rates. Embryos are selected for transfer on the basis of their developmental stage and morphology. The number of blastomeres of the embryo indicates the speed of early embryo development which correlates to the viability of the embryo. Examination of early embryo development, especially the timing of the first cleavage, can be recommended as a tool for predicting embryo viability. Observation of timing of the first cleavage and its different stages helps us to identify fast- and slow-developing embryos. Early pronuclear breakdown and early cleavage of the zygote are indicators of fast embryo development and good embryo viability. Thereby, they can lead to high implantation and pregnancy rates. The aim of this paper is to provide an overview of the timing of early embryo development and to show its significance in IVF treatment.

  8. Cleavage mechanoluminescence in elemental and III-V semiconductors

    International Nuclear Information System (INIS)

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value Im at the time tm corresponding to completion of the cleavage of the semiconductor, and then it decreases following power law decay. Expressions are derived for the ML intensity Im corresponding to the peak of the ML intensity versus time curve and for the total ML intensity IT. It is shown that both Im and IT should increase directly with the area of the newly created surfaces of the crystals. From the measurements of the ML intensity, the velocity of crack propagation in material can be determined by using the relation v=H/tm

  9. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate.

    Science.gov (United States)

    Wang, X; Li, H; Zheng, A; Yang, L; Liu, J; Chen, C; Tang, Y; Zou, X; Li, Y; Long, J; Liu, J; Zhang, Y; Feng, Z

    2014-01-01

    Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both

  10. Evidence of Alternative Cystatin C Signal Sequence Cleavage Which Is Influenced by the A25T Polymorphism.

    Directory of Open Access Journals (Sweden)

    Annie Nguyen

    Full Text Available Cystatin C (Cys C is a small, potent, cysteine protease inhibitor. An Ala25Thr (A25T polymorphism in Cys C has been associated with both macular degeneration and late-onset Alzheimer's disease. Previously, studies have suggested that this polymorphism may compromise the secretion of Cys C. Interestingly, we found that untagged A25T, A25T tagged C-terminally with FLAG, or A25T FLAG followed by green fluorescent protein (GFP, were all secreted as efficiently from immortalized human cells as their wild-type (WT counterparts (e.g., 112%, 100%, and 88% of WT levels from HEK-293T cells, respectively. Supporting these observations, WT and A25T Cys C variants also showed similar intracellular steady state levels. Furthermore, A25T Cys C did not activate the unfolded protein response and followed the same canonical endoplasmic reticulum (ER-Golgi trafficking pathway as WT Cys C. WT Cys C has been shown to undergo signal sequence cleavage between residues Gly26 and Ser27. While the A25T polymorphism did not affect Cys C secretion, we hypothesized that it may alter where the Cys C signal sequence is preferentially cleaved. Under normal conditions, WT and A25T Cys C have the same signal sequence cleavage site after Gly26 (referred to as 'site 2' cleavage. However, in particular circumstances when the residues around site 2 are modified (such as by the presence of an N-terminal FLAG tag immediately after Gly26, or by a Gly26Lys (G26K mutation, A25T has a significantly higher likelihood than WT Cys C of alternative signal sequence cleavage after Ala20 ('site 1' or even earlier in the Cys C sequence. Overall, our results indicate that the A25T polymorphism does not cause a significant reduction in Cys C secretion, but instead predisposes the protein to be cleaved at an alternative signal sequence cleavage site if site 2 is hindered. Additional N-terminal amino acids resulting from alternative signal sequence cleavage may, in turn, affect the protease

  11. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  12. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    Science.gov (United States)

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  13. Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?

    Directory of Open Access Journals (Sweden)

    Marijke De Bock

    2015-01-01

    Full Text Available The coordination of tissue function is mediated by gap junctions (GJs that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury.

  14. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis.

    Science.gov (United States)

    Cook, Julia L; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N

    2011-11-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts. PMID:21813711

  15. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis.

    Science.gov (United States)

    Cook, Julia L; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N

    2011-11-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts.

  16. A new take on V(DJ recombination: transcription driven nuclear and chromatin reorganization in RAG–mediated cleavage.

    Directory of Open Access Journals (Sweden)

    Julie eChaumeil

    2013-12-01

    Full Text Available It is nearly thirty years since the Alt lab first put forward the accessibility model, which proposes that cleavage of the various loci is controlled by lineage and stage specific factors that regulate RAG access to the different loci. Numerous labs have since demonstrated that locus opening is regulated at multiple levels that include sterile transcription, changes in chromatin packaging and alterations in locus conformation. Here we focus on the interplay between transcription and RAG binding in facilitating targeted cleavage. We discuss the results of recent studies that implicate transcription in regulating nuclear organization and altering the composition of resident nucleosomes to promote regional access to the recombinase machinery. Additionally we include new data that provide insight into the role of the RAG proteins in defining nuclear organization in recombining T cells.

  17. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide

    Science.gov (United States)

    Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E.

    2013-11-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA

  18. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis.

    Science.gov (United States)

    Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L; Gurumurthy, Channabasavaiah B; Quadros, Rolen M; Tu, Yaping; Luo, Xu

    2016-05-27

    The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. PMID:27053107

  19. Hermes RNA-binding protein targets RNAs-encoding proteins involved in meiotic maturation, early cleavage, and germline development.

    Science.gov (United States)

    Song, Hye-Won; Cauffman, Karen; Chan, Agnes P; Zhou, Yi; King, Mary Lou; Etkin, Laurence D; Kloc, Malgorzata

    2007-07-01

    The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs. PMID:17309605

  20. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.

  1. Airway protease/antiprotease imbalance in atopic asthmatics contributes to increased Influenza A virus cleavage and replication

    Directory of Open Access Journals (Sweden)

    Kesic Matthew J

    2012-09-01

    Full Text Available Abstract Asthmatics are more susceptible to influenza infections, yet mechanisms mediating this enhanced susceptibility are unknown. Influenza virus hemagglutinin (HA protein binds to sialic acid residues on the host cells. HA requires cleavage to allow fusion of the viral HA with host cell membrane, which is mediated by host trypsin-like serine protease. We show data here demonstrating that the protease:antiprotease ratio is increased in the nasal mucosa of asthmatics and that these changes were associated with increased proteolytic activation of influenza. These data suggest that disruption of the protease balance in asthmatics enhances activation and infection of influenza virus.

  2. Model of Rho-Mediated Myosin Recruitment to the Cleavage Furrow during Cytokinesis

    Science.gov (United States)

    Veksler, Alexander; Vavylonis, Dimitrios

    2010-03-01

    The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During cytokinesis, the myosin attached to the cell's cortex progressively disassembles at the flanking regions and concentrates in the equator [1]. This recruitment depends on myosin motor activity and activation by Rho proteins. Central spindle and astral microtubules establish a spatial pattern of differential Rho activity [2]. We propose a reaction-diffusion model for the dynamics of myosin and Rho proteins during cytokinesis. In the model, the mitotic spindle activates Rho at the equator. Active Rho promotes, in a switch-like manner, myosin assembly into cortical minifilaments. Mechanical stress by cortical myosin causes disassembly of myosin minifilaments and deactivates Rho. Our results explain both the recruitment of myosin to the cleavage furrow and the observed damped myosin oscillations in the cell's flanking regions [1]. Spatial extent, period and decay rate of myosin oscillations are calculated. Various regimes of myosin recruitment are predicted. [1] Zhou & Wang, Mol. Biol. Cell 19:318 (2008) [2] Murthy & Wadsworth, J. Cell Sci. 121:2350 (2008)

  3. Programmable RNA recognition and cleavage by CRISPR/Cas9

    OpenAIRE

    O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.

    2014-01-01

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage 1-5 . In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA 4-7 . Cas9 has proven to be a versatile tool for g...

  4. Features of Controlled Laser Thermal Cleavage of Crystalline Silicon

    International Nuclear Information System (INIS)

    Controlled laser thermal cleavage of crystalline silicon has been numerically simulated. A 3D analysis of the thermoelastic fields formed in a single-crystal silicon wafer as a result of successive laser heating and exposure to a coolant was performed for three different versions of anisotropy. The simulation was performed for laser irradiation with different wavelengths: 1.06 and 0.808 μm. The calculation results have been experimentally verified using a YAG laser. The results can be used in the electronics industry to optimize the precise separation of silicon wafers into crystals.

  5. Cleavage of Supercoiled Circular Double-stranded DNA Induced by a Eukaryotic Cambialistic Superoxide Dismutase from Cinnamomum camphora

    Institute of Scientific and Technical Information of China (English)

    Bao-Zhong WANG; Xu-Bin WEI; Wang-Yi LIU

    2004-01-01

    A eukaryotic cambialistic superoxide dismutase (SOD) has been purified to homogeneity from mature seeds of the disease- and insect-resistant camphor tree (Cinnamomum camphora). Besides the known role of this SOD in protecting cells against oxidative stress, it can induce the cleavage of supercoiled double-stranded DNA into nicked and linear DNA. It can not cleave linear DNA or RNA, demonstrating there is no DNase or RNase in the purified cambialistic SOD. Furthermore, the SOD can linearize circular pGEM-4Z DNA that is relaxed by topoisomerase I. This result indicates that the DNA-cleaving activity requires substrates being topologically constrained. The supercoiled DNA-cleaving activity of the cambialistic SOD can be inhibited by either SOD inhibitor (azide) or catalase and hydroxyl radical scavengers (ethanol and mannitol). The chelator of iron, diethylenetriaminepentaacetic acid (DTPA), also inhibits the supercoiled DNA-cleaving activity. These results show that the dismutation activity is crucial for the supercoiled DNA cleavage. The modification of tryptophan residue of the cambialistic SOD with N-bromosuccinimide (NBS)shows that these two activities are structurally correlative. The reaction mechanism is proposed that the hydroxyl radical formed in a transition-metal-catalyzing Fenton-type reaction contributes to the DNAcleaving activity. In addition, the cleavage sites in supercoiled pGEM-4Z DNA are random.

  6. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus.

    Science.gov (United States)

    Fletcher, Paul L; Fletcher, Maryann D; Weninger, Keith; Anderson, Trevor E; Martin, Brian M

    2010-03-01

    We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction nu, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction nu that cleaves VAMP2, and report its amino acid sequence.

  7. Vesicle-associated Membrane Protein (VAMP) Cleavage by a New Metalloprotease from the Brazilian Scorpion Tityus serrulatus*

    Science.gov (United States)

    Fletcher, Paul L.; Fletcher, Maryann D.; Weninger, Keith; Anderson, Trevor E.; Martin, Brian M.

    2010-01-01

    We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction ν, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction ν that cleaves VAMP2, and report its amino acid sequence. PMID:20026600

  8. N-terminal cleavage and release of the ectodomain of Flt1 is mediated via ADAM10 and ADAM 17 and regulated by VEGFR2 and the Flt1 intracellular domain.

    Directory of Open Access Journals (Sweden)

    Nandita S Raikwar

    Full Text Available Flt is one of the cell surface VEGF receptors which can be cleaved to release an N-terminal extracellular fragment which, like alternately transcribed soluble Flt1 (sFlt1, can antagonize the effects of VEGF. In HUVEC and in HEK293 cells where Flt1 was expressed, metalloprotease inhibitors reduced Flt1 N-terminal cleavage. Overexpression of ADAM10 and ADAM17 increased cleavage while knockdown of ADAM10 and ADAM17 reduced N-terminal cleavage suggesting that these metalloproteases were responsible for Flt1 cleavage. Protein kinase C (PKC activation increased the abundance and the cleavage of Flt1 but this did not require any residues within the intracellular portion of Flt1. ALLN, a proteasomal inhibitor, increased the abundance of Flt1 which was additive to the effect of PKC. Removal of the entire cytosolic region of Flt1 appeared to stimulate cleavage of Flt1 and Flt1 was no longer sensitive to ALLN suggesting that the cytosolic region contained a degradation domain. Knock down of c-CBL, a ring finger ubiquitin ligase, in HEK293 cells increased the expression of Flt1 although it did not appear to require a previously published tyrosine residue (1333Y in the C-terminus of Flt1. Increasing VEGFR2 expression increased VEGF-stimulated sFlt1 expression and progressively reduced the cleavage of Flt1 with Flt1 staying bound to VEGFR2 as a heterodimer. Our results imply that secreted sFlt1 and cleaved Flt1 will tend to have local effects as a VEGF antagonist when released from cells expressing VEGFR2 and more distant effects when released from cells lacking VEGFR2.

  9. Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation

    Directory of Open Access Journals (Sweden)

    Mei‑Hsuan Chen

    2013-11-01

    Full Text Available IF (intermediate filament proteins can be cleaved by caspases to generate proapoptotic fragments as shown for desmin. These fragments can also cause filament aggregation. The hypothesis is that disease-causing mutations in IF proteins and their subsequent characteristic histopathological aggregates could involve caspases. GFAP (glial fibrillary acidic protein, a closely related IF protein expressed mainly in astrocytes, is also a putative caspase substrate. Mutations in GFAP cause AxD (Alexander disease. The overexpression of wild-type or mutant GFAP promotes cytoplasmic aggregate formation, with caspase activation and GFAP proteolysis. In this study, we report that GFAP is cleaved specifically by caspase 6 at VELD225 in its L12 linker domain in vitro. Caspase cleavage of GFAP at Asp225 produces two major cleavage products. While the C-GFAP (C-terminal GFAP is unable to assemble into filaments, the N-GFAP (N-terminal GFAP forms filamentous structures that are variable in width and prone to aggregation. The effect of N-GFAP is dominant, thus affecting normal filament assembly in a way that promotes filament aggregation. Transient transfection of N-GFAP into a human astrocytoma cell line induces the formation of cytoplasmic aggregates, which also disrupt the endogenous GFAP networks. In addition, we generated a neo-epitope antibody that recognizes caspase-cleaved but not the intact GFAP. Using this antibody, we demonstrate the presence of the caspase-generated GFAP fragment in transfected cells expressing a disease-causing mutant GFAP and in two mouse models of AxD. These findings suggest that caspase-mediated GFAP proteolysis may be a common event in the context of both the GFAP mutation and excess.

  10. Cleavage of silicon by laser-based shock waves: Interpretation by nanoscopic length scales

    International Nuclear Information System (INIS)

    Cleavage along the weakest Si{1 1 1} cleavage plane is measured by impulsive fracture using surface acoustic waves (SAWs) with steep shock fronts, generated by pulsed laser irradiation and recorded with a laser probe–beam-deflection setup. The theoretical cleavage strength, obtained by ab initio calculations for perfect single-crystal silicon lattices is compared with the strength resulting from an improved Polanyi–Orowan cleavage model. The critical strength of a real silicon crystal, measured by using calibrated elastic surface pulses with shocks, was employed to extract the corresponding critical length scale characterizing the cleavage process on the basis of the modified cleavage model. The extracted length scale of 7 nm can be connected with the size of the microstructural defect initiating failure. Usually stress generating surface defects are responsible for the nucleation of brittle fracture, especially in nanoscale systems with large surface areas.

  11. Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel

    International Nuclear Information System (INIS)

    A microscopic study on ductile-brittle crack growth in a modified version of the A508B pressure vessel steel has been performed. Small SEN(B)-specimens tested at different temperatures in and above the transition region have been thoroughly examined with a scanning electron microscope. Focus was directed towards: amount of ductile crack growth prior to cleavage, distance from the crack front to cleavage initiation sites, and type of defect that caused the cleavage initiation. The results show, among other things, that cleavage facets are present in specimens tested at all temperatures, even on the upper shelf where no global failure by cleavage was observed. These preliminary results give an indication that the ability of the matrix material to arrest and sustain small cleavage cracks can be crucial in explaining why ferritic steels show a transition behaviour. (orig.)

  12. Construction of Multi-ribozyme Expression System and Its Characterization of Cleavage on the MDR1/MRP1 Double Target Substrate in vitro

    Institute of Scientific and Technical Information of China (English)

    TIAN Sheng-li; ZHENG Suo; LIU Shi-de; ZHANG Jian-hua; XU Dong-ping; OHNUMA Takao

    2009-01-01

    To improve catalytic activity of ribozyme on its substrate,the multi-ribozyme expression system was designed and constructed from 20 cis-acting hammerhead ribozymes undergoing self-cleavage with 10 trans-acting hammerhead ribozymes inserted altematively regularly and the plasmid of pGEM-MDRI/MRPI used to transcribe the M DRI/MRPI(196/210) substrate containing double target sites was also constructed by DNA recombination.Endonuclease digestion analysis and DNA sequencing indicate all the recombinant plasmids were correct.The cleavage activities were evaluated for the multi-ribozyme expression system on the MDR1/MRP1 substrate in the cell free system.The results demonstrate that the cis-acting hammerhead ribozymes in the multi-ribozyme expression system were able to cleave themselves and the 72 nt of 196Rz and the 71 nt of 210Rz trans-acting hammerhead ribozymes were liberated effectively,and the trans-acting hammerhead ribozymes released were able to act on the MDR1/MRP1 double target RNA substrate and cleave the target RNA at specific sites effectively.The multiribozyme expression system of the [Coat'A196Rz/Coat'B210Rz]5 is more significantly superior to that of the [Coat'A 196Rz/Coat'B210Rz]1 in cleavage of RNA substrate.The fractions cleaved by [Coat'A196Rz/Coat'B210Rz]5 on the MDR1/MRP1 substrate for 8 h at observed temperatures showed no marked difference.The studies of Mg2+ on cleavage efficiency indicate that cleavage reaction is dependent on Mg2+ ions concentration.The plot of Ig(kobs) vs.Igc(Mg2+) displays a linear relationship between 2.5 mmol/L and 20 mmol/L Mg2..It suggests that Mg2+ ions play a crucial role in multi-ribozyme cleavage on the substrate.

  13. A real-time assay for monitoring nucleic acid cleavage by quadruplex formation

    OpenAIRE

    Kankia, Besik I.

    2006-01-01

    Direct and straightforward methods to follow nucleic acid cleavage are needed. A spectrophotometric quadruplex formation assay (QFA) was developed, which allows real-time monitoring of site-specific cleavage of nucleic acids. QFA was applied to study both protein and nucleic acid restriction enzymes, and was demonstrated to accurately determine Michaelis–Menten parameters for the cleavage reaction catalyzed by EcoRI. QFA can be used to study the mechanisms of protein–nucleic acid recognition....

  14. Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic amino acid following DegS cleavage

    OpenAIRE

    Li, Xiaochun; Wang, Boyuan; Feng, Lihui; Kang, Hui; Qi, Yang; Wang, Jiawei; Shi, Yigong

    2009-01-01

    Regulated intramembrane proteolysis (RIP) by the Site-2 protease (S2P) results in the release of a transmembrane signaling protein. Curiously, however, S2P cleavage must be preceded by the action of the Site-1 protease (S1P). To decipher the underlying mechanism, we reconstituted sequential, in vitro cleavages of the Escherichia coli transmembrane protein RseA by DegS (S1P) and RseP (S2P). After DegS cleavage, the newly exposed carboxyl-terminal residue Val-148 of RseA plays an essential role...

  15. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren;

    2004-01-01

    . Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results: We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network...... was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins...

  16. Hairpin DNA Sequences Bound Strongly by Bleomycin Exhibit Enhanced Double-Strand Cleavage

    OpenAIRE

    Roy, Basab; Hecht, Sidney M.

    2014-01-01

    Clinically used bleomycin A5 has been employed in a study of double-strand cleavage of a library of 10 hairpin DNAs originally selected on the basis of their strong binding to bleomycin. Each of the DNAs underwent double-strand cleavage at more than one site, and all of the cleavage sites were within, or in close proximity to, an eight-base-pair region of the duplex that had been randomized to create the original library. A total of 31 double-strand cleavage sites were identified on the 10 DN...

  17. The First Example of Cation Radical Induced Ether Cleavage of Benzyl Phenyl Ether

    International Nuclear Information System (INIS)

    A thermally stable benzyl phenyl ether has been shown to cleavage under mild conditions. The new reaction described herein further expands the chemistry of the ether cleavage by cation radicals. Over the last several years, our lab has discovered cation radical-induced oxidative C-O bond cleavages such as carbonates (eq 1), carbamates (eq 2), peroxides (eq 3), and alcohols (eq 4), where R is either tert-butyl or benzyl. It was recognized from those reactions that carbocationic chemistry with C-O bond cleavages was predominant, with a 2:1 stoichiometry of Th+·:oxidized molecules

  18. A single molecule assay for measuring site-specific DNA cleavage.

    Science.gov (United States)

    Gambino, Stefano; Mousley, Briana; Cathcart, Lindsay; Winship, Janelle; Loparo, Joseph J; Price, Allen C

    2016-02-15

    Sequence-specific DNA cleavage is a key step in a number of genomic transactions. Here, we report a single-molecule technique that allows the simultaneous measurement of hundreds of DNAs, thereby collecting significant statistics in a single experiment. Microbeads are tethered with single DNA molecules in a microfluidic channel. After the DNA cleavage reaction is initiated, the time of cleavage of each DNA is recorded using video microscopy. We demonstrate the utility of our method by measuring the cleavage kinetics of NdeI, a type II restriction endonuclease.

  19. Huntingtin cleavage product A forms in neurons and is reduced by gamma-secretase inhibitors

    Directory of Open Access Journals (Sweden)

    Betschart Claudia

    2010-12-01

    Full Text Available Abstract Background The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB. CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. Results Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec or selectively (LY-411,575 or DAPT reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. Conclusion We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin

  20. Hydrogen cleavage by solid-phase frustrated Lewis pairs.

    Science.gov (United States)

    Xing, Jun-Yi; Buffet, Jean-Charles; Rees, Nicholas H; Nørby, Peter; O'Hare, Dermot

    2016-08-18

    We report the direct synthesis of a solid-phase frustrated Lewis pair (s-FLP) by combining a silica-supported Lewis acid ([triple bond, length as m-dash]SiOB(C6F5)2, s-BCF) with a Lewis base (tri-tert-butylphosphine, (t)Bu3P) to give [[triple bond, length as m-dash]SiOB(C6F5)2][(t)Bu3P]. Reaction of this s-FLP with H2 under mild conditions led to heterolytic H-H bond cleavage and the formation of [[triple bond, length as m-dash]SiOB(H)(C6F5)2][(t)Bu3PH].

  1. Cleavage of an amide bond by a ribozyme

    Science.gov (United States)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  2. C-S bond cleavage by a polyketide synthase domain.

    Science.gov (United States)

    Ma, Ming; Lohman, Jeremy R; Liu, Tao; Shen, Ben

    2015-08-18

    Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.

  3. A designer bleomycin with significantly improved DNA cleavage activity.

    Science.gov (United States)

    Huang, Sheng-Xiong; Feng, Zhiyang; Wang, Liyan; Galm, Ute; Wendt-Pienkowski, Evelyn; Yang, Dong; Tao, Meifeng; Coughlin, Jane M; Duan, Yanwen; Shen, Ben

    2012-08-15

    The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90-95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6'-hydroxy-ZBM, BLM Z, and 6'-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6'-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6'-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug.

  4. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  5. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    Directory of Open Access Journals (Sweden)

    Zuzana Zubáčová

    Full Text Available All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS, which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  6. Knockdown of pre-mRNA cleavage factor Im 25 kDa promotes neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, Hidefumi, E-mail: hfukumi@gifu-pu.ac.jp [Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501 1196 (Japan); Soumiya, Hitomi; Furukawa, Shoei [Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi 1-25-4, Gifu 501 1196 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CFIm25 knockdown promoted NGF-induced neurite out growth from PC12 cells. Black-Right-Pointing-Pointer Depletion of CFIm25 did not influence the morphology of proliferating PC12 cells. Black-Right-Pointing-Pointer CFIm regulated NGF-induced neurite outgrowth via coordinating RhoA activity. Black-Right-Pointing-Pointer CFIm25 knockdown increase the number of primary dendrites of hippocampal neurons. -- Abstract: Mammalian precursor mRNA (pre-mRNA) cleavage factor I (CFIm) plays important roles in the selection of poly(A) sites in a 3 Prime -untranslated region (3 Prime -UTR), producing mRNAs with variable 3 Prime ends. Because 3 Prime -UTRs often contain cis elements that impact stability or localization of mRNA or translation, alternative polyadenylation diversifies utilization of primary transcripts in mammalian cells. However, the physiological role of CFIm remains unclear. CFIm acts as a heterodimer comprising a 25 kDa subunit (CFIm25) and one of the three large subunits-CFIm59, CFIm68, or CFIm72. CFIm25 binds directly to RNA and introduces and anchors the larger subunit. To examine the physiological roles of CFIm, we knocked down the CFIm25 gene in neuronal cells using RNA interference. Knockdown of CFIm25 increased the number of primary dendrites of developing hippocampal neurons and promoted nerve growth factor (NGF)-induced neurite extension from rat pheochromocytoma PC12 cells without affecting the morphology of proliferating PC12 cells. On the other hand, CFIm25 knockdown did not influence constitutively active or dominantly negative RhoA suppression or promotion of NGF-induced neurite extension from PC12 cells, respectively. Taken together, our results indicate that endogenous CFIm may promote neuritogenesis in developing neurons by coordinating events upstream of NGF-induced RhoA inactivation.

  7. Knockdown of pre-mRNA cleavage factor Im 25 kDa promotes neurite outgrowth

    International Nuclear Information System (INIS)

    Highlights: ► CFIm25 knockdown promoted NGF-induced neurite out growth from PC12 cells. ► Depletion of CFIm25 did not influence the morphology of proliferating PC12 cells. ► CFIm regulated NGF-induced neurite outgrowth via coordinating RhoA activity. ► CFIm25 knockdown increase the number of primary dendrites of hippocampal neurons. -- Abstract: Mammalian precursor mRNA (pre-mRNA) cleavage factor I (CFIm) plays important roles in the selection of poly(A) sites in a 3′-untranslated region (3′-UTR), producing mRNAs with variable 3′ ends. Because 3′-UTRs often contain cis elements that impact stability or localization of mRNA or translation, alternative polyadenylation diversifies utilization of primary transcripts in mammalian cells. However, the physiological role of CFIm remains unclear. CFIm acts as a heterodimer comprising a 25 kDa subunit (CFIm25) and one of the three large subunits—CFIm59, CFIm68, or CFIm72. CFIm25 binds directly to RNA and introduces and anchors the larger subunit. To examine the physiological roles of CFIm, we knocked down the CFIm25 gene in neuronal cells using RNA interference. Knockdown of CFIm25 increased the number of primary dendrites of developing hippocampal neurons and promoted nerve growth factor (NGF)-induced neurite extension from rat pheochromocytoma PC12 cells without affecting the morphology of proliferating PC12 cells. On the other hand, CFIm25 knockdown did not influence constitutively active or dominantly negative RhoA suppression or promotion of NGF-induced neurite extension from PC12 cells, respectively. Taken together, our results indicate that endogenous CFIm may promote neuritogenesis in developing neurons by coordinating events upstream of NGF-induced RhoA inactivation.

  8. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    substituents have been examined by TGA‐MS using different sulphonic acids. A substantial lowering of the cleavage temperature is observed, and the ester cleavage can even be performed in situ on roll‐to‐roll‐coated films on polyethylene terephthalate (PET). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A...

  9. Cleavage-based voting behavior in cross-national perspective : Evidence from six postwar democracies

    NARCIS (Netherlands)

    Brooks, Clem; Nieuwbeerta, Paul; Manza, Jeff

    2006-01-01

    We investigate trends and cross-national variation in the impact of class, religious, and gender cleavages on voting behavior in six advanced capitalist democracies in the postwar period. Earlier research on cleavage voting has been criticized for utilizing outdated ‘‘two-class’’ models of class str

  10. Cleavage-based voting behavior in cross-national perspective: evidence from six postwar democracies

    NARCIS (Netherlands)

    Brooks, Clem; Nieuwbeerta, Paul; Manza, Jeff

    2006-01-01

    We investigate trends and cross-national variation in the impact of class, religious, and gender cleavages on voting behavior in six advanced capitalist democracies in the postwar period. Earlier research on cleavage voting has been criticized for utilizing outdated “two-class” models of class struc

  11. Inhibition of RecA-mediated cleavage in covalent dimers of UmuD.

    OpenAIRE

    Lee, M. H.; Guzzo, A; Walker, G C

    1996-01-01

    Disulfide-cross-linked UmuD2 derivatives were cleaved poorly upon incubation with activated RecA. Reducing the disulfide bonds prior to incubating the derivatives with RecA dramatically increased their extent of cleavage. These observations suggest that the UmuD monomer is a better substrate for the RecA-mediated cleavage reaction than the dimer.

  12. Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid

    Institute of Scientific and Technical Information of China (English)

    T. F. Abbs Fen Reji; A. Jeena Pearl; Bojaxa A. Rosy

    2013-01-01

    Lanthanide complexes of Eu(III), Gd(III), Nd(III), Sm(III), and Tb(III) with phenylthioacetic acid were synthesized and characterized by elemental analysis, mass, infrared radiation (IR), electronic spectra, molar conductance, thermogravimetric analysis (TGA), and powder X-ray diffraction (XRD). The results showed that the lanthanide complexes were homodinuclear in nature. The two lanthanide ions were bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles were consis-tent with the proposed formulations. Powder XRD studies showed that all the complexes were amorphous in nature. Antimicrobial studies indicated that these complexes exhibited more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The result showed that the Eu(III) and Nd(III) complexes completely cleaved the DNA. The anticancer activities of the complexes were also studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the Eu(III) and Nd(III) complexes were more active than the corresponding Gd(III), Sm(III), Tb(III) complexes and the free ligand on both the cancer cells.

  13. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  14. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  15. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    International Nuclear Information System (INIS)

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed

  16. Real-time monitoring of DNAzyme cleavage process using fluorescent assay

    Institute of Scientific and Technical Information of China (English)

    Xiang Xian Meng; Xiao Hai Yang; Ke Min Wang; Wei Hong Tan; Qiu Ping Guo

    2009-01-01

    Detection of deoxyribozyme (DNAzyme) cleavage process usually needs complex and time-consuming radial labeling, gel electrophoresis and autoradiography. This paper reported an approach to detect DNAzyme cleavage process in real time using a fluorescence probe. The probe was employed as DNAzyme substrate to convert directly the cleavage information into fluorescence signal in real time. Compared with traditional approach, this non-isotope method not only brought a convenient means to monitor the DNAzyme cleavage reaction, but also offered abundant dynamic data for choosing potential gene therapeutic agents. It provides a new tool for DNAzyme research, as well as a new insight into research on human disease diagnosis. Based on this method, 8-17deoxyribozyme (8-17DNAzyme) against hepatitis C virus RNA (HCV-RNA) was designed and the cleavage process was studied in real time.

  17. Ultrasensitive monitoring of ribozyme cleavage product using molecular-beacon-ligation system

    Institute of Scientific and Technical Information of China (English)

    MENG XiangXian; TANG ZhiWen; WANG KeMin; TAN WeiHong; YANG XiaoHai; LI Jun; GUO QiuPing

    2007-01-01

    This paper reports a new approach to detect ribozyme cleavage product based on the molecular- beacon-ligation system. The molecular beacon, designed in such a way that one-half of its loop is complementary to ribozyme cleavage product, is used to monitor ligation process of RNA/DNA complex in a homogeneous solution and to convert directly cleavage product information into fluorescence signal. The method need not label ribozyme and ribozyme substrate, which is fast, simple and ultrasensitive for detection of cleavage product. Detection limit of the assay is 0.05 nmol/L. The cleavage product of hammerhead ribozyme against hepatitis C virus RNA (HCV-RNA) was detected perfectly based on this assay. Owing to its ultrasensitivity, excellent specificity, convenience and fidelity, this method might hold out great promise in ribozyme reaction and ribozyme gene therapy.

  18. A METABOLITE OF METHOXYCHLOR,2,2-BIS(P-HYDOXYPHENYL)-1,1,1- TRICHLOROETHANE REDUCES TESTOSTERONE BIOSYNTHESIS IN RAT LEYDIG CELLS THROUGH SUPPRESSION OF STEADY-STATE MESSENGER RIBONUCLEIC ACID LEVELS OF THE CHOLESTEROL SIDE-CHAIN CLEAVAGE ENZYME

    Science.gov (United States)

    Postnatal development of Leydig cells involves transformation through three stages: progenitor, immature, and adult Leydig cells. The process of differentiation is accompanied by a progressive increase in the capacity of Leydig cells to produce testosterone (T). T promotes the ma...

  19. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    Science.gov (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  20. Genetic stability of attenuated mengovirus vectors with duplicate primary cleavage sequences

    International Nuclear Information System (INIS)

    Short poly(C)-tract Mengoviruses have proven vaccine efficacy in many species of animals. A novel vector for the delivery of foreign proteins was created by insertion of a second autoproteolytic primary cleavage cassette linked to a multiple cloning site (MCS) into an attenuated variant of Mengo. Nineteen cDNAs from foreign sequences that ranged from 39 to 1653 bases were cloned into the MCS. The viral reading frame was maintained and translation resulted in dual, autocatalytic excision of the foreign peptides without disruption of any Mengo proteins. All cDNAs except those with the largest insertions produced viable virus. Active proteins such as GFP, CAT, and SIV p27 were expressed within infected cells. Relative to parental Mengo, the growth kinetics and genetic stability of each vector was inversely proportional to the size of the inserted sequence. While segments up to 1000 bases could be carried, inserts greater than 500-600 bases were usually reduced in size during serial passage. The limit on carrying capacity was probably due to difficulties in virion assembly or particle stability. Yet for inserts less than 500-600 bases, the Mengo vectors provided an effective system for the delivery of foreign epitopes into cells and mice

  1. Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex.

    Science.gov (United States)

    Palumbo, Manlio; Gatto, Barbara; Moro, Stefano; Sissi, Claudia; Zagotto, Giuseppe

    2002-07-18

    DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells. PMID:12084456

  2. DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones

    Science.gov (United States)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-03-01

    Four new ruthenium(II) complexes with N(4)-methyl thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-N-methyl-2-(2-nitrobenzylidene)hydrazinecarbothioamide (HL2), were prepared and fully characterized by various spectro-analytical techniques. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the complexes bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant studies of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  3. Ribosome-associated Asc1/RACK1 is required for endonucleolytic cleavage induced by stalled ribosome at the 3′ end of nonstop mRNA

    Science.gov (United States)

    Ikeuchi, Ken; Inada, Toshifumi

    2016-01-01

    Dom34-Hbs1 stimulates degradation of aberrant mRNAs lacking termination codons by dissociating ribosomes stalled at the 3′ ends, and plays crucial roles in Nonstop Decay (NSD) and No-Go Decay (NGD). In the dom34Δ mutant, nonstop mRNA is degraded by sequential endonucleolytic cleavages induced by a stalled ribosome at the 3′ end. Here, we report that ribosome-associated Asc1/RACK1 is required for the endonucleolytic cleavage of nonstop mRNA by stalled ribosome at the 3′ end of mRNA in dom34Δ mutant cells. Asc1/RACK1 facilitates degradation of truncated GFP-Rz mRNA in the absence of Dom34 and exosome-dependent decay. Asc1/RACK1 is required for the sequential endonucleolytic cleavages by the stalled ribosome in the dom34Δ mutant, depending on its ribosome-binding activity. The levels of peptidyl-tRNA derived from nonstop mRNA were elevated in dom34Δasc1Δ mutant cells, and overproduction of nonstop mRNA inhibited growth of mutant cells. E3 ubiquitin ligase Ltn1 degrades the arrest products from truncated GFP-Rz mRNA in dom34Δ and dom34Δasc1Δ mutant cells, and Asc1/RACK1 represses the levels of substrates for Ltn1-dependent degradation. These indicate that ribosome-associated Asc1/RACK1 facilitates endonucleolytic cleavage of nonstop mRNA by stalled ribosomes and represses the levels of aberrant products even in the absence of Dom34. We propose that Asc1/RACK1 acts as a fail-safe in quality control for nonstop mRNA. PMID:27312062

  4. Not all social cleavages are the same: On the relationship between religious diversity and party system fragmentation

    OpenAIRE

    Raymond, Christopher D.

    2016-01-01

    Most studies examining the relationship between social cleavages and party system fragmentation maintain that higher levels of social diversity lead to greater party system fragmentation. However, most aggregate-level studies focus on one type of social cleavage:ethnic diversity. In order to develop a better understanding of how different cleavages impact electoral competition, this paper considers another type of social cleavage: religious diversity.Contrary to previous literature, higher le...

  5. Party agency and the religious-secular cleavage in post-Communist countries: The case of Romania

    OpenAIRE

    Raymond, Christopher

    2014-01-01

    Research focusing on several post-communist countries has found evidence of social cleavage effects on political behaviour similar to those found in Western Europe. In some post-communist countries, however, social cleavage effects appear far weaker (if at all). To understand why this is the case, I perform a case study of Romania, focusing on the religious–secular cleavage. Drawing upon research that emphasises the role of parties in forming cleavages, I argue that the reason for the absence...

  6. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors

    OpenAIRE

    Rivera, Carlos I.; Lloyd, Richard E.

    2008-01-01

    Poliovirus (PV) causes a drastic inhibition of cellular cap-dependant protein synthesis due to the cleavage of translation factors eukaryotic initiation factor 4G (eIF4G) and poly (A) binding protein (PABP). Only about half of cellular PABP is cleaved by viral 2A and 3C proteinases during infection. We have investigated PABP cleavage determinants that regulate this partial cleavage. PABP cleavage kinetics analyses indicate that PABP exists in multiple conformations, some of which are resistan...

  7. The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences.

    Science.gov (United States)

    Donnelly, M L; Hughes, L E; Luke, G; Mendoza, H; ten Dam, E; Gani, D; Ryan, M D

    2001-05-01

    The 2A/2B cleavage of aphtho- and cardiovirus 2A polyproteins is mediated by their 2A proteins 'cleaving' at their own C termini. We have analysed this activity using artificial reporter polyprotein systems comprising green fluorescent protein (GFP) linked via foot-and-mouth disease virus (FMDV) 2A to beta-glucuronidase (GUS) -- forming a single, long, open reading frame. Analysis of the distribution of radiolabel showed a high proportion of the in vitro translation products (approximately 90%) were in the form of the 'cleavage' products GUS and [GFP2A]. Alternative models have been proposed to account for the 'cleavage' activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect. To investigate the mechanism of this cleavage event constructs encoding site-directed mutant and naturally occurring '2A-like' sequences were used to program in vitro translation systems and the gel profiles analysed. Analysis of site-directed mutant 2A sequences showed that 'cleavage' occurred in constructs in which all the candidate nucleophilic residues were substituted -- with the exception of aspartate-12. This residue is not, however, conserved amongst all functional '2A-like' sequences. '2A-like' sequences were identified within insect virus polyproteins, the NS34 protein of type C rotaviruses, repeated sequences in Trypanosoma spp. and a eubacterial alpha-glucosiduronasesequence(Thermatoga maritima aguA). All of the 2A-like sequences analysed were active (to various extents), other than the eubacterial alpha-glucosiduronase 2A-like sequence. This method of control of protein biogenesis may well not, therefore, be confined to members of the PICORNAVIRIDAE: Taken together, these data provide additional evidence that neither FMDV 2A nor '2A-like' sequences are autoproteolytic elements. PMID:11297677

  8. Cleavage of the angiotensin II type 1 receptor and nuclear accumulation of the cytoplasmic carboxy-terminal fragment.

    Science.gov (United States)

    Cook, Julia L; Mills, Sarah J; Naquin, Ryan T; Alam, Jawed; Re, Richard N

    2007-04-01

    Our published studies show that the distribution of the ANG II type 1 (AT(1)) receptor (AT(1)R), expressed as a enhanced yellow fluorescent fusion (YFP) protein (AT(1)R/EYFP), is altered upon cellular treatment with ANG II or coexpression with intracellular ANG II. AT(1)R accumulates in nuclei of cells only in the presence of ANG II. Several transmembrane receptors are known to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. The present study was designed to determine whether the AT(1)R is cleaved before nuclear transport. A plasmid encoding a rat AT(1)R labeled at the amino terminus with enhanced cyan fluorescent protein (CFP) and at the carboxy terminus with EYFP was employed. Image analyses of this protein in COS-7 cells, CCF-STTG1 glial cells, and A10 vascular smooth muscle cells show the two fluorescent moieties to be largely spatially colocalized in untreated cells. ANG II treatment, however, leads to a separation of the fluorescent moieties with yellow fluorescence accumulating in more than 30% of cellular nuclei. Immunoblot analyses of extracts and conditioned media from transfected cells indicate that the CFP domain fused to the extracellular amino-terminal AT(1)R domain is cleaved from the membrane and that the YFP domain, together with the intracellular cytoplasmic carboxy terminus of the AT(1)R, is also cleaved from the membrane-bound receptor. The carboxy terminus of the AT(1)R is essential for cleavage; cleavage does not occur in protein deleted with respect to this region. Overexpressed native AT(1)R (nonfusion) is also cleaved; the intracellular 6-kDa cytoplasmic domain product accumulates to a significantly higher level with ANG II treatment.

  9. Computational redesign of endonuclease DNA binding and cleavage specificity

    Science.gov (United States)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  10. DNA targeting and cleavage by an engineered metalloprotein dimer.

    Science.gov (United States)

    Wong-Deyrup, Siu Wah; Prasannan, Charulata; Dupureur, Cynthia M; Franklin, Sonya J

    2012-03-01

    Nature has illustrated through numerous examples that protein dimerization has structural and functional advantages. We previously reported the design and characterization of an engineered "metallohomeodomain" protein (C2) based on a chimera of the EF-hand Ca-binding motif and the helix-turn-helix motif of homeodomains (Lim and Franklin in Protein Sci. 15:2159-2165, 2004). This small metalloprotein binds the hard metal ions Ca(II) and Ln(III) and interacts with DNA with modest sequence preference and affinity, yet exhibits only residual DNA cleavage activity. Here we have achieved substantial improvement in function by constructing a covalent dimer of this C2 module (F2) to create a larger multidomain protein. As assayed via fluorescence spectroscopy, this F2 protein binds Ca(II) more avidly (25-fold) than C2 on a per-domain basis; in gel shift selection experiments, metallated F2 exhibits a specificity toward 5'-TAATTA-3' sequences. Finally, Ca(2)F2 cleaves plasmid DNA and generates a linear product in a Ca(II)-dependent way, unlike the CaC2 monomer. To the best of our knowledge this activation of Ca(II) in the context of an EF-hand binding motif is unique and represents a significant step forward in the design of artificial metallonucleases by utilizing biologically significant metal ions.

  11. Large volume loss during cleavage formation, Hamburg sequence, Pennsylvania

    Science.gov (United States)

    Beutner, Edward C.; Charles, Emmanuel G.

    1985-11-01

    Green reduction spots in red slate of the Hamburg sequence exposed near Shartlesville, Pennsylvania, have axial ratios of 1.42:1.0:0.28 on the limbs of near-isoclinal folds and 1.0:0.79:0.41 in fold hinge zones. Conodont cusps and denticles within the reduction spots have been brittlely pulled apart and give independent measures of extension in various directions. Comparison of conodont extensions with reduction spot shapes on limbs and hinges indicates that sedimentary compaction of 44% preceded the tectonic strain associated with cleavage formation. This strain, having identical maximum extensions but greater shortening in fold hinges as compared to limbs, was characterized by 41% extension in X, no change in Y, 50% to 59% shortening in Z, and 29% to 42% tectonic volume loss. The general lack of directed overgrowths on grains reflects the large volume loss and contrasts with other slates, where deformation was an almost constant volume process and extension in X compensated for shortening in Z. *Present address: Department of Geology, Miami University, Oxford, Ohio 45056

  12. Irreversible and reversible topoisomerase II DNA cleavage stimulated by clerocidin: sequence specificity and structural drug determinants.

    Science.gov (United States)

    Binaschi, M; Zagotto, G; Palumbo, M; Zunino, F; Farinosi, R; Capranico, G

    1997-05-01

    In contrast to other topoisomerase II poisons, the microbial terpenoid clerocidin was shown to stimulate irreversible topoisomerase II-mediated DNA cleavage. To establish the structural determinants for drug activity, in this study we have investigated intensity patterns and sequence specificity of clerocidin-stimulated DNA cleavage using 5'-end 32P-labeled DNA fragments. At a majority of the sites, clerocidin-stimulated cleavage did not revert upon NaCl addition; nevertheless, at some sites, cleavage completely reverted. Statistical analyses showed that drug-preferred bases were different in the two cases: guanine and cytosine were highly preferred at position -1 at irreversible and reversible sites, respectively. These results demonstrated that cleavage irreversibility was site selective and required a guanine at the 3' end of the cut. Further experiments revealed that some irreversible sites showed an abnormal electrophoretic mobility in sequencing gels with respect to cleaved bands generated by 4-(9-acridinylamino)methanesulfon-m-anisidide, suggesting a chemical alteration of the DNA strand. Interestingly, the ability to stimulate irreversible cleavage progressively decreased over time when clerocidin was stored in ethanol. Under these conditions, nuclear magnetic resonance measurements demonstrated that the drug underwent structural modifications that involved the C-12-C-15 side chain. Thus, the results indicate that a specific moiety of clerocidin may react with the DNA (guanine at -1) in the ternary complex, resulting in cleavage irreversibility and in altered DNA mobility in sequencing gels. PMID:9135013

  13. Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX.

    Directory of Open Access Journals (Sweden)

    Marta Maria Gaglia

    2015-12-01

    Full Text Available Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV. Previous studies indicated that cleavage of messenger RNAs (mRNA by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity.

  14. A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair.

    Science.gov (United States)

    Meineke, Birthe; Kast, Alene; Schwer, Beate; Meinhardt, Friedhelm; Shuman, Stewart; Klassen, Roland

    2012-09-01

    PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases. PMID:22836353

  15. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor.

    Directory of Open Access Journals (Sweden)

    Joseph Chavarría-Smith

    Full Text Available Inflammasomes are multimeric protein complexes that respond to infection by recruitment and activation of the Caspase-1 (CASP1 protease. Activated CASP1 initiates immune defense by processing inflammatory cytokines and by causing a rapid and lytic cell death called pyroptosis. Inflammasome formation is orchestrated by members of the nucleotide-binding domain and leucine-rich repeat (NLR or AIM2-like receptor (ALR protein families. Certain NLRs and ALRs have been shown to function as direct receptors for specific microbial ligands, such as flagellin or DNA, but the molecular mechanism responsible for activation of most NLRs is still poorly understood. Here we determine the mechanism of activation of the NLRP1B inflammasome in mice. NLRP1B, and its ortholog in rats, is activated by the lethal factor (LF protease that is a key virulence factor secreted by Bacillus anthracis, the causative agent of anthrax. LF was recently shown to cleave mouse and rat NLRP1 directly. However, it is unclear if cleavage is sufficient for NLRP1 activation. Indeed, other LF-induced cellular events have been suggested to play a role in NLRP1B activation. Surprisingly, we show that direct cleavage of NLRP1B is sufficient to induce inflammasome activation in the absence of LF. Our results therefore rule out the need for other LF-dependent cellular effects in activation of NLRP1B. We therefore propose that NLRP1 functions primarily as a sensor of protease activity and thus could conceivably detect a broader spectrum of pathogens than just B. anthracis. By adding proteolytic cleavage to the previously established ligand-receptor mechanism of NLR activation, our results illustrate the remarkable flexibility with which the NLR architecture can be deployed for the purpose of pathogen-detection and host defense.

  16. Guest-host interactions in the cleavage of phenylphenyl acetates by -cyclodextrin in alkaline medium

    Indian Academy of Sciences (India)

    V Raj; T Chandrakala; K Rajasekaran

    2008-05-01

    Kinetics of cleavage of phenylphenyl acetates (PPA) and several para-substituted PPAs in basic aqueous sodium carbonate-bicarbonate buffer containing -cyclodextrin (CD) have been studied. The reaction exhibits saturation type kinetics and CD accelerates the rate of cleavage by the formation of 1G : 1H inclusion complex. The kinetic results indicate that aryloxy moiety of PPA is included in the hydrophobic cavity of CD. The overall rate constants for the cleavage of the [CD-ester] complex correlate with the Hammett -constants and Hansch hydrophobicity parameters . At higher concentrations of CD, there is an additional catalysis due to the formation of weak 1G : 2H complex.

  17. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage.

    OpenAIRE

    Billinghurst, R.C.; Dahlberg, L; Ionescu, M.; Reiner, A; Bourne, R; Rorabeck, C; Mitchell, P; Hambor, J; Diekmann, O.; Tschesche, H; Chen, J; Van Wart, H; Poole, A. R.

    1997-01-01

    We demonstrate the direct involvement of increased collagenase activity in the cleavage of type II collagen in osteoarthritic human femoral condylar cartilage by developing and using antibodies reactive to carboxy-terminal (COL2-3/4C(short)) and amino-terminal (COL2-1/4N1) neoepitopes generated by cleavage of native human type II collagen by collagenase matrix metalloproteinase (MMP)-1 (collagenase-1), MMP-8 (collagenase-2), and MMP-13 (collagenase-3). A secondary cleavage followed the initia...

  18. Kinetics and regulation of site-specific endonucleolytic cleavage of human IGF-II mRNAs

    OpenAIRE

    van Dijk, Erwin L.; Sussenbach, John S.; Holthuizen, P. Elly

    2001-01-01

    Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3′-UTR. This yields a stable 3′ cleavage product of 1.8 kb consisting of a 3′-UTR and a poly(A) tail and an unstable 5′ cleavage product containing the IGF-II coding region. After cleavage, the 5′ cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an addit...

  19. The intramembrane cleavage site of the amyloid precursor protein depends on the length of its transmembrane domain

    OpenAIRE

    Lichtenthaler, Stefan F.; Beher, Dirk; Heike S Grimm; Wang, Rong; Shearman, Mark S.; Masters, Colin L.; Beyreuther, Konrad

    2002-01-01

    Proteolytic processing of the amyloid precursor protein by β-secretase generates C99, which subsequently is cleaved by γ-secretase, yielding the amyloid β peptide (Aβ). This γ-cleavage occurs within the transmembrane domain (TMD) of C99 and is similar to the intramembrane cleavage of Notch. However, Notch and C99 differ in their site of intramembrane cleavage. The main γ-cleavage of C99 occurs in the middle of the TMD, whereas the cleavage of Notch occurs close to the C-terminal end of the TM...

  20. RNA synthesis during cleavage of the Lymnaea egg

    NARCIS (Netherlands)

    Biggelaar, J.A.M. van den

    1971-01-01

    In eggs of Lymnaea RNA synthesis can be detected autoradiographically from the 8- to the 16-cell stage. From the 16- to the 24-cell stage distinct nucleoli reappear which are immediately engaged in RNA synthesis.

  1. Oxygen-dependent cleavage of the p75 neurotrophin receptor triggers stabilization of HIF-1α.

    Science.gov (United States)

    Le Moan, Natacha; Houslay, Daniel M; Christian, Frank; Houslay, Miles D; Akassoglou, Katerina

    2011-11-01

    Homeostatic control of oxygen availability allows cells to survive oxygen deprivation. Although the transcription factor hypoxia-inducible factor 1α (HIF-1α) is the main regulator of the hypoxic response, the upstream mechanisms required for its stabilization remain elusive. Here, we show that p75 neurotrophin receptor (p75(NTR)) undergoes hypoxia-induced γ-secretase-dependent cleavage to provide a positive feed-forward mechanism required for oxygen-dependent HIF-1α stabilization. The intracellular domain of p75(NTR) directly interacts with the evolutionarily conserved zinc finger domains of the E3 RING ubiquitin ligase Siah2 (seven in absentia homolog 2), which regulates HIF-1α degradation. p75(NTR) stabilizes Siah2 by decreasing its auto-ubiquitination. Genetic loss of p75(NTR) dramatically decreases Siah2 abundance, HIF-1α stabilization, and induction of HIF-1α target genes in hypoxia. p75(NTR-/-) mice show reduced HIF-1α stabilization, vascular endothelial growth factor (VEGF) expression, and neoangiogenesis after retinal hypoxia. Thus, hypoxia-induced intramembrane proteolysis of p75(NTR) constitutes an apical oxygen-dependent mechanism to control the magnitude of the hypoxic response. PMID:22055192

  2. Shear-induced unfolding and enzymatic cleavage of full-length VWF multimers

    CERN Document Server

    Lippok, Svenja; Obser, Tobias; Kleemeier, Lars; Schneppenheim, Reinhard; Budde, Ulrich; Netz, Roland R; Rädler, Joachim O

    2015-01-01

    Proteolysis of the multimeric blood coagulation protein von Willebrand Factor (VWF) by ADAMTS13 is crucial for prevention of microvascular thrombosis. ADAMTS13 cleaves VWF within the mechanosensitive A2 domain, which is believed to open under shear flow. Here, we combine Fluorescence Correlation Spectroscopy (FCS) and a microfluidic shear cell to monitor real-time kinetics of full-length VWF proteolysis as a function of shear stress. For comparison, we also measure the Michaelis-Menten kinetics of ADAMTS13 cleavage of wild-type VWF in the absence of shear but partially denaturing conditions. Under shear, ADAMTS13 activity on full-length VWF arises without denaturing agent as evidenced by FCS and gel-based multimer analysis. In agreement with Brownian hydrodynamics simulations, we find a sigmoidal increase of the enzymatic rate as a function of shear at a threshold shear rate 5522/s. The same flow-rate dependence of ADAMTS13 activity we also observe in blood plasma, which is relevant to predict hemostatic dysf...

  3. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  4. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development

    Directory of Open Access Journals (Sweden)

    Lyons Deirdre C

    2012-09-01

    Full Text Available Abstract Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage, and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise

  5. Spatial organization of topoisomerase I-mediated DNA cleavage induced by camptothecin–oligonucleotide conjugates

    OpenAIRE

    Arimondo, Paola B.; Angenault, Stéphane; Halby, Ludovic; Boutorine, Alexandre; Schmidt, Frédéric; Monneret, Claude; Garestier, Thérèse; Sun, Jian-Sheng; Bailly, Christian; Hélène, Claude

    2003-01-01

    Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleava...

  6. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    OpenAIRE

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staini...

  7. Nanorelief of the natural cleavage surface of triglycine sulphate crystals with substitutional and interstitial impurities

    International Nuclear Information System (INIS)

    Ferroelectric triglycine sulphate crystals (TGS) with substitutional (LADTGS+ADP, DTGS) and interstitial (Cr) impurities have been studied by atomic-force microscopy, X-ray diffraction, and X-ray fluorescence. The nanorelief parameters of the mirror cleavage TGS(010) surface have been measured with a high accuracy. A correlation between the crystal defect density in the bulk and the cleavage surface nanorelief is revealed at the submicrometer level.

  8. Reductive cleavage of dichalcogenide bonds. Communication 3. Selectivity of electron exchange in diaryldichalcogenide-bispyridinium systems

    International Nuclear Information System (INIS)

    The kinetics of reductive cleavage of the dichalcogenide bond in dimeric Schiff's bases ArEEAr (E = S, Te) induced by indirect electron transfer by the in situ generated bridged bispyridinium radical cations and biradicals was studied by cyclic voltammetry. It is found that the dependence between the apparent rate constants of intermolecular electron transfer and the electron-withdrawing properties of diaryldichalcogenides is violated. The mechanisms of homogeneous (chemical) and heterogeneous (electrochemical) reductive cleavage of diaryldichalcogenides are discussed

  9. A hingeless Fc fusion system for site-specific cleavage by IdeS.

    Science.gov (United States)

    Novarra, Shabazz; Grinberg, Luba; Rickert, Keith W; Barnes, Arnita; Wilson, Susan; Baca, Manuel

    2016-01-01

    Fusion of proteins to the Fc region of IgG is widely used to express cellular receptors and other extracellular proteins, but cleavage of the fusion partner is sometimes required for downstream applications. Immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) is a protease with exquisite specificity for human IgG, and it can also cleave Fc-fusion proteins at a single site in the N-terminal region of the CH2 domain. However, the site of IdeS cleavage results in the disulfide-linked hinge region partitioning with the released protein, complicating downstream usage of the cleaved product. To tailor the Fc fragment for release of partner proteins by IdeS treatment, we investigated the effect of deleting regions of IgG-derived sequence that are upstream of the cleavage site. Elimination of the IgG-derived hinge sequence along with several residues of the CH2 domain had negligible effects on expression and purity of the fusion protein, while retaining efficient processing by IdeS. An optimal Fc fragment comprising residues 235-447 of the human IgG1 heavy chain sufficed for efficient production of fusion proteins and minimized the amount of residual Ig-derived sequence on the cleavage product following IdeS treatment. Pairing of this truncated Fc fragment with IdeS cleavage enables highly specific cleavage of Fc-fusion proteins, thus eliminating the need to engineer extraneous cleavage sequences. This system should be helpful for producing Fc-fusion proteins requiring downstream cleavage, particularly those that are sensitive to internal miscleavage if treated with alternative proteases. PMID:27210548

  10. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper;

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...... LNA-modified DNA oligonucleotides. Furthermore, introduction of LNA nucleotides protects against cleavage by the restriction endonucleases PvuII, PstI, SacI, KpnI and EcoRI....

  11. Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates

    Directory of Open Access Journals (Sweden)

    Igor V. Alabugin

    2011-06-01

    Full Text Available Hybrid molecules combining photoactivated aryl acetylenes and a dicationic lysine moiety cause the most efficient double-strand (ds DNA cleavage known to date for a small molecule. In order to test the connection between the alkylating ability and the DNA-damaging properties of these compounds, we investigated the photoreactivity of three isomeric aryl–tetrafluoropyridinyl (TFP alkynes with amide substituents in different positions (o-, m-, and p- toward a model π-system. Reactions with 1,4-cyclohexadiene (1,4-CHD were used to probe the alkylating properties of the triplet excited states in these three isomers whilst Stern–Volmer quenching experiments were used to investigate the kinetics of photoinduced electron transfer (PET. The three analogous isomeric lysine conjugates cleaved DNA with different efficiencies (34, 15, and 0% of ds DNA cleavage for p-, m-, and o-substituted lysine conjugates, respectively consistent with the alkylating ability of the respective acetamides. The significant protecting effect of the hydroxyl radical and singlet oxygen scavengers to DNA cleavage was shown only with m-lysine conjugate. All three isomeric lysine conjugates inhibited human melanoma cell growth under photoactivation: The p-conjugate had the lowest CC50 (50% cell cytotoxicity value of 1.49 × 10−7 M.

  12. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase.

    Science.gov (United States)

    Vizán, J L; Hernández-Chico, C; del Castillo, I; Moreno, F

    1991-02-01

    Microcin B17 (MccB17) is a bactericidal peptide antibiotic which inhibits DNA replication. Two Escherichia coli MccB17 resistant mutants were isolated and the mutations were shown to map to 83 min of the genetic map. Cloning of the mutations and Tn5 insertional analysis demonstrated that they were located inside gyrB. The approximate location of the mutations within gyrB was determined by constructing hybrid genes, as a previous step to sequencing. Both mutations were shown to consist of a single AT----GC transition at position 2251 of the gene, which produces a Trp751----Arg substitution in the amino acid sequence of the GyrB polypeptide. The inhibitory effect of MccB17 on replicative cell-free extracts was assayed. In this in vitro system, interaction of MccB17 with a component of the extracts induced double-strand cleavage of plasmid DNA. In vivo treatment with MccB17 also induced a well-defined cleavage pattern on chromosomal DNA. These effects were not observed with a MccB17-resistant, gyrB mutant. Altogether, our results indicate that MccB17 blocks DNA gyrase by trapping an enzyme-DNA cleavable complex. Thus, the mode of action of this peptide antibiotic resembles that of quinolones and a variety of antitumour drugs currently used in cancer chemotherapy. MccB17 is the first peptide shown to inhibit a type II DNA topoisomerase.

  13. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles

    Directory of Open Access Journals (Sweden)

    Nguyen Albert T

    2011-12-01

    Full Text Available Abstract Background Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1 maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1 is cleaved to p24 (CA and SP1. Results In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR. Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. Conclusions This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.

  14. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  15. Analysis of Thisbe and Pyramus functional domains reveals evidence for cleavage of Drosophila FGFs

    Directory of Open Access Journals (Sweden)

    Stathopoulos Angelike

    2010-08-01

    Full Text Available Abstract Background As important regulators of developmental and adult processes in metazoans, Fibroblast Growth Factor (FGF proteins are potent signaling molecules whose activities must be tightly regulated. FGFs are known to play diverse roles in many processes, including mesoderm induction, branching morphogenesis, organ formation, wound healing and malignant transformation; yet much more remains to be learned about the mechanisms of regulation used to control FGF activity. Results In this work, we conducted an analysis of the functional domains of two Drosophila proteins, Thisbe (Ths and Pyramus (Pyr, which share homology with the FGF8 subfamily of ligands in vertebrates. Ths and Pyr proteins are secreted from Drosophila Schneider cells (S2 as smaller N-terminal fragments presumably as a result of intracellular proteolytic cleavage. Cleaved forms of Ths and Pyr can be detected in embryonic extracts as well. The FGF-domain is contained within the secreted ligand portion, and this domain alone is capable of functioning in the embryo when ectopically expressed. Through targeted ectopic expression experiments in which we assay the ability of full-length, truncated, and chimeric proteins to support cell differentiation, we find evidence that (1 the C-terminal domain of Pyr is retained inside the cell and does not seem to be required for receptor activation and (2 the C-terminal domain of Ths is secreted and, while also not required for receptor activation, this domain does plays a role in limiting the activity of Ths when present. Conclusions We propose that differential protein processing may account for the previously observed inequalities in signaling capabilities between Ths and Pyr. While the regulatory mechanisms are likely complex, studies such as ours conducted in a tractable model system may be able to provide insights into how ligand processing regulates growth factor activity.

  16. Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage.

    Science.gov (United States)

    Ren, Aiming; Vušurović, Nikola; Gebetsberger, Jennifer; Gao, Pu; Juen, Michael; Kreutz, Christoph; Micura, Ronald; Patel, Dinshaw J

    2016-09-01

    The field of small self-cleaving nucleolytic ribozymes has been invigorated by the recent discovery of the twister, twister-sister, pistol and hatchet ribozymes. We report the crystal structure of a pistol ribozyme termed env25, which adopts a compact tertiary architecture stabilized by an embedded pseudoknot fold. The G-U cleavage site adopts a splayed-apart conformation with in-line alignment of the modeled 2'-O of G for attack on the adjacent to-be-cleaved P-O5' bond. Highly conserved residues G40 (N1 position) and A32 (N3 and 2'-OH positions) are aligned to act as a general base and a general acid, respectively, to accelerate cleavage chemistry, with their roles confirmed by cleavage assays on variants, and an increased pKa of 4.7 for A32. Our structure of the pistol ribozyme defined how the overall and local topologies dictate the in-line alignment at the G-U cleavage site, with cleavage assays on variants revealing key residues that participate in acid-base-catalyzed cleavage chemistry. PMID:27398999

  17. Expression and in vitro cleavage activity of anti-caspase-7 hammerhead ribozymes

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Qing Xie; Xia-Qiu Zhou; Shan Jiang; You-Xin Jin

    2004-01-01

    AIM: To prepare hammerhead ribozymes against mouse caspase-7 and identify their cleavage activityin vitro, in order to select a ribozyme with specific cleavage activity against mouse caspase-7 as a potential gene therapy for apoptosis-related diseases.METHODS: Anti-caspase-7 ribozymes targeting sites 333and 394 (named Rz333 and Rz394) were designed by computer software, and their DNA sequences encoding ribozymes were synthesized. Caspase-7 DNA sequence was acquired by RT-PCR. Ribozymes and caspase-7 DNA obtained byin vitro transcription were cloned into pBSKneo U6' and pGEM-T vectors, respectively. The cleavage activity of ribozymes against mouse caspase-7 was identified by cleavage experimentsin vitro.RESULTS: Rz333 and Rz394 were designed and their DNA sequences were synthesized respectively. The expression vector of caspase-7 and plasmids containing Rz333 and Rz394 were reconstructed successfully. Ribozymes and caspase-7 mRNA were expressed byin vitro transcription.In vitro cleavage experiment showed that 243-nt and 744-nt segments were produced after caspase-7 mRNA was mixed with Rz333 in equivalent, and the cleavage efficiency was 67.98%. No cleaved segment was observed when caspase-7 mRNA was mixed with Rz394.CONCLUSION: Rz333 can site-specific cleave mouse caspase-7 mRNA, and it shows a potential for gene therapy of apoptosis-related diseases by down-regulating gene expression of caspase-7.

  18. The role of the methyltransferase domain of bifunctional restriction enzyme RM.BpuSI in cleavage activity.

    Directory of Open Access Journals (Sweden)

    Arthur Sarrade-Loucheur

    Full Text Available Restriction enzyme (REase RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS, bifunctional polypeptide possessing both methyltransferase (MTase and endonuclease activities (Type IIC and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM (Type IIG. The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca(2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca(2+, substrate or both and MTase state (in the presence of SIN and substrate, SIN and product or product alone. Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca(2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.

  19. Antiproliferative, DNA cleavage, and ADMET study of substituted 2-(1-benzofuran-2-yl quinoline-4-carboxylic acid and its esters

    Directory of Open Access Journals (Sweden)

    R. Anantacharya

    2016-12-01

    Full Text Available Synthesis, anti-proliferative, DNA cleavage, and in silico ADMET studies of 2-(1-benzofuran-2-yl quinoline-4-carboxylic acids and their resultant esters in acid catalyzed medium have been investigated. The synthesized compounds are characterized by UV, IR, 1H NMR, 13C NMR, and mass spectral analysis. The electrophoretic DNA cleavage studies on λ-DNA (Eco-RI/Hinda-III double digest using agarose gel method and the antiproliferative activity was carried out by MTT assay on five different human cancer cell lines (Chronic Myelogenous Leukemia (K562, Breast Cancer (MCF-7, Cervical Cancer (HeLa, Colorectal Adino carcinoma (Colo 205, and Hepato cellular carcinoma (HepG2. Doxorubicin is taken as standard for comparison. The cleavage study indicated that molecules (3b–6a and 7b–8c did cleave the DNA completely with no trace of fragments. The molecules (6b, 6c and 7a have appeared to cleave DNA partially and assessed by comparing the bands appeared in control and test compounds at 100 μg concentration. The MTT antiproliferative activity of the synthesized derivatives at a concentration of 10 mM screened that out of the five cancer cell lines tested, the compounds 8b (25.97%, MCF-7, 7a (25.36%, Colo 205, and 7b (24.22%, HePG showed considerable degree of activity at a very low concentration. The molecules were active against MCF-7, Colo 205, and HepG. The molecules exhibited acceptable range in in silico ADMET prediction, significant DNA cleavage, and antiproliferative properties. The study further provides identification of possible lead moiety as an antiproliferative agent.

  20. Social economy partnerships and the public/private cleavages

    Directory of Open Access Journals (Sweden)

    Joxerramon Bengoetxea

    2012-06-01

    Full Text Available Public/Private Partnerships can be seen as one particular topos where the divide between the public domain, all levels of the Public Administration and the private initiative and private property is turned into a joint venture rather than a confrontation or a cleavage. Some of the possible combinations of public and private and where public/private partnerships might fit are displayed analytically. The importance of political theory or ideology in conceiving the relationships between ‘public’ and ‘private’, and the conceptions of a market economy as opposed to a social market economy cannot be exaggerated enough, but equally important are the legal or regulatory framework and the underlying dominant legal culture and legal principles, and of course the economic and financial situation. Public/private partnerships thrive in some conditions, but seem to wane in others, and the current predicament is not favourable, taking into account that only the regulatory framework is supportive of these ventures. Los partenariados público-privados se pueden entender como un espacio particular, en el que el sector público, todos los niveles de la administración pública, y la iniciativa privada y la propiedad privada, abordan una empresa conjunta, en lugar mantener posturas contrapuestas. Se muestran algunas de las posibles combinaciones del sector público y privado, en las que tendrían cabida los partenariados público/privados. Es patente la importancia de la teoría o la ideología política para entender las relaciones entre lo público y lo privado, y las concepciones de una economía de mercado frente a una economía social, pero tampoco se puede negar la importancia del marco legal o reglamentario y la cultura jurídica dominante subyacente, y los principios jurídicos, sin olvidar la situación económica y financiera. Los partenariados público-privados prosperan en algunas condiciones, pero no lo hacen siempre, y la situación econ

  1. Carbon-Oxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds : Catalyst Deactivation Pathways and Observation of Acyl C-O Bond Cleavage in Esters

    NARCIS (Netherlands)

    Trovitch, Ryan J.; Lobkovsky, Emil; Bouwkamp, Marco W.; Chirik, Paul J.

    2008-01-01

    Investigations into the substrate scope of bis(imino)pyridine iron-catalyzed hydrogenation and [2 pi + 2 pi]. diene cyclization reactions identified C-O bond cleavage as a principal deactivation pathway. Addition of diallyl or allyl ethyl ether to the bis(imino)pyridine iron dinitrogen complex, ((iP

  2. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    Science.gov (United States)

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  3. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    Science.gov (United States)

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  4. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis.

    Directory of Open Access Journals (Sweden)

    Daishi Kitazawa

    Full Text Available Peripheral microtubules (MTs near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.

  5. Characterization of carbon-sulfur bond cleavage by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, K.J.; Bielaga, B.A.; Jackowski, K.; Oduson, O.; Kilbane, J. II

    1992-12-31

    Growth assays reveal that Rhodococcus rhodochrous IGTS8 can utilize a wide range of organosulfur compounds as the sole source of sulfur. Compounds that are utilized include thiophenes, sulfides, disulfides, mercaptans, sulfoxides, and sulfones. None of the organosulfur compounds tested can serve as a carbon source. A convenient spectrophotometric assay (Gibbs assay) based on the chromogenic reaction of 2,6-dichloroquinone-4-chloroimide with aromatic hydroxyl groups was developed and used in conjunction with GC/MS analysis to examine the kinetics of carbon-sulfur bond cleavage by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. The desulfurization trait is expressed at uniform levels during the mid-exponential phase, reaches a maximum during idiophase, and then declines in stationary-phase cells. Desulfurization rates for dibenzothiophene (DBT) range from 8 to 15 {mu}M of DBT/10{sup 12} cells/hour. Mixtures of genetically marked Rhodococcus rhodochrous IGTS8 and an organisms incapable of cleaning carbon-sulfur bonds in relevant test compounds, Enterobacter cloacae, were prepared in ratios that varied over six orders of magnitude. Growth studies revealed that Enterobacter cloacae was able to gain access to sulfur liberated from organosulfur compounds by IGTS8; however, cell-to-cell contact was required. These data also indicate that the desulfurization activity of IGTS8 cells in mixed cultures may be as much as 200-fold higher than in axenic cultures.

  6. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  7. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    Science.gov (United States)

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  8. Cleavage kinetics and anchor linked intermediates in solid phase peptide amide synthesis.

    Science.gov (United States)

    Dürr, H; Beck-Sickinger, A G; Schnorrenberg, G; Rapp, W; Jung, G

    1991-08-01

    Kinetics and cleavage conditions of peptide amide synthesis were studied using the anchor molecules 5-(4'-aminomethyl-3',5'-dimethoxyphenoxy)valeric acid (4-ADPV-OH) and 5-(2'-aminomethyl-3'-5'-dimethoxyphenoxy) valeric acid (2-ADPV-OH). Unexpectedly the anchor amide alanyl-4-ADPV-NH2 was isolated and characterized as an intermediate during the cleavage with trifluoroacetic acid (TFA) of alanyl-4-ADPV-alanyl-aminomethyl-polystyrene to yield the alanine amide. As a matter of fact the NH--CH alpha bond of the alanyl spacer has to be cleaved to form this intermediate. Using TFA-dichloromethane (1:9) alanyl-4-ADPV-NH2 was obtained as a cleavage product in 50% yield within 60 min, whereas the isomeric alanyl-2-ADPV-NH2 was formed more slowly under these mild conditions. At high TFA concentration no difference between the 2- and 4-ADPV anchor was observed in the rate of formation of the free alanine amide. The presence of tryptophan amide in the cleavage mixture resulted in an anchor alkylated tryptophan amide, which remains stable in acidic solution but disappears rapidly in the presence of the resin. A low TFA/high TFA cleavage procedure is recommended for peptide amid synthesis applying the ADPV anchor.

  9. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.

    Directory of Open Access Journals (Sweden)

    Sonu Kumar

    Full Text Available Caspases are enzymes belonging to a conserved family of cysteine-dependent aspartic-specific proteases that are involved in vital cellular processes and play a prominent role in apoptosis and inflammation. Determining all relevant protein substrates of caspases remains a challenging task. Over 1500 caspase substrates have been discovered in the human proteome according to published data and new substrates are discovered on a daily basis. To aid the discovery process we developed a caspase cleavage prediction method using the recently published curated MerCASBA database of experimentally determined caspase substrates and a Random Forest classification method. On both internal and external test sets, the ranking of predicted cleavage positions is superior to all previously developed prediction methods. The in silico predicted caspase cleavage positions in human proteins are available from a relational database: CaspDB. Our database provides information about potential cleavage sites in a verified set of all human proteins collected in Uniprot and their orthologs, allowing for tracing of cleavage motif conservation. It also provides information about the positions of disease-annotated single nucleotide polymorphisms, and posttranslational modifications that may modulate the caspase cleaving efficiency.

  10. Characteristics of the fast electron emission produced during the cleavage of crystals

    Indian Academy of Sciences (India)

    B P Chandra; N L Patel; S S Rahangdale; R P Patel; V K Patle

    2003-01-01

    The present paper reports the fast electron emission produced during the cleavage of alkali halide crystals and models the dynamics of the process. The mechano-emission arises as a result of the ionization of surface traps at the expense of the energy which is released in the annihilation of the defects which are formed during cleavage. The slow electrons which appear upon the ionization of surface traps are subsequently accelerated in the field of negatively charged segment of the freshly cleaved surface. Considering the basic mechanism of fast electron emission, expressions are derived which are able to explain satisfactorily the temporal, thermal, charge, surface, coloration, water adsorption and other characteristics of the fast electron emission produced during the cleavage of crystals. The decay time of the charges on the newly created surfaces, and the velocity of cracks can be determined from the measurements of fast electron emission produced during the cleavage of crystals. It is shown that two types of diffusing centres are responsible for the charge relaxation and thereby for the emission of fast electrons produced during the cleavage of alkali halide crystals.

  11. Two-step cleavage of hairpin RNA with 5' overhangs by human DICER

    Directory of Open Access Journals (Sweden)

    Suzuki Harukazu

    2011-02-01

    Full Text Available Abstract Background DICER is an RNase III family endoribonuclease that processes precursor microRNAs (pre-miRNAs and long double-stranded RNAs, generating microRNA (miRNA duplexes and short interfering RNA duplexes with 20~23 nucleotides (nts in length. The typical form of pre-miRNA processed by the Drosha protein is a hairpin RNA with 2-nt 3' overhangs. On the other hand, production of mature miRNA from an endogenous hairpin RNA with 5' overhangs has also been reported, although the mechanism for this process is unknown. Results In this study, we show that human recombinant DICER protein (rDICER processes a hairpin RNA with 5' overhangs in vitro and generates an intermediate duplex with a 29 nt-5' strand and a 23 nt-3' strand, which was eventually cleaved into a canonical miRNA duplex via a two-step cleavage. The previously identified endogenous pre-miRNA with 5' overhangs, pre-mmu-mir-1982 RNA, is also determined to be a substrate of rDICER through the same two-step cleavage. Conclusions The two-step cleavage of a hairpin RNA with 5' overhangs shows that DICER releases double-stranded RNAs after the first cleavage and binds them again in the inverse direction for a second cleavage. These findings have implications for how DICER may be able to interact with or process differing precursor structures.

  12. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center.

    Science.gov (United States)

    Zhao, Yuan; Du, Ke-Jie; Gao, Shu-Qin; He, Bo; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-03-01

    Heme proteins perform diverse biological functions, of which myoglobin (Mb) is a representative protein. In this study, the O2 carrier Mb was shown to cleave double stranded DNA upon aerobic dithiothreitol-induced reduction, which is fine-tuned by an additional distal histidine, His29 or His43, engineered in the heme active center. Spectroscopic (UV-vis and EPR) and inhibition studies suggested that free radicals including singlet oxygen and hydroxyl radical are responsible for efficient DNA cleavage via an oxidative cleavage mechanism. On the other hand, L29E Mb, with a distinct heme active center involving three water molecules in the met form, was found to exhibit an excellent DNA cleavage activity that was not depending on O2. Inhibition and ligation studies demonstrated for the first time that L29E Mb cleaves double stranded DNA into both the nicked circular and linear forms via a hydrolytic cleavage mechanism, which resembles native endonucleases. This study provides valuable insights into the distinct mechanisms for DNA cleavage by heme proteins, and lays down a base for creating artificial DNA endonucleases by rational design of heme proteins. Moreover, this study suggests that the diverse functions of heme proteins can be fine-tuned by rational design of the heme active center with a hydrogen-bonding network.

  13. Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Thea Bismo Strøm

    2014-01-01

    Full Text Available More than 1700 mutations in the low density lipoprotein receptor (LDLR gene have been found to cause familial hypercholesterolemia (FH. These are commonly divided into five classes based upon their effects on the structure and function of the LDLR. However, little is known about the mechanism by which mutations in the transmembrane domain of the LDLR gene cause FH. We have studied how the transmembrane mutation G805R affects the function of the LDLR. Based upon Western blot analyses of transfected HepG2 cells, mutation G805R reduced the amounts of the 120 kDa precursor LDLR in the endoplasmic reticulum. This led to reduced amounts of the mature 160 kDa LDLR at the cell surface. However, significant amounts of a secreted 140 kDa G805R-LDLR ectodomain fragment was observed in the culture media. Treatment of the cells with the metalloproteinase inhibitor batimastat largely restored the amounts of the 120 and 160 kDa forms in cell lysates, and prevented secretion of the 140 kDa ectodomain fragment. Together, these data indicate that a metalloproteinase cleaved the ectodomain of the 120 kDa precursor G805R-LDLR in the endoplasmic reticulum. It was the presence of the polar Arg805 and not the lack of Gly805 which led to ectodomain cleavage. Arg805 also prevented γ-secretase cleavage within the transmembrane domain. It is conceivable that introducing a charged residue within the hydrophobic membrane lipid bilayer, results in less efficient incorporation of the 120 kDa G805R-LDLR in the endoplasmic reticulum membrane and makes it a substrate for metalloproteinase cleavage.

  14. Non-Enzymatic DNA Cleavage Reaction Induced by 5-Ethynyluracil in Methylamine Aqueous Solution and Application to DNA Concatenation

    OpenAIRE

    Ikeda, Shuji; Tainaka, Kazuki; Matsumoto, Katsuhiko; Shinohara, Yuta; Koji L Ode; Susaki, Etsuo A; Ueda, Hiroki R

    2014-01-01

    DNA can be concatenated by hybridization of DNA fragments with protruding single-stranded termini. DNA cleavage occurring at a nucleotide containing a DNA base analogue is a useful method to obtain DNA with designed protruding termini. Here, we report a novel non-enzymatic DNA cleavage reaction for DNA concatenation. We found that DNA is cleaved at a nucleotide containing 5-ethynyluracil in a methylamine aqueous solution to generate 5′-phosphorylated DNA fragment as a cleavage product. We dem...

  15. Ratcheting of the substrate from the zymogen to proteinase conformations directs the sequential cleavage of prothrombin by prothrombinase

    OpenAIRE

    Bianchini, Elsa P.; Orcutt, Steven J.; Panizzi, Peter; Bock, Paul E.; Krishnaswamy, Sriram

    2005-01-01

    Prothrombinase catalyzes thrombin formation by the ordered cleavage of two peptide bonds in prothrombin. Although these bonds are likely ≈36 Å apart, sequential cleavage of prothrombin at Arg-320 to produce meizothrombin, followed by its cleavage at Arg-271, are both accomplished by equivalent exosite interactions that tether each substrate to the enzyme and facilitate presentation of the scissile bond to the active site of the catalyst. We show that impairing the conformational transition fr...

  16. Restricted Active Site Docking by Enzyme-bound Substrate Enforces the Ordered Cleavage of Prothrombin by Prothrombinase*

    OpenAIRE

    Hacisalihoglu, Ayse; Panizzi, Peter; Bock, Paul E.; Camire, Rodney M.; Krishnaswamy, Sriram

    2007-01-01

    The preferred pathway for prothrombin activation by prothrombinase involves initial cleavage at Arg320 to produce meizothrombin, which is then cleaved at Arg271 to liberate thrombin. Exosite binding drives substrate affinity and is independent of the bond being cleaved. The pathway for cleavage is determined by large differences in Vmax for cleavage at the two sites within intact prothrombin. By fluorescence binding studies in the absence of catalysis, we have assessed the ability of the indi...

  17. The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity

    OpenAIRE

    Arthur Sarrade-Loucheur; Shuang-yong Xu; Siu-Hong Chan

    2013-01-01

    Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavag...

  18. In vitro cleavage of the simian virus 40 early polyadenylation site adjacent to a required downstream TG sequence.

    OpenAIRE

    Sperry, A O; Berget, S M

    1986-01-01

    Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct...

  19. Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication.

    Science.gov (United States)

    Kundu, Pallob; Raychaudhuri, Santanu; Tsai, Weimin; Dasgupta, Asim

    2005-08-01

    The TATA-binding protein (TBP) plays a crucial role in cellular transcription catalyzed by all three DNA-dependent RNA polymerases. Previous studies have shown that TBP is targeted by the poliovirus (PV)-encoded protease 3C(pro) to bring about shutoff of cellular RNA polymerase II-mediated transcription in PV-infected cells. The processing of the majority of viral precursor proteins by 3C(pro) involves cleavages at glutamine-glycine (Q-G) sites. We present evidence that suggests that the transcriptional inactivation of TBP by 3C(pro) involves cleavage at the glutamine 104-serine 105 (Q104-S105) site of TBP and not at the Q18-G19 site as previously thought. The TBP Q104-S105 cleavage by 3C(pro) is greatly influenced by the presence of an aliphatic amino acid at the P4 position, a hallmark of 3C(pro)-mediated proteolysis. To examine the importance of host cell transcription shutoff in the PV life cycle, stable HeLa cell lines were created that express recombinant TBP resistant to cleavage by the viral proteases, called GG rTBP. Transcription shutoff was significantly impaired and delayed in GG rTBP cells upon infection with poliovirus compared with the cells that express wild-type recombinant TBP (wt rTBP). Infection of GG rTBP cells with poliovirus resulted in small plaques, significantly reduced viral RNA synthesis, and lower viral yields compared to the wt rTBP cell line. These results suggest that a defect in transcription shutoff can lead to inefficient replication of poliovirus in cultured cells.

  20. In Situ Raman Monitoring of Silver(I)-Aided Laser-Driven Cleavage Reaction of Cyclobutane.

    Science.gov (United States)

    Chen, Dengtai; Han, Xijiang; Du, Yunchen; Wang, Hsing-Lin; Xu, Ping

    2016-01-01

    The cyclobutane cleavage reaction is an important process and has received continuous interest. Herein, we demonstrate the visible laser-driven cleavage reaction of cyclobutane in crystal form by using in situ Raman spectroscopy. Silver(I) coordination-induced strain and thermal effects from the laser irradiation are the two main driving forces for the cleavage of cyclobutane crystals. This work may open up a new avenue for studying cyclobutane cleavage reactions, as compared to the conventional routes using ex situ techniques. PMID:26510491

  1. Identification of RNA sequences and structures involved in site-specific cleavage of IGF-II mRNAs.

    OpenAIRE

    van Dijk, E L; Sussenbach, J S; Holthuizen, P E

    1998-01-01

    Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To furth...

  2. Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Francesco G. Mutti

    2012-01-01

    Full Text Available The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (−78°C, for a safe process and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known and the application of these enzymes in biocatalysis.

  3. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus.

    Science.gov (United States)

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  4. Cleavage-induced termination in U2 snRNA gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Nabavi, Sadeq [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Nazar, Ross N., E-mail: rnnazar@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2010-03-12

    The maturation of many small nuclear RNAs is dependent on RNase III-like endonuclease mediated cleavage, which generates a loading site for the exosome complex that trims the precursor at its 3' end. Using a temperature sensitive Pac1 nuclease, here we show that the endonuclease cleavage is equally important in terminating the transcription of the U2 snRNA in Schizosaccharomyces pombe. Using a temperature sensitive Dhp1p 5' {yields} 3' exonuclease, we demonstrate that it also is an essential component of the termination pathway. Taken together the results support a 'reversed torpedoes' model for the termination and maturation of the U2 snRNA; the Pac1 endonuclease cleavage provides entry sites for the 3' and 5' exonuclease activities, leading to RNA maturation in one direction and transcript termination in the other.

  5. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus

    Science.gov (United States)

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  6. Cleavage-induced termination in U2 snRNA gene expression

    International Nuclear Information System (INIS)

    The maturation of many small nuclear RNAs is dependent on RNase III-like endonuclease mediated cleavage, which generates a loading site for the exosome complex that trims the precursor at its 3' end. Using a temperature sensitive Pac1 nuclease, here we show that the endonuclease cleavage is equally important in terminating the transcription of the U2 snRNA in Schizosaccharomyces pombe. Using a temperature sensitive Dhp1p 5' → 3' exonuclease, we demonstrate that it also is an essential component of the termination pathway. Taken together the results support a 'reversed torpedoes' model for the termination and maturation of the U2 snRNA; the Pac1 endonuclease cleavage provides entry sites for the 3' and 5' exonuclease activities, leading to RNA maturation in one direction and transcript termination in the other.

  7. An investigation of crack-tip stress field criteria of predicting cleavage-crack initiation

    Energy Technology Data Exchange (ETDEWEB)

    Keeney-Walker, J.; Bass, B.R.; Landes, J.D. (Oak Ridge National Lab., TN (United States))

    1991-09-01

    Cleavage-crack initiation in large-scale wide-plate (WP) specimens could not be accurately predicted from small, compact (CT) specimens by using a linear-elastic fracture-mechanics, K{sub Ic}, methodology. In the wide-plate tests conducted by the Heavy-Section Steel Technology Program at Oak Ridge National Laboratory, crack initiation has consistently occurred at stress-intensity (K{sub I}) values ranging from two to four times those predicted by the CT specimens. Studies were initiated to develop crack-tip stress field criteria incorporating effects of geometry, size, and constraint that will lead to improved predictions of cleavage initiation in WP specimens from CT specimens. The work centers around nonlinear two-and three-dimensional finite-element analyses of the crack-tip stress fields in these geometries. Analyses were conducted on CT and WP specimens for which cleavage initiation fracture had been measured in laboratory tests. The local crack-tip field generated for these specimens were then used in the evaluation of fracture correlation parameters to augment the K{sub I} parameter for predicting cleavage initiation. Parameters of hydrostatic constraint and of maximum principal stress, measured volumetrically, are included in these evaluations. The results suggest that the cleavage initiation process can be correlated with the local crack-tip fields via a maximum principal stress criterion based on achieving a critical area within a critical stress contour. This criterion has been successfully applied to correlate cleavage initiation in 2T-CT and WP specimen geometries. 23 refs., 16 figs., 5 tabs.

  8. Cleavage strain in the Variscan fold belt, County Cork, Ireland, estimated from stretched arsenopyrite rosettes

    Science.gov (United States)

    Ford, M.; Ferguson, C.C.

    1985-01-01

    In south-west Ireland, hydrothermally formed arsenopyrite crystals in a Devonian mudstone have responded to Variscan deformation by brittle extension fracture and fragment separation. The interfragment gaps and terminal extension zones of each crystal are infilled with fibrous quartz. Stretches within the cleavage plane have been calculated by the various methods available, most of which can be modified to incorporate terminal extension zones. The Strain Reversal Method is the most accurate currently available but still gives a minimum estimate of the overall strain. The more direct Hossain method, which gives only slightly lower estimates with this data, is more practical for field use. A strain ellipse can be estimated from each crystal rosette composed of three laths (assuming the original interlimb angles were all 60??) and, because actual rather than relative stretches are estimated, this provides a lower bound to the area increase in the plane of cleavage. Based on the average of our calculated strain ellipses this area increase is at least 114% and implies an average shortening across the cleavage of at least 53%. However, several lines of evidence suggest that the cleavage deformation was more intense and more oblate than that calculated, and we argue that a 300% area increase in the cleavage plane and 75% shortening across the cleavage are more realistic estimates of the true strain. Furthermore, the along-strike elongation indicated is at least 80%, which may be regionally significant. Estimates of orogenic contraction derived from balanced section construction should therefore take into account the possibility of a substantial strike elongation, and tectonic models that can accommodate such elongations need to be developed. ?? 1985.

  9. Initiation of cleavage in a low alloy steel: effect of a ductile damage localized around inclusions

    International Nuclear Information System (INIS)

    The fracture mechanism in a low alloy steel, used in the pressurised water reactor vessel, has been studied in the ductile to brittle transition temperature range. We used the local approach of fracture in conjunction with both fractographic observations and numerical simulations. Previous studies suggested the onset of cleavage to be favoured by the presence of nearby manganese sulphide (MnS) clusters: the ductile damaged zone localised inside a cluster increases the stress around it, and so contribute to the triggering of cleavage due to nearby classical sites, like carbides. The experimental study of size dependence and anisotropy on the global fracture behaviour, together with fractographic observations, give here the proof of the influence of MnS clusters on the onset of cleavage in this steel. Fracture behaviour of pre-cracked specimens tested in the transition regime has then been simulated, by three dimensional finite element method computations. Ductile tearing process preceding the cleavage onset at those temperatures regime was well reproduced by the Rousselier's model. Failure probabilities, related to given stress states, has been given by post-processor calculations, using a probabilistic model based on the specific cleavage fracture process. Fracture toughness scatter of the steel, tested in the transition regime, is then well reproduced by those calculations. However, the critical cleavage stress of an elementary volume, that scales for the fracture process, is still assumed to be temperature dependant. Numerical simulations of the local fracture process suggest that this temperature effect can partly be explained by the temperature dependant decrease of the stress amplification due to the MnS clusters. (author)

  10. Tomato ringspot nepovirus protease: characterization and cleavage site specificity

    NARCIS (Netherlands)

    Hans, F.; Sanfacon, H.

    1995-01-01

    We have cloned the region of tomato ringspot nepovirus (TomRSV) RNA-1 coding for the putative TomRSV 3C-related protease (amino acids 1213 to 1508) in a transcription vector and in a transient expression vector. Using cell-free transcription and translation systems and plant protoplasts, we have dem

  11. Predicting proteasomal cleavage sites: a comparison of available methods

    DEFF Research Database (Denmark)

    Saxova, P.; Buus, S.; Brunak, Søren;

    2003-01-01

    The proteasome plays an essential role in the immune responses of vertebrates. By degrading intercellular proteins from self and non-self, the proteasome produces the majority of the peptides that are presented to cytotoxic T cells (CTL). There is accumulating evidence that the C-terminal, in par...

  12. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  13. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Science.gov (United States)

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. PMID:25703194

  14. Morphological and morphometric study of early-cleavage mice embryos resulting from in vitro fertilization at different cleavage stages after vitrification.

    Science.gov (United States)

    Homayoun, H; Zahiri, Sh; Hemayatkhah Jahromi, V; Hassanpour Dehnavi, A

    2016-01-01

    The aim of this study was to examine the possible morphological and morphometric changes resulting from vitrification of embryos at the cleavage stage. In this study, 30 mice early-cleavage embryos at different stages of cleavage, resulting from in vitro fertilization (IVF) techniques, were examined before and after vitrification. Digital images were taken from embryos before and after vitrification. Zona pellucida thickness, differences in zona pellucida thickness, and diameter and volume of blastomeres and embryos as morphometric parameters and current rating of appearance of embryos as morphological parameters, have been studied. According to our findings, there were significant mean differences in all morphometric parameters of the two groups except in the zona pellucid thickness (P≤0.05). With regard to the morphological parameter, the decrease in embryo quality was observed but it was not significant. According to the results, although little quantitative change observed is not necessarily synonymous with harmful intracellular damage, it seems that it is better to examine vitrification method more accurately. Because by making subtle changes in concentration and type of consumed solutions or techniques used, the changes may be minimized. PMID:27656231

  15. Posttranslational proteolytic processing of Leda-1/Pianp involves cleavage by MMPs, ADAM10/17 and gamma-secretase.

    Science.gov (United States)

    Biswas, Siladitta; Adrian, Monica; Weber, Jochen; Evdokimov, Konstantin; Winkler, Manuel; Géraud, Cyrill

    2016-09-01

    Leda-1/Pianp is a type I transmembrane protein expressed by CNS cells, murine melanoma cell line B16F10 and rat liver sinusoidal endothelial cells. The early steps of posttranslational modifications of Leda-1/Pianp have been described to include glycosylation and processing by proprotein convertases. Here, we comprehensively characterized the subsequent steps of proteolytic processing of Leda-1/Pianp. For this purpose specific protease inhibitors and cell lines deficient in PS1, PS2, PS1/PS2 and ADAM10/17 were deployed. Leda-1/Pianp was cleaved at numerous cleavage sites within the N-terminal extracellular domain. The sheddases involved included MMPs and ADAM10/17. Ectodomain shedding yielded C-terminal fragments (CTF) of ∼15 kDa. The CTF was further processed by the γ (gamma)-secretase complex to generate the intracellular domain (ICD) of ∼10 kDa. Although PS1 was the dominant intramembrane protease, PS2 was also able to cleave Leda-1/Pianp in the absence of PS1. Thus, Leda-1/Pianp is constitutively processed by proprotein convertases, sheddases including MMPs and ADAM10/17 and intramembrane protease γ-secretase. PMID:27349870

  16. hnRNPs H, H' and F behave differently with respect to posttranslational cleavage and subcellular localization

    DEFF Research Database (Denmark)

    Honoré, B; Vorum, H; Baandrup, U

    1999-01-01

    hnRNPs H, H' and F belong to a subfamily of the hnRNPs sharing a high degree of sequence identity. Eukaryotic expression and specific C-terminal antibodies were used to demonstrate great variation in the intracellular fate of the proteins. hnRNPs H and H' become posttranslational cleaved into C......-terminal 35 kDa proteins (H(C), H'(C)) and possibly into N-terminal 22 kDa proteins. No detectable cleavage was observed for hnRNP F. hnRNP H/H' is almost exclusively localized to the nucleus of many cell types while hnRNP F varies from a predominant nuclear localization in some cells to a predominant...... cytoplasmic localization in other cells. The different fates may reflect differences in functional roles that so far only have included nuclear functions. The presence of significant quantities of hnRNP F in the cytoplasm of many cells indicates that it also may have a functional role here. Udgivelsesdato...

  17. Characterization of insulin-degrading enzyme-mediated cleavage of Aβ in distinct aggregation states.

    Science.gov (United States)

    Hubin, Ellen; Cioffi, Federica; Rozenski, Jef; van Nuland, Nico A J; Broersen, Kerensa

    2016-06-01

    To enhance our understanding of the potential therapeutic utility of insulin-degrading enzyme (IDE) in Alzheimer's disease (AD), we studied in vitro IDE-mediated degradation of different amyloid-beta (Aβ) peptide aggregation states. Our findings show that IDE activity is driven by the dynamic equilibrium between Aβ monomers and higher ordered aggregates. We identify Met(35)-Val(36) as a novel IDE cleavage site in the Aβ sequence and show that Aβ fragments resulting from IDE cleavage form non-toxic amorphous aggregates. These findings need to be taken into account in therapeutic strategies designed to increase Aβ clearance in AD patients by modulating IDE activity.

  18. LNA nucleotides improve cleavage efficiency of singular and binary hammerhead ribozymes

    DEFF Research Database (Denmark)

    Christiansen, Janne K; Lobedanz, Sune; Arar, Khalil;

    2007-01-01

    concentrations, it was found that insertion of LNA monomers into the substrate binding arms allowed these to be shortened and results in a very active enzyme under both single and multiple turnover conditions. Incorporation of a mix of LNA and DNA residues further increased the multiple turnover cleavage...... activity. At high Mg(2+) concentrations or high substrate and ribozyme concentrations, the enhancing effect of LNA incorporation was even more prominent. Using LNA in the stem of Helix II diminished cleavage activity, but allowed deletion of the tetra-loop and thus separating the ribozyme into two...

  19. An energy approach to predict cleavage fracture under non-proportional loading

    International Nuclear Information System (INIS)

    The paper provides an energy approach to predict cleavage fracture under non-proportional loading. It is based on an energy minimization and uses a notch model to represent the crack. An energy based cleavage criterion is defined. Validation is conducted in the context of two European programmes, showing that the approach accounts for both shallow crack and warm pre-stress effects. All these results are analyzed and discussed by referring to the classical Beremin model. This approach can be seen as a simple extension of the classical J approach, providing a tool of common and practical use for engineers. (authors)

  20. Grain boundary effect on the nature of cleavage fracture in copper crystallite under pulsed loading

    International Nuclear Information System (INIS)

    The computer modeling of cleavage fracture in the copper crystallite, containing grain boundary under pulsed loading, is carried out. It is shown that tendency to material destruction along the grain boundary is increasing by initiation of packages of several isolated compression pulses (ICP) in the material. Increase in the ICP number in the package leads to the cleavage fracture along the boundaries, outlying over a great distance from the free surface. The cleaved fragments decompose with time into smaller ones due to growing spread of atomic velocities

  1. Motoneurons secrete angiogenin to induce RNA cleavage in astroglia.

    OpenAIRE

    Skorupa, Alexandra; King, Matthew A; Aparicio, Isabela M.; Dussmann, Heiko; Coughlan, Karen; Breen, Bridget; Kieran, Dairin; Concannon, Caoimhin G.; Marin, Philippe; Prehn, Jochen HM

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cult...

  2. Automatic Dissection Position Selection for Cleavage-Stage Embryo Biopsy.

    Science.gov (United States)

    Wang, Zenan; Ang, Wei Tech

    2016-03-01

    Embryo biopsies are routinely performed for preimplantation genetic diagnosis (PGD). In order to avoid blastomere membrane rupture and cell lysis, correct selection of a suitable dissection position on the zona pellucida (ZP) is necessary. Although, the technology for automated cell manipulation has advanced greatly over the past decade, fully automated embryo biopsy in PGD has not been realized yet. Automated PGD may ultimately set a new clinical standard that improves the consistency of outcomes, increases cell survival rates, flattens the learning curve of the manual procedure, and reduces the effects of human fatigue. In this paper, we present the first approach to automatically select a suitable ZP dissection position prior to embryo biopsy from a single focused embryo image based on edge detection. The proposed method consists of a technique that estimates the elliptical ZP boundaries and another two techniques that select the suitable position for ZP dissection. These techniques achieved success rates of 96%, 94%, and 94% respectively. In addition, the proposed ZP boundary estimation technique has the potential to perform ZP thickness variation (ZPTV) test and other ZP morphology measurements with further improvement in the future. Our methods provide a starting point for fast position selection prior to automatic embryo biopsy. PMID:26259216

  3. Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus.

    Science.gov (United States)

    Wei, Ting; Chisholm, Joan; Sanfaçon, Hélène

    2016-01-01

    The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase) cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa)-long hydrophobic region (termed TM2). However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G). Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3-7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s) oriented parallel to the membrane inner surface. PMID:27589230

  4. Heightened cleavage of Axl receptor tyrosine kinase by ADAM metalloproteases may contribute to disease pathogenesis in SLE.

    Science.gov (United States)

    Orme, Jacob J; Du, Yong; Vanarsa, Kamala; Mayeux, Jessica; Li, Li; Mutwally, Azza; Arriens, Cristina; Min, Soyoun; Hutcheson, Jack; Davis, Laurie S; Chong, Benjamin F; Satterthwaite, Anne B; Wu, Tianfu; Mohan, Chandra

    2016-08-01

    Systemic lupus erythematosus (SLE) is characterized by antibody-mediated chronic inflammation in the kidney, lung, skin, and other organs to cause inflammation and damage. Several inflammatory pathways are dysregulated in SLE, and understanding these pathways may improve diagnosis and treatment. In one such pathway, Axl tyrosine kinase receptor responds to Gas6 ligand to block inflammation in leukocytes. A soluble form of the Axl receptor ectodomain (sAxl) is elevated in serum from patients with SLE and lupus-prone mice. We hypothesized that sAxl in SLE serum originates from the surface of leukocytes and that the loss of leukocyte Axl contributes to the disease. We determined that macrophages and B cells are a source of sAxl in SLE and in lupus-prone mice. Shedding of the Axl ectodomain from the leukocytes of lupus-prone mice is mediated by the matrix metalloproteases ADAM10 and TACE (ADAM17). Loss of Axl from lupus-prone macrophages renders them unresponsive to Gas6-induced anti-inflammatory signaling in vitro. This phenotype is rescued by combined ADAM10/TACE inhibition. Mice with Axl-deficient macrophages develop worse disease than controls when challenged with anti-glomerular basement membrane (anti-GBM) sera in an induced model of nephritis. ADAM10 and TACE also mediate human SLE PBMC Axl cleavage. Collectively, these studies indicate that increased metalloprotease-mediated cleavage of leukocyte Axl may contribute to end organ disease in lupus. They further suggest dual ADAM10/TACE inhibition as a potential therapeutic modality in SLE.

  5. Psychosine-triggered endomitosis is modulated by membrane sphingolipids through regulation of phosphoinositide 4,5-bisphosphate production at the cleavage furrow.

    Science.gov (United States)

    Watanabe, Hiroshi; Okahara, Kyohei; Naito-Matsui, Yuko; Abe, Mitsuhiro; Go, Shinji; Inokuchi, Jinichi; Okazaki, Toshiro; Kobayashi, Toshihide; Kozutsumi, Yasunori; Oka, Shogo; Takematsu, Hiromu

    2016-07-01

    Endomitosis is a special type of mitosis in which only cytokinesis-the final step of the cell division cycle-is defective, resulting in polyploid cells. Although endomitosis is biologically important, its regulatory aspects remain elusive. Psychosine, a lysogalactosylceramide, prevents proper cytokinesis when supplemented to proliferating cells. Cytokinetic inhibition by psychosine does not inhibit genome duplication. Consequently cells undergo multiple rounds of endomitotic cell cycles, resulting in the formation of giant multiploid cells. Here we successfully quantified psychosine-triggered multiploid cell formation, showing that membrane sphingolipids ratios modulate psychosine-triggered polyploidy in Namalwa cells. Among enzymes that experimentally remodel cellular sphingolipids, overexpression of glucosylceramide synthase to biosynthesize glycosylsphingolipids (GSLs) and neutral sphingomyelinase 2 to hydrolyze sphingomyelin (SM) additively enhanced psychosine-triggered multiploidy; almost all of the cells became polyploid. In the presence of psychosine, Namalwa cells showed attenuated cell surface SM clustering and suppression of phosphatidylinositol 4,5-bisphosphate production at the cleavage furrow, both important processes for cytokinesis. Depending on the sphingolipid balance between GSLs and SM, Namalwa cells could be effectively converted to viable multiploid cells with psychosine. PMID:27170180

  6. The γ-secretase cleavage product of Polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism

    OpenAIRE

    Merrick, David; Chapin, Hannah; Baggs, Julie E.; Yu, Zhiheng; Somlo, Stefan; Sun, Zhaoxia; Hogenesch, John B.; Caplan, Michael

    2011-01-01

    Mutations in Pkd1, encoding polycystin-1 (PC1), cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional co-activator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reest...

  7. Initiation of V(D)J recombination in a cell-free system

    NARCIS (Netherlands)

    D.C. van Gent (Dik); J.F. McBlane; D.A. Ramsden; M.J. Sadokfsky; J.E. Hesse (Joanne); M. Gellert

    1995-01-01

    textabstractCells performing V(D)J recombination make specific cuts in DNA at recombination signal sequences. Here, we show that nuclear extracts of pre-B cell lines carry out this specific cleavage. The products of cleavage are the same as found previously in thymocytes: full-leng

  8. Cleavage pattern and mesentoblast formation in Acanthochiton crinitus (Polyplacophora, Mollusca).

    Science.gov (United States)

    van den Biggelaar, J A

    1996-03-15

    In characteristic spiralian embryos the mesentoblast is the stem cell of the mesodermal bands. It is a derivative of the dorsal quadrant. At least in gastropod molluscs, the ancestral form for the specification of the dorsal quadrant out of four initially equal quadrants is by centralization of one of the four macromeres after the separation of the presumptive ecto- and entoblast cells. Then this macromere is induced by the animal micromeres to produce the mesentoblast. In this paper it is shown that in the embryo of the polyplacophoran Acanthochiton crinitus, specification of the dorsal quadrant and formation of the mesentoblast exactly follow the same pattern. After deletion of the first quartet of micromeres none of the macromeres is centralized, no mesentoblast is formed, and the embryo remains radially symmetrical. Apparently, the mechanism for the specification of the dorsal quadrant and the formation of the mesentoblast has been conserved during the evolution of the main molluscan taxa. It has been discussed whether this mechanism might be a plesiomorphous property, characteristic of less derived spiralian phyla. PMID:8631512

  9. RNase III cleavage of Escherichia coli beta-galactosidase and tryptophan operon mRNA.

    OpenAIRE

    Shen, V; Imamoto, F; Schlessinger, D

    1982-01-01

    Purified RNase III of Escherichia coli cleaved the initial 479-nucleotide sequence of lac operon mRNA at four specific sites and also gave limited cleavage of trp operon mRNA. This action explains the inactivation of mRNA coding capacity by RNase III in vitro.

  10. Iron catalyzed oxidation chemistry : from C-H bond activation to DNA cleavag

    NARCIS (Netherlands)

    Berg, Tieme Adriaan van den

    2008-01-01

    The synthetic iron complex Fe(N4Py) can be employed as a catalyst in the aerobic oxidation of DNA. The resulting oxidized DNA strand is rather unstable and results in cleavage of the DNA strand into two pieces. As for now, it was only possible with Fe(N4Py) or other synthetic iron complexes as catal

  11. Sperm retention site and its influence on cleavage rate and early development following intracytoplasmic sperm injection

    OpenAIRE

    Yanaihara, Atsushi; Iwasaki, Shinji; Negishi, Momoko; Okai, Takashi

    2006-01-01

    Background: Intracytoplasmic sperm injection (ICSI) has risen to the forefront of reproductive technology. In the present study, the location of the sperm injection was noted, and a prospective study was conducted to evaluate the effect of the sperm retention site on cleavage rates and embryo quality after ICSI.

  12. Site-specifically Hydrolytic Cleavage of Oxidized Insulin B Chain With Cu(II) Ion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Electrospray mass spectrometry investigation shows that denatured oxidized insulin B chain can be selectively cleaved by simple Cu(II) ion and the site of cleavage is at Gly8-Ser9 bond which is second amide bond left from His 10 in the sequence of oxidized insulin B chain.

  13. Facile P-C/C-H Bond Cleavage Reactivity of Nickel Bis(diphosphine) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.; Hall, Michael B.; Bullock, R. Morris

    2016-07-04

    Unusual cleavage of P-C and C-H bonds of the P2N2 ligand in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode.

  14. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  15. Arthrobacter luteus restriction endonuclease cleavage map of X174 RF DNA

    NARCIS (Netherlands)

    Vereijken, J.M.; Mansfeld, A.D.M. van; Baas, P.D.; Jansz, H.S.

    1975-01-01

    Cleavage of X174 RF DNA with the restriction endonuclease from Arthrobacter luteus (Alu I) produces 23 fragments of approximately 24–1100 base pairs in length. The order of most of these fragments has been established by digestion of Haemophilus influenzae Rd (Hind II) and Haemophilus aegyptius (Hae

  16. Photoenhanced Oxidative DNA Cleavage with Non-Heme Iron(II) Complexes

    NARCIS (Netherlands)

    Li, Qian; Browne, Wesley R.; Roelfes, Gerard

    2010-01-01

    The DNA cleavage activity of iron(II) complexes of a series of monotopic pentadentate N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine (N4Py)-derived ligands (1-5) was investigated under laser irradiation at 473, 400.8, and 355 nm in the absence of a reducing agent and compared to that under amb

  17. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains

    DEFF Research Database (Denmark)

    Manon-Jensen, Tina; Multhaupt, Hinke A B; Couchman, John R

    2013-01-01

    or autocrine effectors, or as competitive inhibitors of the intact proteoglycan. Tumour-associated MMPs are shown here to cleave the ectodomains of human syndecan-1 and syndecan-4. Two membrane proximal regions of both syndecan-1 and syndecan-4 are favoured MMP cleavage sites, six and 15 residues from...

  18. Adolescents' Perceptions of Equal Opportunities and Social Cleavages in Israeli Society.

    Science.gov (United States)

    Erhard, Rachel; And Others

    A study was done of perceptions of equality of opportunities for access to social resources and of social cleavages in Israeli society among Israeli students in grades 8 and 9. The study population included 9,000 students in 273 classes in a national sample of 47 secular junior high schools. Subjects were asked to assess equality of opportunities…

  19. Multielectron redox reactions involving C-C coupling and cleavage in uranium Schiff base complexes

    International Nuclear Information System (INIS)

    The reaction of U(III) with Schiff base ligands and the reduction of U(IV) Schiff base complexes both promote C-C bond formation to afford dinuclear or mononuclear U(IV) amido complexes, which can release up to four electrons to substrates through the oxidative cleavage of the C-C bond. (authors)

  20. The party politics of economic reform: Public opinion, party positions and partisan cleavages

    NARCIS (Netherlands)

    Padgett, Stephen

    2005-01-01

    This article focuses on the capacity of parties to cultivate public opinion to accept welfare state reform. 'Preference shaping', it is argued, depends on the intensity of party 'messages', which will be at their strongest where there are sharply defined partisan cleavages in opinion. The aversion o

  1. Racial Cleavage in Local Voting: The Case of School and Tax Issue Referendums.

    Science.gov (United States)

    Button, James

    1993-01-01

    Explores voting behavior of African Americans and whites in local school and tax referenda to determine whether racial conflict is still a primal factor in noncandidate elections. Results for voters in 5 counties in Florida (over 1,699,000 voters) reveal African-American underregistration and the continuing importance of racial cleavage. (SLD)

  2. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σF, of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σF were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  3. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    International Nuclear Information System (INIS)

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  4. Defining a similarity threshold for a functional proteinsequence pattern: The signal peptide cleavage site

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; von Heijne, Gunnar;

    1996-01-01

    . Results are presented for the case of prediction of cleavage sites in signal peptides. By inspection of the false positives, several errors in the database were found. The procedure presented may be used as a general outline for finding a problem-specific similarity measure and threshold value for...

  5. Cleavage of Maize chlorotic dwarf virus R78 protein by the viral 3C protease

    Science.gov (United States)

    Maize chlorotic dwarf virus (MCDV) is a member of the genus Waikavirus and encodes a 389 kDa polyprotein from its 11784 nt genomic RNA. Like many polyprotein-encoding viruses, MCDV contains a 3C-like virus protease that is presumably responsible for maturation cleavages of the polyprotein. However,...

  6. Synthesis of sulfonamides via copper-catalyzed oxidative C-N bond cleavage of tertiary amines.

    Science.gov (United States)

    Ji, Jing; Liu, Zhengyi; Liu, Ping; Sun, Peipei

    2016-08-01

    A copper-catalyzed coupling reaction of sulfonyl chlorides with tertiary amines via the oxidative C-N bond cleavage of tertiary amines was developed. Sulfonamides were synthesized using this strategy in moderate to good yields. The reaction was applicable to various tertiary amines, as well as sulfonyl chlorides. PMID:27356858

  7. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren;

    1997-01-01

    We have developed a new method for the identification of signal peptides and their cleavage based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome...

  8. Factors affecting the first cleavage interval and effects of parental generation on tetraploid production in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Tetraploidy is induced in rainbow trout by applying a pressure shock at a specific time point between insemination and first cleavage, or the first cleavage interval (FCI). Previous studies suggested that variation in the FCI among individuals and populations of fish prevents the identification of ...

  9. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease.

    Directory of Open Access Journals (Sweden)

    Anissa Besbes

    2015-08-01

    Full Text Available Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11 only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells.

  10. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease.

    Science.gov (United States)

    Besbes, Anissa; Le Goff, Salomé; Antunes, Ana; Terrade, Aude; Hong, Eva; Giorgini, Dario; Taha, Muhamed-Kheir; Deghmane, Ala-Eddine

    2015-08-01

    Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells. PMID:26241037

  11. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    Science.gov (United States)

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  12. Prediction of Signal Peptide Cleavage Sites with Subsite-Coupled and Template Matching Fusion Algorithm.

    Science.gov (United States)

    Zhang, Shao-Wu; Zhang, Ting-He; Zhang, Jun-Nan; Huang, Yufei

    2014-03-01

    Fast and effective prediction of signal peptides (SP) and their cleavage sites is of great importance in computational biology. The approaches developed to predict signal peptide can be roughly divided into machine learning based, and sliding windows based. In order to further increase the prediction accuracy and coverage of organism for SP cleavage sites, we propose a novel method for predicting SP cleavage sites called Signal-CTF that utilizes machine learning and sliding windows, and is designed for N-termial secretory proteins in a large variety of organisms including human, animal, plant, virus, bacteria, fungi and archaea. Signal-CTF consists of three distinct elements: (1) a subsite-coupled and regularization function with a scaled window of fixed width that selects a set of candidates of possible secretion-cleavable segment for a query secretory protein; (2) a sum fusion system that integrates the outcomes from aligning the cleavage site template sequence with each of the aforementioned candidates in a scaled window of fixed width to determine the best candidate cleavage sites for the query secretory protein; (3) a voting system that identifies the ultimate signal peptide cleavage site among all possible results derived from using scaled windows of different width. When compared with Signal-3L and SignalP 4.0 predictors, the prediction accuracy of Signal-CTF is 4-12 %, 10-25 % higher than that of Signal-3L for human, animal and eukaryote, and SignalP 4.0 for eukaryota, Gram-positive bacteria and Gram-negative bacteria, respectively. Comparing with PRED-SIGNAL and SignalP 4.0 predictors on the 32 archaea secretory proteins of used in Bagos's paper, the prediction accuracy of Signal-CTF is 12.5 %, 25 % higher than that of PRED-SIGNAL and SignalP 4.0, respectively. The predicting results of several long signal peptides show that the Signal-CTF can better predict cleavage sites for long signal peptides than SignalP, Phobius, Philius, SPOCTOPUS, Signal

  13. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    Science.gov (United States)

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  14. Anaerobic DNA cleavage in red light by dicopper(II) complexes on disulphide bond activation

    Indian Academy of Sciences (India)

    Debojyoti Lahiri; Ritankar Majumdar; Ashis K Patra; Akhil R Chakravarty

    2010-05-01

    Binuclear complexes [Cu(-RSSR)]2 (1) and [M2(-PDS)(H2O)]2 (M = Cu(II), 2; Fe(II), 3), where H2RSSR is a reduced Schiff base derived from 2-(thioethyl)salicylaldimine having a disulphide moiety and H2PDS is derived from dimerization of D-penicillamine, have been prepared, structurally characterized, and their photo-induced DNA cleavage activity studied. The crystal structure of 1 shows the complex as a discrete binuclear species with each metal in a CuN2O2 square-planar geometry (Cu…Cu, 6.420 Å). The tetradentate RSSR2- acts as a bridging ligand. The sulphur atoms in the disulphide unit do not interact with the metal ions. Complexes 1-3 do not show any DNA cleavage activity in darkness. The copper(II) complexes exhibit chemical nuclease activity in the presence of 3-mercaptopropionic acid. Cleavage of supercoiled DNA has been observed in UV-A light of 365 nm for 1 and red light of 647.1 nm for both 1 and 2 in air. Mechanistic data reveal the involvement of the disulphide unit as photosensitizer generating hydroxyl radicals ($^{\\bullet}$OH) as the reactive species. Photo-induced DNA cleavage in red light seems to involve sulphide radicals in a type-I process and hydroxyl radicals. The dicopper(II) complexes show significant anaerobic photo-induced DNA cleavage activity in red light under argon following type-I pathway without involving any reactive oxygen species.

  15. Site-specific cleavage of genomic DNA mediated by triple helix formation

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, S.A.

    1992-01-01

    Physical isolation of large segments of chromosomal DNA is a major goal of human genetics. This would be greatly assisted by a generalizable technique for the cleavage of chromosomal DNA at a single site. Pyrimidine oligonucleotide directed triple helix formation is a generalizable motif for the site specific recognition of duplex DNA. This thesis describes the application of oligonucleotide directed triple helix formation to bind unique target sites in bacteriophage [lambda], yeast, and human genomic DNA. Cleavage at the binding sites are achieved by affinity cleaving with EDTA[center dot]Fe(II) derivatized oligonucleotides, alkylation with bromoacetyl derivatized oligonucleotides, and by site specific triple helix mediated methylase inhibition followed by digestion with the cognate endonuclease. Cleavage of genomic substrates with progressively greater complexity is described. Bacteriophage [lambda] genomic DNA (48.5 kilobase pairs) was targeted at a single endogenous homopurine site within the origin of replication. This substrate was also used to demonstrate cooperative binding of heterologous oligonucleotides to duplex DNA at contiguous binding sites. An engineered target site on yeast chromosome III (340 kilobase pairs) was cut quantitatively at a single site within total yeast genomic DNA (14 megabase pairs) by both chemical and enzymatic techniques. Techniques for the identification of endogenous triple helix target sites within unsequenced genetic markers were developed and successfully used to characterize a target site on human chromosome 4, proximal to the Huntington disease gene. As a test for the site specific cleavage of gigabase DNA, this site near the end of human chromosome 4 was cleaved by triple helix mediated enzymatic cleavage. This generated a specific 3.6 Mb fragment in greater than 80% yield that contained the entire candidate region for the Huntington mutation.

  16. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride

    Science.gov (United States)

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-01

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics.

  17. Thatcher’s Victims vs. Beveridge’s Sons: The New Cleavage of European Parties

    Directory of Open Access Journals (Sweden)

    Roberto Segatori

    2015-03-01

    Full Text Available The Rokkans’ theory of cleavages has traditionally been a valid helpful instrument, although questionable, to interpret the nexus between social dynamics and party models. Thanks also to this theo-ry, during the hundred years between 1885 and 1985, European political party classification, at least where their origins are concerned, is reasonably straightforward. At the end of the sixties of ‘900, the per-formance of the political actors in terms of policy stimulated a level of feedback on the social conditions of populations to the point of reducing the impact of the traditional cleavages. The thirty-year “Golden Age” steadily led the population to believe in a world where the affirmation of universalistic social rights was an acquired right regardless of offsetting economic measures. But in the following forty years, with this con-viction still holding, the economic conditions for the sustainability of that model were overturned, and the prospect, therefore, of social benefits for all changed radically. Especially after the 2008 crisis, a new cleavage explodes with such an intensity that it actually squares the interests of the “protected” (state employees with steady jobs, workers of large and medium-sized firms protected by the Unions with the “non-protected” (the unemployed, self-employed and seasonal labourers, in other words those of the established and non-established. In this framework, if they want to survive, the political parties both old and new, are continually being pressurised by an agitated electorate to realign themselves. And while in the short term gain votes populist and nationalist parties, the nature of the latest cleavage seems there-fore to be a challenge especially for those parties which find themselves managing the “social blocs”, gen-erated from the classic cleavages, and the identity nuclei.

  18. Bacillus subtilis trp Leader RNA: RNase J1 endonuclease cleavage specificity and PNPase processing.

    Science.gov (United States)

    Deikus, Gintaras; Bechhofer, David H

    2009-09-25

    In the presence of ample tryptophan, transcription from the Bacillus subtilis trp operon promoter terminates to give a 140-nucleotide trp leader RNA. Turnover of trp leader RNA has been shown to depend on RNase J1 cleavage at a single-stranded, AU-rich region just upstream of the 3' transcription terminator. The small size of trp leader RNA and its strong dependence on RNase J1 cleavage for decay make it a suitable substrate for analyzing the requirements for RNase J1 target site specificity. trp leader RNAs with nucleotide changes around the RNase J1 target site were more stable than wild-type trp leader RNA, showing that sequences on either side of the cleavage site contribute to RNase J1 recognition. An analysis of decay intermediates from these mutants suggested limited 3'-to-5' exonuclease processing from the native 3' end. trp leader RNAs were designed that contained wild-type or mutant RNase J1 targets elsewhere on the molecule. The presence of an additional RNase J1 cleavage site resulted in faster RNA decay, depending on its location. Addition of a 5' tail containing 7 A residues caused destabilization of trp leader RNAs. Surprisingly, addition at the 5' end of a strong stem loop structure that is known to stabilize other RNAs did not result in a longer trp leader RNA half-life, suggesting that the RNase J1 cleavage site may be accessed directly. In the course of these experiments, we found evidence that polynucleotide phosphorylase processivity was inhibited by a GCGGCCGC sequence. PMID:19638340

  19. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Tsien, Roger Y

    2014-02-04

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.

  20. Enzymatic Cleavage of Glycosidic Bonds: Strategies on How to Set Up and Control a QM/MM Metadynamics Simulation.

    Science.gov (United States)

    Raich, L; Nin-Hill, A; Ardèvol, A; Rovira, C

    2016-01-01

    Carbohydrates play crucial roles in many biological processes, from cell-cell adhesion to chemical signaling. Their complexity and diversity, related to α/β anomeric configuration, ring substituents, and conformational variations, require a diverse set of enzymes for their processing. Among them, glycoside hydrolases (GHs) are responsible for the hydrolysis of one of the strongest bonds in nature: the glycosidic bond. These highly specialized biological catalysts select particular conformations their carbohydrate substrates to enhance catalysis. The evolution of this conformation during the reaction of glycosidic bond cleavage, known as the conformational catalytic itinerary, is of fundamental interest in glycobiology, with impact on inhibitor and drug design. Here we review some of the aspects and the main strategies one needs to take into account when simulating a reaction in a GH enzyme using QM/MM metadynamics. Several specific aspects are highlighted, from the importance of the distortion of the substrate at the Michaelis complex to the variable control during the metadynamics simulation or the analysis of the reaction mechanism and conformational itinerary. The increasing speed of computer power and methodological advances have added a vital tool to the study of GH mechanisms, as shown here and recent reviews. It is hoped that this chapter will serve as a first guide for those attempting to perform a metadynamics simulation of these relevant and fascinating enzymes. PMID:27498638

  1. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    Full Text Available BACKGROUND: Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication. METHODOLOGY/PRINCIPAL FINDING: We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor. CONCLUSIONS/SIGNIFICANCE: Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  2. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus

    International Nuclear Information System (INIS)

    The crystallization and data collection of topoisomerase IV from S. aureus is described. Phasing by molecular replacement proved difficult owing to the presence of translational NCS and strategies used to overcome this are discussed. DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P21, diffract to a resolution of 2.9 Å and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 Å, β = 90.1°, while crystals of GrlA59 belong to space group P21212, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 Å. These crystals diffract to a resolution of 2.8 Å. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism

  3. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    Science.gov (United States)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  4. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    Science.gov (United States)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  5. Achieving C-N bond cleavage in dinuclear metal cyanide complexes.

    Science.gov (United States)

    Cavigliasso, Germán; Christian, Gemma J; Stranger, Robert; Yates, Brian F

    2011-07-28

    Cleavage of cyanide is more difficult to achieve compared to dinitrogen and carbon monoxide, even though these species contain triple bonds of greater strength. In this work, we have used computational methods to investigate thermodynamic and mechanistic aspects of the C-N bond cleavage process in [L(3)M-CN-M'L(3)] systems consisting of a central cyanide unit bound in an end-on fashion to two terminal metal tris-amide complexes. In these systems, [M] is a d(3) transition metal from the 3d, 4d, 5d, or 6d series and groups 4 through 7, and [L] is either [NH(2)], [NMe(2)], [N(i)PrPh], or [N(t)BuAr]. A comparison of various models for the experimentally relevant [L(3)Mo-CN-MoL(3)] system has shown that while the C-N cleavage step appears to be an energetically favourable process, a large barrier exists for the dissociation of [L(3)Mo-CN-MoL(3)]((-)) into [L(3)Mo-C]((-)) and [N-MoL(3)], which possibly explains why C-N bond scission is not observed experimentally. The general structural, bonding, and thermochemical trends across the transition metal series investigated, indicate that the systems exhibiting the greatest degree of C-N activation, and most favourable energetics for C-N cleavage, also possess the most favourable electronic properties, namely, a close match between the relevant π-like orbitals on the metal-based and cyanide fragments. The negative charge on the cyanide fragment leads to significant destabilization of the π* level which needs to be populated through back-donation from the metal centres in order for C-N bond scission to be achieved. Therefore, metal-based systems with high-lying d(π) orbitals are best suited to C-N cleavage. In terms of chemical periodicity, these systems can be identified as the heavier members within a group and the earlier members within a period. As a consequence, Mo complexes are not well suited to cleaving the C-N bond, whereas the Ta analogues are the most favourable systems and should, in principle, be capable of

  6. Modulation of the kinetics of cholesterol side-chain cleavage by an activator and by an inhibitor isolated from the cytosol of the cortex of bovine adrenals.

    OpenAIRE

    Warne, P A; Greenfield, N J; Lieberman, S.

    1983-01-01

    Two modulators of sterol side-chain cleavage activity have been detected in the cytosol from the cortex of bovine adrenals. One is an inhibitor of side-chain cleavage which increases the Km of a purified and reconstituted mitochondrial side-chain cleavage system for both cholesterol and cholesterol sulfate. It also lowers the Vmax of cleavage when cholesterol sulfate is the substrate. The other modulator is a low molecular weight protein which in the reconstituted system increases the Vmax of...

  7. A mutational study of the site-specific cleavage of EC83, a multicopy single-stranded DNA (msDNA): nucleotides at the msDNA stem are important for its cleavage.

    OpenAIRE

    Kim, K.(Korea University, Seoul, 136-713, South Korea); D. Jeong; Lim, D.

    1997-01-01

    Multicopy single-stranded DNA (msDNA) molecules consist of single-stranded DNA covalently linked to RNA. Such molecules are encoded by genetic elements called retrons. Unlike other retrons, retron EC83 isolated from Escherichia coli 161 produces RNA-free msDNA by site-specific cleavage of msDNA at 5'-TTGA/A-3', where the slash indicates the cleavage site. In order to investigate factors responsible for the msDNA cleavage, retron EC83 was treated with hydroxylamine and colonies were screened f...

  8. Single-site cleavage in the 5'-untranslated region of Leishmaniavirus RNA is mediated by the viral capsid protein.

    Science.gov (United States)

    MacBeth, K J; Patterson, J L

    1995-01-01

    Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568059

  9. A novel method for detecting apoptosis shows that hepatocytes undergo a time dependent increase in DNA cleavage and chromatin condensation which is augmented after TGF-beta 1 treatment.

    Science.gov (United States)

    Cain, K; Inayat-Hussain, S H; Couet, C; Qin, H M; Oberhammer, F A

    1996-04-01

    This study describes a new method for quantitating apoptosis in hepatocyte monolayers in which nuclei were isolated from the cells and DNA strand breaks detected by in situ end-labeling and flow cytometry. Most (97%) nuclei from untreated hepatocytes had low end-labelling and were derived from non-apoptotic cells. Approximately 2-3% of the nuclei had high end-labelling and originated from apoptotic hepatocytes. The numbers of these nuclei increased linearly from 3 to 85% between 0 and 48 h after treatment with transforming growth factor-beta 1 (TGF-beta 1). However, a morphological assessment of apoptosis with Hoechst H33258 showed that the proportion of apoptotic nuclei plateaued at 18-19% between 24 and 48 h after TGF-beta 1 treatment. Thus, the in situ end-labeling technique also detected DNA cleavage in nuclei which did not have an obvious apoptotic morphology. Confocal microscopy of low and high end-labelled nuclei which had been separated by fluorescent cell sorting showed that nuclei with high levels of end-labeling exhibited a wide diversity of morphologies. These included nuclei with little or no chromatin condensation and nuclei with characteristic apoptotic morphology. In addition, nuclei from untreated hepatocytes contained low levels of DNA cleavage, which were localized in areas of condensed chromatin and increased according to the time in culture. Thus, hepatocytes undergo a progressive and cumulative process of DNA cleavage/chromatin condensation which is markedly enhanced by TGF-beta 1. PMID:8900474

  10. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  11. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

    Science.gov (United States)

    Jiang, Fuguo; Taylor, David W; Chen, Janice S; Kornfeld, Jack E; Zhou, Kaihong; Thompson, Aubri J; Nogales, Eva; Doudna, Jennifer A

    2016-02-19

    Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two Cas9 nuclease domains is unknown. We determine molecular structures of the catalytically active Streptococcus pyogenes Cas9 R-loop that show the displaced DNA strand located near the RuvC nuclease domain active site. These protein-DNA interactions, in turn, position the HNH nuclease domain adjacent to the target DNA strand cleavage site in a conformation essential for concerted DNA cutting. Cas9 bends the DNA helix by 30°, providing the structural distortion needed for R-loop formation.

  12. Ribozyme probe based on molecular beacon for real time monitoring of enzymatic cleavage process

    Institute of Scientific and Technical Information of China (English)

    MENG Xiangxian; WANG Kemin; TAN Weihong; LI Jun; TANG Zhiwen; GUO Qiuping; HUANG Shasheng; LI Du

    2003-01-01

    Ribozyme probe based on molecular beacon (MBR) for monitoring enzymatic cleavage process in real time is designed and studied. The approach relies on ribozyme substrates modified at the two arms, with a fluorescent moiety attached to the end of one arm and a non-fluorescent quenching moiety attached to the end of the other arm. MBR is employed to directly convert the cleavage information into fluorescence signal in real time. Compared with traditional approach, this method provides a no-radiolabeling, sensitive and effective way to research on the ribozyme activity, enzymatic dynamic process and ribozyme function during gene therapy. The activity of the ribozyme against hepatitis C virus RNA (HCV-RNA) is studied based on this assay.

  13. Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid.

    Science.gov (United States)

    Reichert, Elena; Wintringer, Reiner; Volmer, Dietrich A; Hempelmann, Rolf

    2012-04-21

    Lignin is a component of lignocellulosic biomass and a promising matrix for recovering important renewable aromatic compounds. We present a new approach of electro-oxidative cleavage of lignin, dissolved in a special protic ionic liquid, using an anode with particular electro-catalytic activity. As appropriate ionic liquid triethylammonium methanesulfonate was identified, synthesised, explored for dissolution of alkali-lignin and used for electrolysis of 5 wt.% lignin solutions. As appropriate anode material, oxidation-stable ruthenium-vanadium-titanium mixed oxide electrodes were prepared and explored for their electro-catalytic activity. The electrolysis was performed at several potentials in the range from 1.0 V to 1.5 V (vs. an Ag pseudo reference electrode). A wide range of aromatic fragments was identified as cleavage products by means of GC-MS and HPLC measurements. PMID:22398694

  14. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan; Levina, A;

    2001-01-01

    Catechols are found extensively in nature both as essential biomolecules and as the byproducts of normal oxidative damage of amino acids and proteins. They are also present in cigarette smoke and other atmospheric pollutants. Here, the interactions of reactive species generated in Cr(VI)/catechol......(amine) mixtures with plasmid DNA have been investigated to model a potential route to Cr(VI)-induced genotoxicity. Reduction of Cr(VI) by 3,4-dihydroxyphenylalanine (DOPA) (1), dopamine (2), or adrenaline (3) produces species that cause extensive DNA damage, but the products of similar reactions with catechol (4......) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4...

  15. Cleavage e identità: una chiave di lettura della società europea

    Directory of Open Access Journals (Sweden)

    Carlo Colloca

    2010-05-01

    Full Text Available L’articolo si sofferma sulle componenti culturali e territoriali del concetto di cleavage al fine di problematizzare il ruolo che può avere per un’analisi della società europea contemporanea. Seguendo un approccio multidimensionale si propone una combinazione fra la categoria analitica di cleavage e i processi di exit, voice e loyalty che caratterizzano il Vecchio Continente e le sfide critiche che l’attraversano. In particolare con riferimento ai processi di loyalty si evidenzia l’interazione fra attori istituzionali e società civile e le iniziative dell’agenda comunitaria urbana e regionale per la costruzione di uno spazio pubblico europeo. La riflessione si conclude con l’analisi delle rappresentazioni che i giovani europei hanno dell’essere politicamente attivi con l’intento di tratteggiare alcuni profili che esprimono valori e identità culturali di riferimento molto diversi fra loro.

  16. Efficient non-enzymatic cleavage of Staphylococcus aureus plasmid DNAs mediated by neodymium ions.

    Science.gov (United States)

    Zovčáková, Monika; Španová, Alena; Pantůček, Roman; Doškař, Jiří; Rittich, Bohuslav

    2016-08-15

    Staphylococcus aureus plasmids are the main factor in the spreading of antibacterial resistance among bacterial strains that has emerged on a worldwide scale. Plasmids recovered from 12 clinical and food isolates of S. aureus were treated with 10 mM free lanthanide Nd(3+) ions (non-enzymatic cleavage agent) in Hepes buffer (pH 7.5) at 70 °C. Topological forms of plasmids-closed circular (ccc), open circular (oc), and linear (lin)-produced by cleavage at different times were separated using pulsed-field agarose gel electrophoresis. The method is proposed to detect and differentiate several plasmids in the same bacterial strain according to their size. PMID:27237372

  17. VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes.

    Science.gov (United States)

    Caccin, Paola; Rossetto, Ornella; Rigoni, Michela; Johnson, Eric; Schiavo, Giampietro; Montecucco, Cesare

    2003-05-01

    Tetanus and botulinum neurotoxins (TeNT and BoNTs) block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such activity is exerted by the N-terminal 50 kDa light chain (L) domain, which is a zinc-dependent endopeptidase. TeNT, BoNT/B, /D, /F and /G cleave vesicle associated membrane protein (VAMP), a protein of the neurotransmitter-containing small synaptic vesicles, at different single peptide bonds. Since the proteolytic activity of these metalloproteases is higher on native VAMP inserted in synaptic vesicles than on recombinant VAMP, we have investigated the influence of liposomes of different lipid composition on this activity. We found that the rate of VAMP cleavage with all neurotoxins tested here is strongly enhanced by negatively charged lipid mixtures. This effect is at least partially due to the binding of the metalloprotease to the lipid membranes, with electrostatic interactions playing an important role.

  18. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level...... is well above that of the publicly available chloroplast localization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted to within +/-2 residues from...

  19. The Importance of Actor Cleavages in Negotiating the European Constitutional Treaty

    OpenAIRE

    Hosli, Madeleine O.; Arnold, Christine

    2007-01-01

    This paper aims to explore government preferences, cleavages, and pat-terns of coalition-formation among a variety of actors in the bargaining process on the European Constitution, across the range of twenty-five European Union (EU) member states. The study focuses on preferences concerning socio-economic policy-making and explores whether divisions can be discerned between preferences held by actors according to locations on the left-right policy scale, actors in older as compared to newer E...

  20. Unexpected cleavage of 2-azido-2-(hydroxymethyl)oxetanes: conformation determines reaction pathway?

    Science.gov (United States)

    Farber, Elisa; Herget, Jackson; Gascón, José A; Howell, Amy R

    2010-11-19

    An unanticipated cleavage of 2-azido-2-(hydroxymethyl)oxetanes is reported. In attempts to oxidize the title oxetanyl alcohols to the corresponding carboxylic acids with RuO4, cleaved nitriles were formed as the sole isolable products, while a closely related tetrahydrofuran gave solely the expected carboxylic acid. Quantum chemical calculations suggest that the divergent outcomes are governed by conformational differences in the azidoalcohols.

  1. Position- and orientation-specific enhancement of topoisomerase I cleavage complexes by triplex DNA structures

    OpenAIRE

    Antony, Smitha; Arimondo, Paola B.; Sun, Jian-Sheng; Pommier, Yves

    2004-01-01

    Topoisomerase I (Top1) activities are sensitive to various endogenous base modifications, and anticancer drugs including the natural alkaloid camptothecin. Here, we show that triple helix-forming oligonucleotides (TFOs) can enhance Top1-mediated DNA cleavage by affecting either or both the nicking and the closing activities of Top1 depending on the position and the orientation of the triplex DNA structure relative to the Top1 site. TFO binding 1 bp downstream from the Top1 site enhances cleav...

  2. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA.

    OpenAIRE

    Ferris, S D; Wilson, A C; Brown, W. M.

    1981-01-01

    The high rate of evolution of mitochondrial DNA makes this molecule suitable for genealogical research on such closely related species as humans and apes. Because previous approaches failed to establish the branching order of the lineages leading to humans, gorillas, and chimpanzees, we compared human mitochondrial DNA to mitochondrial DNA from five species of ape (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, and gibbon). About 50 restriction endonuclease cleavage sites were mappe...

  3. Multinuclear non-heme iron complexes for double-strand DNA cleavage

    NARCIS (Netherlands)

    Megens, Rik P.; van den Berg, Tieme A.; de Bruijn, A. Dowine; Feringa, Ben L.; Roelfes, Gerard

    2009-01-01

    The cytotoxicity of the antitumor drug BLM is believed to be related to the ability of the corresponding iron complex (Fe-BLM) to engage in oxidative double-strand DNA cleavage. The iron complex of the ligand N4Py (Fe-N4Py; N4Py - N,N-bis(2-pyridyl)-N-bis(2-pyridyl)methylamine has proven to be a par

  4. Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.

    Science.gov (United States)

    Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin

    2016-09-14

    Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics. PMID:27549745

  5. Aerobic dehydrogenative α-diarylation of benzyl ketones with aromatics through carbon-carbon bond cleavage.

    Science.gov (United States)

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2014-02-01

    Substituted benzyl ketones reacted with aromatics in the presence of K2S2O8 in CF3COOH at room temperature, yielding α-diaryl benzyl ketones through a carbon-carbon bond cleavage. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting that two different nucleophiles such as benzyl ketones and aromatics were coupled together without metal, which is unusual in organic synthesis.

  6. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Directory of Open Access Journals (Sweden)

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  7. Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel

    International Nuclear Information System (INIS)

    The effect of crystallographic texture on impact transition behavior has been studied in a low-carbon steel. Crystallographic texture was found to influence the general yield temperature through its effect on the plastic constraint factor. The effective grain size depends on the angle between the {001} cleavage planes of the neighbouring crystals, rather than the grain boundary misorientation angle as determined from electron backscattered diffraction analysis considering the angle–axis pair

  8. Cleavage mechanism of human Mus81–Eme1 acting on Holliday-junction structures

    OpenAIRE

    Taylor, Ewan R; McGowan, Clare H.

    2008-01-01

    Recombination-mediated repair plays a central role in maintaining genomic integrity during DNA replication. The human Mus81–Eme1 endonuclease is involved in recombination repair, but the exact structures it acts on in vivo are not known. Using kinetic and enzymatic analysis of highly purified recombinant enzyme, we find that Mus81–Eme1 catalyzes coordinate bilateral cleavage of model Holliday-junction structures. Using a self-limiting, cruciform-containing substrate, we demonstrate that bilat...

  9. The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing.

    Science.gov (United States)

    Textoris-Taube, Kathrin; Keller, Christin; Liepe, Juliane; Henklein, Petra; Sidney, John; Sette, Alessandro; Kloetzel, Peter M; Mishto, Michele

    2015-12-18

    MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope. PMID:26507656

  10. Exploring Regioselective Bond Cleavage and Cross-Coupling Reactions using a Low-Valent Nickel Complex.

    Science.gov (United States)

    Desnoyer, Addison N; Friese, Florian W; Chiu, Weiling; Drover, Marcus W; Patrick, Brian O; Love, Jennifer A

    2016-03-14

    Recently, esters have received much attention as transmetalation partners for cross-coupling reactions. Herein, we report a systematic study of the reactivity of a series of esters and thioesters with [{(dtbpe)Ni}2(μ-η(2):η(2)-C6H6)] (dtbpe=1,2-bis(di-tert-butyl)phosphinoethane), which is a source of (dtbpe)nickel(0). Trifluoromethylthioesters were found to form η(2)-carbonyl complexes. In contrast, acetylthioesters underwent rapid Cacyl-S bond cleavage followed by decarbonylation to generate methylnickel complexes. This decarbonylation could be pushed backwards by the addition of CO, allowing for regeneration of the thioester. Most of the thioester complexes were found to undergo stoichiometric cross-coupling with phenylboronic acid to yield sulfides. While ethyl trifluoroacetate was also found to form an η(2)-carbonyl complex, phenyl esters were found to predominantly undergo Caryl-O bond cleavage to yield arylnickel complexes. These could also undergo transmetalation to yield biaryls. Attempts to render the reactions catalytic were hindered by ligand scrambling to yield nickel bis(acetate) complexes, the formation of which was supported by independent syntheses. Finally, 2-naphthyl acetate was also found to undergo clean Caryl-O bond cleavage, and although stoichiometric cross-coupling with phenylboronic acid proceeded with good yield, catalytic turnover has so far proven elusive.

  11. The shallow flaw effect and the local approach to cleavage fracture

    International Nuclear Information System (INIS)

    The purpose of this paper is to evaluate the capability of local approach (Beremin model developed in the past by Ecole des Mines de Paris) to explain the shallow flaw effect in cleavage fracture, i.e., significantly higher toughness in specimens with short cracks compared to classical specimens with deep cracks. Numerous two-dimensional finite element calculations are performed on several cracked specimens submitted to mechanical or thermal loading. The behavior of different specimens is examined using the Weibull stress σw versus stress intensity factor Kj curves. The comparison between different specimens shows significant differences, related to the a/W ratio. For a given level of the applied stress intensity factor, the probability of cleavage fracture evaluated with the Beremin model is higher on specimens containing deeper cracks. That means that, for a same probability of failure, higher fracture toughness must be obtained on specimens with shallow flaws. This comparison is completed by examining the evolution of stress fields and plastic zones at the crack tip during the loading. Significant differences are observed between each specimen. Those differences are well correlated with the a/W ratio. The effect of a/W ratio on the probability of cleavage fracture is underlined. These results can explain the increase of fracture toughness experimentally observed in different laboratories on specimens with shallow flaws. This study is relevant to fracture in reactor pressure vessels

  12. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    Science.gov (United States)

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.

  13. Ternary complexes of cobalt cysteinylglycine with histidylserine and histidylphenylalanine-stabilities and DNA cleavage properties

    Indian Academy of Sciences (India)

    Pulimamidi R Reddy; Pallerla Manjula

    2007-11-01

    Interaction of cobalt cysteinylglycine with histidylserine and histidylphenylalanine was investigated in a 1 : 1 : 1 ratio at 35°C and 0.10 mol dm-3 ionic strength. Their stabilities and geometries were determined. Their DNA binding and cleavage properties were investigated. The intrinsic binding constants () for DNA bound 1 and 2 (3.03 × 103 M-1 for 1 and 3.87 × 103 M-1 for 2) were determined. Even though the negative charge on the complexes reduced their affinity for DNA, there was an enhancement of binding through specificity. The degradation of plasmid DNA was achieved by cobalt dipeptide complexes [CoII(CysGly)(HisSer)] (1) and [CoII(CysGly)(HisPhe)] (2). Cleavage experiments revealed that 1 and 2 cleave supercoiled DNA (form I) to nicked circular (form II) through hydrolytic pathway at physiological H. The DNA hydrolytic cleavage rate constants for complexes 1 and 2 were determined to be 0.62 h-1, for 1 and 0.38 h-1 for 2 respectively.

  14. Urokinase receptor cleavage correlates with tumor volume in a transgenic mouse model of breast cancer

    DEFF Research Database (Denmark)

    Thurison, Tine; Almholt, Kasper; Gårdsvoll, Henrik;

    2015-01-01

    marker for cancer than increased expression of muPAR per se. The levels of the muPAR forms are dramatically affected by in vivo challenge with a urokinase -blocking antibody, demonstrating a functional role of uPA in uPAR cleavage. The levels of the muPAR forms are, however, unaffected by u......The urokinase plasminogen activator system plays a key role in tissue degradation during cancer invasion. The linker region between domains I and II of the intact, three domain urokinase receptor uPAR(I-III) is highly susceptible to proteolytic cleavage and the resulting cleaved uPAR forms...... are strong prognostic biomarkers in several types of cancer, i.e., high levels of the cleaved uPAR forms indicate poor survival. To better understand the role of uPAR cleavage in cancer, we have designed immunoassays for specific quantification of intact mouse uPAR [muPAR(I-III)] and mouse uPAR domain I [mu...

  15. Experimental study and local approach of cleavage crack arrest in a bainitic steel

    International Nuclear Information System (INIS)

    EDF wants to complete the assessment of reactor pressure vessels, usually based on crack initiation concept, by crack arrest concept. The work aims at improving the knowledge of cleavage crack arrest in a reactor pressure vessel steel. For that purpose, isothermal crack arrest experiments were performed for temperatures ranging from - 150 C up to - 50 C on compact tensile specimens and on pre-cracked rings submitted to compressive loading. Fractographic observations revealed that the whole crack propagation and arrest occurs by cleavage even if ductile tearing occurs before initiation of the unstable crack propagation. A local cleavage crack arrest criterion is applied in finite element computations carried out in elasto-visco-plasticity and in full dynamics: the crack propagates since the largest principal stress reaches a critical stress. The application of this criterion on the experiments leads to a good prediction of the crack speed and of the crack length and shows that the critical stress increases with the temperature in relation with dissipation features observed on the fracture surfaces. Dependence to the geometry is observed; it can be due to the assumption used for the 2D computations. The study of the structural dynamic shows that the crack arrest phenomenon is very linked to the global dynamics of the structure: crack arrest and crack closure occur approximately at the same time. (author)

  16. D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage

    Science.gov (United States)

    Aki, Kenzo; Okamura, Emiko

    2016-02-01

    Although L-amino acids were selected as main constituents of peptides and proteins during chemical evolution, D-aspartyl (Asp) residue is found in a variety of living tissues. In particular, D-β-Asp is thought to be stable than any other Asp isomers, and this could be a reason for gradual accumulation in abnormal proteins and peptides to modify their structures and functions. It is predicted that D-β-Asp shows high resistance to biomolecular reactions. For instance, less reactivity of D-β-Asp is expected to bond cleavage, although such information has not been provided yet. In this work, the spontaneous peptide bond cleavage was compared between Asp isomers, by applying real-time solution-state NMR to eye lens αΑ-crystallin 51-60 fragment, S51LFRTVLD58SG60 and αΒ-crystallin 61-67 analog, F61D62TGLSG67 consisting of L-α- and D-β-Asp 58 and 62, respectively. Kinetic analysis showed how tough the uncommon D-β-Asp residue was against the peptide bond cleavage as compared to natural L-α-Asp. Differences in pKa and conformation between L-α- and D-β-Asp side chains were plausible factors to determine reactivity of Asp isomers. The present study, for the first time, provides a rationale to explain less reactivity of D-β-Asp to allow abnormal accumulation.

  17. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex.

    Science.gov (United States)

    Stewart, Emerson V; Nwosu, Christine C; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D; Kim, Dong-Uk; Hayles, Jacqueline; Park, Han-Oh; Hoe, Kwang-Lae; Powell, David W; Krogan, Nevan J; Espenshade, Peter J

    2011-04-22

    Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.

  18. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    Science.gov (United States)

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  19. Structural Basis for Accelerated Cleavage of Bovine Pancreatic Trypsin Inhibitor (BPTI) by Human Mesotrypsin

    Energy Technology Data Exchange (ETDEWEB)

    Salameh,M.; Soares, A.; Hockla, A.; Radisky, E.

    2008-01-01

    Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.

  20. Reaction Pathways and Energetics of Etheric C–O Bond Cleavage Catalyzed by Lanthanide Triflates

    Energy Technology Data Exchange (ETDEWEB)

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-09-06

    Efficient and selective cleavage of etheric C-O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C-O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C-O cleavage occurs via a C-H → O-H proton transfer in concert with weakening of the C-O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C-O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  1. Effects of 2'-O-methyl nucleotide substitution on EcoRI endonuclease cleavage activities.

    Directory of Open Access Journals (Sweden)

    Guojie Zhao

    Full Text Available To investigate the effect of sugar pucker conformation on DNA-protein interactions, we used 2'-O-methyl nucleotide (2'-OMeN to modify the EcoRI recognition sequence -TGAATTCT-, and monitored the enzymatic cleavage process using FRET method. The 2'-O-methyl nucleotide has a C3'-endo sugar pucker conformation different from the C2'-endo sugar pucker conformation of native DNA nucleotides. The initial reaction velocities were measured and the kinetic parameters, Km and Vmax were derived using Michaelis-Menten equation. Experimental results showed that 2'-OMeN substitutions for the EcoRI recognition sequence decreased the cleavage efficiency for A2, A3 and T4 substitutions significantly, and 2'-OMeN substitution for T5 residue inhibited the enzymatic activity completely. In contrast, substitutions for G1 and C6 could maintain the original activity. 2'-fluoro nucleic acid (2'-FNA and locked nucleic acid (LNA having similar C3'-endo sugar pucker conformation also demonstrated similar enzymatic results. This position-dependent enzymatic cleavage property might be attributed to the phosphate backbone distortion caused by the switch from C2'-endo to C3'-endo sugar pucker conformation, and was interpreted on the basis of the DNA-EcoRI structure. These 2'-modified nucleotides could behave as a regulatory element to modulate the enzymatic activity in vitro, and this property will have potential applications in genetic engineering and biomedicine.

  2. Social Mobility and Its Discontents: The Center-Periphery Cleavage of Turkey

    Directory of Open Access Journals (Sweden)

    Selman YILMAZ

    2014-11-01

    Full Text Available This study analyzes effects of the center-periphery cleavage on the relationship between state and religion in Turkey during the period of 2002 and 2012. The confrontation between center and periphery is one of the most important social cleavages underlying Turkish politics that has lasted since the late Ottoman period. This study suggests that the social cleavages between the center and the periphery are still prominent factors shaping discussions on the state’s interaction with religion. That the periphery has gained more social capital since the 1980s has fueled these discussions. In recent years, the Republican People’s Party, the armed forces, and the higher judiciary have represented the centrist coalition, while the Justice and Development Party has established itself as the main representative of the periphery. During this period, the previous elites have lost more power on the state level, a development that can be read as the conservative periphery displacing the secular center to some extent.

  3. New insight into direct electrical characterization of graphene utilizing cleavage-based micro four probe

    Science.gov (United States)

    Wang, Renxin; Zhang, Hongze; Wang, Wen; Zhang, Yushi; Liu, Yuan; Xu, Wei; Li, Zhihong

    2016-07-01

    To characterize the electrical properties of arbitrarily shaped small graphene flakes in a direct way, a kind of cleavage-based micro four probe (C-M4P) is developed and a finite element analysis (FEA)-aided approximation method is subsequently proposed. The cleavage process is put forward in the manufacturing of C-M4Ps, which fulfills the releasing of the C-M4P in an ingenious manner. Specifically, we investigate the cleavage process based on simulation and the scanning electron micrograph (SEM). Furthermore, the FEA-aided approximation method brings new insight into the conductivity characterization of arbitrarily shaped small graphene flakes when the geographic correction factor is non-negligible but complicated to figure out. The electrical properties of monolayer graphene flakes applied with back gate voltage are detected by the C-M4P and analyzed through the FEA-aided approximation method, which are proved to be competent for small graphene flake characterization.

  4. Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum.

    OpenAIRE

    Falgout, B; Markoff, L

    1995-01-01

    Previous deletion mutagenesis studies have shown that the flavivirus NS1-NS2A clevage requires the eight C-terminal residues of NS1, constituting the cleavage recognition sequence, and sequences in NS2A far downstream of the cleavage site. We now demonstrate that replacement of all of NS1 upstream of the cleavage recognition sequence with prM sequences still allows cleavage in vivo. Thus, other than the eight C-terminal residues, NS1 is dispensable for NS1-NS2A cleavage. However, deletion of ...

  5. Long-range RNA interaction of two sequence elements required for endonucleolytic cleavage of human insulin-like growth factor II mRNAs.

    OpenAIRE

    Scheper, W; Meinsma, D; Holthuizen, P E; Sussenbach, J S

    1995-01-01

    Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb ...

  6. Zinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change

    OpenAIRE

    Borda, Emily J.; Markley, John C.; Sigurdsson, Snorri Th.

    2003-01-01

    We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site ...

  7. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements

    Science.gov (United States)

    Srivastava, Abhishek S.; Kosek, David; Biswas, Pradip K.; Gopalan, Venkat; Kirsebom, Leif A.

    2016-01-01

    Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection. PMID:27494328

  8. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements.

    Science.gov (United States)

    Mao, Guanzhong; Chen, Tien-Hao; Srivastava, Abhishek S; Kosek, David; Biswas, Pradip K; Gopalan, Venkat; Kirsebom, Leif A

    2016-01-01

    Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection. PMID:27494328

  9. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  10. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    International Nuclear Information System (INIS)

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  11. Apoptolysis: a novel mechanism of skin blistering in pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis

    DEFF Research Database (Denmark)

    Grando, S.A.; Bystryn, J.C.; Chernyavsky, A.I.;

    2009-01-01

    ) dissociation of interdesmosomal adhesion complexes caused by phosphorylation of adhesion molecules. (4) Massive cleavage of cellular proteins by activated cell death enzymes leading to cell collapse, and tearing off desmosomes from the cell membrane stimulating secondary autoantibody production. (5) Rounding...

  12. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation

    NARCIS (Netherlands)

    Haan, de C.A.M.; Haijema, B.J.; Schellen, P.; Wichgers Schreur, P.J.; Lintelo, te E.; Vennema, H.; Rottier, P.J.M.

    2008-01-01

    A longstanding enigmatic feature of the group 1 coronaviruses is the uncleaved phenotype of their spike protein, an exceptional property among class I fusion proteins. Here, however, we show that some group 1 coronavirus spike proteins carry a furin enzyme recognition motif and can actually be cleav

  13. Dienone-phenol Rearrangement of C-9 Oxygenated Decalinic Dienone and Analogs through B-Ring Cleavage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dehydrogenation of 9-hydroxy decalinic enones and analogs with DDQ resulted in a formal dienone-phenol type rearrangement via B-ring cleavage, while the corresponding dienone acetates underwent base-catalyzed formal dienone-phenol type rearrangement analogously.

  14. The Effects of Murine Cytomegalovirus on the Maturation,Fertilization, Cleavage and Blastula Formation of Mouse Oocytes In Vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Xinrong; ZHANG Xinhong; CHEN Suhua; ZHU Guijin; AI Jihui

    2007-01-01

    To study the effects of mouse cytomegalovirus (MCMV) on the in vitro maturation, fertilization, cleavage and blastula formation of mouse oocytes, the immature oocytes were infected in vitro by MCMVs of different dosages (100 TCID50, 10 TCID50 and 1 TCID50). The oocytes were then observed for in vitro maturation, fertilization, cleavage and blastula formation and the ultrastructural changes after the culture with the viruses. Our results showed that no significant differences were found in IVM, IVF, cleavage and blastula formation among the groups treated with of virus of various dosages. And ultrastructural abnormality was observed in the oocytes treated by 100 TCID50 of viruses. It is concluded that MCMV did not have any conspicuous effects on IVM, IVF, cleavage and blastula formation of murine immature oocytes.

  15. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    Science.gov (United States)

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  16. Synthesis, DNA-binding, cytotoxicity, photo cleavage, antimicrobial and docking studies of Ru(II) polypyridyl complexes.

    Science.gov (United States)

    Srishailam, A; Kumar, Yata Praveen; Gabra, Nazar M D; Reddy, P Venkat; Deepika, N; Veerababu, Nageti; Satyanarayana, S

    2013-09-01

    Three Ruthenium(II) polypyridine complexes, [Ru(phen)2(mipc)](2+)(1), [Ru(bpy)2(mipc)](2+) (2) and [Ru(dmb)2(mipc)](2+)(3) [mipc = 2-(6-methyl-3-(1H-imidazo[4, 5-f][1,10]-phenanthroline-2-yl)-4H-chromene-4-one, phen = 1,10-phenanthroline,bpy = 2, 2'bipyridine,dmb = 4, 4'-dimethyl-2, 2'-bipyridine] have been synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H& (13)C NMR and mass spectra. The DNA-binding properties of the Ruthenium(II) complexes were investigated by spectrophotometric methods, viscosity measurements and light switch studies. These three complexes have been focused on photo activated cleavage studies with pBR-322 and antimicrobial studies. Experimental results indicate that the three complexes intercalate into DNA base pairs and follows the order of 1 > 2 > 3 respectively. Molecular docking studies also support the DNA interactions with complexes through hydrogen bonding and vander Waal's interactions. Cytotoxicity studies with Hela cell lines has been revealing about anti tumor activity of these complexes. PMID:23553642

  17. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available In Arabidopsis and rice, miR159-regulated GAMYB-like family transcription factors function in flower development and gibberellin (GA signaling in cereal aleurone cells. In this study, the involvement of miR159 in the regulation of its putative target TaGAMYB and its relationship to wheat development were investigated. First, we demonstrated that cleavage of TaGAMYB1 and TaGAMYB2 was directed by miR159 using 5'-RACE and a transient expression system. Second, we overexpressed TamiR159, TaGAMYB1 and mTaGAMYB1 (impaired in the miR159 binding site in transgenic rice, revealing that the accumulation in rice of mature miR159 derived from the precursor of wheat resulted in delayed heading time and male sterility. In addition, the number of tillers and primary branches in rice overexpressing mTaGAMYB1 increased relative to the wild type. Our previous study reported that TamiR159 was downregulated after two hours of heat stress treatment in wheat (Triticum aestivum L.. Most notably, the TamiR159 overexpression rice lines were more sensitive to heat stress relative to the wild type, indicating that the downregulation of TamiR159 in wheat after heat stress might participate in a heat stress-related signaling pathway, in turn contributing to heat stress tolerance.

  18. The action of the bacterial toxin microcin B17. Insight into the cleavage-religation reaction of DNA gyrase.

    Science.gov (United States)

    Pierrat, Olivier A; Maxwell, Anthony

    2003-09-12

    We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.

  19. Expression of a naturally occurring angiotensin AT1 receptor cleavage fragment elicits caspase-activation and apoptosis

    OpenAIRE

    Cook, Julia L.; Singh, Akannsha; DeHaro, Dawn; Alam, Jawed; Re, Richard N.

    2011-01-01

    Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT1R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT1R by mass spectrometry and Edman sequencing. Clea...

  20. Tailing cDNAs with terminal deoxynucleotidyl transferase in RT-PCR assays to identify ribozyme cleavage products.

    OpenAIRE

    Albuquerque-Silva, J; Houard, S.; Bollen, A.

    1998-01-01

    Polytailing a cDNA with terminal deoxynucleotidyltransferase (TdT) results in the addition of a homopolymeric sequence at its 3'-end. Here we describe the use of tailing in competitive RT-PCR assays to evaluate cleavage efficiency of ribozymes. Using a system that perfectly mimics intracellular cleavage, we were able to detect as few as 1% of cleaved moieties. Furthermore, employing primers overlapping the junction between tails and the cleaved RNA moiety in non-competitive assays, the sensit...