WorldWideScience

Sample records for cell chp system

  1. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  2. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    Science.gov (United States)

    Rosendahl, L. A.; Mortensen, Paw V.; Enkeshafi, Ali A.

    2011-05-01

    One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating purposes.

  3. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating......One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5 kWe to 5 kWe based on fuel cell technology. Through the use of TEG technology for waste heat recovery it is possible to increase...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  4. Cost targets for domestic fuel cell CHP

    Science.gov (United States)

    Staffell, I.; Green, R.; Kendall, K.

    Fuel cells have the potential to reduce domestic energy bills by providing both heat and power at the point of use, generating high value electricity from a low cost fuel. However, the cost of installing the fuel cell must be sufficiently low to be recovered by the savings made over its lifetime. A computer simulation is used to estimate the savings and cost targets for fuel cell CHP systems. Two pitfalls of this kind of simulation are addressed: the selection of representative performance figures for fuel cells, and the range of houses from which energy demand data was taken. A meta-study of the current state of the art is presented, and used with 102 house-years of demand to simulate the range of economic performance expected from four fuel cell technologies within the UK domestic CHP market. Annual savings relative to a condensing boiler are estimated at €170-300 for a 1 kWe fuel cell, giving a target cost of €350-625 kW -1 for any fuel cell technology that can demonstrate a 2.5-year lifetime. Increasing lifetime and reducing fuel cell capacity are identified as routes to accelerated market entry. The importance of energy demand is seen to outweigh both economic and technical performance assumptions, while manufacture cost and system lifetime are highlighted as the only significant differences between the technologies considered. SOFC are considered to have the greatest potential, but uncertainty in the assumptions used precludes any clear-cut judgement.

  5. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    (SMR) and partial oxidation (CPO) will be investigated for each configuration. The internal reforming will be also considered for its ability to reduce the stack temperature and decrease the need of cooling air. Finally, optimization criteria for SOFC systems applied to single-family detached dwellings...... are the possibility to partially reform hydrocarbon in the fuel cell anode compartment and the possibility to use high quality heat for cogeneration. In this work, different configurations of solid oxide fuel cell system for decentralized electricity production are examined. The Balance of Plant (BoP) components...... of the Micro Combined Heat and Power plant (mCHP) will be identified including fuel and air supply, fuel management anode re-circulation, exhaust gas heat management, power conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming...

  6. Modelling of a solid oxide fuel cell CHP system coupled with a hot water storage tank for a single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2015-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request...... produced by gasification and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation are used to size the SOFC system and storage heat tank to provide energy for a small household using two different fuels. In particular it was shown...... is low (for instance during the night), taking advantage of thermal stratification to increases the heat recovery performance. A model of the SOFC system is presented to estimate the energy required to meet the average electric energy demand of the residence. Two fuels are considered, namely syngas...

  7. Deployment of FlexCHP System

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  8. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  9. CHP Fuel Cell Durability Demonstration - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  10. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  11. Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household

    Directory of Open Access Journals (Sweden)

    Vincenzo Liso

    2015-03-01

    Full Text Available In this paper a solid oxide fuel cell (SOFC system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request is low (for instance during the night, taking advantage of thermal stratification to increases the heat recovery performance. A model of the SOFC system is presented to estimate the energy required to meet the average electric energy demand of the residence. Two fuels are considered, namely syngas produced by gasification and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation are used to size the SOFC system and storage heat tank to provide energy for a small household using two different fuels. In particular it was shown that in the case of syngas, due to larger system heat output, a larger tank volume was required in order to accumulate unused heat over the night. The detailed description of the tank model will be useful to energy system modelers when sizing hot water tanks. Problem formulation is reported also using a Matlab script.

  12. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  13. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  14. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...

  15. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC...... is simulated in LabVIEW environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future....

  16. Designing and control of a SOFC micro-CHP system

    DEFF Research Database (Denmark)

    Liso, Vincenzo

    component for steady-state operation were developed. System concepts and key performance parameters were identified. The models were used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, thermal energy recovery, system process design, and operating strategy...... results. Also, predominant modes of catalytic reforming were identified and modeled. System design evaluations reveal that methane-fueled SOFC systems demonstrate the highest electrical efficiency when coupled with a steam reformer process. The use of recycled cell exhaust gases in process design is found......-to-power ratio demonstrated in this study makes the SOFC-based micro-CHP systems a promising technology for energy conversion when compared to other well established technologies such as internal combustion engines or sterling engines. In particular, the range of heat-to-power ratio for the SOFC-based micro...

  17. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  18. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  19. Combined Heat & Power Using the Infinia Concentrated Solar - CHP PowerDish System

    Science.gov (United States)

    2013-08-01

    installed cost as the PowerDish CHP system). The solar thermal system selected and installed will be a low or medium-temperature collector system...implementing the PowerDish CHP. ...................................... 29 Table 8. Important costs for implementing the PowerDish CHP versus PV- solar thermal ...capabilities of the Infinia PowerDish CHP technology to generate clean solar electricity as well as thermal energy for domestic hot water and space

  20. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... approaches are formulated using binary and Special-Ordered-Set (SOS) variables. Both suggestions have been implemented into the optimization model DER–CAM to simulate investment decisions of CHP micro-turbines and CHP fuel cells with variable efficiencies. The approaches have further been applied...... successfully in a case study with four different commercial buildings. Comparison of the results between the standard version and the new approaches indicate that total annual system costs remain almost unchanged. System performance is subject to change and storage technologies become more important. Part load...

  1. Commercialisation of fuel cells for combined heat and power (CHP) application

    Science.gov (United States)

    Packer, Julian

    1992-01-01

    Combined heat and power or co-generation is an ideal application for the fuel cell. This paper has been written from the perspective of a current designer, builder and operator of small-scale (i.e. sub 1 MW) combined heat and power. Conventional current CHP is described together with typical applications. The perceived advantages of fuel cells are also discussed together with the potential for fuel cells opening up currently unapproachable markets. Various matters relevant to the application of fuel cells are also described including: initial and life costs for fuel cells CHP systems; maintenance requirements, security of supply requirements. In addition to these commercial aspects, technical issues including interfacing to building systems, control, protection, monitoring, operating procedures and performance are also discussed.

  2. Developing a Model for a CHP System with Storage

    Directory of Open Access Journals (Sweden)

    M. Abunku

    2016-04-01

    Full Text Available A model for a Combined Heat and Power (CHP system developed using Matlab is presented in this project. The model developed includes sub-models of Internal Combustion Engine (ICE and generator, electrical and thermal storage systems, and power converters (rectifier and inverter. The model developed is able to simulate the performance of a CHP system when supplying user load. The battery electrical storage system is modelled and used as the electrical storage for this project, and the water storage tank is modelled and used as thermal storage. The project presents the model developed, and the results of the analysis done on the model. The model considered only heat from engine cooling, which is used to heat water to supply the DHW (District Hot Water needs of the user. The results show that by the addition of storage to the CHP system, the overall system efficiency is increased by 32% indicating that the model developed is reliable, and the project is a feasible one

  3. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...... household using two different fuels. In particular it was shown that in the case of syngas, due to larger system heat output, a larger tank volume was required in order to accumulate unused heat over the night. The detailed description of the tank model will be useful to energy system modelers when sizing......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...

  4. A study on electricity export capability of the μCHP system with spot price

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    When a number of muCHP systems are aggregated as a virtual power plant (VPP), they will be able to participate in the electricity wholesale market with no discrimination compared to conventional large power plants. Hence, this paper investigates the electricity export capability of the muCHP system...... when the electricity buyback price is given at a value equalizing the dynamic spot price. A muCHP system is modeled with optimized generation, and the marginal price of electricity export for such system is explained. A sensitivity analysis of several key factors, e.g. fuel price, heat to power ratio...... of the muCHP unit, which influence the export capability of muCHP system, is firstly carried out in the intraday case study, followed by the annual case study which explores the annual system performance. The results show that the electricity export capability of a muCHP system is closely related to its...

  5. Demand Response With Micro-CHP Systems

    NARCIS (Netherlands)

    Houwing, M.; Negenborn, R.R.; De Schutter, B.

    2011-01-01

    With the increasing application of distributed energy resources and novel information technologies in the electricity infrastructure, innovative possibilities to incorporate the demand side more actively in power system operation are enabled. A promising, controllable, residential distributed genera

  6. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...... for fuel cell-based residential micro-CHP systems, since it can operate at higher temperature than Nafion-based fuel cells, and therefore can reach higher cogeneration efficiencies. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household...

  7. Assessment of the implementation issues for fuel cells in domestic and small scale stationary power generation and CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.; Cruden, A.; Hart, J.

    2002-07-01

    This report discusses implementation issues associated with the use of fuel cells in <10 kW domestic, small-scale power generation and combined heat and power (CHP) operations in the UK. The report examines the key issues (fuel cell system standards and certification, fuel infrastructure, commercial issues and competing CHP technologies), before discussing non-technical issues including finance, ownership, import and export configuration, pricing structure, customer acceptability, installation, operation and training of servicing and commissioning personnel. The report goes on to discuss market and technical drivers, grid connection issues and solutions, operations and maintenance. Recommendations for the future are made.

  8. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  9. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel;

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single......-family households in different European countries are evaluated. The range of Heat-to-Power Ratio for the SOFC based mCHP System of 0.5 to 1.5 shows good agreement with the hot water, space heating and electricity demand during the warm seasons across Europe. This suggests that the fuel cell system should be sized...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  10. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...... shift (WGS) reactor, heat exchangers, and other balance-of-plant (BOP) components. The objective function of the single-objective optimization strategy is the net electrical efficiency of the micro-CHP system. The implemented optimization procedure attempts to maximize the objective function...

  11. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    that are expected to be in force in Denmark during 2005, where a large part of the local CHP plants will change from being paid for electricity production according to a feed-in tariff, to a situation where the electricity is to be sold on market conditions. The results will highlight the CHP plant as the link...

  12. Power and heat from CHP fuel cell systems in the basement. Testing of fuel cell-driven heating systems; Kleinkraftwerke im Keller sorgen fuer Strom und Waerme. Brennstoffzellen-Heizgeraete in der Erprobung

    Energy Technology Data Exchange (ETDEWEB)

    Tschaetsch, H.U.

    2002-03-25

    The article discusses important aspects of a joint project funded by industry, utilities and the State Government of North Rhine-Westphalia. The field test results, the performance and engineering data of the innovative energy conversion and storage system based on the fuel cell-driven CHP technology for on-site power and heat production for a multi-family house are described in detail. (orig./CB) [German] Die Entwicklung der Brennstoffzellen-Technologie fuer die dezentrale Strom- und Waermeversorgung ist in einer entscheidenden Phase. In einem Mehrfamilienhaus in Gelsenkirchen begann im Januar 2002 der erste Praxistest eines Vaillant Brennstoffzellen-Heizgeraetes (BZH), das mit einem Kostenaufwand von rd. 2,2 Mio. Euro entwickelt wurde. Die Projektpartner Vaillant GmbH, Remscheidt, Ruhrgas AG, Essen, Eon Engineering GmbH, Gelsenkirchen, ELE Emscher Lippe Energie GmbH, Gelsenkirchen, und EUS - Gesellschaft fuer innovative Energieumwandlung und -speicherung mbH., Gelsenkirchen, wollen mit dem vom Land Nordrhein-Westfalen (NRW) mit insgesamt 800 000 Euro unterstuetzten Feldtest zeigen, dass die einzelnen Komponenten Brennstoffzelle, Warmwasserspeicher und Zusatzheizgeraet ueber einen Energiemanager (Prozesssteuerung) kostenoptimal zusammenarbeiten koennen. (orig.)

  13. Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    BOP (balance-of-plant) components, is modeled and coupled to the fuel cell stack subsystem. The micro-CHP system is simulated in LabVIEW environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future. A part-load study has been conducted...

  14. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria......Energy consumption in residential sector can be considerably reduced by enhancing the efficiency of energy supply. Fuel cell-based residential micro-CHP systems are expected to be one of the most promising technologies because of their high efficiency and low environmental impact. Since the design...... heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...

  15. The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11.

    Directory of Open Access Journals (Sweden)

    Jindong Zan

    Full Text Available Bacteria respond to their environment via signal transduction pathways, often two-component type systems that function through phosphotransfer to control expression of specific genes. Phosphorelays are derived from two-component systems but are comprised of additional components. The essential cckA-chpT-ctrA phosphorelay in Caulobacter crescentus has been well studied and is important in orchestrating the cell cycle, polar development and flagellar biogenesis. Although cckA, chpT and ctrA homologues are widespread among the Alphaproteobacteria, relatively few is known about their function in the large and ecologically significant Roseobacter clade of the Rhodobacterales. In this study the cckA-chpT-ctrA system of the marine sponge symbiont Ruegeria sp. KLH11 was investigated. Our results reveal that the cckA, chpT and ctrA genes positively control flagellar biosynthesis. In contrast to C. crescentus, the cckA, chpT and ctrA genes in Ruegeria sp. KLH11 are non-essential and do not affect bacterial growth. Gene fusion and transcript analyses provide evidence for ctrA autoregulation and the control of motility-related genes. In KLH11, flagellar motility is controlled by the SsaRI system and acylhomoserine lactone (AHL quorum sensing. SsaR and long chain AHLs are required for cckA, chpT and ctrA gene expression, providing a regulatory link between flagellar locomotion and population density in KLH11.

  16. Regulatory Compliance and Environmental Benefit Analysis of Combined Heat and Power (CHP Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2013-01-01

    Full Text Available The energy conservation achieved by utilizing waste heat in the energy and industrial sectors has became more and more important after the energy crisis in the 1970s because it plays a vital role in the potential energy-efficiency improvement. In this regard, cogeneration (combined heat and power, CHP systems are thus becoming attractive due to the energy, economic, and environmental policies for pursuing stable electricity supply, sustainable development and environmental pollution mitigation in Taiwan. The objective of this paper is to present an updated analysis of CHP systems in Taiwan during the period from 1990 to 2010. The description in the paper is thus based on an analysis of electricity supply/consumption and its sources from CHP systems during the past two decades, and centered on two important regulations in compliance with CHP systems (i.e., Energy Management Law and Environmental Impact Assessment Act. Based on the total net power generation from CHP systems (i.e., 35,626 GWh in 2011, it was found that the carbon dioxide reduction benefits were estimated to be around 20,000 Gg.

  17. Ecological assessment of new CHP systems and their combination; Oekologische Bewertung neuer WKK-Systeme und Systemkombinationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on new developments in the Combined Heat and Power (CHP) generation area. The objective of this study is an ecological and technical evaluation of various CHP systems and system combinations. These also include suitable combinations with other technologies. Systems for five different temperature levels are quantified according to their environmental impact. Various possible applications are compared with a highly efficient reference system using separate heat and power generation - a combined-cycle plant and a heat pump. For chilled water production a combination of the CHP system with an absorption chiller is investigated. The results of the investigations are presented and commented on. Also, advantageous applications of CHP systems are noted.

  18. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    OpenAIRE

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo; Brandon, Nigel

    2014-01-01

    Fuel cell based micro-CHP systems are expected to be one of the most promising technologies for implementation in the residential sector. Since the design and operation of such CHP systems are greatly dependent upon the seasonal atmospheric conditions, it is important to evaluate their performance under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled...

  19. Evaluation of Combined Heat and Power (CHP Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS

    Directory of Open Access Journals (Sweden)

    Fausto Cavallaro

    2016-06-01

    Full Text Available Combined heat and power (CHP or cogeneration can play a strategic role in addressing environmental issues and climate change. CHP systems require less fuel than separate heat and power systems in order to produce the same amount of energy saving primary energy, improving the security of the supply. Because less fuel is combusted, greenhouse gas emissions and other air pollutants are reduced. If we are to consider the CHP system as “sustainable”, we must include in its assessment not only energetic performance but also environmental and economic aspects, presenting a multicriteria issue. The purpose of the paper is to apply a fuzzy multicriteria methodology to the assessment of five CHP commercial technologies. Specifically, the combination of the fuzzy Shannon’s entropy and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS approach will be tested for this purpose. Shannon’s entropy concept, using interval data such as the α-cut, is a particularly suitable technique for assigning weights to criteria—it does not require a decision-making (DM to assign a weight to the criteria. To rank the proposed alternatives, a fuzzy TOPSIS method has been applied. It is based on the principle that the chosen alternative should be as close as possible to the positive ideal solution and be as far as possible from the negative ideal solution. The proposed approach provides a useful technical–scientific decision-making tool that can effectively support, in a consistent and transparent way, the assessment of various CHP technologies from a sustainable point of view.

  20. Structural insights into ChpT, an essential dimeric histidine phosphotransferase regulating the cell cycle in Caulobacter crescentus.

    Science.gov (United States)

    Fioravanti, Antonella; Clantin, Bernard; Dewitte, Frédérique; Lens, Zoé; Verger, Alexis; Biondi, Emanuele G; Villeret, Vincent

    2012-09-01

    Two-component and phosphorelay signal-transduction proteins are crucial for bacterial cell-cycle regulation in Caulobacter crescentus. ChpT is an essential histidine phosphotransferase that controls the activity of the master cell-cycle regulator CtrA by phosphorylation. Here, the 2.2 Å resolution crystal structure of ChpT is reported. ChpT is a homodimer and adopts the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal α/β domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The ChpT C-terminal domain adopts an atypical Bergerat ATP-binding fold.

  1. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  2. Modelling of energy systems with a high percentage of CHP and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H. [Aalborg University (Denmark). Dept. of Development and Planning; Muenster, E. [PlanEnergi s/i, Skorping (Denmark)

    2003-11-01

    This paper presents the energy system analysis model EnergyPLAN, which has been used to analyse the integration of large scale wind power into the national Danish electricity system. The main purpose of the EnergyPLAN model is to design suitable national energy planning strategies by analysing the consequences of different national energy investments. The model emphasises the analysis of different regulation strategies and different market economic optimisation strategies. At present wind power supply 15% of the Danish electricity demand and ca 50% is produced in CHP (combined heat and power production). The model has been used in the work of an expert group conducted by the Danish Energy Agency for the Danish Parliament. Results are included in the paper in terms of strategies, in order to manage the integration of CHP and wind power in the future Danish energy supply in which more than 40% of the supply is expected to come from wind power. (author)

  3. Reciprocating Joule-cycle engine for domestic CHP systems

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R.W.; Roskilly, A.P.; Nanda, S.K. [University of Newcastle upon Tyne (United Kingdom). School of Marine Science and Technology

    2005-02-01

    The reciprocating Joule-cycle engine operates on a recuperated gas-turbine cycle and is intended to provide high thermal efficiency in small sizes (1-10 kW). It is designed to achieve a higher efficiency than a comparable gas-turbine by using a reciprocating compressor and expander to provide very high compression and expansion efficiencies. Possible power plants for small combined heat-and-power systems currently include Stirling engines, internal-combustion engines, gas-turbines and fuel cells. The reciprocating Joule-cycle engine appears to have considerable advantages compared with other prime movers in terms of efficiency, emissions and multi-fuel capability. The present study estimates the performance of such an engine and is the first stage in a larger project that will in due course produce a demonstration engine. (author)

  4. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP

  5. Development of Next Generation micro-CHP System

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    topics: (a) Modeling, simulation and validation of the system in LabVIEW environment to provide the ability of Data Acquisition of actual components, and thereby more realistic design in the future; (b) Modeling, parametric study, and sensitivity analysis of the system in EES (Engineering Equation Solver...

  6. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  7. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, M.; Droste, W.; Wolf, D. [Ruhrgas AG, Dorsten (Germany)

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  8. Thermal gain of CHP steam generator plants and heat supply systems

    Science.gov (United States)

    Ziganshina, S. K.; Kudinov, A. A.

    2016-08-01

    Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.

  9. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  10. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse;

    2010-01-01

    High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  11. Evaluation of the operational cost savings potential from a D-CHP system based on a monthly power-to-heat ratio analysis

    Directory of Open Access Journals (Sweden)

    Alta Knizley

    2015-12-01

    Full Text Available This paper focuses on the analysis of a combined heat and power (CHP system utilizing two power generation units operating simultaneously under differing operational strategies (D-CHP on the basis of operational cost savings. A cost optimization metric, based on the facility monthly power-to-heat ratio (PHR, is presented in this paper. The PHR is defined as the ratio between the facility electric load and thermal load. Previous work in this field has suggested that D-CHP system performance may be improved by limiting operation of the system to months in which the PHR is relatively low. The focus of this paper is to illustrate how the facility PHR parameter could be used to establish the potential of a D-CHP system to reduce operational cost with respect to traditional CHP systems and conventional systems with separate heating and power. This paper analyzes the relationship between the PHR and the operational cost savings of eight different benchmark buildings. Achieving operational cost savings through optimal operation based on monthly PHR for these building types can enhance the implementation potential of D-CHP and CHP systems. Results indicate that the PHR parameter can be used to predict the potential for a D-CHP system to reduce the operational cost.

  12. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    Energy Technology Data Exchange (ETDEWEB)

    Babkin, K. V., E-mail: babkin@uztec.ru; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V. [SC “South-West CHP” (Russian Federation); Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V. [JSC “Interautomatika” (Russian Federation)

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  13. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    Energy Technology Data Exchange (ETDEWEB)

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  14. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  15. Techno-economic analysis of CHP system supplied by waste forest biomass.

    Science.gov (United States)

    Borsukiewicz-Gozdur, A; Klonowicz, P; Król, D; Wiśniewski, S; Zwarycz-Makles, K

    2015-08-01

    Poland, as for Europe, is a country with an average forest cover of approximately 30%. In these forests, more than 37M m3 of wood, mostly coniferous (over 80%), is harvested per year. In 2012, 4.2M m3 of sawn timber was produced (sawn timber without factory lumber). At the same time, in Poland there are over 8000 sawmills, whereas only about 700 of them saw over 90% of the harvested timber. So much fragmentation is a major cause of low sawmills innovation, particularly of those small ones. However, in recent years, a trend of development in this sector is noticeable, and it is through rationalisation of material and energy economy. One of the methods to increase the technical and economic effectiveness of enterprises involved in woodworking is to build in the combined heat and power system (CHP) plant with the ORC system into the existing infrastructure, which will be matched to the needs of the company. This article presents an analysis of the profitability of the investment based on the example of a medium-sized company sawing approximately 50,000 m3 of timber per year, and the economic analysis was performed for prices and costs valid in Poland. The analysis made for the 1650 kW(el) organic Rankine cycle (ORC) system, has resulted in a profitability index PI = 1.3, on the assumptions that the ORC system operates for 6000 h y(-1), will be purchased at the price of 4500 € kW(el)(-1) and at the price of electricity sales of 130 € MWh(-1).

  16. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2014-10-01

    Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

  17. Modelling of a CHP SOFC system fed with biogas from anaerobic digestion of municipal waste integrated with solar collectors and storage unit

    Directory of Open Access Journals (Sweden)

    Domenico Borello

    2012-12-01

    Full Text Available The paradigm of the sustainable energy community is recognized as the future energy approach due to its economical, technical and environmental benefits. Future systems should integrate renewable energy systems applying a “community-scale” approach to maximize energy performances, while minimizing environmental impacts. Efforts have to be directed toward the promotion of integrated technical systems needed to expand the use of renewable energy resources, to build sustainable local and national energy networks, to guarantee distribution systems for urban facilities and to reduce pollution. In this framework poly-generation is a promising design perspective, for building and district scale applications, in particular where different types of energy demand are simultaneously present and when sufficient energy intensity justifies investments in smart grids and district heating networks. In situ anaerobic digestion of biomass and organic waste has the potential to provide sustainable distributed generation of electric power together with a viable solution for the disposal of municipal solid wastes. A thermal recovery system can provide the heat required for district-heating. The system analysed is a waste-to-energy combined heat and power (CHP generation plant that perfectly fits in the sustainable energy community paradigm. The power system is divided in the following sections: a a mesophilic - single phase anaerobic digestion of Organic Fraction of Municipal Solid Waste for biogas production; b a fuel treatment section with desulphurizer and pre-reformer units; c a Solid Oxide Fuel Cell (SOFC for CHP production; d a solar collector integrated system(integrated storage system - ISS. An integrated TRNSYS/ASPEN Plus model for simulating the power system behaviour during a typical reference period (day or year was developed and presented. The proposed ISS consists of a solar collector integrated with storage systems system designed to

  18. PERFORMANCE ANALYSIS OF l kW RESIDENTIAL SOFC-CHP SYSTEM%1kW家用SOFC-CHP系统建模及性能分析

    Institute of Scientific and Technical Information of China (English)

    徐晗; 党政; 白博峰

    2011-01-01

    A combined heating and power system (CHP) driven by natrual gas was established based on solid oxide fuel cell (SOFC), relevant SOFC heat and mass transfer equations as well as electrochemical equations were deduced, and component models were built and solved by FORTRAN as a tool to predict the system performance of a 1 kW residential SOFC-CHP system. The results indicate that the system efficiency is much higher than the generating efficiency of SOFC under the design-point condition. A maximum value of electric power appears with the increase of the inlet fuel flow, fuel utilization and electric efficiency decrease, system cogeneration efficiency experiences a rising trend, and the cell temperature gradient distribution becomes growingly even. Reducing the excess air ratio could enhance the system performance.The above conclusions are very useful for the design and optimization of the residential SOFC-CHP system.%构建一个以天然气为燃料的SOFC-CHP系统,推导SOFC传热传质及电化学方程,建立各个组件的数学模型,编写计算程序,对发电功率为1kW的家用SOFC-CHP系统在设计工况下进行性能模拟并探讨不同系统参数对性能的影响.计算结果表明:在设计工况下,系统热电联供效率远高于电池单独发电的效率;此外,随着燃料入口流量的增大,系统发电功率存在一个最大值,燃料利用率与发电效率不断减小,系统热电联供效率不断增大,SOFC的温度梯度分布则越来越平缓;同时发现降低过量空气系数可以提高该CHP系统的性能.

  19. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria for sizing the system components of the micro-CHP are specifically addressed. The developed methodology can be applied...... under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  20. Performance comparison between partial oxidation and methane steam for SOFC micro-CHP systems

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Olesen, Anders Christian; Nielsen, Mads Pagh;

    2011-01-01

    The aim of this research work is to describe in qualitative and quantitative form the performance of a micro Combined Heat and Power system for residential application based on Solid Oxide Fuel Cell fueled by natural gas with two different types of pre-reforming systems, namely Steam Reforming...... and Partial Oxidation and recirculation of anode and cathode gas. The comparative analysis among the different configurations will lead us to conclude that maximum efficiency is achieved when cathode and anode gas recirculation are used along with steam methane reforming. Further Steam Methane Reforming...... process produces a higher electrical system efficiency compared to Partial oxidation reforming process. Efficiency is affected when running the system in part load mode mainly due to heat loss, additional natural gas supplied to the burner to satisfy the required heat demand inside the system, and ejector...

  1. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, Rick [ICF International, Fairfax, VA (United States)

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  2. CHP and Energy Conservation

    OpenAIRE

    McGovern, Jim

    1995-01-01

    The principles of the use of 'combined heat and power' (CHP) for the achievement of fuel energy conservation, minimisation of environmental impact and economic advantage are explained. A distinction is made between the two types of outputs: heat and work. It is argued that an efficiency value that is defined as the sum of the heat and work outputs divided by the energy of the fuel used is not very meaningful. An alternative, rational, efficiency is explained. It is concluded that CHP is an op...

  3. Adapting CHP Software to suit the modelling of heat pump and refrigeration systems

    NARCIS (Netherlands)

    Verschoor, M.J.E.

    1998-01-01

    The role of heat pumps and refrigeration machines as integrated parts of energy supply systems is increasing as a result of the search for systems which supply the desired amounts and types of energy in an energy-efficient manner. Tools to support engineers in designing, analysing and optimising suc

  4. Demonstration of Next-Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John [Plug Power Inc., Latham, NY (United States); Fritz Intwala, Katrina [Plug Power Inc., Latham, NY (United States)

    2009-08-01

    Plug Power and BASF have conducted eight years of development work prior to this project, demonstrating the potential of PBI membranes to exceed many DOE technical targets. This project consisted of; 1.The development of a worldwide system architecture; 2.Stack and balance of plant module development; 3.Development of an improved, lower cost MEA electrode; 4.Receipt of an improved MEA from the EU consortium; 5.Integration of modules into a system; and 6.Delivery of system to EU consortium for additional integration of technologies and testing.

  5. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  6. Combined Heat & Power Using the Infinia Concentrated Solar CHP PowerDish System

    Science.gov (United States)

    2013-08-01

    operation, Infinia’s proprietary software automatically sends the system “on sun” each morning and stows at sunset . If any problems are sensed in...PowerDish at sunset . The demonstration period began January 17, 2012, following pre-shipment testing, commissioning, and an early engine failure, and...white color . Infinia found that on this and earlier models, the slew cone would become stained from dirt and moisture draining from the aperture. This

  7. Development of a Transient Model of a Stirling-Based CHP System

    Directory of Open Access Journals (Sweden)

    Antón Cacabelos

    2013-06-01

    Full Text Available Although the Stirling engine was invented in 1816, this heat engine still continues to be investigated due to the variety of energy sources that can be used to power it (e.g., solar energy, fossil fuels, biomass, and geothermal energy. To study the performance of these machines, it is necessary to develop and simulate models under different operating conditions. In this paper, we present a one-dimensional dynamic model based on components from Trnsys: principally, a lumped mass and a heat exchanger. The resulting model is calibrated using GenOpt. Furthermore, the obtained model can be used to simulate the machine both under steady-state operation and during a transient response. The results provided by the simulations are compared with data measured in a Stirling engine that has been subjected to different operating conditions. This comparison shows good agreement, indicating that the model is an appropriate method for transient thermal simulations. This new proposed model requires few configuration parameters and is therefore easily adaptable to a wide range of commercial models of Stirling engines. A detailed analysis of the system results reveals that the power is directly related to the difference of temperatures between the hot and cold sources during the transient and steady-state processes.

  8. Dicty_cDB: CHP638 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP638 (Link to dictyBase) - - - - CHP638P (Link to Original site) CHP638F 529 CHP63...8Z 720 CHP638P 1229 - - Show CHP638 Library CH (Link to library) Clone ID CHP638 (Link...sukuba.ac.jp/CSM/CH/CHP6-B/CHP638Q.Seq.d/ Representative seq. ID CHP638P (Link to... Original site) Representative DNA sequence >CHP638 (CHP638Q) /CSM/CH/CHP6-B/CHP638Q.Seq.d/ CTGTTGGCCTACTGGG...ng significant alignments: (bits) Value CHP638 (CHP638Q) /CSM/CH/CHP6-B/CHP638Q.S

  9. Dicty_cDB: CHP160 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP160 (Link to dictyBase) - - - Contig-U16475-1 CHP160P (Link to Original site) CHP16...0F 469 CHP160Z 728 CHP160P 1177 - - Show CHP160 Library CH (Link to library) Clone ID CHP16...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP1-C/CHP160Q.Seq.d/ Representative seq. ID CHP16...0P (Link to Original site) Representative DNA sequence >CHP160 (CHP160Q) /CSM/CH/CHP1-C/CHP16... Sequences producing significant alignments: (bits) Value CHP160 (CHP160Q) /CSM/CH/CHP1-C/CHP160Q.Seq.d/ 201

  10. CHP plant reduces grain whisky costs

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, R.

    1989-04-01

    Scottish Grain Distillers Limited operate one of the largest grain whisky spirit production units in Scotland at Port Dundas Distillery, Glasgow. In 1972, a treatment plant for the distillery residues was installed. This was a major user of steam and fuelled by oil. In 1983, prompted by spiralling oil price rises, changes in the plant were initiated resulting in a significant move away from steam to electricity as the main source of energy and replacing oil by gas as the boiler fuel. To further improve the economics, an on-site gas turbine combined heat and power (CHP) system has been installed, any excess power being exported to the national grid. Estimated savings achieved by the CHP system point to a payback of 5.2 years on the gross investment capital. (U.K.).

  11. Dicty_cDB: CHP531 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP531 (Link to dictyBase) - G20193 DDB0235388 Contig-U14452-1... - (Link to Original site) CHP531F 577 - - - - - - Show CHP531 Library CH (Link to library) Clone ID CHP531 ...l site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP531Q.Seq.d/ Repres...entative seq. ID - (Link to Original site) Representative DNA sequence >CHP531 (CHP531Q) /CSM/CH/CHP5-B/CHP53...liasfdmgq fitgpfgs--- Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP531 (CHP53

  12. Dicty_cDB: CHP630 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP630 (Link to dictyBase) - - - Contig-U16260-1 - (Link to Original site) - - CHP63...0Z 515 - - - - Show CHP630 Library CH (Link to library) Clone ID CHP630 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP630Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP630 (CHP630Q) /CSM/CH/CHP6-B/CHP630Q.Seq.d/ XXXXXXXXXXTCGTCAA...liyvptlpvklshnvxsiiglqlvlstkirkp Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP630 (CHP63

  13. Dicty_cDB: CHP631 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP631 (Link to dictyBase) - - - Contig-U16308-1 CHP631P (Link to Original site) CHP63...1F 576 CHP631Z 628 CHP631P 1184 - - Show CHP631 Library CH (Link to library) Clone ID CHP63...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP631Q.Seq.d/ Representative seq. ID CHP63...1P (Link to Original site) Representative DNA sequence >CHP631 (CHP631Q) /CSM/CH/CHP6-B/CHP63....0 %: endoplasmic reticulum >> prediction for CHP631 is exc 5' end seq. ID CHP631F 5' end seq. >CHP631F.Seq

  14. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland; Beseitigung von Hemmnissen bei der Verbreitung von Waermekraftkopplung (WKK) in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Landis, F. [Interface Politikstudien Forschung Beratung, Luzern (Switzerland); Lienhard, A.; Marti Locher, F. [Universitaet Bern, Kompetenzzentrum fuer Public Management (KPM), Bern (Switzerland); Krummenacher, S. [Enerprice Partners AG, Technopark Luzern, Root Laengenbold (Switzerland)

    2009-04-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  15. Biomass CHP based on a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Cowburn, D.A.; Dando, R.L.

    1997-12-31

    Combined heat and power (CHP) schemes offer a means of converting fuel to useful energy with much higher efficiencies (up to 80 percent) compared to electricity generating stations (efficiencies <36 percent). This has led to many EEC member states, including the UK, and other industrial countries encouraging the use of CHP. At the smaller scale (<500 kWe) steam based systems have generally proven too costly to provide solid fuel with an opportunity to exploit this potentially attractive CHP market sector. The Stirling engine offers a technology which can produce mechanical power from solid fuels without the need to raise steam. This project has been directed towards producing a Stirling engine design capable of producing an output of 150 kW{sub e} from solid fuel. The participants in the projects, CRE Group Ltd., Basys Marine Ltd. (formerly Cray Marine) and Gamos Ltd., brought together a wide range of experience in the areas of gasification, combustion, heat transfer, Stirling engine technology and high precision engineering. A novel form of low pressure nitrogen charged Stirling engine has been designed specifically for stationary applications. This avoided the drawbacks of high pressures with H{sub e} or H used as the working fluids and consequent requirement for exotic sealing arrangements, which have been associated with previous Stirling engine`s aimed primarily at the automotive market. (author)

  16. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  17. Dicty_cDB: CHP536 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP536 (Link to dictyBase) - - - Contig-U16458-1 CHP536P (Link to Original site) CHP53...6F 597 CHP536Z 660 CHP536P 1237 - - Show CHP536 Library CH (Link to library) Clone ID CHP53...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP536Q.Seq.d/ Representative seq. ID CHP53...6P (Link to Original site) Representative DNA sequence >CHP536 (CHP536Q) /CSM/CH/CHP5-B/CHP53...XPK Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP536 (CHP53

  18. Dicty_cDB: CHP639 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP639 (Link to dictyBase) - - - Contig-U15897-1 CHP639P (Link to Original site) CHP63...9F 700 CHP639Z 643 CHP639P 1323 - - Show CHP639 Library CH (Link to library) Clone ID CHP63...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP639Q.Seq.d/ Representative seq. ID CHP63...9P (Link to Original site) Representative DNA sequence >CHP639 (CHP639Q) /CSM/CH/CHP6-B/CHP63...nkkkn*knk*ins*kkil Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP639 (CHP63

  19. Decentralised CHP in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article agues that decentralised CHP plants is an important part of energy supply in Denmark.......The article agues that decentralised CHP plants is an important part of energy supply in Denmark....

  20. Dicty_cDB: CHP538 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP538 (Link to dictyBase) - - - Contig-U11908-1 CHP538P (Link to Original site) CHP53...8F 639 CHP538Z 714 CHP538P 1333 - - Show CHP538 Library CH (Link to library) Clone ID CHP53...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP538Q.Seq.d/ Representative seq. ID CHP53...8P (Link to Original site) Representative DNA sequence >CHP538 (CHP538Q) /CSM/CH/CHP5-B/CHP53...NIFDVEDLVPKNSXSFIKKKL*iin*nfk*inxkklcktk Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP53

  1. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    . It consists of a fuel cell stack, a fuel processing subsystem, heat exchangers, and balance-of-plant components. The optimization methodology involves system optimization attempting to maximize the net electrical efficiency, and then by use of a mixed integer nonlinear programming (MINLP) problem formulation......, the heat exchange network (HEN) annual cost is minimized. The results show the high potential of the proposed model since high efficiencies are accomplished. The net electrical efficiency and total system efficiency, based on lower heating value (LHV), are 35.2% and 91.1%, respectively. The minimized total...

  2. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  3. Dicty_cDB: CHP530 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP530 (Link to dictyBase) - - - - - (Link to Original site) CHP53...0F 182 - - - - - - Show CHP530 Library CH (Link to library) Clone ID CHP530 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...0Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >CHP53...0 (CHP530Q) /CSM/CH/CHP5-B/CHP530Q.Seq.d/ ACTGTTGGCCTACTGGGCAAATTAAAATCATTAAAAATAAAAAAA

  4. Dicty_cDB: CHP532 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP532 (Link to dictyBase) - - - Contig-U16255-1 - (Link to Original site) - - CHP53...2Z 245 - - - - Show CHP532 Library CH (Link to library) Clone ID CHP532 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP532Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP532 (CHP532Q) /CSM/CH/CHP5-B/CHP532Q.Seq.d/ XXXXXXXXXXGGTNTNT...s CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CHP532 (CHP532Q) /CSM/CH/CHP5-B/CHP532Q.Seq.d/ 335 2e-91 SS

  5. Dicty_cDB: CHP537 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP537 (Link to dictyBase) - - - Contig-U12147-1 | Contig-U15540-1 CHP53...7P (Link to Original site) CHP537F 116 CHP537Z 256 CHP537P 352 - - Show CHP537 Library CH (Link to library) Clone ID CHP53...47-1 | Contig-U15540-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...7Q.Seq.d/ Representative seq. ID CHP537P (Link to Original site) Representative DNA sequence >CHP537 (CHP53...7Q) /CSM/CH/CHP5-B/CHP537Q.Seq.d/ ACTGTTGGCCTACTGGGGTAAACTAATTAACACACAAAAATAAAAATAAAAAAAAAAAAA

  6. Dicty_cDB: CHP535 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP535 (Link to dictyBase) - - - Contig-U16475-1 | Contig-U16524-1 CHP53...5P (Link to Original site) CHP535F 213 CHP535Z 459 CHP535P 652 - - Show CHP535 Library CH (Link to library) Clone ID CHP53...75-1 | Contig-U16524-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...5Q.Seq.d/ Representative seq. ID CHP535P (Link to Original site) Representative DNA sequence >CHP535 (CHP53...5Q) /CSM/CH/CHP5-B/CHP535Q.Seq.d/ ACTGTTGGCCTACTGGNATGATTATTATAATTCAAATTAAAAATATATTATATAAATATA

  7. Dicty_cDB: CHP533 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP533 (Link to dictyBase) - - - Contig-U13117-1 | Contig-U15928-1 CHP53...3P (Link to Original site) CHP533F 113 CHP533Z 753 CHP533P 846 - - Show CHP533 Library CH (Link to library) Clone ID CHP53...17-1 | Contig-U15928-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP5-B/CHP53...3Q.Seq.d/ Representative seq. ID CHP533P (Link to Original site) Representative DNA sequence >CHP533 (CHP53...3Q) /CSM/CH/CHP5-B/CHP533Q.Seq.d/ TTANTTAAAAAGATNGATANTAAATCAAAGGGGAAANCAGTTNTNGAANGTAATNCNTTA

  8. Dicty_cDB: CHP633 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP633 (Link to dictyBase) - - - Contig-U16496-1 - (Link to Original site) CHP63...3F 647 - - - - - - Show CHP633 Library CH (Link to library) Clone ID CHP633 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP633Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP633 (CHP633Q) /CSM/CH/CHP6-B/CHP633Q.Seq.d/ CTGTTGGCCTATTGGNA...nt alignments: (bits) Value CHP633 (CHP633Q) /CSM/CH/CHP6-B/CHP633Q.Seq.d/ 749 0.0 AFA385 (AFA385Q) /CSM/AF/

  9. Dicty_cDB: CHP636 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP636 (Link to dictyBase) - - - Contig-U15337-1 - (Link to Original site) - - CHP63...6Z 448 - - - - Show CHP636 Library CH (Link to library) Clone ID CHP636 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP636Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP636 (CHP636Q) /CSM/CH/CHP6-B/CHP636Q.Seq.d/ XXXXXXXXXXGCCNCCC...cDNA Score E Sequences producing significant alignments: (bits) Value CHP636 (CHP636Q) /CSM/CH/CHP6-B/CHP636

  10. Dicty_cDB: CHP634 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP634 (Link to dictyBase) - - - Contig-U11045-1 - (Link to Original site) - - CHP63...4Z 693 - - - - Show CHP634 Library CH (Link to library) Clone ID CHP634 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP634Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP634 (CHP634Q) /CSM/CH/CHP6-B/CHP634Q.Seq.d/ XXXXXXXXXXTAAATTT...ant alignments: (bits) Value CHP634 (CHP634Q) /CSM/CH/CHP6-B/CHP634Q.Seq.d/ 551 e

  11. Dicty_cDB: CHP632 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP632 (Link to dictyBase) - - - Contig-U16510-1 | Contig-U16524-1 CHP63...2P (Link to Original site) CHP632F 204 CHP632Z 220 CHP632P 404 - - Show CHP632 Library CH (Link to library) Clone ID CHP63...10-1 | Contig-U16524-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP63...2Q.Seq.d/ Representative seq. ID CHP632P (Link to Original site) Representative DNA sequence >CHP632 (CHP63...2Q) /CSM/CH/CHP6-B/CHP632Q.Seq.d/ CTGTTGGCCTACTGGNAAAAAAATATTCAACTCAGTAATAATAATAATAAAAATAATAAC

  12. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    Science.gov (United States)

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination.

  13. The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis.

    Science.gov (United States)

    Touchette, Megan H; Holsclaw, Cynthia M; Previti, Mary L; Solomon, Viven C; Leary, Julie A; Bertozzi, Carolyn R; Seeliger, Jessica C

    2015-01-01

    Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.

  14. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro [Mississippi State Univ., Mississippi State, MS (United States); Newell, LeLe [Mississippi State Univ., Mississippi State, MS (United States)

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  15. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  16. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  17. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.;

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...

  18. Dicty_cDB: CHP637 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP637 (Link to dictyBase) - - - Contig-U10836-1 - (Link to Original site) CHP63...7F 590 - - - - - - Show CHP637 Library CH (Link to library) Clone ID CHP637 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP6-B/CHP637Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP637 (CHP637Q) /CSM/CH/CHP6-B/CHP637Q.Seq.d/ ACTGTTGGCCTACTGGN... %: vacuolar 4.0 %: mitochondrial 4.0 %: nuclear 4.0 %: endoplasmic reticulum >> prediction for CHP637 is exc 5' end seq. ID CHP63

  19. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla;

    2004-01-01

    the local heat demand as well as technical factors such as heat storage facilities and production unit characteristics. Based on an adaptive prognosis for electricity spot prices, bids for the spot market are made in accordance with the rules of the Nord Pool 24-hour cycle. The paper will discuss...... in the Western Danish system. As both the power produced by the local CHPs and the wind power are prioritised, the production of these types of power is occasionally sufficient to meet the total demand in the system, causing the market price to drop dramatically, sometimes even to zero-level. In line...... with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...

  20. Dicty_cDB: CHP167 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP167 (Link to dictyBase) - - - Contig-U16471-1 - (Link to Original site) - - CHP16...7Z 703 - - - - Show CHP167 Library CH (Link to library) Clone ID CHP167 (Link to dicty...iol.tsukuba.ac.jp/CSM/CH/CHP1-C/CHP167Q.Seq.d/ Representative seq. ID - (Link to ...Original site) Representative DNA sequence >CHP167 (CHP167Q) /CSM/CH/CHP1-C/CHP167Q.Seq.d/ XXXXXXXXXXGAAATTG...chondrial 4.0 %: cytoskeletal >> prediction for CHP167 is nuc 5' end seq. ID - 5' end seq. - Length of 5' en

  1. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  2. Dicty_cDB: CHP159 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP159 (Link to dictyBase) - - - Contig-U15743-1 CHP159P (Link... to Original site) CHP159F 653 CHP159Z 743 CHP159P 1376 - - Show CHP159 Library CH (Link to library) Clone ID CHP159 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15743-1 Original site URL http://dict...TSTKXLSLDQVSLIVSIVFHHHVESSKRLQNQXKVNQAGSLVKKENLLALIKILH FDQSINRQQLNSILVQICTFSDNREELLCYILQILTGYQSIVSQQPQRKTAE...HHHVESSKRLQNQXKVNQAGSLVKKENLLALIKILH FDQSINRQQLNSILVQICTFSDNREELLCYILQILTGYQSIVSQ

  3. Tumor associated antigen CHP2 promotes intraperitoneal metastasis of HEK293 cells in nude mice%肿瘤相关抗原CHP2促进HEK293细胞在裸鼠腹腔内的转移

    Institute of Scientific and Technical Information of China (English)

    钱晓萍; 孙秀媛; 李国栋; 张毓; 陈慰峰

    2009-01-01

    目的:研究肿瘤相关抗原CHP2对HEK293细胞在裸鼠腹腔内转移能力的影响,并初步探讨其可能的分子机制.方法:通过Boyden小室法检测CHP2转染细胞和对照细胞的体外转移能力.对BALB/c裸鼠进行腹腔接种,观察裸鼠体内的成瘤与组织浸润情况并进行HE染色.利用RT-PCR方法检测HEK293细胞中部分转移相关分子的基因表达水平.结果:CHP2增强HEK293细胞在体外穿过Matrigel胶的侵袭能力,同时显著加速HEK293细胞在裸鼠腹腔内的成瘤速度并促进肿瘤对腹腔主要脏器的浸润.CHP2上调转移相关分子骨桥蛋白(osteopon-tin,OPN)在HEK293细胞中的表达,但对基质金属蛋白酶MMP2的表达没有明显影响.结论:CHP2显著增强HEK293细胞在体外及裸鼠腹腔内的转移能力,OPN表达上调可能参与CHP2对HEK293细胞的转移促进作用.

  4. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro....... The variational loads are considered from full to quarter load, and the micro-CHP system is optimized in terms of operating thermophysical parameters for every different load. The results clearly indicate the capability of the proposed system to perform efficiently throughout all necessary load changes to fulfill...

  5. The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH.

    Science.gov (United States)

    Kussmaul, L; Hamprecht, B; Dringen, R

    1999-09-01

    The ability of astroglia-rich primary cultures derived from the brains of newborn rats to detoxify exogenously applied cumene hydroperoxide (CHP) was analyzed as a model to study glutathione-mediated peroxide detoxification by astrocytes. Under the conditions used, 200 microM CHP disappeared from the incubation buffer with a half-time of approximately 10 min. The half-time of CHP in the incubation buffer was found strongly elevated (a) in cultures depleted of glutathione by a preincubation with buthionine sulfoximine, an inhibitor of glutathione synthesis, (b) in the presence of mercaptosuccinate, an inhibitor of glutathione peroxidase, and (c) in the absence of glucose, a precursor for the regeneration of NADPH. The involvement of glutathione peroxidase in the clearance of CHP was confirmed by the rapid increase in the level of GSSG after application of CHP. The restoration of the initial high ratio of GSH to GSSG depended on the presence of glucose during the incubation. The high capacity of astroglial cells to clear CHP and to restore the initial ratio of GSH to GSSG was fully maintained when glucose was replaced by mannose. In addition, fructose and galactose at least partially substituted for glucose, whereas exogenous isocitrate and malate were at best marginally able to replace glucose during peroxide detoxification and regeneration of GSH. These results demonstrate that CHP is detoxified rapidly by astroglial cells via the glutathione system. This metabolic process strongly depends on the availability of glucose or mannose as hydride donors for the regeneration of the NADPH that is required for the reduction of GSSG by glutathione reductase.

  6. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  7. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  8. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Directory of Open Access Journals (Sweden)

    Matysko Robert

    2014-03-01

    Full Text Available The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser and the heat supply pump in failure conditions.

  9. CHP unit and local heating system using sewage gas - optimised sewage gas use and power generation; BHKW mit Waermeverbund der IVF HARTMANN AG mit Klaergas aus der ARA Roeti/SH; optimierte Klaergasnutzung und Verstromung durch Kooperation von ARA und Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Roeck, P.M.

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a combined heat and power (CHP) installation in Neuhausen am Rheinfall, Switzerland. This refurbishment project, which uses sewage gas produced in a local sewage treatment plant to supply a 215 kW CHP unit running in a local factory is described. Heat produced by the unit is sold back to the sewage treatment plant to cover its demands. Electricity production is used in-house in the industrial facilities. The report reviews the origins and development of the project and gives figures on sewage gas, heat and electricity production. Initial experience gained in this co-operative project is discussed. Also, the measurement and monitoring system, which forms the basis of result-checking and billing of energy services between the sewage plant operator and the industrial company, is described.

  10. Participation of stress-inducible systems and enzymes involved in BER and NER in the protection of Escherichia coli against cumene hydroperoxide.

    Science.gov (United States)

    Asad, L M; Medeiros, D C; Felzenszwalb, I; Leitão, A C; Asad, N R

    2000-09-15

    We studied the participation of the stress-inducible systems, as the OxyR, SoxRS and SOS regulons in the protection of Escherichia coli cells against lethal effects of cumene hydroperoxide (CHP). Moreover, we evaluated the participation of BER and NER in the repair of the DNA damage produced by CHP. Our results suggest that the hypersensitivity observed in the oxyR mutants to the lethal effect of CHP does not appear to be due to SOS inducing DNA lesions, but rather to cell membrane damage. On the other hand, DNA damage induced by CHP appears to be repaired by enzymes involved in BER and NER pathways. In this case, Fpg protein and UvrABC complex could be involved cooperatively in the elimination of a specific DNA lesion. Finally, we have detected the requirement for the uvrA gene function in SOS induction by CHP treatment.

  11. Conceptual framework for the continuing circulation of small CHP-plants. IZES-Study: Further measures necessary; Rahmenbedingungen fuer die weitere Verbreitung von Klein-KWK-Anlagen. IZES-Studie: Weitere Massnahmen notwendig

    Energy Technology Data Exchange (ETDEWEB)

    Leprich, U.; Thiele, A. [Institut fuer ZukunftsEnergieSysteme (IZES), Saarbruecken (Germany)

    2004-07-01

    The incentives, created by the CHP law of March the 19th of 2002, are short- and medium term not sufficient to broadly introduce small CHP-plants in general - and future technologies like the fuel cell or a Stirling-motor in particular - on the market or at least to develop those to a state of market maturity. A further development or rather a flanking of the existing CHP law is urgently recommended. (orig.)

  12. Research of a Feasible Distributed Energy System Coupling NG-CHP and GSHP Based on Active Heat Balance Control Mechanism%主动式热平衡NG-CHP与GSHP耦合分布式系统集成研究

    Institute of Scientific and Technical Information of China (English)

    刘丽芳; 李洪强; 康书硕; 李念平

    2016-01-01

    ABSTRACT:According to the principle of cascade utilization and energy saving potential during heat transfer process, and in order to realize higher efficiency of the natural gas based combined cooling, heating and power system (NG-CHP for short )and ground source heat pump (GSHP for short) coupling systems, the authors proposed a novel NG-CHP and GSHP integrating distributed system, which can make a better use of flue gas with middle-low temperature by help of integrating GHSP. Compare with reference system, by help of simulation software Aspen plus, the calculation results shown that, the suggested system can obtain a much better thermal system performance, which can obtain total energy system efficiency 82.7%, 8.9 percentage higher than reference system 73.8%; and exergy efficiency 28.8%, 3 percentage higher than reference system 25.8%. The integrating method can supply a new and potential way for effective utilization of heat with middle-low temperature.%针对浅层地热能应用过程中尚未解决的热平衡控制、天然气基分布式能源系统含硫低温烟气余热无法回收利用两个关键问题,基于能的综合梯级利用以及主动式热平衡思想,提出基于主动式热平衡集成机理的燃气轮机与热泵耦合一体化应用分布式热电联产系统,借助新型集成方式将含硫低温烟气余热回收与土壤源热泵一体化应用,不仅同时解决含硫低温烟气余热回收以及热失衡问题,并大幅提高系统热力性能与系统运行稳定性。采用流程模拟软件 Aspen-plus 完成新型系统以及参比系统性能对比计算,计算结果表明,较之参比系统,该新型系统总能系统效率达到82.7%,较参比系统73.8%,提高8.9个百分点;㶲效率为28.8%,较参比系统25.8%,提高3个百分点。该新型统的集成方法与思路为中低温烟气余热的高效应用提供一种新解决途径。

  13. Dicty_cDB: CHP195 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP195 (Link to dictyBase) - - - Contig-U11819-1 - (Link to Or...iginal site) CHP195F 138 - - - - - - Show CHP195 Library CH (Link to library) Clone ID CHP195 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U11819-1 Original site URL http://dictycdb.b...qilkvstnk**IKNYYVNRVYEIIIIINICTYKKK--- Translated Amino Acid sequence (All Frames) Frame A: tvgllvfsnt*gink*...iin*kllck*sl*nnnynkymyi*kk--- Frame B: llaywffqilkvstnk**IKNYYVNRVYEIIIIINICTYKKK--- Frame C: cwptgffkylryqq

  14. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NARCIS (Netherlands)

    Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A.

    2012-01-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household

  15. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  16. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  17. Reliability Indices Utlization in Combined Heat and Power ( CHP Optimal Operation

    Directory of Open Access Journals (Sweden)

    Hamed Hosseinnia

    2014-12-01

    Full Text Available The reason for using cogeneration more that heat and power separately is that, it is more efficient. In this paper the goal is finding the optimized CHP system utility size and thermal storage considering reliability limits of boiler and grid connected bus. Loss of Load Expectation (LOLE and Expected energy not supplied (EENS are considered as two reliability indices to insure the security of operation. Non-sequential Monte Carlo simulation method is introduced to the reliability assessment of CHP, and a normal distribution electrical load model is built to simulate the hourly electrical load. CHP model combined with a two-state reliability model is applied to Monte Carlo simulation method, and results show that the CHP reliability model works well with non-sequential Monte Carlo simulation. Non-Sequential Monte Carlo method is used to generate scenarios. Also in order to reduce computation time and due to the large number of scenarios, a scenario reduction technique is used. GAMS software is used for optimization process.

  18. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in which fuel cell appli‐ cations create synergy effects with other components of the system, as well as in which the efficiency improvements achieved by using fuel cells are lost elsewhere in the system. In order to identify suitable applications of fuel cells and electrolysers in future energy sys‐ tems...... be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency...

  19. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  20. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions; KWK-Ausbaustrategie in NRW. Eine Blaupause fuer andere Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Dominik [EnergieAgentur.NRW, Duesseldorf (Germany); Schneider, Sabine [EnergieAgentur.NRW, Wuppertal (Germany)

    2015-10-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  1. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  2. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  3. Operational Strategies for a Portfolio of Wind Farms and CHP Plants in a Two-Price Balancing Market

    DEFF Research Database (Denmark)

    Hellmers, Anna; Zugno, Marco; Skajaa, Anders

    2015-01-01

    In this paper we explore the portfolio effect of a system consisting of a Combined Heat and Power (CHP) plant and a wind farm. The goal is to increase the overall profit of the portfolio by reducing imbalances, and consequently their implicit penalty in a two-price balancing market for electricity....... We investigate two different operational strategies, which differ in whether the CHP plant and the wind farm are operated jointly or independently, and we evaluate their economic performance on a real case study based on a CHP-wind system located in the western part of Denmark. We present......-horizon fashion, so that forecasts for heat demand, wind power production and market prices are updated at each iteration. We conclude that the portfolio strategy is the most profitable due to the two-price structure of the balancing market. This encourages producers to handle their imbalances outside the market....

  4. Energy-optimisation of biogas-fuelled CHP units; Energetische Optimierung von Biogas-BHKW's

    Energy Technology Data Exchange (ETDEWEB)

    Soltic, P.; Edenhauser, D.; Winkler, A.

    2008-07-15

    This illustrated final report for the Swiss Federal office of Energy (SFOE) reports on the energy-related optimisation of combined heat and power (CHP) units that are fuelled with non-processed biogas. Ways of increasing the efficiency of these units as far as the production of electricity is concerned are examined and commented on. Also, ways of using the heat generated by the CHP units to produce electricity using other, exergetic means are also described. Systems such as Stirling engines and existing and new thermo-electrical elements are discussed. The economic viability of the systems is also discussed.

  5. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  6. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO.

    Science.gov (United States)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-05-30

    Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  7. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  8. Operation cost and carbon emission reduction analysis of micro-CHP systems in Guangzhou%广州地区应用微型热电联产系统的运行成本及碳减排分析

    Institute of Scientific and Technical Information of China (English)

    解东来; 骆锦辉; 单杰; 聂廷哲

    2016-01-01

    Operation cost and carbon emission reduction are analyzed when four kinds of micro-CHP prod-ucts are applied in Guangzhou.Moreover,the influence of different electricity and gas prices on operation cost was analyzed.The result shows that Ene-Farm has the minimum operation cost with the cost saving ratio reached 14.8%,Ene-Farm Type S has an excellent carbon emission reduction performance with the CO2 emissions reduction ratio reached 37.3%.The sensitivity analysis shows the operation cost of micro-CHP will decrease with the rise of electricity price and the reduction of gas price.%分别考察了广州典型家庭在使用4种不同技术的微型热电联产产品(Ene-Farm、Ene-Farm Type S、Ecowill、WhisperGen)时的运行成本与碳减排效果,并分析电价、气价变化对运行成本的影响.结果表明,Ene-Farm的运行成本最低,经济节约指数达14.8%,Ene-Farm Type S的碳减排效果最好,二氧化碳减排指数达37.3%.灵敏度分析表明,微型热电联产系统的运行成本随着电价的升高、气价的降低而降低.

  9. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  10. A new approach in CHP steam turbines thermodynamic cycles computations

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2012-01-01

    Full Text Available This paper presents a new approach in mathematical modeling of thermodynamic cycles and electric power of utility district-heating and cogeneration steam turbines. The approach is based on the application of the dimensionless mass flows, which describe the thermodynamic cycle of a combined heat and power steam turbine. The mass flows are calculated relative to the mass flow to low pressure turbine. The procedure introduces the extraction mass flow load parameter νh which clearly indicates the energy transformation process, as well as the cogeneration turbine design features, but also its fitness for the electrical energy system requirements. The presented approach allows fast computations, as well as direct calculation of the selected energy efficiency indicators. The approach is exemplified with the calculation results of the district heat power to electric power ratio, as well as the cycle efficiency, versus νh. The influence of νh on the conformity of a combined heat and power turbine to the grid requirements is also analyzed and discussed. [Projekat Ministarstva nauke Republike Srbije, br. 33049: Development of CHP demonstration plant with gasification of biomass

  11. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  12. CHP and District Cooling: An Assessment of Market and Policy Potential in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report contains an assessment of India's CHP/DC status and recommendations for addressing barriers to allow India to meet its energy efficiency targets. Such barriers include a lack of governmental emphasis on CHP, the absence of a clear methodology for calculating CO2 emission reductions from CHP/DHC, and a tax and duty structure for CHP capital equipment that is not as attractive as for other renewable energy technologies.

  13. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  14. District Heating and CHP - Local Possibilities for Global Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Difs, Kristina

    2010-07-01

    Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO{sub 2}) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linkoeping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed. In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO{sub 2} reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO{sub 2} reduction and savings potential. However, the global CO{sub 2} reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on

  15. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory. The modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The MGT utilizes the unconverted...

  16. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  17. A Stochastic Unit Commitment Model for a Local CHP Plant

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2005-01-01

    Local CHP development in Denmark has during the 90’s been characterised by large growth primarily due to government subsidies in the form of feed-in tariffs. In line with the liberalisation process in the EU, Danish local CHPs of a certain size must operate on market terms from 2005. This paper...

  18. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  19. Large-scale integration of wind power into different energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    , in which 50% of the electricity demand is produced in CHP, a number of future energy systems with CO2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present......, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system...

  20. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.;

    2003-01-01

    . coli. We show that both proteins inhibit translation by inducing cleavage of translated mRNAs. Consistently, the inhibitory effect of the proteins was counteracted by tmRNA. Amino acid starvation induced strong transcription of chpA that depended on Lon protease but not on ppGpp. Simultaneously, Chp...

  1. Advanced CHP Control Algorithms: Scope Specification

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  2. IEA ECBCS Annex 42 'FC+GOGEN-SIM'. The simulation of building-integrated fuel cell and other cogeneration systems - Summary; IEA ECBCS Annex 42 'FC+GOGEN-SIM'. The simulation of building-integrated fuel cell and other cogeneration systems - Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dorer, V.

    2008-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) takes a look at the results of three sub-tasks performed within the framework of an IEA task-annex. The sub-tasks aimed to develop simulation models for fuel-cell appliances and other micro-CHP units and to integrate them into various building simulation programs. The first sub-task covered the compilation of a technology overview as well as household power and hot-water requirements. The second one was devoted to the development of models for micro-CHP units. A third sub-task covered the simulation of various system configurations and evaluated general methods for dealing with energy, emissions and costs. The work done is briefly reviewed and the various institutions involved in the work are noted.

  3. Biomass gasification with CHP production: A review of state of the art technology and near future perspectives

    Directory of Open Access Journals (Sweden)

    Jankes Goran G.

    2012-01-01

    Full Text Available This paper is a review of the state of the art of biomass gasification and the future of using biomass in Serbia and it presents researches within the project “The Development of a CHP Plant with Biomass Gasification”. The concept of downdraft demonstration unit coupled with gas engine is adopted. Downdraft fixed-bed gasification is generally favored for CHP, owing to the simple and reliable gasifiers and low content of tar and dust in produced gas. The composition and quantity of gas and the amount of air are defined by modeling biomass residues gasification process. The gas (290-400m3/h for 0.5- 0.7MW biomass input obtained by gasification at 800oC with air at atmospheric pressure contains 14% H2, 27% CO, 9% CO2, 2% CH4, and 48% N2, and its net heating value is 4.8-6 MJ/Nm3. The expected gasifier efficiency is up to 80%. The review of the work on biomass gasification has shown that the development of technology has reached the mature stage. There are CHP plants with biomass gasification operating as demonstration plants and several gasification demonstration units are successfully oriented to biofuel production. No attempt has been made here to address the economic feasibility of the system. Economics will be the part of a later work as firmer data are acquired.

  4. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  5. Modelling a Combined Heat and Power Plant based on Gasification, Micro Gas Turbine and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a micro gas turbine (MGT) and the other in a combined solid oxide fuel cell (SOFC) and MGT arrangement. An electrochemical model of the SOFC has...

  6. Load scheduling for decentralized CHP plants

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik; Nielsen, Torben Skov

    This report considers load scheduling for decentralized combined heat and power plants where the revenue from selling power to the transmission company and the fuel cost may be time-varying. These plants produce both heat and power with a fixed ratio between these outputs. A heat storage facility...... be uncertain and dependent on time. It is suggested to use a combination of background knowledge of the operator and computer tools to solve the scheduling problem. More specificly it is suggested that the plant is equipped with (i) an automatic on-line system for forecasting the heat demand, (ii......) an interactive decision support tool by which optimal schedules can be found given the forecasts or user-defined modifications of the forecasts, and (iii) an automatic on-line system for monitoring when conditions have changed so that rescheduling is appropriate. In this report the focus is on methods applicable...

  7. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  8. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  9. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.;

    2015-01-01

    /stack assembly in the fuel cell (SOFC), in the electrolysis (SOEC) and in the combined SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. This paper presents the results which have been achieved so...

  10. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  11. Implementation strategy for small CHP-plants in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik; Šiupšinskas, G.; Martinaitis, V.

    2005-01-01

    The article analyses the conditions for the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP) in Lithuania.......The article analyses the conditions for the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP) in Lithuania....

  12. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    . The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...... data from Topsoe Fuel Cells A/S. The SOFC component model predicts the SOFC performance at various operating conditions and is suited for implementation in system-level models using the simulation software DNA. Furthermore, it is used for issuing guidelines for optimal SOFC operation. A system......-level modelling study of three conceptual plant designs based on two-stage gasification of wood chips with a thermal biomass input of ~0.5 MWth (LHV) is presented. Product gas is converted in a micro gas turbine (MGT) in the first plant design, in SOFCs in the second, and in a combined SOFC-MGT arrangement...

  13. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... can be used for such analyses. Moreover, the chapter presents the results of evaluating the overall system fuel savings achieved by introducing different FC applications into different energy systems. Natural gas-based and hydrogen-based micro FC-CHP, natural gas local FC-CHP plants for district...... technologies have different strengths and weaknesses in different energy systems, but often they do not have the expected effect. Specific analyses of each individual country must be conducted including scenarios of expansion of e.g. wind power in order to evaluate where and when the best use of FC...

  14. Network design optimization of fuel cell systems and distributed energy devices.

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Whitney G.

    2010-07-01

    This research explores the thermodynamics, economics, and environmental impacts of innovative, stationary, polygenerative fuel cell systems (FCSs). Each main report section is split into four subsections. The first subsection, 'Potential Greenhouse Gas (GHG) Impact of Stationary FCSs,' quantifies the degree to which GHG emissions can be reduced at a U.S. regional level with the implementation of different FCS designs. The second subsection, 'Optimizing the Design of Combined Heat and Power (CHP) FCSs,' discusses energy network optimization models that evaluate novel strategies for operating CHP FCSs so as to minimize (1) electricity and heating costs for building owners and (2) emissions of the primary GHG - carbon dioxide (CO{sub 2}). The third subsection, 'Optimizing the Design of Combined Cooling, Heating, and Electric Power (CCHP) FCSs,' is similar to the second subsection but is expanded to include capturing FCS heat with absorptive cooling cycles to produce cooling energy. The fourth subsection, - Thermodynamic and Chemical Engineering Models of CCHP FCSs,' discusses the physics and thermodynamic limits of CCHP FCSs.

  15. More performance by means of enhancement of the efficiency of CHP plants. CHP operation of an ORC plant; Mehr Leistung durch Effizienzsteigerung von KWK-Anlagen. KWK-Betrieb einer ORC-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Greschner, Timm; Fink, Jochen; Stadelmaier, Fabian [Duerr Cyplan Ltd., Bietigheim-Bissingen (Germany)

    2013-07-15

    In November 2012, the biogas plant of Stadtwerke Gross-Gerau-Versorgungs-GmbH (GGV) was supplemented with an energy-efficient organic Rankine cycle system (ORC) from Duerr Cyplan Ltd. (Bietigheim-Bissingen, Federal Republic of Germany). The ORC technology enables the utilization of the exhaust heat from the combustion of the gas for the power generation. Hereby, the efficiency in the power generation is increased by about 8 % in Gross-Gerau. Furthermore, the existing energy recovery concept is improved by the CHP operation of the ORC system. With the experience from Gross-Gerau new business segments can be accessed by means of the ORC technology.

  16. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... heat from the exhaust gas is utilised for drying and pyrolysis of the biomass in the gasification system, and the engine directly controls the load of the gasifier. Two different control approaches have been applied and investigated: one where the flow rate of the producer gas is fixed and the engine...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  17. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric

  18. Initial Market Assessment for Small-Scale Biomass-Based CHP

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.; Mann, M.

    2008-01-01

    The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

  19. Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2016-09-01

    Full Text Available The results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid – in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC, evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system and steam (in the RC system as working fluids.

  20. Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module

    Science.gov (United States)

    Wajs, Jan; Mikielewicz, Dariusz; Bajor, Michał; Kneba, Zbigniew

    2016-09-01

    The results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid - in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC) module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC)), evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system) and steam (in the RC system) as working fluids.

  1. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  2. Anode gas recirculation for improving the performance and cost of a 5-kW solid oxide fuel cell system

    Science.gov (United States)

    Torii, Ryohei; Tachikawa, Yuya; Sasaki, Kazunari; Ito, Kohei

    2016-09-01

    Solid oxide fuel cells (SOFCs) have the potential to efficiently convert chemical energy into electricity and heat and are expected to be implemented in stationary combined heat and power (CHP) systems. This paper presents the heat balance analysis for a 5-kW medium-sized integrated SOFC system and the evaluation of the effect of anode gas recirculation on the system performance. The risk of carbon deposition on an SOFC anode due to anode gas recirculation is also assessed using the C-H-O diagram obtained from thermodynamic equilibrium calculations. These results suggest that a higher recirculation ratio increases net fuel utilization and improves the electrical efficiency of the SOFC system. Furthermore, cost simulation of the SOFC system and comparison with the cost of electricity supply by a power grid indicates that the capital cost is sufficiently low to popularize the SOFC system in terms of the total cost over one decade.

  3. Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432.

    Science.gov (United States)

    Aoki, Masatoshi; Ueda, Shugo; Nishikawa, Hiroyoshi; Kitano, Shigehisa; Hirayama, Michiko; Ikeda, Hiroaki; Toyoda, Hideki; Tanaka, Kyosuke; Kanai, Michiyuki; Takabayashi, Arimichi; Imai, Hiroshi; Shiraishi, Taizo; Sato, Eiichi; Wada, Hisashi; Nakayama, Eiichi; Takei, Yoshiyuki; Katayama, Naoyuki; Shiku, Hiroshi; Kageyama, Shinichi

    2009-11-16

    Combination vaccines of the NY-ESO-1 protein complexed with cholesteryl pullulan (CHP), CHP-NY-ESO-1, and the truncated 146HER2 protein with CHP, CHP-HER2, were subcutaneously administered with the immuno-adjuvant OK-432 to eight esophageal cancer patients. Vaccination was well-tolerated. NY-ESO-1- and HER2-specific antibody responses were analyzed using the patients' sera and samples from previous single CHP-NY-ESO-1 or CHP-HER2 vaccine trial. The responses to NY-ESO-1 in the combination vaccine study were comparable to the single vaccine. For responses to HER2, there were fewer antibody responses in the combination vaccines. Although there were marked individual variations in the antibody responses to the NY-ESO-1 and HER2 antigens, the reaction patterns to these antigens were comparable within each patient. Antibodies to OK-432 were not augmented. Protein cancer vaccines targeting multiple antigens are feasible.

  4. Large-scale integration of wind power into different energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H. [Aalborg University (Denmark). Dept. of Development and Planning

    2005-10-01

    The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands, the ability to utilise wind power to reduce CO{sub 2} emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50% of the electricity demand is produced in CHP, a number of future energy systems with CO{sub 2} reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power. (author)

  5. Screening of CHP Potential at Federal Sites in Select Regions of the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Nexus Group, . .

    2002-02-25

    Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of

  6. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory. The modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The MGT utilizes the unconverted...... syngas from the SOFC to produce more power as well as pressurizing the SOFC bettering the electrical efficiency compared to operation with the SOFC alone - from η_el=36.4% to η_el=50.3%....

  7. Policy schemes, operational strategies and system integration of residential co-generation fuel cells

    DEFF Research Database (Denmark)

    Hansen, Lise-Lotte Pade; Schröder, Sascha Thorsten; Münster, Marie;

    2013-01-01

    a heat-driven strategy, with and without time-differentiated tariffs, and an electricity price driven strategy for the operation as a virtual power plant. The corresponding support schemes identified cover feed-in tariffs, net metering and feed-in premiums. Additionally, the interplay of the micro......This study presents a holistic approach for the commercialisation of fuel cells for stationary applications. We focus our analyses on microCHP based on SOFC units fired with natural gas. We analyse the interaction of operational strategies under different ownership arrangements, required support...... levels and system integration aspects. The operational strategies, support mechanisms and ownership arrangements have been identified through actor analysis involving experts from Denmark, France and Portugal. With regard to operational strategies, the actor analyses led us to distinguishing between...

  8. Generic Combined Heat and Power (CHP Model for the Concept Phase of Energy Planning Process

    Directory of Open Access Journals (Sweden)

    Satya Gopisetty

    2016-12-01

    Full Text Available Micro gas turbines (MGTs are regarded as combined heat and power (CHP units which offer high fuel utilization and low emissions. They are applied in decentralized energy generation. To facilitate the planning process of energy systems, namely in the context of the increasing application of optimization techniques, there is a need for easy-to-parametrize component models with sufficient accuracy which allow a fast computation. In this paper, a model is proposed where the non-linear part load characteristics of the MGT are linearized by means of physical insight of the working principles of turbomachinery. Further, it is shown that the model can be parametrized by the data usually available in spec sheets. With this model a uniform description of MGTs from several manufacturers covering an electrical power range from 30 k W to 333 k W can be obtained. The MGT model was implemented by means of Modelica/Dymola. The resulting MGT system model, comprising further heat exchangers and hydraulic components, was validated using the experimental data of a 65 k W MGT from a trigeneration energy system.

  9. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  10. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [ORNL

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and

  11. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  12. Investment appraisal for small CHP technology in biomass-fuel power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper is essentially an investment appraisal for small CHP (combined heat and power) technology in biomass-fuel power plant and discusses and presents data on the combustion/steam cycle technologies to demonstrate the economic viability of CHP projects using established market costs for technology and employing energy crops as biomass fuel. The data is based on the UK, where electricity prices are low, but the overseas market (where prices are higher and there is potential for UK exports) is also discussed. The report aims to synthesise up-to-date technical and economic information on biomass-fuel CHP projects of small scale and focuses on technical and financial information on equipment, capital, construction and operating costs, and revenue streams.

  13. Cell Radiation Experiment System

    Science.gov (United States)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  14. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  15. CHP2 gene expression and quantitation in Egyptian patients with acute leukemia

    Directory of Open Access Journals (Sweden)

    Amira Ahmed Hammam

    2014-12-01

    Conclusions: Many studies suggest that CHP2 expression is a novel prognostic marker in AL and thus needs to be incorporated into the patient stratification and treatment protocols. In addition, a quarter of AL patients fail therapy and novel treatments that are focused on undermining specifically the leukemic process are needed urgently.

  16. A Compound Herbal Preparation (CHP) in the Treatment of Children with ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Katz, M.; Adar Levine, A.; Kol-Degani, H.; Kav-Venaki, L.

    2010-01-01

    Objective: Evaluation of the efficacy of a patented, compound herbal preparation (CHP) in improving attention, cognition, and impulse control in children with ADHD. Method: Design: A randomized, double-blind, placebo-controlled trial. Setting: University-affiliated tertiary medical center. Participants: 120 children newly diagnosed with ADHD,…

  17. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  18. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.;

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....

  19. Support schemes and ownership structures - The policy context for fuel cell based micro-combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Ropenus, S.; Thorsten Schroeder, S.; Costa, A.; Obe, E.

    2010-05-15

    In recent years, fuel cell based micro-combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects of the ongoing fuel cell based micro-combined heat and power (mCHP) demonstration projects by addressing the socio-economic and systems analyses perspectives of a large-scale promotion scheme of fuel cells. This document constitutes the deliverable of Work Package 1 of the FC4Home project and provides an introduction to the policy context for mCHP. Section 1 describes the rationale for the promotion of mCHP by explaining its potential contribution to European energy policy goals. Section 2 addresses the policy context at the supranational European level by outlining relevant EU Directives on support schemes for promoting combined heat and power and energy from renewable sources. These Directives are to be implemented at the national level by the Member States. Section 3 conceptually presents the spectrum of national support schemes, ranging from investment support to market-based operational support. The choice of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project, Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up previous findings and provides a short 'preview' of the quantitative analyses in subsequent Work Packages by giving some food for thought on the way. (author)

  20. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas...

  1. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  2. The scale of transition: an integrated study of the performance of CHP biomass plants in the Netherlands

    OpenAIRE

    Proka, Antonia; Hisschemöller, Matthijs; Papyrakis, Elissaios

    2014-01-01

    Combined heat and power (CHP) plants using biomass are considered important to substantially increase the share of renewables in the total energy supply and meet ambitious climate targets. The analysis focuses on the links between the size of bio-fuelled CHP plants and their techno-economic and environmental performance, as well as social acceptance. In an exploratory way, this paper compares the performance of six bioenergy plants in the Netherlands in these three key areas, thereby focusing...

  3. CellTracks cell analysis system for rare cell detection

    NARCIS (Netherlands)

    Kagan, Michael T.; Trainer, Michael N.; Bendele, Teresa; Rao, Chandra; Horton, Allen; Tibbe, Arjan G.; Greve, Jan; Terstappen, Leon W.M.M.

    2002-01-01

    The CellTracks system is a Compact Disk-based cell analyzer that, similar to flow cytometry, differentiates cells that are aligned while passing through focused laser beams. In CellTracks, only immuno-magnetically labeled cells are aligned and remain in position for further analysis. This feature is

  4. Wood-fired fuel cells in selected buildings

    Science.gov (United States)

    McIlveen-Wright, D. R.; McMullan, J. T.; Guiney, D. J.

    The positive attributes of fuel cells for high efficiency power generation at any scale and of biomass as a renewable energy source which is not intermittent, location-dependent or very difficult to store, suggest that a combined heat and power (CHP) system consisting of a fuel cell integrated with a wood gasifier (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently. Phosphoric acid fuel cell (PAFC) systems, fuelled by natural gas, have already been used in a range of CHP applications in urban settings. Some of these applications are examined here using integrated biomass gasification/fuel cell systems in CHP configurations. Five building systems, which have different energy demand profiles, are assessed. These are a hospital, a hotel, a leisure centre, a multi-residential community and a university hall of residence. Heat and electricity use profiles for typical examples of these buildings were obtained and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired PAFC system was found to have low electrical efficiency (13-16%), but much of the heat could be recovered, so that the overall efficiency was 64-67%, suitable where high heat/electricity values are required. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient for electricity generation (24-27%), with an overall energy efficiency of 60-63%. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features

  5. Dicty_cDB: CHP695 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 923 |AX251923.1 Sequence 184 from Patent WO0168911. 32 0.030 5 BD460387 |BD460387.1 Diagnosis of Diseases Associated with Cell Cycle.... 32 0.030 5 BD452309 |BD452309.1 Diagnosis of Diseases Associated with Cell Cycle.

  6. Development of HT-PEMFC components and stack for CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Terkelsen, C.; Rudbech, H.C.; Steenberg, T. (Danish Power System Aps, Charlottenlund (Denmark)); Thibault de Rycke (IRD Fuel Cell A/S, Svendborg (Denmark))

    2009-10-15

    The aim of the project has been to further develop components for an all Danish high temperature PEM fuel cells stack for application in combined heat and power units (CHP units). The final product aimed at was a 1.5-2 kW stack for operation at 150-200 deg. C. The project follows the previous PSO project 4760, 'High Temperature PEM Fuel Cell'. The project has addressed the HT-PEM fuel cells form a components point of view and the materials here for. The main areas were polymer and membrane development, electrode and MEA development (MEA = membrane electrode assembly, i.e. the cells.) and stack development. The membrane development begins with the polymer. The polymerization technique was improved significantly in two ways. Better understanding of the process and the critical issues has led to more reproducible results with repeated high molecular weights. The molecular weight is decisive for the membrane strength and durability. The process was also scaled up to 100-200 g polymer pr. batch in a new polymerization facility build during the project. It is dimensioned for larger batches too, but this was not verified during the project. The polymer cannot be purchased in the right quality for fuel cell membranes and it is important that it manufacture is not a limiting factor at the present state. Experiments with other membrane casting techniques were also made. The traditional PBI doped with phosphoric acid is still the state of art membrane for the HT-PEM fuel cells, but progress was also made with modified membranes. Different variants of PBI were synthesized and tested. Electrodes have been manufactured by a spray technique in contrast to the previously applied tape casting. The hand held spray gun previously led to an improvement of the electrodes, but the reproducibility was limited. Subsequently the construction of a semi automated spray machine was started and results like of the best hand sprayed electrodes were obtained. A viable way of MEA rim

  7. Development and analysis of micro-polygeneration systems and adsorption chillers

    Science.gov (United States)

    Gluesenkamp, Kyle

    About a fifth of all primary energy in the US is consumed by residential buildings, mostly for cooling, heating and to provide electricity. Furthermore, retrofits are essential to reducing this consumption, since the buildings that exist today will comprise over half of those in use in 2050. Residential combined heat and power (or micro CHP, defined by thermally-driven chiller/heat pump to a CHP system (to form a trigeneration system) to additionally provide savings during the cooling season, and enhance heating season savings. Scenarios are identified in which adding thermally-driven equipment to a micro CHP system reduces primary energy consumption, through analytical and experimental investigations. The experimental focus is on adsorption heat pump systems, which are capable of being used with the CHP engines (prime movers) that are already widely deployed. The analytical analysis identifies energy saving potential off-grid for today's prime movers, with potential on-grid for various fuel cell technologies. A novel dynamic test facility was developed to measure real-world residential trigeneration system performance using a prototype adsorption chiller. The chiller was designed and constructed for this thesis and was driven by waste heat from a commercially available natural gas-fueled 4 kW (electric) CHP engine. A control strategy for the chiller was developed, enabling a 5-day experiment to be run using a thermal load profile based on moderate Maryland summer air conditioning loads and typical single-family domestic hot water demand, with experimental results in agreement with models. In this summer mode, depending on electrical loads, the trigeneration system used up to 36% less fuel than off-grid separate generation and up to 29% less fuel than off-grid CHP without thermally driven cooling. However, compared to on-grid separate generation, the experimental facility used 16% more primary energy. Despite high chiller performance relative to its thermodynamic

  8. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  9. Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.

    2003-10-10

    can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

  10. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    , using wood powder as fuel will be developed at Lund University, Sweden, in cooperation with the Technical University of Denmark and with the wood powder boiler manufacturer VTS AB. The unit is to be run in CHP operation by Vattenfall - the largest electric power company in Sweden - in a one-year field...... test in Ĭvkarleby, Sweden, and the operation of the unit will be evaluated at the end of the field test period. The unit is intended for blocks of flats, schools, local heat production plants and the wood industry....

  11. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  12. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. [Texas AandM University, College Station, TX (United States)

    2007-03-15

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies. (author)

  13. Pluralistic heat supply concept. Strategies and technologies for decentralised district heating in a liberalized energy market with an emphasis on CHP technology and renewable energies. AGFW principal study, first part of work. Vol. 2. Part 1: District heating systems, existing stock of buildings. Part 2: Technology development and assessment; Pluralistische Waermeversorgung. Strategien und Technologien einer pluralistischen Fern- und Nahwaermeversorgung in einem liberalisierten Energiemarkt unter besonder Beruecksichtigung der Kraft-Waerme-Kopplung und regenerativer Energien. AGFW-Hauptstudie. 1. Bearbeitungsabschnitt. Bd. 2. T. 1: Waermeversorgung des Gebaeudebestandes. T. 2: Technologieentwicklung und -bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, H.; Witterhold, F.G. [Arbeitsgemeinschaft Fernwaerme e.V., Frankfurt am Main (Germany); Pfaffenberger, W. [Bremer Energie Institut, Bremen (DE)] [and others

    2001-08-01

    In order to prepare the basis for the comparative analysis of various carbon dioxide mitigation policies in terms of energy performance of buildings, economic efficiency and ecologic benefits, the wide variety of community district heating services is defined in part A, based on a very differential and extensive characterisation of selected dwellings and the building types. The last chapter of part A discusses the impacts of an enhanced CHP electricity production on the energy system of the Federal Republic of Germany. Part B explains the basic aspects and the approaches used for a building-specific modelling of the various structures of dwellings and the further development of methods applied for energy analysis and energy system modelling at the national level. (orig./CB) [German] Zur Vorbereitung des energetischen, oekonomischen und oekologischen Vergleichs verschiedener CO{sub 2}-Minderungsmassnahmen werden zunaechst in Teil A die unterschiedlichen Versorgungsaufgaben kommunaler Fernwaermeversorgungssysteme anhand einer sehr differenzierten und umfangreichen Charakterisierung der ausgewaehlten Siedlungs- und Gebaeudestrukturen definiert. Im letzten Kapitel von Teil A werden ausserdem die Rueckwirkungen einer verstaerkten KWK-Stromerzeugung auf das Energiesystem der Bundesrepublik Deutschland diskutiert. Teil B erlaeutert die Grundlagen und die Entwicklung der gebaeudescharfen Modellierung von Siedlungsstrukturen und eine Weiterentwicklung von Energiesystemmodellen. (orig./CB)

  14. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  15. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  16. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM"PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, Zack; Lipman, Timothy; Stadler, Michael; Marnay, Chris

    2010-06-01

    The effectiveness of combined heat and power (CHP) systems for power interruption intolerant,"premium power," facilities is the focus of this study. Through three real-world case studies and economic cost minimization modeling, the economic and environmental performance of"premium power" CHP is analyzed. The results of the analysis for a brewery, data center, and hospital lead to some interesting conclusions about CHP limited to the specific CHP technologies installed at those sites. Firstly, facilities with high heating loads prove to be the most appropriate for CHP installations from a purely economic standpoint. Secondly, waste heat driven thermal cooling systems are only economically attractive if the technology for these chillers can increase above the current best system efficiency. Thirdly, if the reliability of CHP systems proves to be as high as diesel generators they could replace these generators at little or no additional cost if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Lastly, in terms of greenhouse gas emissions, the modeled CHP systems provide some degree of decreased emissions, estimated at approximately 10percent for the hospital, the application with the highest relative thermal load in this case

  17. Life cycle assessment of micro production technologies - solar cells, household wind turbines and micro motors; Livscyklusvurdering af mikroproduktionsteknologier - solceller, husstandsvindmoeller og mikromotorer

    Energy Technology Data Exchange (ETDEWEB)

    Faeborg Poulsen, A.; Kruse, H.; Hvid Ipsen, K.

    2000-07-15

    This report contains a life cycle based estimation of environmental effects of CHP based on the micro production technologies: solar cells, household wind turbines and micro motors. The technologies cover CHP production on very small plants which are characterised by being located by the individual consumer. (BA)

  18. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  19. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S. [Biological and Agricultural Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602 (United States); Sokhansanj, S.; Turhollow, A.F. [Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831 (United States); Tagore, S. [Office of Biomass Program, U.S. Department of Energy, Washington, DC 20585 (United States)

    2010-03-15

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam{sup 3}). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery. (author)

  20. On-line experimental validation of a model-based diagnostic algorithm dedicated to a solid oxide fuel cell system

    Science.gov (United States)

    Polverino, Pierpaolo; Esposito, Angelo; Pianese, Cesare; Ludwig, Bastian; Iwanschitz, Boris; Mai, Andreas

    2016-02-01

    In the current energetic scenario, Solid Oxide Fuel Cells (SOFCs) exhibit appealing features which make them suitable for environmental-friendly power production, especially for stationary applications. An example is represented by micro-combined heat and power (μ-CHP) generation units based on SOFC stacks, which are able to produce electric and thermal power with high efficiency and low pollutant and greenhouse gases emissions. However, the main limitations to their diffusion into the mass market consist in high maintenance and production costs and short lifetime. To improve these aspects, the current research activity focuses on the development of robust and generalizable diagnostic techniques, aimed at detecting and isolating faults within the entire system (i.e. SOFC stack and balance of plant). Coupled with appropriate recovery strategies, diagnosis can prevent undesired system shutdowns during faulty conditions, with consequent lifetime increase and maintenance costs reduction. This paper deals with the on-line experimental validation of a model-based diagnostic algorithm applied to a pre-commercial SOFC system. The proposed algorithm exploits a Fault Signature Matrix based on a Fault Tree Analysis and improved through fault simulations. The algorithm is characterized on the considered system and it is validated by means of experimental induction of faulty states in controlled conditions.

  1. A comparison of cost-benefit analysis of biomass and natural gas CHP projects in Denmark and the Netherlands

    NARCIS (Netherlands)

    Groth, Tanja; Scholtens, Bert

    2016-01-01

    We investigate what drives differences in the project appraisal of biomass and natural gas combined heat and power (CHP) projects in two countries with very similar energy profiles. This is of importance as the European Commission is assessing the potential scope of harmonizing renewable electricity

  2. Survey of controllability in decentralized CHP plants. Optimal operation of priority production units; Kortlaegning af decentrale kraftvarmevaerkers regulerbarhed. Optimal drift af prioriterede anlaeg - Teknologisk grundlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    'Danske Fjernvarmevaerkers Forening' (DFF) and 'Energistyrelsens energiproducenttaelling' (EEPT) are used. In the part project 'Teknologisk grundlag', project 4712, the technical information on decentralized CHP plants has been arranged in such a way that it is suitable for being used in a bid model, developed in project 4712, for selling electricity production on the Nordic spot market, NORDPOOL. A number of typical technical and operational parameters have been mapped and their distributions in subgroups of plant types. It concerns primarily, capacity on electricity and heat production, the connected heat storage capacity, the demand of heat in the connected district heating system, efficiencies at full and part load, start and stop times and maximum load gradients. Options and restrictions regarding the SCR system concerning the possibility of remote operation, likelihood of error, manning, wear, costs associated with start/stop and cost of operation and maintenance are investigated. Investment costs are estimated on possible modifications of plant equipment either for more flexible production and thereby improved economics or for improved controllability. It includes cost estimation of additional equipment for removing surplus of heat in order to eliminate the locked-up electricity production to the heat demand in the district heating system. Thereby making it possible to generate electricity when electricity price is very high no matter the demand of heat. Opposite, in case electricity price is very low, the possibility of using electricity for heat generation (electric cartridge or heat pump) is considered. Finally, the environmental impact of a new operational strategy of the CHP plants possibly with more start/stop and part load operation is discussed.

  3. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  4. Modelling a Combined Heat and Power Plant based on Gasification, Micro Gas Turbine and Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a micro gas turbine (MGT) and the other in a combined solid oxide fuel cell (SOFC) and MGT arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory, and the modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The SOFC converts the syngas...

  5. COMPARISON OF MATHEMATICAL MODELS FOR HEAT EXCHANGERS OF UNCONVENTIONAL CHP UNITS

    Directory of Open Access Journals (Sweden)

    Peter Durcansky

    2015-08-01

    Full Text Available An unconventional CHP unit with a hot air engine is designed as the primary energy source with fuel in the form of biomass. The heat source is a furnace designed for combustion of biomass, whether in the form of wood logs or pellets. The transport of energy generated by the biomass combustion to the working medium of a hot-air engine is ensured by a special heat exchanger connected to this resource. The correct operation of the hot-air engine is largely dependent on an appropriate design of the exchanger. The paper deals with the calculation of the heat exchanger for the applicationsmentioned, using criterion equations, and based on CFD simulations.

  6. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...... engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NOx emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low......-NOx burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission...

  7. Technical preparation of a 300 kWel biomass gasification plant. Report for the project: Simplification, system and operation optimization of staged gasification unit for CHP production (the Castor unit in Graested); Teknisk forberedelse af 300 kWel bioforgasningsanlaeg. En Delrapport til projektet: Forenkling, system- og driftsoptimering af trinopdelt forgasningsanlaeg til kraftvarmeproduktion (Castor anlaegget i Graested)

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.

    2009-09-15

    In 2003/04 BioSynergi Proces ApS built a complete approx. 450 kWth Open Core staged gasification unit as a development / demonstration plant. The plant uses wet wood chips as fuel for generating electricity and heat. The facility, known as the Castor plant, is connected to the heat supply network in Graested District Heating. The daily operation is handled by BioSynergi Process. The cogeneration system, that the Castor plant represents, is the basis for this completed project. For technical preparation of the planned future up scaling of the cogeneration system, a test of the function of the gas generator core (reactor core) was performed in this sub-project. It is the central component of the total cogeneration system, and it is also the one who has the greatest influence on the overall gasification process. The experiments have demonstrated that the stage gasification principle, which is in operation at the Castor plant, is also possible to have in operation with the desired process steps in the tested reactor core with four times more capacity. Finalization of the total gas generator in the range of 300 kWel is now being developed in a new project. The simplified experiments, that were possible to perform with the outdoor setup of the reactor core, were, however, not suited to qualitative assessments of the gasification process. (ln)

  8. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  9. スターリングエンジンを用いた家庭用向け小型CHP システムの構築

    OpenAIRE

    黄,樹偉; 王,振鑫

    2011-01-01

    A prototype of micro Combined Heat & Power system( or micro-CHP system) with an electric output of 4.8[W] and a heat supply of 268[W]has been developed for home use by using a small Stirling engine to drive a DC generator, which serves as a starter motor as well. Water supplied to the cooler of the engine is heated by the cooling fins and then heated further by the exhaust gas, resulting in warm water which is outputted as the heat supply from this system. Although the electric output of this...

  10. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  11. Toxicity induced by cumene hydroperoxide in leech Retzius nerve cells: the protective role of glutathione.

    Science.gov (United States)

    Jovanovic, Zorica; Jovanovic, Svetlana

    2013-01-01

    In the present study, we studied the ability of glutathione (GSH) to detoxify exogenously applied cumene hydroperoxide (CHP). Exposure of leech Retzius nerve cells to CHP (1.5 mM) induced a marked prolongation of the spontaneous spike potential of these cells. Early after depolarization, and a cardiac-like action potential with a rapid depolarization followed by a sustained depolarization or plateau, which is terminated by a rapid repolarization were recorded. GSH (0.2 mM) significantly inhibited the effects of CHP on the duration of the action potential and suppressed CHP-induced spontaneous repetitive activity. Voltage-clamp recordings showed that CHP (1.5 mM) caused significant changes in the outward potassium currents. The fast and slow steady part of the potassium outward current was reduced by 46% and 39%, respectively. GSH applied in a concentration of 0.2 mM partially blocked the effect of CHP on the calcium-activated potassium currents. The fast and slow calcium-activated potassium currents were suppressed by about 20% and 15%, respectively. These results suggest that the neurotoxic effect of CHP on spontaneous spike electrogenesis and calcium-activated potassium currents of leech Retzius nerve cells was reduced in the presence of GSH.

  12. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin.

    Science.gov (United States)

    Schalch, Thomas; Job, Godwin; Noffsinger, Victoria J; Shanker, Sreenath; Kuscu, Canan; Joshua-Tor, Leemor; Partridge, Janet F

    2009-04-10

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  13. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  14. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  15. Cis-hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Christoph Mueller; Joerg Emmrich; Robert Jaster; Dagmar Braun; Stefan Liebe; Gisela Sparmann

    2006-01-01

    AIM: To investigate the biological effects of cishydroxyproline (CHP) on the rat pancreatic carcinoma cell line DSL6A, and to examine the underlying molecular mechanisms.METHODS: The effect of CHP on DSL6A cell proliferation was assessed by using BrdU incorporation. The expression of focal adhesion kinase (FAK) was characterized by Western blotting and immunofluorescence.Induction of endoplasmic reticulum (ER) stress was investigated by using RT-PCR and Western blotting for the glucose-related protein-78 (GRP78) and growth arrest and DNA inducible gene (GADD153). Cell viability was determined through measuring the metabolic activity based on the reduction potential of DSL6A cells. Apoptosis was analyzed by detection of caspase-3 activation and cleavage of poly(ADP-ribose) polymerase (PARP) as well as DNA laddering.RESULTS: In addition to inhibition of proliferation,incubation with CHP induced proteolytic cleavage of FAK and a delocalisation of the enzyme from focal adhesions,followed by a loss of cell adherence. Simultaneously,we could show an increased expression of GRP78 and GADD153, indicating a CHP-mediated activation of the ER stress cascade in the DSL6A cell line. Prolonged incubation of DSL6A cells with CHP finally resulted in apoptotic cell death. Beside L-proline, the inhibition of intracellular proteolysis by addition of a broad spectrum protease inhibitor could abolish the effects of CHP on cellular functions and the molecular processes. In contrast, impeding the activity of apoptosis-executing caspases had no influence on CHP-mediated cell damage.CONCLUSION: Our data suggest that the initiation of ER stress machinery by CHP leads to an activation of intracellular proteolytic processes, including caspaseindependent FAK degradation, resulting in damaging pancreatic carcinoma cells.

  16. Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants

    Science.gov (United States)

    Farhad, Siamak; Yoo, Yeong; Hamdullahpur, Feridun

    The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.

  17. Opportunity and potential for fuel cell systems for energy in buildings; Moejlighet och potential foer braenslecellsystem foer energifoersoerjning i byggnader

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin (Catator AB (Sweden))

    2011-04-15

    While planning for new sustainable and environmentally friendly communities in Sweden, discussions on using fuel cells for small-scale power and heat production (mCHP) are today on-going. Examples of such communities are Sege Park in Malmoe and Norra Djurgardsstaden in Stockholm, where several members of the Swedish Construction Industry's Organisation for Research and Development (SBUF) are participating in the development. The status and the potential of using fuel cell based mCHP compared to conventional heat and power production technology and other mCHP-technologies (Internal combustion engine (ICE), Stirling) is today therefore a very interesting question for both the energy and the building sector, who also ask for more knowledge within the field. This work focuses on this purpose. The main goals of this report are: 1. To give an overall description of different existing fuel cell technologies and necessary belonging system components. The fuel cell systems are discussed and evaluated based on parameters such as efficiencies, fuel flexibility, life-time, complexity, maturity and cost. The systems are compared to mCHPs based on small heat engines (Internal combustion, Stirling). 2. To give a state-of-the-art report on fuel cell based mCHPs and to describe possibilities and risks related to different technologies. 3. To guideline for future choices of system solutions suitable for different building constructions and different geographical placements. The work is limited to systems suitable for small houses (< 5 kWe) and larger residential buildings (< 50 kWe) situated in population centres/cities where infra-structures for natural gas/biogas and the national grid are available. The project has been performed by Catator AB on the request of SBUF with support from the Swedish Gas Centre (SGC AB), Skanska and Catator. The study is based on the open literature, the information given by leading fuel cell system suppliers and Catator's own knowledge and

  18. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  19. CHP HIGHER EDUCATION, SCHOLARSHIPS AND DEMAND ABROAD ARE POLITICS (1942-1947

    Directory of Open Access Journals (Sweden)

    Suat ZEYREK

    2016-04-01

    Full Text Available Turkey was followed by a very slow development in the course of the republic’s first year in higher education.By 1955, there are only two universities in the three cities in Turkey.Although the new university will be declared opened by Ismet Inonu’s mouth several times it was not possible for various reasons.Turkey’s economic situation, the shortage of trained personel and it has been hampered by severe conditions of World War II.But even more important excuses should have prevented the spread of higher education in Turkey. This article will be presented in the light of the real causes of the problem of archival sources mentioned above.Period ruling party, the CHP’s higher education policy followed in scholarships and dormitories were investigated.CHP likely to promote higher education in the first primary education spread to the base and thus wants to create a higher demand.For this reason, it is necessary first of all to build infrastructure for higher education institutions and rules.Coming from big cities in different regions of Anatolia youth to take education to all students experience difficulties and inclusive, egalitarian policies were followed.

  20. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station Processing Plant Biomass

    Science.gov (United States)

    Szulc, Justyna; Otlewska, Anna; Okrasa, Małgorzata; Majchrzycka, Katarzyna; Sulyok, Michael; Gutarowska, Beata

    2017-01-01

    The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP). We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs). Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq) revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.). The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM). We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored. PMID:28117709

  1. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  2. Solid oxide fuel cells towards real life applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Solid Oxide Fuel Cells offer a clean and efficient way of producing electricity and heat from a wide selection of fuels. The project addressed three major challenges to be overcome by the technology to make commercialisation possible. (1) At the cell level, increased efficiency combined with production cost reduction has been achieved through an optimization of the manufacturing processes, b) by using alternative raw materials with a lower purchase price and c) by introducing a new generation of fuel cells with reduced loss and higher efficiency. (2) At the stack level, production cost reduction is reduced and manufacturing capacity is increased through an optimization of the stack production. (3) At the system level, development of integrated hotbox concepts for the market segments distributed generation (DG), micro combined heat and power (mCHP), and auxiliary power units (APU) have been developed. In the mCHP segment, two concepts have been developed and validated with regards to market requirements and scalability. In the APU-segment, different types of reformers have been tested and it has been proven that diesel can be reformed through appropriate reformers. Finally, operation experience and feedback has been gained by deployment of stacks in the test facility at the H.C. OErsted Power Plant (HCV). This demonstration has been carried out in collaboration between TOFC and DONG Energy Power A/S (DONG), who has participated as a subcontractor to TOFC. The demonstration has given valuable knowledge and experience with design, start-up and operation of small power units connected to the grid and future development within especially the mCHP segment will benefit from this. In this report, the project results are described for each of the work packages in the project. (Author)

  3. Efficiencies and emissions of a 192 kw{sub el} Otto engine CHP-unit running on biogas at the research station ''Unterer Lindenhof''

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Bernd; Wyndorps, Agnes

    2012-06-15

    An Otto engine CHP-unit running on biogas has been under investigation for more than two years. Within this time data regarding temperatures, energy flows, biogas composition, emissions etc. were collected, and this paper presents some of the results. In detail, electric and thermal output are discussed for one full year. From these data the monthly electric availability of the unit can be calculated, which ranges from 84.0 to 96.4%. In addition, the utilization of the heat produced by the CHP-unit during one year is displayed. It was found that 18.2% of the heat was needed for heating purposes within the biogas plant, and 64.5% of the heat could be supplied to the district heating system. Hence, 17.3% of the useful heat had to be released to the ambient air by an additional cooler. Regarding emissions, a strong impact of the excess air ratio on emissions of NO{sub X} has been observed. Moreover, the effect on electric efficiency is outlined in this paper. As known from theory, the experimental results revealed that an increase in the excess air ratio helps to lower NO{sub X}-emissions, while electric efficiency is reduced by this means. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  4. Woking Park PAFC CHP monitoring. Phase 1: Planning, installation and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, P.S.; Fry, M.R.

    2003-07-01

    This report covers the planning, installation and commissioning of the first commercially operated fuel cell cogeneration system in the UK. The involvement of Woking Borough Council, its approach to energy efficiency, and the Woking Park site are discussed, and details are given of the PC25/C 200kW fuel cell which is manufactured in the US by UTC Fuel Cells. A description of the Woking Park fuel cell combined heat and power application is presented, and the project economics, specification and tendering are examined. The route taken to planning approval is traced, and installation procedures are outlined. The testing of the phosphoric type PC25 fuel cell cogeneration unit is described, and expected cost and project timescales are noted.

  5. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    Science.gov (United States)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  6. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  7. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  8. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    Science.gov (United States)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  9. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions....

  10. A distal to proximal gradient of human choroid plexus development, with antagonistic expression of Glut1 and AQP1 in mature cells versus calbindin and PCNA in proliferative cells.

    Directory of Open Access Journals (Sweden)

    Leandro Castañeyra-Ruiz

    2016-09-01

    Full Text Available The choroid plexuses (ChP are highly vascularized tissues suspended from each of the cerebral ventricles. Their main function is to secret CSF that fills the ventricles and the subarachnoid spaces, forming a crucial system for the development and maintenance of the CNS. However, despite the essential role of the ChP–CSF system to regulate the CNS in a global manner, it still remains one of the most understudied areas in neurobiology. Here we define by immunohistochemistry the expression of different proteins involved in the maturation and functionality of the ChP from the late embryological period to maturity. We found an opposite gradient of expression between AQP1 and Glut1 that define functional maturation in the ChP periphery, and PCNA and calbindin, present in the ChP roof zone with proliferative activity. We conclude that the maturation of the ChP matures from distal to proximal, starting in the areas nearest to the cortex, expressing in the distal, mature areas AQP1 and Glut1 (related to ChP functionality to support cortex development, and in the proximal immature areas (ChP root calbindin and PCNA related to progenitor activity and proliferation.

  11. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining....... The corrosion products and course of corrosion for the various steel types were investigated using light optical and scanning electron microscopy. The ferritic steels suffered from corrosion mainly via material loss. The austenitic steels suffered from predominantly selective corrosion which resulted...

  12. Combined heat and power generation with a HCPV system at 2000 suns

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio [IDEA s.r.l., C.da Molara Z.I. III Fase, 90018 Termini Imerese (Italy); Salinari, Piero; Agnello, Simonpietro; Gelardi, Franco M.; Sciortino, Luisa; Cannas, Marco [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, 90123 Palermo (Italy); Bonsignore, Gaetano; Barbera, Marco [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, 90123 Palermo (Italy); INAF, Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Collura, Alfonso; Lo Cicero, Ugo [INAF, Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  13. Combined heat and power generation with a HCPV system at 2000 suns

    Science.gov (United States)

    Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco

    2015-09-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  14. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  15. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    REPORT Cell Delivery System for Traumatic Brain Injury 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have met all of the milestones outlined in this...COVERED (From - To) 18-Sep-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 17-Mar-2008 Cell Delivery System for Traumatic Brain Injury Report...Manassero*, Justin Kim*, Maureen St Georges*, Nicole Esclamado* and Elizabeth Orwin. “Development of a Cell Delivery System for Traumatic Brain Injury Using

  16. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  17. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  18. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  19. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.

    Science.gov (United States)

    Wu, Bin; Zhang, Xiangping; Shang, Dawei; Bao, Di; Zhang, Suojiang; Zheng, Tao

    2016-08-01

    A typical biogas system with three utilization pathways, i.e., biogas upgrading, biogas combined heat and power (CHP), biogas solid oxide fuel cells (SOFCs) were designed. It was assessed from the viewpoint of energy, environment and economy by using energy efficiency, green degree and net present value index respectively. The assessment considered the trade-off relationships among these indexes, which is more comprehensive than previous systematic evaluation work only included single or two of the pathway(s) by using one or two of the index(es). Assessment results indicated that biogas upgrading pathway has the highest systematic energy efficiency (46.5%) and shortest payback period (8.9year) with the green degree production is the lowest (9.29gd/day). While for biogas SOFC pathway, although the green degree production is the highest (21.77gd/day), the payback period is longer (14.5year) and the energy efficiency is 13.6% lower than the biogas upgrading pathway.

  20. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  1. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  2. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Marketing opportunities for CHP electricity in a virtual power plant. Direct and indirect marketing of flexibility; Vermarktungschancen fuer KWK-Strom im virtuellen Kraftwerk. Direkte und indirekte Flexibilitaetsvermarktung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Achim; Baumgart, Bastian [Trianel GmbH, Aachen (Germany). Abt. Virtuelle Kraftwerke

    2013-07-15

    The increasingly fluctuating feed-in of electricity by means of a rapid expansion of renewable energies results in an increasing demand for flexible performance for the regulation of production and consumption. An important part of the necessary flexibility could be provided by CHP plants. Their potential of flexibility is not always fully exploited.

  4. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  5. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  6. Robust Management of Combined Heat and Power Systems via Linear Decision Rules

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2014-01-01

    The heat and power outputs of Combined Heat and Power (CHP) units are jointly constrained. Hence, the optimal management of systems including CHP units is a multicommodity optimization problem. Problems of this type are stochastic, owing to the uncertainty inherent both in the demand for heat...... and in the electricity prices that owners of CHP units receive for the power they sell in the market. In this work, we model the management problem for a coupled heat-and-power system comprising CHP plants, units solely producing heat as well as heat storages. We propose a robust optimization model including unit...... commitment, day-ahead power and heat dispatch as well as real-time re-dispatch (recourse) variables. This model yields a solution that is feasible under any realization of the heat demand within a given uncertainty set. Optimal recourse functions for the real-time operation of the units are approximated via...

  7. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    Science.gov (United States)

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  8. Contribution to a Danish action plan for development and demonstration of CHP from solid biomass; Oplaeg til en national handlingsplan for udvikling og demonstration indenfor kraftvarme fra fast biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-01-15

    The report is the contribution from the industry to an action plan for development and demonstration of CHP technology for solid biomass. The report aims to serve as inspiration and basis for administrators and applicants of Danish funding schemes for development and demonstration in future tenders. Although Danish-based cogeneration technologies for solid biofuels are advanced compared to the competitors in many areas there is a large need to continuously improve the technology by sustained development and demonstration activities. The aim is to overcome the technological barriers that this project has identified and thus maintain competitiveness. The industry currently has very strong focus on market deployment of especially technologies for cogeneration in small scale (up to 15 MW thermal power) and on the overall economy of these plants. Reference installations that displays many operational hours with a reasonable economy, are crucial for investors. Currently, no companies market commercial plants that have sufficiently low costs to operate under Danish conditions and few do for the conditions found internationally. Thus, from the industry perspective there is still a need for development and demonstration of CHP technology below 15 MW thermal. The analysis does not exclude any technology tracks, but the development and demonstration efforts should lead to improvements in conditions such as availability, efficiencies and operating and maintenance costs. Also technologies for large plants and systems need to be improved with respect to availability and efficiency and reduced operating and maintenance costs. For all technologies, there is a need to develop the use of special solid biofuels that on the one hand may have troublesome characteristics but on the other may help lower operating costs. The Danish-based companies have good opportunities to find support for the development and demonstration effort. A number of support programs and pools are in place and

  9. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    far. Besides a summary of existing test procedures a so called “test matrix” was created. This document includes generic test modules, e.g. current-voltage curves, electrochemical impedance spectroscopy, thermal cycling, electrical current cycling and long-term tests both under steady -state......In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell....../stack assembly in the fuel cell (SOFC), in the electrolysis (SOEC) and in the combined SOFC/SOEC mode are addressed. This covers the wide field of power generation systems, e.g. stationary SOFC µ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. This paper presents the results which have been achieved so...

  10. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  11. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  12. Regenerative fuel cell systems R and D

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  13. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  14. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.

  15. Mammalian Cell-Based Sensor System

    Science.gov (United States)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  16. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  17. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  18. Effect of 5,6,7,8-tetrahydroneopterin on the bovine endothelial cell injury induced by cumene hydroperoxide.

    Science.gov (United States)

    Kurobane, T; Kojima, S; Yoshimura, M; Icho, T; Kajiwara, Y; Kubota, K

    1995-07-01

    Neopterin is an 2-amino-4-hydroxypteridine derivative and a precursor of biopterin, which is derived from guanosine triphosphate. Previously, we have reported that 5,6,7,8-tetrahydroneopterin (NPH4), a reduced form of neopterin, possesses an antioxidant activity in various systems. In this study, we investigated the activity in more detailed manner and discussed the possible applications of this antioxidant. Analysis by electron spin resonance spectrometry indicated that NPH4 scavenged superoxide anion radicals and hydroxyl radicals as well. Moreover, NPH4 protected the rat brain homogenate from autoxidation. Next, we examined the effect of NPH4 on the cell injury induced by cumene hydroperoxide (CHP) in cultured bovine artery endothelial cells. The activity of lactate dehydrogenase, a marker enzyme of cell injury, was elevated by CHP in a dose-dependent manner, and this elevation was dose-dependently suppressed by NPH4. The elevation of lipid peroxide content was also inhibited by NPH4 in the same fashion. These data suggest that NPH4 would be effective against various diseases whose pathogenesis is active oxygen-related.

  19. Maintenance of the cell morphology by MinC in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chiou

    Full Text Available In the model organism Escherichia coli, Min proteins are involved in regulating the division of septa formation. The computational genome analysis of Helicobacter pylori, a gram-negative microaerophilic bacterium causing gastritis and peptic ulceration, also identified MinC, MinD, and MinE. However, MinC (HP1053 shares a low identity with those of other bacteria and its function in H. pylori remains unclear. In this study, we used morphological and genetic approaches to examine the molecular role of MinC. The results were shown that an H. pylori mutant lacking MinC forms filamentous cells, while the wild-type strain retains the shape of short rods. In addition, a minC mutant regains the short rods when complemented with an intact minCHp gene. The overexpression of MinCHp in E. coli did not affect the growth and cell morphology. Immunofluorescence microscopy revealed that MinCHp forms helix-form structures in H. pylori, whereas MinCHp localizes at cell poles and pole of new daughter cell in E. coli. In addition, co-immunoprecipitation showed MinC can interact with MinD but not with FtsZ during mid-exponential stage of H. pylori. Altogether, our results show that MinCHp plays a key role in maintaining proper cell morphology and its function differs from those of MinCEc.

  20. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  1. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  2. Automated microinjection system for adherent cells

    Science.gov (United States)

    Youoku, Sachihiro; Suto, Yoshinori; Ando, Moritoshi; Ito, Akio

    2007-07-01

    We have developed an automated microinjection system that can handle more than 500 cells an hour. Microinjection injects foreign agents directly into cells using a micro-capillary. It can randomly introduce agents such as DNA, proteins and drugs into various types of cells. However, conventional methods require a skilled operator and suffer from low throughput. The new automated microinjection techniques we have developed consist of a Petri dish height measuring method and a capillary apex position measuring method. The dish surface height is measured by analyzing the images of cells that adhere to the dish surface. The contrast between the cell images is minimized when the focus plane of an object lens coincides with the dish surface. We have developed an optimized focus searching method with a height accuracy of +/-0.2 um. The capillary apex position detection method consists of three steps: rough, middle, and precise. These steps are employed sequentially to cover capillary displacements of up to +/-2 mm, and to ultimately accomplish an alignment accuracy of less than one micron. Experimental results using this system we developed show that it can introduce fluorescent material (Alexa488) into adherent cells, HEK293, with a success rate of 88.5%.

  3. Analysis of Fuel Cell Markets in Japan and the US: Experience Curve Development and Cost Reduction Disaggregation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-07-15

    Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learning rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to

  4. Cell-based bioassays in microfluidic systems

    Science.gov (United States)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  5. Combined Heat and Power (CHP Allocation and Capacity Determination According to Fuzzy Bus Thermal Coefficient and Nodal Pricing Method using Cooperative Game Theory

    Directory of Open Access Journals (Sweden)

    Mohamad Hasan Moradi

    2014-12-01

    Full Text Available In this paper a hybrid and practical method is presented to allocate and determine combined heat and power capacity (CHP generator at a bus. This method consists of two stages. First, the suitable buses for CHP installation will be found by the bus thermal coefficient . This coefficient indicates the possibility of the heat selling around each bus and will be calculated by using the Fuzzy method. Next, for each of the appropriate buses, considering the obtained heat capacity and electrical power ratio to the heat of the CHPs in the market, several CHPs are recommended. Second, on the one hand, the improvement of the technical criteria after the CHPs installation is derived by using the nodal pricing methods as the financial benefits of the distribution companies and on the other hand, the investors’ financial benefits from the sold heat output of the CHPs is determined. Finally, using the Game Theory and considering the distribution companies and investors as the players, the suitable location and capacity for CHP installation based on the set Game strategy is obtained. The proposed method is implemented to a sample distribution feeder in the Hamadan city and the results are shown.

  6. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  7. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  8. Comparison of the effects of cumene hydroperoxide and hydrogen peroxide on Retzius nerve cells of the leech Haemopis sanguisuga.

    Science.gov (United States)

    Jovanovic, Zorica; Jovanovic, Svetlana

    2013-01-01

    Oxidative stress and the production of reactive oxygen species are known to play a major role in neuronal cell damage, but the exact mechanisms responsible for neuronal injury and death remain uncertain. In the present study, we examined the effects of oxidative stress on spontaneous spike activity and depolarizing outward potassium current by exposing the Retzius neurons of the leech to cumene hydroperoxide (CHP) and hydrogen peroxide (H(2)O(2)), the oxidants commonly used to examine oxidative mechanisms mediating cell death. We observed that relatively low concentrations of CHP (0.25, 1, and 1.5 mM) led to a marked prolongation of spontaneous repetitive activity. The prolonged action potentials showed an initial, spike-like depolarization followed by a plateau phase. In contrast, H(2)O(2) at the same and much higher concentrations (0.25 to 5 mM) did not significantly change the duration of spontaneous spike potentials of leech Retzius nerve cells (LRNCs). In the voltage clamp experiments, calcium-activated outward potassium currents, needed for the repolarization of the action potential, were suppressed with CHP, but not with H(2)O(2). The present findings indicate that CHP is a more potent oxidant and neurotoxin than H(2)O(2) and that the effect of CHP on the electrophysiological properties of LRNCs may be due to the inhibition of the potassium channels.

  9. Fuel cells for stationary energy supply; Brennstoffzellen in der stationaeren Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Leprich, Uwe; Thiele, Andreas [Institut fuer ZukunftsEnergieSysteme (IZES), Saarbruecken (Germany)

    2005-06-15

    Starting point for this investigation was the question, whether the incentives, caused by the CHP law from March the 19th 2002, are short- and medium term adequate to introduce fuel cells as small CHP plants broadly on the market or rather develop them at least to a standard of market maturity. This has - based on our analysis - definitely to be answered in the negative: for this, the fixed bonus is too small to influence the costs for investment and running of a fuel cell plant lasting. One of the aims of the CHP law - the reduction of the yearly CO2-emissions in Germany by a broader introduction of the technology on the market - can actually not be reached. Although, fuel cells may obtain a quite important climate-political significance, if their economical availability will be secured and related basic conditions are set today. By the CHP law, the federal government however demonstrated publicly that it is willing to support the development of the fuel cell and its introduction on the market. This signal is not only supporting the industry to align its middle- and long term decisions but it is also helping users and operators of fuel cells by providing a legal security about the guarantee for grid connection and remuneration Based on the perspectives for an establishing of small CHP plants including fuel cells, the range of possible stimulating and supporting measures was investigated in a second step. While doing so, it was differentiated between a flanking of the existing CHP law, its further development and other alternative measures. By this, there are several starting points to realize changes or rather adaptations in the CHP law. According to this investigation and in the interest of an increased spreading of small CHP- and fuel cell plants, these possibilities should be made use of as fast as possible. The investigation was terminated by examinating selected technical, energy-economical as well as energy political chances and requirements for hydrogen

  10. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  11. Support schemes and ownership structures - the policy context for fuel cell based micro-combined heat and power

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten; Costa, Ana; Obé, Elisabeth

    2011-01-01

    In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership s...... for fuel cell mCHP. This can be used for improved analysis of operational strategies. The interaction of this plethora of elements necessitates careful balancing from a private- and socio-economic point of view.......In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership...

  12. Integrated Field Testing of Fuel Cells and Micro-Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jerome R. Temchin; Stephen J. Steffel

    2005-11-01

    A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This report contains installation and operation issues as well as the utility perspective on DG deployment.

  13. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  14. Decision Support Tools for Electricity Retailers, Wind Power and CHP Plants Using Probabilistic Forecasts

    Directory of Open Access Journals (Sweden)

    Marco Zugno

    2015-06-01

    Full Text Available This paper reviews a number of applications of optimization under uncertainty in energy markets resulting from the research project ENSYMORA. A general mathematical formulation applicable to problems of optimization under uncertainty in energy markets is presented. This formulation can be effortlessly adapted to describe different approaches: the deterministic one (usable within a rolling horizon scheme, stochastic programming and robust optimization. The different features of this mathematical formulation are duly interpreted with a view to the energy applications reviewed in this paper: trading for a price-maker wind power producer, management of heat and power systems, operation for retailers in a dynamic-price market. A selection of results shows the viability and appropriateness of the presented stochastic optimization approaches for managing energy systems under uncertainty.

  15. CHP: Combined Heat and Power: a vision of energy efficiency; Cogeracao: uma visao de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Osvaldo A.S.N. de; Abreu, Melissa E. de; Marcal, Roberto L.; Ferreira, Ademilson D.; Ferreira, Patricia E.; Monterio, Glauber J.R.; Silva, Ademir B. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The installation of a cogeneration plant has been the subject of discussions on alternatives in the Brazilian energy matrix. Considered viable solution in the not too distant past, 2001, when Brazil was undergoing a process of the economic slowdown, lack of investments in the energy sector, unemployment and reaching the peak of the crisis with the rationing of electricity. The principle of the cogeneration system is designed primarily to meet electrical demand, so there is no surplus production of energy and do not need to buy with the concessionaire, except in cases of the system stops on account of maintenance. However, there is a recovery of waste heat produced in thermodynamic processes for generation of electricity within a model that 'conventional' would be wasted. In this case, the exploitation can be given in the form of steam, hot water and/or cold, for secondary application, or can not be linked to a process. Based on the results of the fieldwork, aims to show that, despite the limitations inherent in the process of cogeneration, is justified economically the installation of this system in relation to the growth of procedures developed in CENPES and its resident effective. (author)

  16. Fostering synergy between cell biology and systems biology

    OpenAIRE

    2015-01-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules; predicting mechanisms and identifying generalizable themes; generating hypotheses...

  17. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  18. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  19. Exploratory studies on some electrochemical cell systems

    Science.gov (United States)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  20. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  1. Phase Space Cell in Nonextensive Classical Systems

    Directory of Open Access Journals (Sweden)

    Piero Quarati

    2003-06-01

    Full Text Available Abstract: We calculate the phase space volume Ω occupied by a nonextensive system of N classical particles described by an equilibrium (or steady-state, or long-term stationary state of a nonequilibrium system distribution function, which slightly deviates from Maxwell-Boltzmann (MB distribution in the high energy tail. We explicitly require that the number of accessible microstates does not change respect to the extensive MB case. We also derive, within a classical scheme, an analytical expression of the elementary cell that can be seen as a macrocell, different from the third power of Planck constant. Thermodynamic quantities like entropy, chemical potential and free energy of a classical ideal gas, depending on elementary cell, are evaluated. Considering the fractional deviation from MB distribution we can deduce a physical meaning of the nonextensive parameter q of the Tsallis nonextensive thermostatistics in terms of particle correlation functions (valid at least in the case, discussed in this work, of small deviations from MB standard case.

  2. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  3. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off

  4. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  5. Situation analysis in relation to district heating and CHP in the Baltic Sea Region: Estonia, Latvia, Lithuania, Poland, Russia, Kaliningrad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    such bodies must be to secure the implementation of national energy policy, and of the acquis communautaire in the countries where this is relevant. Laying out the role gas, district heating and CHP respectively should be a main priority. Institute a continuous dialogue between key political and market actors, to optimise the relation between natural gas, district heating, and condensing power. Its aim should also be to institute measures that will boost investments. (EHS)

  6. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    -defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  7. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  8. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  9. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    Science.gov (United States)

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.

  10. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  11. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  12. Durable and Robust Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Knibbe, Ruth; Hauch, Anne

    The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year...... project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended...... for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind. Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C...

  13. Sensitivity of several cell systems to acrylamide

    NARCIS (Netherlands)

    Hooisma, J.; Groot, D.M.G.de; Magchielse, T.; Muijser, H.

    1980-01-01

    Chick spinal ganglia, chick muscle cells combined with mouse spinal cord explants, C1300 neuroblastoma cells, Chinese hamster ovary cells and newborn rat cerebral cells were exposed to various concentrations of acrylamide in culture. Four morphological and 1 electrophysiological parameter were appli

  14. An Optically Controlled 3D Cell Culturing System

    Directory of Open Access Journals (Sweden)

    Kelly S. Ishii

    2011-01-01

    Full Text Available A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability.

  15. A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Haan, Bart; Niclou, Simone P.; de Vos, Paul

    2014-01-01

    Application of alginate-microencapsulated therapeutic cells is a promising approach for diseases that require a local and constant supply of therapeutic molecules. However most conventional alginate microencapsulation systems are associated with low mechanical stability and protrusion of cells which

  16. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  17. Stem cells in the nervous system.

    Science.gov (United States)

    Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E

    2014-11-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.

  18. Performance of an innovative 120 kWe natural gas cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Badami, M.; Casetti, A. [Dipartimento di Energetica, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy); Campanile, P.; Anzioso, F. [Centro Ricerche FIAT, Strada Torino 50, Orbassano, Torino (Italy)

    2007-05-15

    The paper deals with an innovative (120 kWe, 195 kWt) natural gas (NG) combined heat and power (CHP) system, at present under development, which has been set up at the FIAT Centre of Research (CRF), Turin, Italy. The main characteristics of the CHP system are: the use of an automotive derived internal combustion engine, a high part load electrical efficiency due to a variable speed operation strategy and an advanced exhaust gas after-treatment to meet the most stringent pollutant emission regulations. In the paper, the electrical efficiency and pollutant emissions of the new CHP unit are compared with those of some traditional small-scale cogeneration systems. Some comparison criteria and performance indices which are, in the authors' opinion, the most representative of the real operative conditions, have been proposed to evaluate the performance of the different technologies. (author)

  19. Increasing the flexibility of operational scheduling for a large-scale CHP plant used for generating district heat and electricity in order to meet the varying market demands; Steigerung der Einsatzflexibilitaet einer grossen KWK-Anlage zur Fernwaerme- und Stromerzeugung gemaess aktueller Marktanforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Meierer, Matthias; Krupp, Roland; Stork, Rolf [Grosskraftwerk Mannheim AG, Mannheim (Germany)

    2015-07-01

    The substantial changes in the structure of German power supply plants pose high demands on the flexibility of the operational scheduling of conventional thermal power plants. Grosskraftwerk Mannheim AG is a power plant company that is operating a plant for combined power and district heat generation. The paper describes some measures which have been taken to improve the plant's operational flexibility. In addition, the associated technical systems and their functions, as well as the state of ongoing projects are outlined. Special focus is placed on topics related to issues such as ''district-heat storage unit of the new unit 9, flexibility of operational scheduling, and efficient CHP plant operation''.

  20. T cells and the humoral immune system

    NARCIS (Netherlands)

    W.B. van Muiswinkel (Willem)

    1975-01-01

    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  1. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  2. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  3. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  4. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  5. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  6. Measuring cell identity in noisy biological systems

    OpenAIRE

    Kenneth D Birnbaum; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty me...

  7. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  8. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    Science.gov (United States)

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system.

  9. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  10. Review of cell and particle trapping in microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.; Evander, M.; Hammarstroem, B. [Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118, Lund (Sweden); Laurell, T., E-mail: thomas.laurell@elmat.lth.se [Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118, Lund (Sweden)

    2009-09-07

    The ability to obtain ideal conditions for well-defined chemical microenvironments and controlled temporal chemical and/or thermal variations holds promise of high-resolution cell response studies, cell-cell interactions or e.g. proliferation conditions for stem cells. It is a major motivation for the rapid increase of lab-on-a-chip based cell biology research. In view of this, new chip-integrated technologies are at an increasing rate being presented to the research community as potential tools to offer spatial control and manipulation of cells in microfluidic systems. This is becoming a key area of interest in the emerging lab-on-a-chip based cell biology research field. This review focuses on the different technical approaches presented to enable trapping of particles and cells in microfluidic system.

  11. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  12. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  13. CHP biomass gasifier for the Zwarts Gerbera Nursery. Technical and economic feasibility; Biomassavergasser-WKK voor Gerberakwekerij Zwarts. Technische inpassing en economische haalbaarheid

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, S.; Hart, A. [Energy Matters, Driebergen (Netherlands)

    2011-10-15

    This report describes the feasibility of a CHP gasifier at the Zwarts gerbera nursery. Using the insights from this study, a picture has been sketched for energy production by means of gasification in the horticultural sector. Note, however, that each plant specie has its own specific growth requirements in terms of nutrients, heating-cooling, light, but also relative humidity and CO2. So a 'typical' horticulturer with an 'average' energy requirement is hard to define. The economic viability must be determined for each individual situation. The outcomes of this study can therefore not be automatically used for other projects. Technically, a lot is possible, so the submitted quotes show. Of the 16 suppliers, 3 offer CHP gasifiers which, subject to conditions, not only burn wood but also other low-grade residual waste such as road verge grass, reed and miscanthus. This low-grade residual waste has the advantage of being cheaper than wood. A low biomass price lowers the operating costs and improves the economic profitability of the relatively expensive installations. The investment for a complete CHP gasifier is 5 to 10 times higher than for a normal gas CHP installation. The CO2 consumption also influences the economic profitability. Buying CO2 is a costly business. The technical and economic feasibility of harvesting CO2 from flue gas was therefore explored. Two CO2 harvesting installations (of Procede and Knook) were examined for this purpose. According to Procede and Knook, CO2 harvesting is not economically profitable for a CHP gasifier with a relatively low power capacity (up to 800 kWe). CO2 procurement or generation by means of the existing gas-fired boiler therefore seems more viable. The technical-economic feasibility study shows that an investment in a CHP gasifier is not profitable due to the relatively high investment and maintenance costs. CO2 demand and the uncertain biomass prices are stumbling blocks. However, the picture changes

  14. A fully automated system for adherent cells microinjection.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2014-01-01

    This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application.

  15. Two-dimensional diffusion limited system for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs.

  16. Creating a completely "cell-free" system for protein synthesis.

    Science.gov (United States)

    Smith, Mark Thomas; Bennett, Anthony M; Hunt, Jeremy M; Bundy, Bradley C

    2015-01-01

    Cell-free protein synthesis is a promising tool to take biotechnology outside of the cell. A cell-free approach provides distinct advantages over in vivo systems including open access to the reaction environment and direct control over all chemical components for facile optimization and synthetic biology integration. Promising applications of cell-free systems include portable diagnostics, biotherapeutics expression, rational protein engineering, and biocatalyst production. The highest yielding and most economical cell-free systems use an extract composed of the soluble component of lysed Escherichia coli. Although E. coli lysis can be highly efficient (>99.999%), one persistent challenge is that the extract remains contaminated with up to millions of cells per mL. In this work, we examine the potential of multiple decontamination strategies to further reduce or eliminate bacteria in cell-free systems. Two strategies, sterile filtration and lyophilization, effectively eliminate contaminating cells while maintaining the systems' protein synthesis capabilities. Lyophilization provides the additional benefit of long-term stability at storage above freezing. Technologies for personalized, portable medicine and diagnostics can be expanded based on these foundational sterilized and completely "cell-free" systems.

  17. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    Science.gov (United States)

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works.

  18. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  19. Programmed cell death in the plant immune system.

    Science.gov (United States)

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  20. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  1. 60-WATT HYDRAZINE-AIR FUEL CELL SYSTEM.

    Science.gov (United States)

    fuel cell system as presented in our Design Plan. Prior to preparation of the Design Plan, a systems analysis of the basic electrochemical system was made. From the results of this analysis, the operating parameters of the support equipment were defined and an initial selection of components made. System components defined were: the cell stack, electrolyte tank, hydrazine feed system, cooling and chemical air blowers, voltage regulator, and thermal control system. A package design was then made for these components and the final detail design completed.

  2. A Web-Server of Cell Type Discrimination System

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    2014-01-01

    Full Text Available Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and somatic cells (SCs. Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  3. A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

    Directory of Open Access Journals (Sweden)

    W. Seth Childers

    2014-12-01

    Full Text Available Bacteria face complex decisions when initiating developmental events such as sporulation, nodulation, virulence, and asymmetric cell division. These developmental decisions require global changes in genomic readout, and bacteria typically employ intricate (yet poorly understood signaling networks that enable changes in cell function. The bacterium Caulobacter crescentus divides asymmetrically to yield two functionally distinct cells: a motile, chemotactic swarmer cell, and a sessile stalked cell with replication and division capabilities. Work from several Caulobacter labs has revealed that differentiation requires concerted regulation by several two-component system (TCS signaling pathways that are differentially positioned at the poles of the predivisional cell (Figure 1. The strict unidirectional flow from histidine kinase (HK to the response regulator (RR, observed in most studied TCS, is difficult to reconcile with the notion that information can be transmitted between two or more TCS signaling pathways. In this study, we uncovered a mechanism by which daughter cell fate, which is specified by the DivJ-DivK-PleC system and effectively encoded in the phosphorylation state of the single-domain RR DivK, is communicated to the CckA-ChpT-CtrA signaling pathway that regulates more than 100 genes for polar differentiation, replication initiation and cell division. Using structural biology and biochemical findings we proposed a mechanistic basis for TCS pathway coupling in which the DivL pseudokinase is repurposed as a sensor rather than participant in phosphotransduction.

  4. Environmental tests of metallization systems for terrestrial photovoltaic cells

    Science.gov (United States)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  5. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    Directory of Open Access Journals (Sweden)

    Piskunov Maksim V.

    2015-01-01

    Full Text Available The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  6. The role of heat pump technologies in the design of future sustainable energy systems

    DEFF Research Database (Denmark)

    Blarke, Morten Boje; Lund, Henrik

    2005-01-01

    In this paper, it is shown that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps with existing CHP units, is critically sensitive to the operational mode...... of the heat pump vis-à-vis the operational coefficient of performance (COP), which is set by the temperature level of the heat source. When using only ambient air as the heat source, the total heat production costs increases by about 10%, while the partial use of condensed flue gas from the CHP unit as a heat...... source results in an 8% cost reduction. Furthermore, the operational analysis shows that when a large-scale heat pump is integrated with an existing CHP unit, the projected spot market situation in Nord Pool, which reflects a growing share of wind power and heat-bound power generation electricity...

  7. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    Science.gov (United States)

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  8. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    Science.gov (United States)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  9. Antigen presentation for priming T cells in central system.

    Science.gov (United States)

    Dasgupta, Shaoni; Dasgupta, Subhajit

    2017-01-01

    Generation of myelin antigen-specific T cells is a major event in neuroimmune responses that causes demyelination. The antigen-priming of T cells and its location is important in chronic and acute inflammation. In autoimmune multiple sclerosis, the effector T cells are considered to generate in periphery. However, the reasons for chronic relapsing-remitting events are obscure. Considering mechanisms, a feasible aim of research is to investigate the role of antigen-primed T cells in lupus cerebritis. Last thirty years of investigations emphasize the relevance of microglia and infiltrated dendritic cells/macrophages as antigen presenting cells in the central nervous system. The recent approach towards circulating B-lymphocytes is an important area in the context. Here, we analyze the existing findings on antigen presentation in the central nervous system. The aim is to visualize signaling events of myelin antigen presentation to T cells and lead to the strategy of future goals on immunotherapy research.

  10. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship.

  11. Flow cell system for miscible displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.H.; Kirkham, D.

    1971-02-01

    The use of a continuous graphic recording system for flow-component measurement in miscible displacement experiments is described. This system measures and continuously records radioactive tracer concentrations of effluents of miscible displacement columns. The recordings are needed breakthrough curves. The use of the system obviates fraction collectors.

  12. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    LeMar, P.

    2002-10-29

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability

  13. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  14. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  15. Challenges in circulating tumor cell detection by the CellSearch system

    NARCIS (Netherlands)

    Andree, K.C.; Dalum, van G.; Terstappen, L.W.M.M.

    2016-01-01

    Enumeration and characterization of circulating tumor cells (CTC) hold the promise of a real time liquid biopsy. They are however present in a large background of hematopoietic cells making their isolation technically challenging. In 2004, the CellSearch system was introduced as the first and only F

  16. Cell replacement therapy for central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Danju Tso; Randall D. McKinnon

    2015-01-01

    The brain and spinal cord can not replace neurons or supporting glia that are lost through trau-matic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this ifeld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate pa-tient-speciifc replacement cells is to reprogram autologous cells such as ifbroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms ifbroblasts into the ifnal graft-able cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efifciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

  17. Modelling and control synthesis of a micro-combined heat and power interface for a concentrating solar power system in off-grid rural power applications

    Science.gov (United States)

    Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea

    2016-05-01

    Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.

  18. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  19. Control of Fuel Cell Power System

    OpenAIRE

    KOCALMIŞ BİLHAN, Ayşe; Wang, Caisheng

    2017-01-01

    In recent years, it is gettingattention for renewable energy sources such as Fuel Cell (FC), batteries,ultracapacitors or photovoltaic panels (PV) for distributed power generationsystems (DG) or electrical vehicles. This paper proposes a DC/DC converter andDC/AC inverter scheme to combine the Fuel Cell Stack (FC). The power systemconsist of a FC stack, a DC/DC converter, inverter and load. A FC mostly couldnot produce necessary output voltage, the DC/DC boost converter is used forobtaining th...

  20. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  1. Research on Software-Cell-Based Software System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of research on software architecture is to improve the quality attributes of software sys tems, such as security, reliability, maintainability, testability , reassembility , evolvability. However, a sin gle running system is hard to achieve all these goals. In this paper, software-cell is introduced as the basic u nit throughout developing process. Then it is further advanced that a robust, safe and high-quality software system is composed of a running system and four supportive systems. This paper especially discusses the structure of software-cell, the construction of the five systems, and the relations between them.

  2. A review of fuel cell systems for maritime applications

    Science.gov (United States)

    van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. V.

    2016-09-01

    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel, and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented, and maritime fuel cell application is reviewed with regard to efficiency, gravimetric and volumetric density, dynamic behaviour, environmental impact, safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours, but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles, hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study.

  3. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  4. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  5. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  6. ETV/COMBINED HEAT AND POWER AT A COMMERCIAL SUPERMARKET CAPSTONE 60 KW MICROTURBINE SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Capstone 60 Microturbine CHP System manufactured by Capstone Microturbine Corporation. This system is a 60 kW electrical generator that puts out 480 v AC at 60 Hz and that is driven b...

  7. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    Science.gov (United States)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  8. Chip based electroanalytical systems for cell analysis

    DEFF Research Database (Denmark)

    Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.

    2008-01-01

    This review with 239 references has as its aim to give the reader an introduction to the kinds of methods used for developing microchip based electrode systems as well as to cover the existing literature on electroanalytical systems where microchips play a crucial role for 'nondestructive...

  9. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  10. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  11. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  12. Baculovirus integration with the vertebrate cells in system in vitro

    Directory of Open Access Journals (Sweden)

    Strokovskaya L. I.

    2010-11-01

    Full Text Available In this review the literature data are analyzed relative to the study of a new vector system for the cells of vertebrates, based on the insect viruses – baculoviruses. The ways and mechanisms of recombinant baculoviruses penetration into cells, the factors, which influence the effectiveness of transduction, the principles of the modification of virus display, and the reaction of the different types of cells on virus introduction are examined. The prospects of using recombinant baculoviruses in cellular engineering are discussed.

  13. Learning curves for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Tinoco, R.; Schoots, K. [Energy research Centre of the Netherlands (Netherlands). Policy Studies; Zwaan, B.C.C. van der [Energy research Centre of the Netherlands (Netherlands). Policy Studies; Columbia Univ., New York City, NY (United States). Lenfest Center for Sustainable Energy

    2010-07-01

    We present learning curves for solid oxide fuel cells (SOFCs) and combined heat and power (CHP) SOFC systems with an electric capacity between 1 and 250 kW. On the basis of the cost breakdown of production cost data from fuel cell manufacturers, we developed a bottom-up model that allows for determining overall manufacturing costs from their respective cost components, among which material, energy, labor, and capital charges. The results obtained from our model prove to deviate by at most 13% from total cost figures quoted in the literature. For the early pilot stage of development, we find for SOFC manufacturing a learning rate between 14% and 17%, and for total SOFC system fabrication between 16% and 19%. We argue that the corresponding cost reductions result largely from learning-by-searching effects (R and D) rather than learning-by-doing. When considering a longer time frame that includes the early commercial production stage, we find learning rates between 14% and 39%, which represent a mix of phenomena such as learning-by-doing, learning-by-searching, economies-of-scale and automation. (orig.)

  14. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  15. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  16. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  17. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  18. T-cell-directed therapies in systemic lupus erythematosus.

    Science.gov (United States)

    Nandkumar, P; Furie, R

    2016-09-01

    Drug development for the treatment of systemic lupus erythematosus (SLE) has largely focused on B-cell therapies. A greater understanding of the immunopathogenesis of SLE coupled with advanced bioengineering has allowed for clinical trials centered on other targets for SLE therapy. The authors discuss the benefits and shortcomings of focusing on T-cell-directed therapies in SLE and lupus nephritis clinical trials.

  19. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Douglas [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  20. Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area

    Directory of Open Access Journals (Sweden)

    Jukka Heinonen

    2015-08-01

    Full Text Available The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP and a ground-source heat pump (HP as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1 utilizing average or marginal electricity as the reference; (2 assigning emissions intensities for the production; and (3 allocating the emissions from CHP to heat and electricity affect the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.

  1. Porcine skin flow-through diffusion cell system.

    Science.gov (United States)

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  2. PV-Wind System with Fuel Cell & Electrolyzer

    Directory of Open Access Journals (Sweden)

    Deepa Sharma

    2015-12-01

    Full Text Available In this paper, a detailed modeling and simulation of solar cell/ wind turbine/ fuel cell hybrid power system is developed using a novel topology to complement each other and to alleviate the effects of environmental variations. Comparing with the other sources , the renewable energy is inexhaustible and has non-pollution characteristics. The solar energy, wind power, hydraulic power and tidal energy are natural resources of the interest to generate electrical power. As the wind turbine output power varies with the wind speed and the solar cell output power varies with both the ambient temperature and radiation, a fuel cell with ultra capacitor bank can be integrated to ensure that the system performs under all conditions. Excess wind and solar energies when available are converted to hydrogen using electrolysis for later use in the fuel cell. In this paper dynamic modeling of various components of this isolated system system is presented. Transient responses of the system to step change in the load, ambient temperature, radiation, and wind speed in a number of possible situations are studied. Modeling and simulations are conducted using MATLAB/Simulink software packages to verify the effectiveness of the proposed system. The results show that the proposed hybrid power system can tolerate the rapid change in natural conditions and suppress the effects of these fluctuations on the voltage within the acceptable range.The proposed system can be used for off grid power generation in non interconnected areas or remote isolated communities of nation.

  3. Laser Micro-beam Manipulation System for Cells

    Institute of Scientific and Technical Information of China (English)

    孟祥旺; 李岩; 张书练; 张志诚; 赵南明

    2002-01-01

    This paper introduces a laser micro-beam system for cells manipulation. The laser micro-beam system comprises a laser scissors and a laser tweezers, which are focused by a Nd∶YAG laser and a He-Ne laser through a microscope objective, respectively. Not only the overall design of the laser micro-beam system is discussed, but also the design and choice of the critical components. A laser micro-beam system was constructed and anticipated experiment results were gained. Yeast cells can be successfully manipulated with the laser tweezers. Chromosomes can be successfully incised with the laser scissors.

  4. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  5. Global behavior of gear system using mixed cell mapping

    Institute of Scientific and Technical Information of China (English)

    SHEN Yunwen; LIU Mengjun; DONG Haijun

    2004-01-01

    In some mechanical nonlinear systems, the transient motion will be undergoing a very long process and the attractor-basin boundaries are so complicated that some difficulties occur in analyzing the system global behavior. To solve this problem a mixed cell mapping method based on the point mapping and the principle of simple cell mapping is developed. The algorithm of the mixed cell mapping is studied. A dynamic model of a gear pair is established with the backlash, damping, transmission error and the time-varying stiffness taken into consideration. The global behaviors of this system are analyzed. The coexistence of the system attractors and the respective attractor-basin of each attractor with different parameters are obtained, thus laying a theoretical basis for improvement of the dynamic behaviors of gear system.

  6. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  7. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  8. A Cell-in-the-Loop Approach to Systems Modelling and Simulation of Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    James Marco

    2015-08-01

    Full Text Available This research is aligned with the engineering challenge of scaling-up individual battery cells into a complete energy storage system (ESS. Manufacturing tolerances, coupled with thermal gradients and the differential electrical loading of adjacent cells, can result in significant variations in the rate of cell degradation, energy distribution and ESS performance. The uncertain transition from cell to system often manifests itself in over-engineered, non-optimal ESS designs within both the transport and energy sectors. To alleviate these issues, the authors propose a novel model-based framework for cell-in-the-loop simulation (CILS in which a physical cell may be integrated within a complete model of an ESS and exercised against realistic electrical and thermal loads in real-time. This paper focuses on the electrical integration of both real and simulated cells within the CILS test environment. Validation of the CILS approach using real-world electric vehicle data is presented for an 18650 cell. The cell is integrated within a real-time simulation model of a series string of similar cells in a 4sp1 configuration. Results are presented that highlight the impact of cell variability (i.e., capacity and impedance on the energy available from the multi-cell system and the useable capacity of the physical cell.

  9. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    Science.gov (United States)

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  10. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  11. Stem cell therapy for central nerve system injuries:glial cells hold the key

    Institute of Scientific and Technical Information of China (English)

    Li Xiao; Chikako Saiki; Ryoji Ide

    2014-01-01

    Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic dififculties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. En-dogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efifcacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely inlfuence local and transplanted neural stem cells survival and fates. This review critically analyzes current ifnding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permis-sive microenvironment for neuronal stem cells.

  12. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  13. Hematopoietic stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Gazit, Roi; Weissman, Irving L; Rossi, Derrick J

    2008-10-01

    The etiology of the age-associated pathophysiological changes of the hematopoietic system including the onset of anemia, diminished adaptive immune competence, and myelogenous disease development are underwritten by the loss of normal homeostatic control. As tissue and organ homeostasis in adults is primarily mediated by the activity of stem and progenitor cells, it has been suggested that the imbalances accompanying aging of the hematopoietic system may stem from alterations in the prevalence and/or functional capacity of hematopoietic stem cells (HSCs) and progenitors. In this review, we examine evidence implicating a role for stem cells in the aging of the hematopoietic system, and focus on the mechanisms suggested to contribute to stem cell aging.

  14. Engineered cells as biosensing systems in biomedical analysis.

    Science.gov (United States)

    Raut, Nilesh; O'Connor, Gregory; Pasini, Patrizia; Daunert, Sylvia

    2012-04-01

    Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.

  15. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  16. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  17. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  18. Regulation of stem cells in the zebra fish hematopoietic system.

    Science.gov (United States)

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  19. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  20. FPGA based Control of a Production Cell System

    NARCIS (Netherlands)

    Groothuis, Marcel A.; Zuijlen, van Jasper J.P.; Broenink, Jan F.

    2008-01-01

    Most motion control systems for mechatronic systems are implemented on digital computers. In this paper we present an FPGA based solution implemented on a low cost Xilinx Spartan III FPGA. A Production Cell setup with multiple parallel operating units is chosen as a test case. The embedded control s

  1. Flexible UL/DL in Small Cell TDD Systems

    DEFF Research Database (Denmark)

    Catania, Davide; Gatnau, Marta; Cattoni, Andrea Fabio;

    2015-01-01

    Time division duplex (TDD) systems offer a substantial amount of freedom to deal with downlink (DL) and uplink (UL) traffic asymmetries. Most TDD-based systems define either multiple static configurations or adaptive approaches to deal with such asymmetries. Our envisioned 5G concept embraces......, and for multi-cell scenarios where both DL and UL traffic are present....

  2. Tip cell-derived RTK signaling initiates cell movements in the Drosophila stomatogastric nervous system anlage.

    Science.gov (United States)

    González-Gaitán, M; Jäckle, H

    2000-10-01

    The stomatogastric nervous system (SNS) of Drosophila is a simply organized neural circuitry that innervates the anterior enteric system. Unlike the central and the peripheral nervous systems, the SNS derives from a compact epithelial anlage in which three invagination centers, each giving rise to an invagination fold headed by a tip cell, are generated. Tip cell selection involves lateral inhibition, a process in which Wingless (Wg) activity adjusts the range of Notch signaling. Here we show that RTK signaling mediated by the Drosophila homolog of the epidermal growth factor receptor, DER, plays a key role in two consecutive steps during early SNS development. Like Wg, DER signaling participates in adjusting the range of Notch-dependent lateral inhibition during tip cell selection. Subsequently, tip cells secrete the DER ligand Spitz and trigger local RTK signaling, which initiates morphogenetic movements resulting in the tip cell-directed invaginations within the SNS anlage.

  3. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  4. Fuel-cell-system and its components for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Massimo [NuCellSys GmbH, Kirchheim/Teck-Nabern (Germany)

    2013-06-01

    In the past years the development of fuel cell systems for mobile applications has made significant progress in power density, performance and robustness. For a successful market introduction the cost of the fuel system powertrain needs to be competitive to diesel hybrid engine. The current development activities are therefore focusing on cost reduction. There are 3 major areas for cost reduction: functional integration, materials and design, supplier competitiveness and volume. Today unique fuel cell system components are developed by single suppliers, which lead to a monopoly. In the future the components will be developed at multiple suppliers to achieve a competitor situation, which will further reduce the component cost. Using all these cost reduction measures the fuel cell system will become a competitive alternative drive train. (orig.)

  5. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  6. Reduction of Ca2+-transporting systems in memory T cells.

    Science.gov (United States)

    Sigova, A A; Dedkova, E N; Zinchenko, V P; Litvinov, I S

    2000-01-01

    Antigen-specific B and T lymphocytes make up the material grounds of immune memory, their main functional distinction from the so-called "naive" cells is due to the rapid and enhanced response to the antigen-pathogen. An essential distinction between the memory and naive T cells is different sensitivity of these two subpopulations of T lymphocytes to Ca2+-ionophores. Comparative analysis of Ca2+ responses of the immune memory T lymphocytes and naive T cells of mouse CBA/J line to the addition of Ca2+-mobilizing agents concanavalin A, thapsigargin, and ionomycin was carried out. These compounds in concentrations increasing [Ca2+]i in naive cells had no effect on [Ca2+]i in memory cells. Thus, the Ca2+ entrance into memory cells was not activated by exhaustion of intracellular resources. Estimation of intracellular resources of Ca2+, mobilized by ionomycin and thapsigargin in Ca2+ free medium has shown the absence in memory T cells of the intracellular Ca2+ pool, which may be one of factors of their resistance to ionophores. Reduction of the system of Ca2+ influx into memory T cells was shown using the SH-reagent thimerosal. Memory T cells appear to be resistant to "Ca2+ -paradox." Their incubation with 0.5 mM EDTA in the presence or absence of Ca2+ -mobilizing compounds followed by addition of 2 mM CaCl2 did not result in induction of Ca2+ influx into these cells.

  7. Microfluidic single-cell analysis for systems immunology.

    Science.gov (United States)

    Junkin, Michael; Tay, Savaş

    2014-04-07

    The immune system constantly battles infection and tissue damage, but exaggerated immune responses lead to allergies, autoimmunity and cancer. Discrimination of self from foreign and the fine-tuning of immunity are achieved by information processing pathways, whose regulatory mechanisms are little understood. Cell-to-cell variability and stochastic molecular interactions result in diverse cellular responses to identical signaling inputs, casting doubt on the reliability of traditional population-averaged analyses. Furthermore, dynamic molecular and cellular interactions create emergent properties that change over multiple time scales. Understanding immunity in the face of complexity and noisy dynamics requires time-dependent analysis of single-cells in a proper context. Microfluidic systems create precisely defined microenvironments by controlling fluidic and surface chemistries, feature sizes, geometries and signal input timing, and thus enable quantitative multi-parameter analysis of single cells. Such qualities allow observable dynamic environments approaching in vivo levels of biological complexity. Seamless parallelization of functional units in microfluidic devices allows high-throughput measurements, an essential feature for statistically meaningful analysis of naturally variable biological systems. These abilities recapitulate diverse scenarios such as cell-cell signaling, migration, differentiation, antibody and cytokine production, clonal selection, and cell lysis, thereby enabling accurate and meaningful study of immune behaviors in vitro.

  8. Status of commercial phosphoric acid fuel cell system development

    Science.gov (United States)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  10. Combined heat and power generation: encouraged insertion plan systemic appraisal; Cogeracao no setor eletrico: avaliacao sistemica de um plano de insercao incentivada

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P.; Sauer, Ildo L. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia

    2004-07-01

    The principal objective of this paper is to evaluate the potential for self-production of combined heat and power - CHP generation - in the expansion of the Brazilian electric power supply system. The potential was determined by simulating operation of CHP plants in industries which had previously used oil derivates to supply process heat, as well as of plants for service sectors, which had consumed electricity for air conditioning. The final part of the thesis describes the policy incentives which should be implemented so that CHP can make a significant contribution at the national level, permitting better use of natural resources and leverage the penetration of natural gas in the energy market, with favorable impacts on national development. (author)

  11. The thioredoxin system in breast cancer cell invasion and migration.

    Science.gov (United States)

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  12. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.

  13. A universal piezo-driven ultrasonic cell microinjection system.

    Science.gov (United States)

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  14. Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.J.; Lai, L.K. [Department of Greenergy, National University of Tainan, Tainan 700 (China); Wu, W. [Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Chang, W.R. [Department of Landscape Architecture, Fu Jen Catholic University, Taipei 242 (China)

    2009-12-15

    The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as ''Photovoltaic-Fuel Cell (PVFC) hybrid system'', which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization. (author)

  15. Demokrat Parti’nin Kuruluş Süreci ve DP – CHP Siyasî Mücadelesi (1945-1947)

    OpenAIRE

    2016-01-01

    Bu çalışmada, çok partili hayata dönüşle başlayan sürecin en önemli muhalefetpartisi olan DP’nin kuruluş sürecini ve partinin bu süreçte siyasi olarakyaşadığı olaylar üzerinde durulmuştur. Çiftçiyi Topraklandırma Kanunusonrasında ortaya çıkan DP, oluşum süreci boyunca CHP tarafından birtakımengellemelerle karşılaşmıştır. Yapılan baskılara rağmen, parti teşkilatlarıaralıksız olarak çalışarak, 1950 seçimlerini kazanmış ve iktidar olmuşlardır.Ancak bu süreç kolay gerçekleşmemiştir. Bu çalışma 19...

  16. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2005-12-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was

  17. Fuel Cell System for Transportation -- 2005 Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of

  18. The Pathology of T Cells in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Anselm Mak

    2014-01-01

    Full Text Available Systemic lupus erythematosus (SLE is characterized by the production of a wide array of autoantibodies. Thus, the condition was traditionally classified as a “B-cell disease”. Compelling evidence has however shown that without the assistance of the helper T lymphocytes, it is indeed difficult for the “helpless” B cells to become functional enough to trigger SLE-related inflammation. T cells have been recognized to be crucial in the pathogenicity of SLE through their capabilities to communicate with and offer enormous help to B cells for driving autoantibody production. Recently, a number of phenotypic and functional alterations which increase the propensity to trigger lupus-related inflammation have been identified in lupus T cells. Here, potential mechanisms involving alterations in T-cell receptor expressions, postreceptor downstream signalling, epigenetics, and oxidative stress which favour activation of lupus T cells will be discussed. Additionally, how regulatory CD4+, CD8+, and γδ T cells tune down lupus-related inflammation will be highlighted. Lastly, while currently available outcomes of clinical trials evaluating therapeutic agents which manipulate the T cells such as calcineurin inhibitors indicate that they are at least as efficacious and safe as conventional immunosuppressants in treating lupus glomerulonephritis, larger clinical trials are undoubtedly required to validate these as-yet favourable findings.

  19. System and method for detecting cells or components thereof

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Marc D. (Ames, IA); Lipert, Robert J. (Ames, IA); Doyle, Robert T. (Ames, IA); Grubisha, Desiree S. (Corona, CA); Rahman, Salma (Ames, IA)

    2009-01-06

    A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.

  20. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  1. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  2. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  3. Treatment of systemic sclerosis: potential role for stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Wen Xiong

    2009-11-01

    Full Text Available Wen Xiong, Chris T DerkDivision of Rheumatology, Thomas Jefferson University, Philadelphia, PA, 19107, USAAbstract: Hematopoietic stem cell transplantation may “reset” the immune reconstitution and induce self tolerance of autoreactive lymphocytes, and has been explored in the treatments for systemic sclerosis. Phase I/II trials have shown a satisfactory risk benefit ratio. The true benefit will be identified by two ongoing prospective, randomized phase III trials. Multipotent mesenchymal stromal cells (MSCs possess antiproliferative, anti-inflammatory, and immunosuppressive properties. The use of MSCs has showed successful responses in patients with severe steroid-resistant acute graft versus host disease in phase II trials, and may be a potentially promising option for patients with systemic sclerosis.Keywords: scleroderma, systemic sclerosis, treatment, stem cells, transplant

  4. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    Science.gov (United States)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  5. T cells fail to develop in the human skin-cell explants system; an inconvenient truth

    Directory of Open Access Journals (Sweden)

    Vanderlocht Joris

    2011-02-01

    Full Text Available Abstract Background Haplo-identical hematopoietic stem cell (HSC transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Results Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL. In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Conclusions Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.

  6. Speech recognition systems on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Jones, H; Vaidya, S; Perrone, M; Tydlitat, B; Nanda, A

    2007-04-20

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousands of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.

  7. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  8. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  9. Solid polyelectrolyte fuel cell power supply system; Kotai kobunshigata nenryo denchi dengen system

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T. [Kanagawa (Japan); Kadoma, H. [Yokohama (Japan); Hashizaki, K.; Tani, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1996-06-11

    When a previous solid polyelectrolyte fuel cell power supply system is used underwater, the water generated by the cell reaction is stored in a water storage tank and it is necessary that the system is suspended in case the generated water is full in the water storage tank to take the system out of water and the water in the tank is discharged in the atmosphere. The solid polyelectrolyte fuel cell power supply system of this invention is equipped with a discharge pump to exhaust the generated water out of the closed vessel accommodating the system or equipped with a device to exhaust the generated water into the outside water accompanied with gushing of high-pressure gas into the outside water. As a result, the water generated by the cell reaction can be exhausted from the system into the outside water at any required time so that the fuel cell power supply system can be operated continuously as far as the supply of the fuel or the oxidizer last. By the installment of this function, a solid polyelectrolyte fuel cell power supply system can be used as an independent underwater power source or as a power source for an underwater moving body. 4 figs.

  10. The electrical storage systems in energy networks with fuel cells and photovoltaic systems for residential use

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Aki, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Fuel cell systems and photovoltaic systems are expected to penetrate Japan's residential sector as a distributed energy resource. However, in order to connect photovoltaic systems to the electricity grid in Japan, the power conditioner of the photovoltaic system should have a function to restrict output. The purpose of this study was to establish a cooperative operations method for fuel cells, photovoltaic cells and electrical storage devices. In the proposed networks of this study, electricity, hydrogen and hot water were interchanged and the equipment was shared for cooperative operation. The power generated by the photovoltaic system fluctuated widely. The power flow at the connecting point of the energy networks to the electric power distribution system was bidirectional and depended on the balance of the power produced by the photovoltaic system as well as the power consumption. The use of an electrical storage system for the proposed networks ensured the stability of the power system and enabled more flexible operation of fuel cell stacks. The cooperative operational method for fuel cell systems, photovoltaic systems and electrical storage systems involved the combination of an electrical double layer capacitor (EDLC) and a lithium-ion battery for residential dwellings. Simulation results showed that the use of an EDLC reduced the required capacity of electrical storage systems and the fluctuation of output power of fuel cell systems. The construction of an experimental facilities is being planned to evaluate the charge-discharge characteristics of the electric storage devices and auxiliary equipment, such as inverters. 1 ref., 1 tab., 5 figs.

  11. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    Science.gov (United States)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  12. Establishment of QA system for ACP hot cell demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, K. S.; Nam J. H.; Jeo, I. J.; Lim, N. J.; Jeong, W. M.; Koo, J. H.; Kook, D. H.; Park, S. W. [KAERI, Taejon (Korea)

    2003-10-01

    The Advanced spent fuel Conditioning Process(ACP), which is being developed by KAERI, is now in the 2nd research phase. This phase has a goal to design the total system of active demonstration of ACP. The facilities for the ACP process demonstration will be constructed by some modification works of the future hot cell located at the basement floor of IMEF in KAERI. The QA system for the ACP Hot Cell demonstration was established in the 1st year in the 2nd research phase and have been utilized in the remain two years, and will be also utilized in construction and process demonstration periods in the 3rd research phase.

  13. Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems

    Directory of Open Access Journals (Sweden)

    Moreira Maria Elisabete C.

    2004-01-01

    Full Text Available Cell death by apoptosis is characterized by specific biochemical changes, including the exposure of multiple ligands, expected to tag the dying cell for prompt recognition by phagocytes. In non-pathological conditions, an efficient clearance is assured by the redundant interaction between apoptotic cell ligands and multiple receptor molecules present on the engulfing cell surface. This review concentrates on the molecular interactions operating in mammalian and non-mammalian systems for apoptotic cell recognition, as well as on the consequences of their signaling. Furthermore, some cellular models where the exposure of the phosphatidylserine (PS phospholipid, a classical hallmark of the apoptotic phenotype, is not followed by cell death will be discussed.

  14. Vulvar ulcer as a presentation of systemic langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Nina A Madnani

    2011-01-01

    Full Text Available We report a 38-year-old housewife with systemic Langerhans cell histiocytosis (LCH presenting as a chronic vulvar and peri-anal ulcer. She had systemic involvement in the form of diabetes insipidus and bone "hot-spots". She responded favorably to etoposide, 6-mercaptopurine, and systemic steroids, and has been in remission since 10 years. Chronic vulvar ulcers not responding to routine therapy should not be neglected and need to be biopsied repeatedly to come to a specific diagnosis. The vulvar ulcer in our case provided a vital clue to a systemic LCH, with a successful outcome.

  15. Modeling and identification of a PEM fuel cell humidification system

    Institute of Scientific and Technical Information of China (English)

    Xianrui DENG; Guoping LIU; George WANG; Min TAN

    2009-01-01

    A theoretical model of a humidifier of proton exchange membrane (PEM) fuel cell systems is developed and analyzed first in this paper. The model shows that there exists a strong nonlinearity in the system. Then, the system is identified using a wavelet networks method. To avoid the curse-of-dimensionality problem, a class of wavelet networks proposed by Billings is employed. The experimental data acquired from the test bench are used for identification. The one-step-ahead predictions and the five-step-ahead predictions are compared with the real measurements, respectively. It shows that the identified model can effectively describe the real system.

  16. Systems biology. Conditional density-based analysis of T cell signaling in single-cell data.

    Science.gov (United States)

    Krishnaswamy, Smita; Spitzer, Matthew H; Mingueneau, Michael; Bendall, Sean C; Litvin, Oren; Stone, Erica; Pe'er, Dana; Nolan, Garry P

    2014-11-28

    Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naïve and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naïve cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.

  17. Familial occurrence of systemic mast cell activation disease.

    Directory of Open Access Journals (Sweden)

    Gerhard J Molderings

    Full Text Available Systemic mast cell activation disease (MCAD comprises disorders characterized by an enhanced release of mast cell mediators accompanied by accumulation of dysfunctional mast cells. Demonstration of familial clustering would be an important step towards defining the genetic contribution to the risk of systemic MCAD. The present study aimed to quantify familial aggregation for MCAD and to investigate the variability of clinical and molecular findings (e.g. somatic mutations in KIT among affected family members in three selected pedigrees. Our data suggest that systemic MCAD pedigrees include more systemic MCAD cases than would be expected by chance, i.e., compared with the prevalence of MCAD in the general population. The prevalence of MCAD suspected by symptom self-report in first-degree relatives of patients with MCAD amounted to approximately 46%, compared to prevalence in the general German population of about 17% (p<0.0001. In three families with a high familial loading of MCAD, the subtype of MCAD and the severity of mediator-related symptoms varied between family members. In addition, genetic alterations detected in KIT were variable, and included mutations at position 816 of the amino acid sequence. In conclusion, our data provide evidence for common familial occurrence of MCAD. Our findings observed in the three pedigrees together with recent reports in the literature suggest that, in familial cases (i.e., in the majority of MCAD, mutated disease-related operator and/or regulator genes could be responsible for the development of somatic mutations in KIT and other proteins important for the regulation of mast cell activity. Accordingly, the immunohistochemically different subtypes of MCAD (i.e. mast cell activation syndrome and systemic mastocytosis should be more accurately regarded as varying presentations of a common generic root process of mast cell dysfunction, than as distinct diseases.

  18. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  19. Langerhans cell histiocytosis involving central nervous system: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Won Jin; Park, Dong Woo; Lee, Seung Ro; Hahm, Chang Kok; Ju, Kyung Bin [Hanyang University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Tae [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1997-01-01

    Langerhans cell histiocytosis(LCH) is a systemic disorder characterized by idiopathic proliferation of histiocytes in the reticuloendothelial system; CNS involvement outside the hypothalamus or pituitary gland is uncommon. We present a case of LCH involving the brainstem, cerebellum, and temporal lobes, and also showing hypothalamic involvement. The lesions were isointense or hypointense on T1WI and hyperintense on T2WI, and showed multifocal enhancing nodules on post-contrast CT and Gd-enhanced MRI.

  20. Cell culture systems for the hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Gilles Duverlie; Czeslaw Wychowski

    2007-01-01

    Since the discovery of HCV in 1989, the lack of a cell culture system has hampered research progress on this important human pathogen. No robust system has been obtained by empiric approaches, and HCV cell culture remained hypothetical until 2005. The construction of functional molecular clones has served as a starting point to reconstitute a consensus infectious cDNA that was able to transcribe infectious HCV RNAs as shown by intrahepatic inoculation in a chimpanzee. Other consensus clones have been selected and established in a human hepatoma cell line as replicons, i.e. self-replicating subgenomic or genomic viral RNAs. However, these replicons did not support production of infectious virus. Interestingly, some full-length replicons could be established without adaptive mutations and one of them was able to replicate at very high levels and to release virus particles that are infectious in cell culture and in vivo. This new cell culture system represents a major breakthrough in the HCV field and should enable a broad range of basic and applied studies to be achieved.

  1. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  2. System design of a large fuel cell hybrid locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L. [Vehicle Projects LLC, 621 17th Street, Suite 2131, Denver, CO 80293 (United States)

    2007-11-15

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads. (author)

  3. Test and approval center for fuel cell and hydrogen technologies: Phase I. Initiation. Final report; Test- og godkendelsescenter for braendselscelle- og brintteknologier. Fase 1. Opstart. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, A. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)

    2012-09-15

    The aim of the present project was to initialize a Test and Approval Center for Fuel Cell and Hydrogen Technologies at the sites of the project partners Risoe DTU (Fuel Cells and Solid State Chemistry Division), and DGC (work package 1). The project furthermore included start-up of first activities with focus on the development of accelerated life-time tests of fuel cell systems, preparations for standardization of these methods, and advising in relation to certification and approval of fuel cell systems (work package 2). The main achievements of the project were: Work package 1: 1) A large national and international network was established comprising of important commercial players, research institutions, and other test centers; 2) The test center is known in large part of the international Fuel Cell and Hydrogen community due to substantial efforts in 'marketing'; 3) New national and international projects have been successfully applied for, with significant roles of the test center, which secure the further establishment and development of the center. Work package 2: 1) Testing equipment was installed and commissioned at DTU (Risoe Campus); 2) A comprehensive survey among international players regarding activities on accelerated SOFC testing was carried out; 3) A test procedure for 'compressed' testing of SOFC in relation to {mu} CHP application was developed and used for one-cell stack and 50-cell-stack testing; 4) Guidelines for Danish authority handling were formulated. (Author)

  4. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells.

    Science.gov (United States)

    Linden, Arne; Gülden, Michael; Martin, Hans-Jörg; Maser, Edmund; Seibert, Hasso

    2008-08-01

    Peroxides are often used as models to induce oxidative damage in cells in vitro. The aim of the present study was to elucidate the role of lipid peroxidation in peroxide-induced cell death. To this end (i) the ability to induce lipid peroxidation in C6 rat astroglioma cells of hydrogen peroxide (H2O2), cumene hydroperoxide (CHP) and t-butyl hydroperoxide (t-BuOOH) (ii) the relation between peroxide-induced lipid peroxidation and cell death in terms of time and concentration dependency and (iii) the capability of the lipid peroxidation chain breaking alpha-tocopherol to prevent peroxide-induced lipid peroxidation and/or cell death were investigated. Lipid peroxidation was characterised by measuring thiobarbituric acid reactive substances (TBARS) and, by HPLC, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and hexanal. Within 2 h CHP, t-BuOOH and H2O2 induced cell death with EC50 values of 59+/-9 microM, 290+/-30 microM and 12+/-1.1 mM, respectively. CHP and t-BuOOH, but not H2O2 induced lipid peroxidation in C6 cells with EC50 values of 15+/-14 microM and 130+/-33 microM, respectively. The TBARS measured almost exclusively consisted of MDA. 4-HNE was mostly not detectable. The concentration of hexanal slightly increased with increasing concentrations of organic peroxides. Regarding time and concentration dependency lipid peroxidation preceded cell death. Pretreatment with alpha-tocopherol (10 microM, 24 h) prevented both, peroxide-induced lipid peroxidation and cell death. The results strongly indicate a major role of lipid peroxidation in the killing of C6 cells by organic peroxides but also that lipid peroxidation is not involved in H2O2 induced cell death.

  5. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    Science.gov (United States)

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  6. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    Directory of Open Access Journals (Sweden)

    Enrique Montalvillo

    2014-05-01

    Full Text Available The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity. Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  7. Cell Communication in a Coculture System Consisting of Outgrowth Endothelial Cells and Primary Osteoblasts

    Directory of Open Access Journals (Sweden)

    David Paul Eric Herzog

    2014-01-01

    Full Text Available Bone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis. Coculture systems of OECs and pOBs positively influence the angiogenic potential of endothelial cells by inducing the formation of angiogenic structures in long-term cultures. Although many studies have focused on cell communication, there are still numerous aspects which remain poorly understood. Therefore, the aim of this study is to investigate certain growth factors and cell communication molecules that are important during bone repair processes. Selected growth factors like VEGF, angiopoietins, BMPs, and IGFs were investigated during angiogenesis and osteogenesis and their expression in the cultures was observed and compared after one and four weeks of cultivation. In addition, to gain a better understanding on the origin of different growth factors, both direct and indirect coculture strategies were employed. Another important focus of this study was to investigate the role of “gap junctions,” small protein pores which connect adjacent cells. With these bridges cells are able to exchange signal molecules, growth factors, and other important mediators. It could be shown that connexins, the gap junction proteins, were located around cell nuclei, where they await their transport to the cell membrane. In

  8. A cell-based model system links chromothripsis with hyperploidy

    DEFF Research Database (Denmark)

    Mardin, Balca R; Drainas, Alexandros P; Waszak, Sebastian M;

    2015-01-01

    A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has...... remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively...... parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular...

  9. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    De Groot, A.

    2004-01-01

    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which distingu

  10. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    Directory of Open Access Journals (Sweden)

    Juan P. Mackern-Oberti

    2014-09-01

    Full Text Available Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs play a major role in promoting immune tolerance against self-antigens (self-Ags, current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.

  11. Pegylated polystyrene particles as a model system for artificial cells

    NARCIS (Netherlands)

    Meng, Fenghua; Engbers, Gerard H.M.; Gessner, Andrea; Müller, Reiner H.; Feijen, Jan

    2004-01-01

    Pegylated polystyrene particles (PS-PEG) were prepared as a model system for artificial cells, by modification of carboxyl polystyrene particles (PS-COOH) with homo- and hetero-bifunctional polyethylene glycols (PEG, MW 1500, 3400, and 5000) containing an amino end group for immobilization and an am

  12. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  13. Lithium-thionyl chloride cell system safety hazard analysis

    Science.gov (United States)

    Dampier, F. W.

    1985-03-01

    This system safety analysis for the lithium thionyl chloride cell is a critical review of the technical literature pertaining to cell safety and draws conclusions and makes recommendations based on this data. The thermodynamics and kinetics of the electrochemical reactions occurring during discharge are discussed with particular attention given to unstable SOCl2 reduction intermediates. Potentially hazardous reactions between the various cell components and discharge products or impurities that could occur during electrical or thermal abuse are described and the most hazardous conditions and reactions identified. Design factors influencing the safety of Li/SOCl2 cells, shipping and disposal methods and the toxicity of Li/SOCl2 battery components are additional safety issues that are also addressed.

  14. Design of a Fuel Cell Hybrid Electric Vehicle Drive System

    DEFF Research Database (Denmark)

    Schaltz, Erik

    Fuel cells achieve more and more attention due to their potential of replacing the traditional internal combustion engine (ICE) used in the area of transportation. In this PhD thesis a fuel cell shaft power pack (FCSPP) is designed and implemented in a small truck. The FCSPP replaces the original...... the efficiency. In this work a lead-acid battery, an ultracapacitor, or a combination of both are considered as energy storage devices. A FCSPP is designed for 10 different configurations of connecting the energy storage device(s) and fuel cell to a common bus, which comply with the 42V PowerNet standard. Each...... of the ten configurations is designed for different fuel cell power ratings. The FCSPP is designed in an iterative process where the power flow through the system is under the influence of a certain energy management strategy and charging strategy, which sufficiently divides the power between the units...

  15. Apoptosis and systemic autoimmunity: the dendritic cell connection

    Directory of Open Access Journals (Sweden)

    AA Manfredi

    2009-12-01

    Full Text Available Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs, the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells’ antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.

  16. Status of ITER neutral beam cell remote handling system

    CERN Document Server

    Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

    2013-01-01

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  17. Spectral Statistics in Chaotic Systems with Two Identical Connected Cells

    CERN Document Server

    Dittrich, T; Koboldt, G; Dittrich, Thomas; Schanz, Holger; Koboldt, Gerd

    1998-01-01

    Chaotic systems that decompose into two cells connected only by a narrow channel exhibit characteristic deviations of their quantum spectral statistics from the canonical random-matrix ensembles. The equilibration between the cells introduces an additional classical time scale that is manifest also in the spectral form factor. If the two cells are related by a spatial symmetry, the spectrum shows doublets, reflected in the form factor as a positive peak around the Heisenberg time. We combine a semiclassical analysis with an independent random-matrix approach to the doublet splittings to obtain the form factor on all time (energy) scales. Its only free parameter is the characteristic time of exchange between the cells in units of the Heisenberg time.

  18. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  19. Status of ITER neutral beam cell remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  20. Endoglin regulates mural cell adhesion in the circulatory system.

    Science.gov (United States)

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  1. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  2. Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system.

    Science.gov (United States)

    Mahara, Atsushi; Chen, Hao; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    We previously developed an antibody-conjugated cell rolling column that successfully separates stem cell subpopulations depending on the cell surface marker density, but a large amount of the injected cells were retained in the column because of non-specific interactions. In this study, an amphiphilic copolymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (nBMA)-co-N-vinyl formamide (NVf)], with phospholipid polar side groups was designed as a novel antibody-immobilizing modifier. The formamide groups in NVf units were converted to active maleimide groups. A plastic flow microfluidic chamber was coated with the copolymers, and a reduced anti-CD90 antibody was immobilized. The adipose tissue-derived stem cells isolated from the rat were injected into the flow chamber, and their rolling behavior was observed under a microscope with a high-speed camera. Non-specific cell adhesion was reduced strongly by means of this immobilization method because of the MPC unit, resulting in a high percentage of rolling cells. These results demonstrate that a surface coated with phospholipid polar groups can be used in an effective stem cell separation system based on the cell rolling process.

  3. Improved cell-free RNA and protein synthesis system.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Cell-free RNA and protein synthesis (CFPS is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4, ribosome recycling factor (RRF, release factors (RF1, RF2, RF3, chaperones (GroEL/ES, BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency.

  4. System identification and robust control of a portable proton exchange membrane full-cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Yang, Yee-Pien; Huang, Chi-Wei; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D (Taiwan)

    2007-02-10

    This paper will discuss the application of system identification techniques and robust control strategies to a proton exchange membrane fuel-cell system. The fuel-cell system's dynamic behaviour is influenced by many factors, such as the reaction mechanism, pressure, flow-rate, composition and temperature change, and is inherently non-linear and time varying. From a system point of view, however, the system can be modelled as a two-input, two-output linear time-invariant system whose inputs are hydrogen and air flow rates, and whose outputs are cell voltage and current. On the other hand, the system's non-linearities and time-varying characteristics can be regarded as system uncertainties and disturbances that are treated by the designed robust controllers. This paper is comprised of three parts. First, system identification techniques were adopted to model the system's transfer functions. Second, the H{sub {infinity}} robust control strategies were applied to stabilise the system. Finally, the system's stability and performance were compromised by introducing weighting functions to the controller's design. From the experimental results, the designed H{sub {infinity}} robust controllers were deemed effective. (author)

  5. A review of chemical gradient systems for cell analysis.

    Science.gov (United States)

    Somaweera, Himali; Ibraguimov, Akif; Pappas, Dimitri

    2016-02-11

    Microfluidic spatial and temporal gradient generators have played an important role in many biological assays such as in the analysis of wound healing, inflammation, and cancer metastasis. Chemical gradient systems can also be applied to other fields such as drug design, chemical synthesis, chemotaxis, etc. Microfluidic systems are particularly amenable to gradient formation, as the length scales used in chips enable fluid processes that cannot be conducted in bulk scale. In this review we discuss new microfluidic devices for gradient generation and applications of those systems in cell analysis.

  6. NASA Lewis Evaluation of Regenerative Fuel Cell (RFC) Systems

    Science.gov (United States)

    Hagedorn, N. H.; Gonzalez-Sanabria, O. D; Kohout, L. L.

    1986-01-01

    Evaluation of two regenerative fuel cell (RFC) systems was begun in-house, and under contracts and grants. The passive hydrogen-oxygen RFC offers the possibility of a high-energy density, long-life storage system for geosynchronous Earth orbit missions. The hydrogen-bromine RFC offers the combination of high efficiency and moderate energy density that could ideally suit low Earth orbit missions if successfully developed. Either or both of these systems would be attractive additions to the storage options available to designers of future missions.

  7. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  8. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  9. Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells*

    Science.gov (United States)

    Ruiz, Sergio; Panopoulos, Athanasia D.; Montserrat, Nuria; Multon, Marie-Christine; Daury, Aurélie; Rocher, Corinne; Spanakis, Emmanuel; Batchelder, Erika M.; Orsini, Cécile; Deleuze, Jean-François; Izpisua Belmonte, Juan Carlos

    2012-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency. PMID:23019325

  10. Advanced ECU Software Development Method for Fuel Cell Systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Shuo; LIU Yuan; XIA Wenchuan; LI Jianqiu; YANG Minggao

    2005-01-01

    The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

  11. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  12. Anatomy of the Hesse photoreceptor cell axonal system in the central nervous system of amphioxus.

    Science.gov (United States)

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Sherwood, Nancy M; Anadón, Ramón

    2006-01-01

    The present study reports the organization of the Hesse cell axonal system in the central nervous system of the amphioxus, with the use of a polyclonal antiserum raised against lamprey gonadotropin-releasing hormone-I (GnRH-I). In the spinal cord, the rhabdomeric photoreceptor cells of the bicellular organs were well labeled with this antibody. These cells sent smooth, straight, lateral processes that bent and became beaded as they passed ventrally and crossed to the contralateral side of the cord. There, the processes of several cells aggregated to give rise to a longitudinal fiber bundle. Beaded collaterals of these processes were directed to ventral neuropil and did not appear to contact giant Rohde cell axons. The crossed projections of the Hesse photoreceptors are compared with those of vertebrate retinal ganglion cells. Other antisera raised against GnRH weakly labeled rhabdomeric photoreceptors located dorsally in the brain, the Joseph cells. The finding that GnRH antibodies label amphioxus photoreceptor cells and axons is not definitive proof that the photoreceptors contain GnRH. Regardless of whether the antibody recognizes amphioxus GnRH, which has not yet been identified by structure, the antibody has revealed the processes of the Hesse photoreceptor cells.

  13. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  14. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre- spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in- variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen- eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  15. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    ZOU HaiLin; XU JianXue

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, whichis not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre-spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in-variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen-eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  16. Performance benchmarking of four cell-free protein expression systems.

    Science.gov (United States)

    Gagoski, Dejan; Polinkovsky, Mark E; Mureev, Sergey; Kunert, Anne; Johnston, Wayne; Gambin, Yann; Alexandrov, Kirill

    2016-02-01

    Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.

  17. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    Directory of Open Access Journals (Sweden)

    Giulia Magni

    2014-01-01

    Full Text Available It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.

  18. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  19. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  20. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Mark F. Mehler

    2011-09-01

    Full Text Available Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs, which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  1. Microfluidic cell culture systems with integrated sensors for drug screening

    Science.gov (United States)

    Grist, Samantha; Yu, Linfen; Chrostowski, Lukas; Cheung, Karen C.

    2012-03-01

    Cell-based testing is a key step in drug screening for cancer treatments. A microfluidic platform can permit more precise control of the cell culture microenvironment, such as gradients in soluble factors. These small-scale devices also permit tracking of low cell numbers. As a new screening paradigm, a microscale system for integrated cell culture and drug screening promises to provide a simple, scalable tool to apply standardized protocols used in cellular response assays. With the ability to dynamically control the microenvironment, we can create temporally varying drug profiles to mimic physiologically measured profiles. In addition, low levels of oxygen in cancerous tumors have been linked with drug resistance and decreased likelihood of successful treatment and patient survival. Our work also integrates a thin-film oxygen sensor with a microfluidic oxygen gradient generator which will in future allow us to create spatial oxygen gradients and study effects of hypoxia on cell response to drug treatment. In future, this technology promises to improve cell-based validation in the drug discovery process, decreasing the cost and increasing the speed in screening large numbers of compounds.

  2. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  3. The Bacillus cereus spoIIS programmed cell death system

    Directory of Open Access Journals (Sweden)

    Jana eMelnicakova

    2015-08-01

    Full Text Available Programmed cell death in bacteria is generally associated with two¬ component toxin antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harbouring an additional gene spoIISC. Its protein product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in B. cereus but also in other Bacilli containing a SpoIIS toxin antitoxin system. In addition, we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible role of this multimerization for the protein’s toxic function.

  4. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  5. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  6. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating multiple stack building

  7. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  8. Back-Up/ Peak Shaving Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL

  9. The IVF Harrmann AG's combined heat and power plant with district heating system using sewage gas from the Roeti wastewater treatment plant in Schaffhausen; Blockheizkraftwerk mit Waermeverbund der IVF Hartmann AG mit Klaergas aus der ARA Roeti/SH. Erfolgskontrolle

    Energy Technology Data Exchange (ETDEWEB)

    Roeck, P.; Boehner, A.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents and discusses monitoring results from a project that provides biogas from the 'Roeti' wastewater treatment plant (WWTP) to a neighbouring industry for firing a steam boiler and a combined heat and power (CHP) unit. The largest part of the heat generated by the CHP unit is sold back to the WWTP. The report presents the results of measurements made in the system regarding biogas, electricity and heat production and concludes that the most important goals of the project were successfully reached - high degree of fuel usage, practically no burning off of excess biogas, reliable supply of heat to the WWTP, considerable reduction of bought-in electrical power, practically complete use of the heat produced by the CHP unit.

  10. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    In many countries, the electricity supply and power plant operation are challenged by increasing amounts of fluctuating renewable energy sources. A smart energy system should be developed to integrate as much energy supply from fluctuating renewable sources and to utilise the scarce biomass...... resources as efficiently as possible. Using the advanced energy systems analysis tool EnergyPLAN and Denmark as a case, this analysis defines which of the three assessed types of CHP plants connected to district heating systems is most feasible in terms of total socioeconomic costs and biomass consumption...... as an unsustainable level of biomass consumption. Therefore, the regulatory framework should generally be considered in long-term planning of sustainable CHP systems....

  11. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Uday B. Pal; Srikanth Gopalan

    2006-01-12

    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  12. Interaction of tumor cells with the immune system: implications for dendritic cell therapy and cancer progression.

    Science.gov (United States)

    Imhof, Marianne; Karas, Irene; Gomez, Ivan; Eger, Andreas; Imhof, Martin

    2013-01-01

    There is a continuous demand for preclinical modeling of the interaction of dendritic cells with the immune system and cancer cells. Recent progress in gene expression profiling with nucleic acid microarrays, in silico modeling and in vivo cell and animal approaches for non-clinical proof of safety and efficacy of these immunotherapies is summarized. Immunoinformatic approaches look promising to unfold this potential, although still unstable and difficult to interpret. Animal models have progressed a great deal in recent years, finally narrowing the gap from bench to bedside. However, translation to the clinic should be done with precaution. The most significant results concerning clinical benefit might come from detailed immunologic investigations made during well designed clinical trials of dendritic-cell-based therapies, which in general prove safe.

  13. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes.

    Science.gov (United States)

    Huang, Hai; Kornberg, Thomas B

    2016-09-03

    Drosophila dorsal air sac development depends on Decapentaplegic (Dpp) and Fibroblast growth factor (FGF) proteins produced by the wing imaginal disc and transported by cytonemes to the air sac primordium (ASP). Dpp and FGF signaling in the ASP was dependent on components of the planar cell polarity (PCP) system in the disc, and neither Dpp- nor FGF-receiving cytonemes extended over mutant disc cells that lacked them. ASP cytonemes normally navigate through extracellular matrix (ECM) composed of collagen, laminin, Dally and Dally-like (Dlp) proteins that are stratified in layers over the disc cells. However, ECM over PCP mutant cells had reduced levels of laminin, Dally and Dlp, and whereas Dpp-receiving ASP cytonemes navigated in the Dally layer and required Dally (but not Dlp), FGF-receiving ASP cytonemes navigated in the Dlp layer, requiring Dlp (but not Dally). These findings suggest that cytonemes interact directly and specifically with proteins in the stratified ECM.

  14. Solid oxide fuel cell systems development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The main objective in this project has been to develop a generic and dynamic tool for SOFC systems simulation and development. Developing integrated fuel cell systems is very expensive and therefore having the right tools to reduce the development cost and time to market for products becomes an important feature. The tools developed in this project cover a wide range of needs in Dantherm Power, R and D, and can be divided into 3 categories: 1. Component selection modeling; to define component specification requirements and selection of suppliers. 2. Application simulation model built from scratch, which can simulate the interface between customer demand and system output and show operation behavior for different control settings. 3. System operation strategy optimization with respect to operation cost and customer benefits. a. Allows to see how system size, in terms of electricity and heat output, and operation strategy influences a specific business case. b. Gives a clear overview of how a different property, in the system, affects the economics (e.g. lifetime, electrical and thermal efficiency, fuel cost sensitivity, country of deployment etc.). The main idea behind the structure of the tool being separated into 3 layers is to be able to service different requirements, from changing stakeholders. One of the major findings in this project has been related to thermal integration between the existing installation in a private household and the fuel cell system. For a normal family requiring 4500 kWh of electricity a year, along with the possibility of only running the system during the heating season (winter), the heat storage demand is only 210kWh of heat with an approximate value of Dkr 160,- in extra gas consumption. In this case, it would be much more cost effective to dump the heat, in the house, and save the expense of adding heat storage to the system. This operation strategy is only valid in Denmark for the time being, since the feed-In-Tariff allows for a

  15. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  16. The role of T cell apoptosis in nervous system autoimmunity.

    Science.gov (United States)

    Comi, C; Fleetwood, T; Dianzani, U

    2012-12-01

    Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.

  17. Cartographic system for spatial distribution analysis of corneal endothelial cells.

    Science.gov (United States)

    Corkidi, G; Márquez, J; García-Ruiz, M; Díaz-Cintra, S; Graue, E

    1994-07-01

    A combined cartographic and morphometric endothelium analyser has been developed by integrating the HISTO 2000 histological imaging and analysis system with a prototype human corneal endothelium analyser. The complete system allows the elaboration and analysis of cartographies of corneal endothelial tissue, and hence the in vitro study of the spatial distribution of corneal endothelial cells, according to their regional morphometric characteristics (cell size and polygonality). The global cartographic reconstruction is obtained by sequential integration of the data analysed for each microscopic field. Subsequently, the location of each microscopically analysed field is referred to its real position on the histologic preparation by means of X-Y co-ordinates; both are provided by micrometric optoelectronic sensors installed on the optical microscope stage. Some cartographies of an excised human corneal keratoconus button in vitro are also presented. These cartographic images allow a macroscopic view of endothelial cells analysed microscopically. Parametric colour images show the spatial distribution of endothelial cells, according to their specific morphometric parameters, and exhibit the variability in size and cellular shape which depend on the analysed area.

  18. Development of advanced fuel cell system, phase 3

    Science.gov (United States)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  19. Treatment of systemic sclerosis: potential role for stem cell transplantation

    OpenAIRE

    Wen Xiong; Derk, Chris T.

    2009-01-01

    Wen Xiong, Chris T DerkDivision of Rheumatology, Thomas Jefferson University, Philadelphia, PA, 19107, USAAbstract: Hematopoietic stem cell transplantation may “reset” the immune reconstitution and induce self tolerance of autoreactive lymphocytes, and has been explored in the treatments for systemic sclerosis. Phase I/II trials have shown a satisfactory risk benefit ratio. The true benefit will be identified by two ongoing prospective, randomized phase III trials. Multipo...

  20. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  1. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  2. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  3. Systemic Problems: A perspective on stem cell aging and rejuvenation

    Science.gov (United States)

    Conboy, Irina M.; Conboy, Michael J.; Rebo, Justin

    2015-01-01

    This review provides balanced analysis of the advances in systemic regulation of young and old tissue stem cells and suggests strategies for accelerating development of therapies to broadly combat age-related tissue degenerative pathologies. Many highlighted recent reports on systemic tissue rejuvenation combine parabiosis with a “silver bullet” putatively responsible for the positive effects. Attempts to unify these papers reflect the excitement about this experimental approach and add value in reproducing previous work. At the same time, defined molecular approaches, which are “beyond parabiosis” for the rejuvenation of multiple old organs represent progress toward attenuating or even reversing human tissue aging. PMID:26540176

  4. Fuel-cell-propelled submarine-tanker-system study

    Energy Technology Data Exchange (ETDEWEB)

    Court, K E; Kumm, W H; O' Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  5. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  6. GaAs solar cells for concentrator systems in space

    Science.gov (United States)

    Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.

    1983-01-01

    Cells for operation in space up to more than 100 suns were made, and an AMO efficiency of 21% at 100 suns with these cells was obtained. The increased efficiency resulted not only from the higher open circuit voltage associated with the higher light intensity (higher short circuit current); it also benefitted from the increase in fill factor caused by the lower relative contribution of the generation recombination current to the forward bias current when the cell's operating current density is increased. The experimental cells exhibited an AMO efficiency close to 16% at 200 C. The prospect of exploiting this capability for the continuous annealing of radiation damage or for high temperature missions (e.g., near Sun missions) remains therefore open. Space systems with concentration ratios on the order of 100 suns are presently under development. The tradeoff between increased concentration ratio and increased loss due to the cell's series resistance remains attractive even for space applications at a solar concentrator ratio of 100 suns. In the design of contact configuration with low enough series resistance for such solar concentration ratios, the shallow junction depth needed for good radiation hardness and the thin AlGaAs layer thickness needed to avoid excessive optical absorption losses have to be retained.

  7. A novel gene delivery system targeting cells expressing VEGF receptors

    Institute of Scientific and Technical Information of China (English)

    LIJUNMIN; JINGCHULUO; 等

    1999-01-01

    Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.

  8. Multiplexed labeling system for high-throughput cell sorting.

    Science.gov (United States)

    Shin, Seung Won; Park, Kyung Soo; Song, In Hyun; Shin, Woo Jung; Kim, Byung Woo; Kim, Dong-Ik; Um, Soong Ho

    2016-09-01

    Flow cytometry and fluorescence activated cell sorting techniques were designed to realize configurable classification and separation of target cells. A number of cell phenotypes with different functionalities have recently been revealed. Before simultaneous selective capture of cells, it is desirable to label different samples with the corresponding dyes in a multiplexing manner to allow for a single analysis. However, few methods to obtain multiple fluorescent colors for various cell types have been developed. Even when restricted laser sources are employed, a small number of color codes can be expressed simultaneously. In this study, we demonstrate the ability to manifest DNA nanostructure-based multifluorescent colors formed by a complex of dyes. Highly precise self-assembly of fluorescent dye-conjugated oligonucleotides gives anisotropic DNA nanostructures, Y- and tree-shaped DNA (Y-DNA and T-DNA, respectively), which may be used as platforms for fluorescent codes. As a proof of concept, we have demonstrated seven different fluorescent codes with only two different fluorescent dyes using T-DNA. This method provides maximum efficiency for current flow cytometry. We are confident that this system will provide highly efficient multiplexed fluorescent detection for bioanalysis compared with one-to-one fluorescent correspondence for specific marker detection.

  9. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  10. T Cell Transcriptomes Describe Patient Subtypes in Systemic Lupus Erythematosus.

    Directory of Open Access Journals (Sweden)

    Sean J Bradley

    Full Text Available T cells regulate the adaptive immune response and have altered function in autoimmunity. Systemic Lupus Erythematosus (SLE has great diversity of presentation and treatment response. Peripheral blood component gene expression affords an efficient platform to investigate SLE immune dysfunction and help guide diagnostic biomarker development for patient stratification.Gene expression in peripheral blood T cell samples for 14 SLE patients and 4 controls was analyzed by high depth sequencing. Unbiased clustering of genes and samples revealed novel patterns related to disease etiology. Functional annotation of these genes highlights pathways and protein domains involved in SLE manifestation.We found transcripts for hundreds of genes consistently altered in SLE T cell samples, for which DAVID analysis highlights induction of pathways related to mitochondria, nucleotide metabolism and DNA replication. Fewer genes had reduced mRNA expression, and these were linked to signaling, splicing and transcriptional activity. Gene signatures associated with the presence of dsDNA antibodies, low complement levels and nephritis were detected. T cell gene expression also indicates the presence of several patient subtypes, such as having only a minimal expression phenotype, male type, or severe with or without induction of genes related to membrane protein production.Unbiased transcriptome analysis of a peripheral blood component provides insight on autoimmune pathophysiology and patient variability. We present an open source workflow and richly annotated dataset to support investigation of T cell biology, develop biomarkers for patient stratification and perhaps help indicate a source of SLE immune dysfunction.

  11. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  12. Quantitative Analysis of AGV System in FMS Cell Layout

    Directory of Open Access Journals (Sweden)

    B. Ramana

    1997-01-01

    Full Text Available Material handling is a specialised activity for a modern manufacturing concern. Automated guided vehicles (AGVs are invariably used for material handling in flexible manufacturing Systems (FMSs due to their flexibility. The quantitative analysis of an AGV system is useful for determining the material flow rates, operation times, length of delivery, length of empty move of AGV and the number of AGVs required for a typical FMS cell layout. The efficiency of the material handling system, such as AGV can be improved by reducing the length of empty move. The length of empty move of AGV depends upon despatching and scheduling methods. If these methods of AGVs are not properly planned, the length of empty move of AGV is greater than the length of delivery .This results in increase in material handling time which in turn increases the number of AGVs required in FMS cell. This paper presents a method for optimising the length of empty travel of AGV in a typical FMS cell layout.

  13. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  14. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  15. Comparison of Technological Options for Distributed Generation-Combined Heat and Power in Rajasthan State of India

    Directory of Open Access Journals (Sweden)

    Ram Kumar Agrawal

    2013-01-01

    Full Text Available Distributed generation (DG of electricity is expected to become more important in the future electricity generation system. This paper reviews the different technological options available for DG. DG offers a number of potential benefits. The ability to use the waste heat from fuel-operated DG, known as combined heat and power (CHP, offers both reduced costs and significant reductions of CO2 emissions. The overall efficiency of DG-CHP system can approach 90 percent, a significant improvement over the 30 to 35 percent electric grid efficiency and 50 to 90 percent industrial boiler efficiency when separate production is used. The costs of generation of electricity from six key DG-CHP technologies; gas engines, diesel engines, biodiesel CI engines, microturbines, gas turbines, and fuel cells, are calculated. The cost of generation is dependent on the load factor and the discount rate. It is found that annualized life cycle cost (ALCC of the DG-CHP technologies is approximately half that of the DG technologies without CHP. Considering the ALCC of different DG-CHP technologies, the gas I.C. engine CHP is the most effective for most of the cases but biodiesel CI engine CHP seems to be a promising DG-CHP technology in near future for Rajasthan state due to renewable nature of the fuel.

  16. Lasting effect of preceding culture conditions on the susceptibility of C6 cells to peroxide-induced oxidative stress.

    Science.gov (United States)

    Brenner, Sibylle; Gülden, Michael; Maser, Edmund; Seibert, Hasso

    2010-12-01

    The aim of the present study was to investigate the influence of the maintenance culture conditions on the competence of C6 rat glioma cells to cope with peroxide-induced oxidative stress. C6 cells were maintained either in Ham's nutrient mixture F-10 supplemented with 15% horse serum and 2.5% foetal bovine serum (FBS) or in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 5% FBS. The differently cultured cells were exposed under identical conditions to hydrogen peroxide (H₂O₂) and cumene hydroperoxide (CHP) in serum-free DMEM. The cells maintained in high serum Ham's F-10 medium (1) were less sensitive towards the cytotoxic action of both peroxides (EC₅₀-values: H₂O₂: 193 ± 23 μM; CHP: 94 ± 16 μM) than the cells maintained in low serum DMEM (EC₅₀-values: H₂O₂: 51 ± 10 μM; CHP: 27 ± 11 μM), (2) eliminated the peroxides (initial concentration: 100 μM) with higher rates (H₂O₂: 56 ± 5.5 vs. 32 ± 2.7, CHP: 32 ± 6 vs. 3.4 ± 0.6 nmol/min mg protein), (3) contained more glutathione (30 ± 2.5 vs. 14 ± 1.1 nmol/mg protein) and (4) owned a higher glutathione peroxidase activity (28 ± 3.4 vs. 9.5 ± 0.8 mU/mg protein). Glutathione reductase and catalase activities were not affected. These results demonstrate that the preceding culture conditions have a lasting effect on the susceptibility of cultured cells to oxidative stressors like peroxides. As cause for these differences a dissimilar supply of the cells with serum born antioxidants like selenium and α-tocopherol is discussed.

  17. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna International, Rochester Mills, MI (United States)

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  18. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    Science.gov (United States)

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered.

  19. A novel gene delivery system for mammalian cells.

    Science.gov (United States)

    Gibson, Brian; Duffy, Angela M; Gould Fogerite, Susan; Krause-Elsmore, Sara; Lu, Ruying; Shang, Gaofeng; Chen, Zi-Wei; Mannino, Raphael J; Bouchier-Hayes, David J; Harmey, Judith H

    2004-01-01

    Although gene therapy holds great promise for the treatment of both acquired and genetic diseases, its development has been limited by practical considerations. Non-viral efficacy of delivery remains quite poor. We are investigating the feasibility of a novel lipid-based delivery system, cochleates, to deliver transgenes to mammalian cells. Rhodamine-labelled empty cochleates were incubated with two cell-lines (4T1 adenocarcinoma and H36.12 macrophage hybridoma) and primary macrophages in vitro and in vivo. Cochleates containing green fluorescent protein (GFP) expression plasmid were incubated with 4T1 adenocarcinoma cells. Cellular uptake of labelled cochleates or transgene GFP expression were visualised with fluorescence microscopy. 4T1 and H36.12 lines showed 39% and 23.1% uptake of rhodamine-cochleates, respectively. Human monocyte-derived macrophages and mouse peritoneal macrophages had 48+/-5.38% and 51.46+/-15.6% uptake of rhodamine-cochleates in vitro. In vivo 25.69+/-0.127% of peritoneal macrophages were rhodamine-positive after intra-peritoneal injection of rhodamine-cochleates. 19.49+/-10.12% of 4T1 cells expressed GFP. Cochleates may therefore be an effective, non-toxic and non-immunogenic method to introduce transgenes in vitro and in vivo.

  20. A novel cell search scheme for OFDM cellular systems

    Institute of Scientific and Technical Information of China (English)

    DING Ming; LUO Han-wen; WU Yun

    2007-01-01

    A novel cell search scheme for OFDM cellular systems is proposed. It is based on one OFDM symbol with several identical slots as preamble, the time domain repetition structure of which can be utilized to accomplish OFDM timing/frequency synchronization. The cell ID is comprised of two parts: a sub-carrier mask index g and a sequence index x. Each sub-carrier mask activates or deactivates some of the sub-carriers, after which a differentially coded sequence is loaded on pairs of the adjacent active sub-carriers. The user equipment (UE) recognizes the mask with index g via power detection of the received frequency domain signal. Then it estimates the index x from differential demodulation followed by detection of the frequency domain sequence. In order to improve the performance, a method of jointly estimating g and x is devised. Simulation results showed that the proposed scheme is able to support a very large number of cell IDs while maintaining a good performance even in bad multi-cell environment.