WorldWideScience

Sample records for cell chips adapting

  1. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays.

    Science.gov (United States)

    Hart, Traver; Zhao, Alice; Garg, Ankit; Bolusani, Swetha; Marcotte, Edward M

    2009-10-28

    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFkappaB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFalpha, and interferon), and we demonstrate scalability by printing a chip with approximately 4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.

  2. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays.

    Directory of Open Access Journals (Sweden)

    Traver Hart

    Full Text Available Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR, subcellular localization (nuclear translocation of NFkappaB and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases in response to treatment by several chemical effectors (anisomycin, TNFalpha, and interferon, and we demonstrate scalability by printing a chip with approximately 4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.

  3. Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays

    OpenAIRE

    Traver Hart; Alice Zhao; Ankit Garg; Swetha Bolusani; Marcotte, Edward M.

    2009-01-01

    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential ap...

  4. Embedded Adaptive Optics for Ubiquitous Lab-on-a-Chip Readout on Intact Cell Phones

    Directory of Open Access Journals (Sweden)

    Pakorn Preechaburana

    2012-06-01

    Full Text Available The evaluation of disposable lab-on-a-chip (LOC devices on cell phones is an attractive alternative to migrate the analytical strength of LOC solutions to decentralized sensing applications. Imaging the micrometric detection areas of LOCs in contact with intact phone cameras is central to provide such capability. This work demonstrates a disposable and morphing liquid lens concept that can be integrated in LOC devices and refocuses micrometric features in the range necessary for LOC evaluation using diverse cell phone cameras. During natural evaporation, the lens focus varies adapting to different type of cameras. Standard software in the phone commands a time-lapse acquisition for best focal selection that is sufficient to capture and resolve, under ambient illumination, 50 μm features in regions larger than 500 × 500 μm2. In this way, the present concept introduces a generic solution compatible with the use of diverse and unmodified cell phone cameras to evaluate disposable LOC devices.

  5. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for si

  6. ASIC DESIGN OF ADAPTIVE THRESHOLD DENOISE DWT CHIP

    Institute of Scientific and Technical Information of China (English)

    Luo Feng; Wu Shunjun; Jiao Licheng; ZhangLinrang

    2002-01-01

    According to the relationship of wavelet transform and perfect reconstructive FIR filter banks, this paper presents a real-time chip with adaptive Donoho's non-linear soft-threshold for denoising in different levels of multi-scale space through rearranging the input data during convolving, filtering and sub-sampling. And more important, it gives a simple iterative algorithm to calculate the variance of the noise in interregna with no signal. It works well whether the signal or noise is stationary or not.

  7. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  8. An addressable cell array for a platform of biosensor chips

    Science.gov (United States)

    Yang, Seungkyoung; Choi, Soo-hee; Jung, Moon Youn; Song, Kibong; Park, Jeong Won

    2013-05-01

    In order to detect interested matters in fields, various lab-on-a-chips where chemical, physical, or biological sensors are loaded have been developed. eNOSE can be a representative example among them. Because animals can sense 300~1000 different chemicals by olfactory system - smell -, the olfactory system has been spotlighted as new materials in the field of sensing. Those investigations, however, are usually focused on how to detect signals from the olfactory neurons or receptors loaded on chips and enhance sensing efficacy of chips. Therefore, almost of those chips are designed for only one material sensing. Multi-sensing using multi-channels will be needed when the olfactory systems are adopted well on chips. For multiple sensing, we developed an addressable cell array. The chip has 38 cell-chambers arranged in a circle shape and different cell types of thirty eight can be allocated with specific addresses on the chip without any complex valve system. In order to confirm the cell addressing, we loaded EGFP-transfected and empty vector-transfected HEK293a cells into inlets of the cell array in a planned address and those cells were positioned into each chamber by brief aspiration. The arrayed cells were confirmed as a specific pattern through EGFP and nuclei staining. This cell array which can generate address of sensor materials like cells with their own specification is expected to be applied to a platform for a biosensor chip at various sensing fields.

  9. 3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems

    Directory of Open Access Journals (Sweden)

    Lee Mike Myung-Ok

    2006-01-01

    Full Text Available This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch through an indium bump interconnection array (IBIA. The configurable array processor (CAP is an array of heterogeneous processing elements (PEs, while the intelligent configurable switch (ICS comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.

  10. Use of single chip microcomputer in hydraulic digital adaptive control system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents a one-grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theorv and used to control an actual high-order hydraulic system, and the whole hard ware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip-latch, 6116 store, eight-bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.

  11. Development of an Easy and High-Throughput Cell Assay System with a Culture Chip and an Assay Chip

    Science.gov (United States)

    Sugiura, Kanako; Kaji, Noritada; Okamoto, Yukihiro; Tokeshi, Manabu; Baba, Yoshinobu

    High throughput cell assay is significantly important in drug screening, assessment of toxicity etc. Cell assay with a microchip is one of the candidates for high throughput cell assay. However, reported cell assay system with the microchip requires expensive apparatus for refluxing medium and investigation of optimum experimental condition for steady data. For an inexpensive, easy and high throughput cell assay, we introduce a new cell assay system combined with a culture chip and an assay chip made of poly(dimethyl siloxane). Cell culture chips enabled cell to proliferate along the microchannel without refluxing medium and permitted to prepare cell patterning easily. Also, assay chips formed concentration gradient inside the chip and allowed the cell assay with different concentrations of drug at the same time. Thus, our developed cell assay system can overcome the problems of the present cell assay and would promote the drug discovery, assessment of toxicity etc.

  12. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    Science.gov (United States)

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.

  13. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  14. Lab-on-a-chip technologies for stem cell analysis.

    Science.gov (United States)

    Ertl, Peter; Sticker, Drago; Charwat, Verena; Kasper, Cornelia; Lepperdinger, Günter

    2014-05-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of analyzing cell cultures under physiologically relevant conditions. In the present review, we address recent lab-on-a-chip developments for stem cell analysis. We highlight in particular the tangible advantages of microfluidic devices to overcome most of the challenges associated with stem cell identification, expansion and differentiation, with the greatest advantage being that lab-on-a-chip technology allows for the precise regulation of culturing conditions, while simultaneously monitoring relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of stem cell cultures are presented and their potential future applications discussed.

  15. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Science.gov (United States)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  16. Engineered peptide-based nanobiomaterials for electrochemical cell chip

    Science.gov (United States)

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-07-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly- l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  17. Accurate detection of carcinoma cells by use of a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shohei Yamamura

    Full Text Available BACKGROUND: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. METHODS AND FINDINGS: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%, accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. CONCLUSION: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level.

  18. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Liu, Wei; Kovalgin, Alexey Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  19. Microfluidic cell chips for high-throughput drug screening.

    Science.gov (United States)

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers.

  20. CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system.

    Science.gov (United States)

    Cabral Miranda, Felipe; Adão-Novaes, Juliana; Hauswirth, William W; Linden, Rafael; Petrs-Silva, Hilda; Chiarini, Luciana B

    2014-01-01

    Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP) prevents neuron death in the hippocampus induced by severe ER stress. Organotypic hippocampal slice cultures (OHSCs) were exposed to Tunicamycin, a pharmacological ER stress inducer, to trigger cell death. Overexpression of CHIP was achieved with a recombinant adeno-associated viral vector (rAAV) and significantly diminished ER stress-induced cell death, as shown by analysis of propidium iodide (PI) uptake, condensed chromatin, TUNEL and cleaved caspase 3 in the CA1 region of OHSCs. In addition, overexpression of CHIP prevented upregulation of both CHOP and p53 both pro-apoptotic pathways induced by ER stress. We also detected an attenuation of eIF2a phosphorylation promoted by ER stress. However, CHIP did not prevent upregulation of BiP/GRP78 induced by UPR. These data indicate that overexpression of CHIP attenuates ER-stress death response while maintain ER stress adaptative response in the central nervous system. These results indicate a neuroprotective role for CHIP upon UPR signaling. CHIP emerge as a candidate for clinical intervention in neurodegenerative diseases associated with ER stress.

  1. Effect of microwell chip structure on cell microsphere production of various animal cells.

    Science.gov (United States)

    Sakai, Yusuke; Yoshida, Shirou; Yoshiura, Yukiko; Mori, Rhuhei; Tamura, Tomoko; Yahiro, Kanji; Mori, Hideki; Kanemura, Yonehiro; Yamasaki, Mami; Nakazawa, Kohji

    2010-08-01

    The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology.

  2. Thermometry in dielectrophoresis chips for contact-free cell handling

    Science.gov (United States)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  3. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.

    Science.gov (United States)

    Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik

    2016-10-07

    Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.

  4. Self-Adaptive On-Chip System Based on Cross-Layer Adaptation Approach

    Directory of Open Access Journals (Sweden)

    Kais Loukil

    2013-01-01

    Full Text Available The emergence of mobile and battery operated multimedia systems and the diversity of supported applications mount new challenges in terms of design efficiency of these systems which must provide a maximum application quality of service (QoS in the presence of a dynamically varying environment. These optimization problems cannot be entirely solved at design time and some efficiency gains can be obtained at run-time by means of self-adaptivity. In this paper, we propose a new cross-layer hardware (HW/software (SW adaptation solution for embedded mobile systems. It supports application QoS under real-time and lifetime constraints via coordinated adaptation in the hardware, operating system (OS, and application layers. Our method relies on an original middleware solution used on both global and local managers. The global manager (GM handles large, long-term variations whereas the local manager (LM is used to guarantee real-time constraints. The GM acts in three layers whereas the LM acts in application and OS layers only. The main role of GM is to select the best configuration for each application to meet the constraints of the system and respect the preferences of the user. The proposed approach has been applied to a 3D graphics application and successfully implemented on an Altera FPGA.

  5. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  6. CHIP Knockdown Reduced Heat Shock Response and Protein Quality Control Capacity in Lens Epithelial Cells.

    Science.gov (United States)

    Zhang, W; Liu, Z; Bao, X; Qin, Y; Taylor, A; Shang, F; Wu, M

    2015-01-01

    Protein quality control (PQC) systems, including molecular chaperones and ubiquitin-proteasome pathway (UPP), plays an important role in maintaining intracellular protein homeostasis. Carboxyl terminus of Hsc70- interacting protein (CHIP) links the chaperone and UPPs, thus contributing to the repair or removal of damaged proteins. Over-expression of CHIP had previously been used to protect cells from environmental stress. In order to gain a more physiologic mechanism of the advantage conferred by CHIP, we induced a CHIP knockdown and monitored the ability of cells to cope with environmental stress. To knockdown CHIP, the human lens epithelial cell line HLE B3 was transfected with lentiviral particles that encode a CHIP short hairpin RNA (shRNA) or negative control lentiviral particles. Stable CHIP-knock down cells (KD) and negative control cells (NC) were selected with puromycin. After exposure to heat shock stress, there was no change observed in the expression of Hsp90. In contrast, Hsp70 levels increased significantly in NC cells but less so in KD cells. Hsp27 levels also increased after heat shock, but only in NC cells. Protein ubiquitination was reduced when CHIP was knocked down. CHIP knockdown reduced the ability to clear aggregation proteins. When same levels of aggregation-prone RFP-mutant crystallin fusion protein, RFP/V76D-γD, was expressed, there was ~9- fold more aggregates in KD cells as compared to that observed in NC cells. Furthermore, KD cells were more sensitive to toxicity of amino acid analog canavanine as compared to NC cells. Together, these data indicate that CHIP is required for PQC and that CHIP knockdown diminished cellular PQC capacity in lens cells.

  7. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Kovalgin, Alexey Y.; Werf, van der Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  8. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    detection of enzymatic activities down to the single cell level with small quantities of biological samples, which outcompetes existing techniques. Such a system, capable of resolving single cell activities, will ultimately have clinical applications in diagnosis, prediction of drug response and treatment...... evaluation, as well as fundamental impact on the understanding of disease mechanisms...

  9. Microfluidic-chip platform for cell sorting

    Science.gov (United States)

    Malik, Sarul; Balyan, Prerna; Akhtar, J.; Agarwal, Ajay

    2016-04-01

    Cell sorting and separation are considered to be very crucial preparatory steps for numerous clinical diagnostics and therapeutics applications in cell biology research arena. Label free cell separation techniques acceptance rate has been increased to multifold by various research groups. Size based cell separation method focuses on the intrinsic properties of the cell which not only avoids clogging issues associated with mechanical and centrifugation filtration methods but also reduces the overall cost for the process. Consequentially flow based cell separation method for continuous flow has attracted the attention of millions. Due to the realization of structures close to particle size in micro dimensions, the microfluidic devices offer precise and rapid particle manipulation which ultimately leads to an extraordinary cell separation results. The proposed microfluidic device is fabricated to separate polystyrene beads of size 1 µm, 5 µm, 10 µm and 20 µm. The actual dimensions of blood corpuscles were kept in mind while deciding the particle size of polystyrene beads which are used as a model particles for study.

  10. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  11. Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing.

    Science.gov (United States)

    Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming

    2015-10-28

    Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis.

  12. On-chip electrical impedance tomography for imaging biological cells.

    Science.gov (United States)

    Sun, Tao; Tsuda, Soichiro; Zauner, Klaus-Peter; Morgan, Hywel

    2010-01-15

    Electrical impedance tomography is an imaging technology that spatially characterizes the electrical properties of an object. We present a miniaturized electrical impedance tomography system that can image the electrical conductivity distribution within a two-dimensional cell culture. A chip containing a circular 16-electrode array was fabricated using printed circuit board developing technology and used to inject current and to measure spatial voltage across the object. The signal stimulation and voltage data acquisition were performed using an impedance analyzer, operating in four-electrode mode. An open source software, EIDORS was used for image reconstruction. Finite element modelling was used to simulate the image reconstruction process by imaging two ellipsoidal phantoms in the circular 16-electrode array. The effect of the regularization parameter in the reconstruction algorithm and the influence from noise on the fidelity of the images has been numerically analyzed. Experimentally, we show reconstructed images of a multi-nuclear single cellular organism, Physarum Polycephalum, demonstrating the first step towards impedance imaging of single cells in culture. Our system provides a non-invasive lab-on-a-chip technology for spatially mapping the electrical properties of single cells, which would be significant and useful for diagnostic and clinical applications.

  13. A Novel Architecture for Adaptive Traffic Control in Network on Chip using Code Division Multiple Access Technique

    Directory of Open Access Journals (Sweden)

    Fatemeh. Dehghani

    2016-08-01

    Full Text Available Network on chip has emerged as a long-term and effective method in Multiprocessor System-on-Chip communications in order to overcome the bottleneck in bus based communication architectures. Efficiency and performance of network on chip is so dependent on the architecture and structure of the network. In this paper a new structure and architecture for adaptive traffic control in network on chip using Code Division Multiple Access technique is presented. To solve the problem of synchronous access to bus based interconnection the code division multiple access technique was applied. In the presented structure that is based upon mesh topology and simple routing method we attempted to increase the exchanged data bandwidth rate among different cores. Also an attempt has been made to increase the performance by isolating the target address transfer path from data transfer path. The main goal of this paper is presenting a new structure to improve energy consumption, area and maximum frequency in network on chip systems using information coding and decoding techniques. The presented structure is simulated using Xilinx ISE software and the results show effectiveness of this architecture.

  14. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Advanced Cell Therapy Applications

    Science.gov (United States)

    Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter

    2015-09-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  15. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip for Advanced Cell Therapy Applications

    Directory of Open Access Journals (Sweden)

    David eWartmann

    2015-09-01

    Full Text Available The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  16. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis.

    Science.gov (United States)

    Hunt, Thomas P; Issadore, David; Westervelt, R M

    2008-01-01

    We present an integrated circuit/microfluidic chip that traps and moves individual living biological cells and chemical droplets along programmable paths using dielectrophoresis (DEP). Our chip combines the biocompatibility of microfluidics with the programmability and complexity of integrated circuits (ICs). The chip is capable of simultaneously and independently controlling the location of thousands of dielectric objects, such as cells and chemical droplets. The chip consists of an array of 128 x 256 pixels, 11 x 11 microm(2) in size, controlled by built-in SRAM memory; each pixel can be energized by a radio frequency (RF) voltage of up to 5 V(pp). The IC was built in a commercial foundry and the microfluidic chamber was fabricated on its top surface at Harvard. Using this hybrid chip, we have moved yeast and mammalian cells through a microfluidic chamber at speeds up to 30 microm sec(-1). Thousands of cells can be individually trapped and simultaneously positioned in controlled patterns. The chip can trap and move pL droplets of water in oil, split one droplet into two, and mix two droplets into one. Our IC/microfluidic chip provides a versatile platform to trap and move large numbers of cells and fluid droplets individually for lab-on-a-chip applications.

  17. Continuous cell electroporation for efficient DNA and siRNA delivery based on laminar microfluidic chips.

    Science.gov (United States)

    Wei, Zewen; Li, Zhihong

    2014-01-01

    Electroporation is a high-efficiency and low-toxicity physical gene transfer method. Traditional electroporation is limited to only low volume cell samples. Here we present a continuous cell electroporation method based on commonly used microfluidic chip fabrication technology. Using easily fabricated PDMS microfluidic chip, syringe pumps, and pulse generator, we show efficient delivery of both DNA and siRNA into different cell lines. We describe the protocol of chip fabrication, apparatus setup, and cell electroporation assay. Typically, the fabrication of the devices takes 1 or 2 days and the continuous electroporation assay takes 1 h.

  18. An OCP Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Mahadevan, Shankar; Olsen, Rasmus Grøndahl

    2005-01-01

    decouples communication and computation, providing memory-mapped OCP transactions based on primitive message-passing services of the network. Also, it facilitates GALS-type systems, by adapting to the clockless network. This helps leverage a modular SoC design flow. We evaluate performance and cost of 0......The demand for IP reuse and system level scalability in System-on-Chip (SoC) designs is growing. Network-onchip (NoC) constitutes a viable solution space to emerging SoC design challenges. In this paper we describe an OCP compliant network adapter (NA) architecture for the MANGO NoC. The NA...

  19. Epigenetic Regulation of Adaptive NK Cell Diversification.

    Science.gov (United States)

    Tesi, Bianca; Schlums, Heinrich; Cichocki, Frank; Bryceson, Yenan T

    2016-07-01

    Natural killer (NK) cells were previously considered to represent short-lived, innate lymphocytes. However, mouse models have revealed expansion and persistence of differentiated NK cell subsets in response to cytomegalovirus (CMV) infection, paralleling antigen-specific T cell differentiation. Congruently, analyses of humans have uncovered CMV-associated NK cell subsets characterized by epigenetic diversification processes that lead to altered target cell specificities and functional capacities. Here, focusing on responses to viruses, we review similarities and differences between mouse and human adaptive NK cells, identifying molecular analogies that may be key to transcriptional reprogramming and functional alterations. We discuss possible molecular mechanisms underlying epigenetic diversification and hypothesize that processes driving epigenetic diversification may represent a more widespread mechanism for fine-tuning and optimization of cellular immunity.

  20. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging.

    Science.gov (United States)

    Cui, Xiquan; Lee, Lap Man; Heng, Xin; Zhong, Weiwei; Sternberg, Paul W; Psaltis, Demetri; Yang, Changhuei

    2008-08-05

    Low-cost and high-resolution on-chip microscopes are vital for reducing cost and improving efficiency for modern biomedicine and bioscience. Despite the needs, the conventional microscope design has proven difficult to miniaturize. Here, we report the implementation and application of two high-resolution (approximately 0.9 microm for the first and approximately 0.8 microm for the second), lensless, and fully on-chip microscopes based on the optofluidic microscopy (OFM) method. These systems abandon the conventional microscope design, which requires expensive lenses and large space to magnify images, and instead utilizes microfluidic flow to deliver specimens across array(s) of micrometer-size apertures defined on a metal-coated CMOS sensor to generate direct projection images. The first system utilizes a gravity-driven microfluidic flow for sample scanning and is suited for imaging elongate objects, such as Caenorhabditis elegans; and the second system employs an electrokinetic drive for flow control and is suited for imaging cells and other spherical/ellipsoidal objects. As a demonstration of the OFM for bioscience research, we show that the prototypes can be used to perform automated phenotype characterization of different Caenorhabditis elegans mutant strains, and to image spores and single cellular entities. The optofluidic microscope design, readily fabricable with existing semiconductor and microfluidic technologies, offers low-cost and highly compact imaging solutions. More functionalities, such as on-chip phase and fluorescence imaging, can also be readily adapted into OFM systems. We anticipate that the OFM can significantly address a range of biomedical and bioscience needs, and engender new microscope applications.

  1. Cell electroporation by CNT-featured microfluidic chip.

    Science.gov (United States)

    Shahini, Mehdi; Yeow, John T W

    2013-07-01

    We present the application of carbon nanotubes (CNTs) for cell electroporation that is performed in a microfluidic device. Lab on a chip (LOC) developments have raised unique possibilities to scale down cell manipulation systems to a cellular level to achieve higher performance and accuracy. Among the systems employed for cell disruption, electroporation without chemical reagents provides many advantages but suffers from high voltage requirements. We have exploited the electric field enhancement by CNTs to realize low-voltage electroporation. A microchip with embedded aligned CNTs has been developed to test the effect of the enhanced electric field on electroporation of mammalian CHO cells. Fluorogenic Calcein AM dye is used to image the release of the intercellular medium as an indication of electroporation. The electroporation phenomenon is recorded in real-time and compared with that of a device without CNTs. The results show that at a voltage as low as 3 volts, the electroporation yield rate is increased by 72% with the incorporation of CNTs. This enhancement is a promising advancement towards integration of low-voltage electroporation with other low-voltage cell manipulation techniques.

  2. Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion

    DEFF Research Database (Denmark)

    Petronis, Sarunas; Stangegaard, Michael; Christensen, C.

    2006-01-01

    Modern microfabrication and microfluidic technologies offer new opportunities in the design and fabrication of miniaturized cell culture systems for online monitoring of living cells. We used laser micromachining and thermal bonding to fabricate an optically transparent, low-cost polymeric chip...... for long-term online cell culture observation under controlled conditions. The chip incorporated a microfluidic flow equalization system, assuring uniform perfusion of the cell culture media throughout the cell culture chamber. The integrated indium-tin-oxide heater and miniature temperature probe linked...... to an electronic feedback system created steady and spatially uniform thermal conditions with minimal interference to the optical transparency of the chip. The fluidic and thermal performance of the chip was verified by finite element modeling and by operation tests under fluctuating ambient temperature conditions...

  3. On-chip lysis of mammalian cells through a handheld corona device.

    Science.gov (United States)

    Escobedo, C; Bürgel, S C; Kemmerling, S; Sauter, N; Braun, T; Hierlemann, A

    2015-07-21

    On-chip lysis is required in many lab-on-chip applications involving cell studies. In these applications, the complete disruption of the cellular membrane and a high lysis yield is essential. Here, we present a novel approach to lyse cells on-chip through the application of electric discharges from a corona handheld device. The method only requires a microfluidic chip and a low-cost corona device. We demonstrate the effective lysis of BHK and eGFP HCT 116 cells in the sub-second time range using an embedded microelectrode. We also show cell lysis of non-adherent K562 leukemia cells without the use of an electrode in the chip. Cell lysis has been assessed through the use of bright-field microscopy, high-speed imaging and cell-viability fluorescence probes. The experimental results show effective cell lysis without any bubble formation or significant heating. Due to the simplicity of both the components involved and the lysis procedure, this technique offers an inexpensive lysis option with the potential for integration into lab-on-a-chip devices.

  4. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-01

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  5. Conductive Polymer Microelectrodes for on-chip measurement of transmitter release from living cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Matteucci, Marco; Taboryski, Rafael J.

    2012-01-01

    driven cell trapping inside closed chip devices. Conductive polymer microelectrodes were used to measure transmitter release using electrochemical methods such as cyclic voltammetry and constant potential amperometry. By measuring the oxidation current at a cyclic voltammogram, the concentration...

  6. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  7. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  8. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.

    Science.gov (United States)

    Stott, Shannon L; Hsu, Chia-Hsien; Tsukrov, Dina I; Yu, Min; Miyamoto, David T; Waltman, Belinda A; Rothenberg, S Michael; Shah, Ajay M; Smas, Malgorzata E; Korir, George K; Floyd, Frederick P; Gilman, Anna J; Lord, Jenna B; Winokur, Daniel; Springer, Simeon; Irimia, Daniel; Nagrath, Sunitha; Sequist, Lecia V; Lee, Richard J; Isselbacher, Kurt J; Maheswaran, Shyamala; Haber, Daniel A; Toner, Mehmet

    2010-10-26

    Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated microposts. Here, we describe a high-throughput microfluidic mixing device, the herringbone-chip, or "HB-Chip," which provides an enhanced platform for CTC isolation. The HB-Chip design applies passive mixing of blood cells through the generation of microvortices to significantly increase the number of interactions between target CTCs and the antibody-coated chip surface. Efficient cell capture was validated using defined numbers of cancer cells spiked into control blood, and clinical utility was demonstrated in specimens from patients with prostate cancer. CTCs were detected in 14 of 15 (93%) patients with metastatic disease (median = 63 CTCs/mL, mean = 386 ± 238 CTCs/mL), and the tumor-specific TMPRSS2-ERG translocation was readily identified following RNA isolation and RT-PCR analysis. The use of transparent materials allowed for imaging of the captured CTCs using standard clinical histopathological stains, in addition to immunofluorescence-conjugated antibodies. In a subset of patient samples, the low shear design of the HB-Chip revealed microclusters of CTCs, previously unappreciated tumor cell aggregates that may contribute to the hematogenous dissemination of cancer.

  9. An optofluidic constriction chip for monitoring metastatic potential and drug response of cancer cells.

    Science.gov (United States)

    Martinez Vazquez, R; Nava, G; Veglione, M; Yang, T; Bragheri, F; Minzioni, P; Bianchi, E; Di Tano, M; Chiodi, I; Osellame, R; Mondello, C; Cristiani, I

    2015-04-01

    Cellular mechanical properties constitute good markers to characterize tumor cells, to study cell population heterogeneity and to highlight the effect of drug treatments. In this work, we describe the fabrication and validation of an integrated optofluidic chip capable of analyzing cellular deformability on the basis of the pressure gradient needed to push a cell through a narrow constriction. We demonstrate the ability of the chip to discriminate between tumorigenic and metastatic breast cancer cells (MCF7 and MDA-MB231) and between human melanoma cells with different metastatic potential (A375P and A375MC2). Moreover, we show that this chip allows highlighting the effect of drugs interfering with microtubule organization (paclitaxel, combretastatin A-4 and nocodazole) on cancer cells, which leads to changes in the pressure-gradient required to push cells through the constriction. Our single-cell microfluidic device for mechanical evaluation is compact and easy to use, allowing for an extensive use in different laboratory environments.

  10. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.

    Science.gov (United States)

    Nguyen, Tien Anh; Yin, Tsung-I; Reyes, Diego; Urban, Gerald A

    2013-11-19

    Cell migration has been recognized as one hallmark of malignant tumor progression. By integrating the method of electrical cell-substrate impedance sensing (ECIS) with the Boyden chamber design, the state-of-the-art techniques provide kinetic information about cell migration and invasion processes in three-dimensional (3D) extracellular matrixes. However, the information related to the initial stage of cell migration with single-cell resolution, which plays a unique role in the metastasis-invasion cascade of cancer, is not yet available. In this paper, we present a microfluidic device integrated with ECIS for investigating single cancer cell migration in 3D matrixes. Using microfluidics techniques without the requirement of physical connections to off-chip pneumatics, the proposed sensor chip can efficiently capture single cells on microelectrode arrays for sequential on-chip 2D or 3D cell culture and impedance measurement. An on-chip single-cell migration assay was successfully demonstrated within several minutes. Migration of single metastatic MDA-MB-231 cells in their initial stage can be monitored in real time; it shows a rapid change in impedance magnitude of approximately 10 Ω/s, whereas no prominent impedance change is observed for less-metastasis MCF-7 cells. The proposed sensor chip, allowing for a rapid and selective detection of the migratory properties of cancer cells at the single-cell level, could be applied as a new tool for cancer research.

  11. Rapid and highly sensitive detection of malaria-infected erythrocytes using a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shouki Yatsushiro

    Full Text Available BACKGROUND: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. METHODS AND FINDINGS: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. CONCLUSION: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10-100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes.

  12. On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance.

    Science.gov (United States)

    Gallego-Perez, Daniel; Chang, Lingqian; Shi, Junfeng; Ma, Junyu; Kim, Sung-Hak; Zhao, Xi; Malkoc, Veysi; Wang, Xinmei; Minata, Mutsuko; Kwak, Kwang J; Wu, Yun; Lafyatis, Gregory P; Lu, Wu; Hansford, Derek J; Nakano, Ichiro; Lee, L James

    2016-09-14

    Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to ∼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.

  13. CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models.

    Science.gov (United States)

    Xue, Fuying; Wu, Yanping; Zhao, Xinghui; Zhao, Taoran; Meng, Ying; Zhao, Zhanzhong; Guo, Junwei; Chen, Wei

    2016-08-01

    Nucleobindin-1 (NUCB1), also known as Calnuc, is a highly conserved, multifunctional protein widely expressed in tissues and cells. It contains two EF-hand motifs which have been shown to play a crucial role in binding Ca(2+) ions. In this study, we applied comparative two-dimensional gel electrophoresis to characterize differentially expressed proteins in HA-CHIP over-expressed and endogenous CHIP depleted MC3T3-E1 stable cell lines, identifying NUCB1 as a novel CHIP/Stub1 targeted protein. NUCB1 interacts with and is down-regulated by CHIP by both proteasomal dependent and independent pathways, suggesting that CHIP-mediated down-regulation of nucleobindin-1 might play a role in osteoblast differentiation. The chaperone protein Hsp70 was found to be important for CHIP and NUCB1 interaction as well as CHIP-mediated NUCB1 down-regulation. Our findings provide new insights into understanding the stability regulation of NUCB1.

  14. Lab-on-chip platform for circulating tumor cells isolation

    Science.gov (United States)

    Maurya, D. K.; Fooladvand, M.; Gray, E.; Ziman, M.; Alameh, K.

    2015-12-01

    We design, develop and demonstrate the principle of a continuous, non-intrusive, low power microfluidics-based lab-ona- chip (LOC) structure for Circulating Tumor Cell (CTC) separation. Cell separation is achieved through 80 cascaded contraction and expansion microchannels of widths 60 μm and 300 μm, respectively, and depth 60 μm, which enable momentum-change-induced inertial forces to be exerted on the cells, thus routing them to desired destinations. The total length of the developed LOC is 72 mm. The LOC structure is simulated using the COMSOL multiphysics software, which enables the optimization of the dimensions of the various components of the LOC structure, namely the three inlets, three filters, three contraction and expansion microchannel segments and five outlets. Simulation results show that the LOC can isolate CTCs of sizes ranging from 15 to 30 μm with a recovery rate in excess of 90%. Fluorescent microparticles of two different sizes (5 μm and 15 μm), emulating blood and CTC cells, respectively, are used to demonstrate the principle of the developed LOC. A mixture of these microparticles is injected into the primary LOC inlet via an electronically-controlled syringe pump, and the large-size particles are routed to the primary LOC outlet through the contraction and expansion microchannels. Experimental results demonstrate the ability of the developed LOC to isolate particles by size exclusion with an accuracy of 80%. Ongoing research is focusing on the LOC design improvement for better separation efficiency and testing of biological samples for isolation of CTCs.

  15. Research on Electric Impedance Spectroscopy of Living Cell Suspensions by a Chip with Microelectrodes

    Institute of Scientific and Technical Information of China (English)

    Xing Yang; Zhaoying Zhou; Mingfei Xiao; Ying Wu; Shangfeng Liu

    2006-01-01

    A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed. The substrate and the electrodes of the chip were made of glass and gold, respectively. The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline, culture medium, living cell suspension etc.) by scanning from 10Hz to 45kHz. A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension. An actual circuit was also built and tested to verify the 6-element circuit model proposed. The micro-EIS chip has several advantages including the use of small sample volumes, high resolution and ease of operation. It shows good application prospects in the areas of cellular electrophysiology, drug screening and bio-sensors etc.

  16. Detection of the apoptosis of Jurkat cell using an electrorotation chip

    Institute of Scientific and Technical Information of China (English)

    Long Quan; Xing Wanli

    2006-01-01

    The apoptosis of cells is one of the fields that attract increasing attention in biology today.Usually,the cells are treated with chemicals when detecting apoptosis.It is highly desired to detect apoptosis in a real-time basis.Apoptosis of Jurkat cells was studied using a real-time electrorotation chip.This chip allows the detection of the cell membrane capacitance changes during the course of apoptosis and therefore facilitates the analysis of apoptosis in a real-time basis without involving any chemical treatment.

  17. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    DEFF Research Database (Denmark)

    Tanzi, Simone; Larsen, Simon Tylsgaard; Taboryski, Rafael J.

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3,4-ethylen......We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3...

  18. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  19. Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip.

    Science.gov (United States)

    Wang, Chun-Chieh; Kao, Yu-Chiu; Chi, Pei-Yin; Huang, Ching-Wen; Lin, Jiunn-Yuan; Chou, Chia-Fu; Cheng, Ji-Yen; Lee, Chau-Hwang

    2011-02-21

    We combine a micro-fluidic electric-field cell-culture (MEC) chip with structured-illumination nano-profilometry (SINAP) to quantitatively study the variations of cancer cell filopodia under external direct-current electric field (dcEF) stimulations. Because the lateral resolution of SINAP is better than 150 nm in bright-field image modality, filopodia with diameters smaller than 200 nm can be observed clearly without fluorescent labeling. In the MEC chip, a homogeneous EF is generated inside the culture area that simulates the endogenous EF environment. With this MEC chip-SINAP system, we directly observe and quantify the biased growth of filopodia of lung cancer cells toward the cathode. The epidermal growth factor receptors around the cell edges are also redistributed to the cathodal side. These results suggest that cancer-cell filopodia respond to the changes in EFs in the microenvironment.

  20. SEMICONDUCTOR INTEGRATED CIRCUITS: A self-adaptive full asynchronous bi-directional transmission channel for network-on-chips

    Science.gov (United States)

    Xuguang, Guan; Yintang, Yang; Zhangming, Zhu; Duan, Zhou

    2010-08-01

    To improve two shortcomings of conventional network-on-chips, i.e. low utilization rate in channels between routers and excessive interconnection lines, this paper proposes a full asynchronous self-adaptive bi-directional transmission channel. It can utilize interconnection lines and register resources with high efficiency, and dynamically detect the data transmission state between routers through a direction regulator, which controls the sequencer to automatically adjust the transmission direction of the bi-directional channel, so as to provide a flexible data transmission environment. Null convention logic units are used to make the circuit quasi-delay insensitive and highly robust. The proposed bi-directional transmission channel is implemented based on SMIC 0.18 μm standard CMOS technology. Post-layout simulation results demonstrate that this self-adaptive bi-directional channel has better performance on throughput, transmission flexibility and channel bandwidth utilization compared to a conventional single direction channel. Moreover, the proposed channel can save interconnection lines up to 30% and can provide twice the bandwidth resources of a single direction transmission channel. The proposed channel can apply to an on-chip network which has limited resources of registers and interconnection lines.

  1. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.

    Science.gov (United States)

    Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J

    2016-12-20

    Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.

  2. E. coli cells adaptation to solar environment

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A. [Institute J. Monod, Paris (France)

    1997-12-31

    Full text. Photo mutagenesis of E.coli cells exposed to solar light results essentially from the combined effect of its U V C, U V B and U V A components. The high photo mutagenic efficiency of UVC is known to be hampered when the cells have been pre illuminated with near UV light. Near UV light triggers the growth delay effect at sublethal fluences ( and reveals poorly mutagenic). The chromophore leading to this growth lag effect is a rare nucleoside, 4-thio uridine s4U, present only in position 8 of E. coli tRNAs. Upon photo activation s4U led to formation of an intramolecular 8-13 crosslink in a number of tRNA species, including tRNAphe and tRNApro. These two crosslinked Trna species can no more be efficiently acylated by their corresponding tRNa ligases and accumulate on the uncharged from thus preventing protein synthesis, and effect amplified by the so called stringent response. Accordingly nuvA mutant cells no more exhibit growth delay UVC induced mutagenesis involves activation of the inducible error-prone SOS system which requires protein synthesis. By compacting the level of expression of the SOS gene sfiA (using a sfiA:lacZ fusion) in wild-type and nuvA mutant cells submitted to combined UVC, UVA radiations, we have demonstrated that indeed 4-thio uridine behaves as an anti photo mutagenic device. Adaptation of E. coli cell to its solar environment will be discussed in the light of this finding

  3. Chip-based Three-dimensional Cell Culture in Perfused Micro-bioreactors

    Science.gov (United States)

    Gottwald, Eric; Lahni, Brigitte; Thiele, David; Giselbrecht, Stefan; Welle, Alexander; Weibezahn, Karl-Friedrich

    2008-01-01

    We have developed a chip-based cell culture system for the three-dimensional cultivation of cells. The chip is typically manufactured from non-biodegradable polymers, e.g., polycarbonate or polymethyl methacrylate by micro injection molding, micro hot embossing or micro thermoforming. But, it can also be manufactured from bio-degradable polymers. Its overall dimensions are 0.7 1 x 20 x 20 x 0.7 1 mm (h x w x l). The main features of the chips used are either a grid of up to 1156 cubic micro-containers (cf-chip) each the size of 120-300 x 300 x 300 μ (h x w x l) or round recesses with diameters of 300 μ and a depth of 300 μ (r-chip). The scaffold can house 10 Mio. cells in a three-dimensional configuration. For an optimal nutrient and gas supply, the chip is inserted in a bioreactor housing. The bioreactor is part of a closed steril circulation loop that, in the simplest configuration, is additionaly comprised of a roller pump and a medium reservoir with a gas supply. The bioreactor can be run in perfusion, superfusion, or even a mixed operation mode. We have successfully cultivated cell lines as well as primary cells over periods of several weeks. For rat primary liver cells we could show a preservation of organotypic functions for more than 2 weeks. For hepatocellular carcinoma cell lines we could show the induction of liver specific genes not or only slightly expressed in standard monolayer culture. The system might also be useful as a stem cell cultivation system since first differentiation experiments with stem cell lines were promising. PMID:19066592

  4. On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood.

    Science.gov (United States)

    Choi, Jongchan; Hyun, Ji-chul; Yang, Sung

    2015-10-14

    The extraction of virological markers in white blood cells (WBCs) from whole blood--without reagents, electricity, or instruments--is the most important first step for diagnostic testing of infectious diseases in resource-limited settings. Here we develop an integrated microfluidic chip that continuously separates WBCs from whole blood and mechanically ruptures them to extract intracellular proteins and nucleic acids for diagnostic purposes. The integrated chip is assembled with a device that separates WBCs by using differences in blood cell size and a mechanical cell lysis chip with ultra-sharp nanoblade arrays. We demonstrate the performance of the integrated device by quantitatively analyzing the levels of extracted intracellular proteins and genomic DNAs. Our results show that compared with a conventional method, the device yields 120% higher level of total protein amount and similar levels of gDNA (90.3%). To demonstrate its clinical application to human immunodeficiency virus (HIV) diagnostics, the developed chip was used to process blood samples containing HIV-infected cells. Based on PCR results, we demonstrate that the chip can extract HIV proviral DNAs from infected cells with a population as low as 10(2)/μl. These findings suggest that the developed device has potential application in point-of-care testing for infectious diseases in developing countries.

  5. Seeking help: B cells adapting to flu variability.

    Science.gov (United States)

    van der Most, Robbert G; Roman, François P; Innis, Bruce; Hanon, Emmanuel; Vaughn, David W; Gillard, Paul; Walravens, Karl; Wettendorff, Martine

    2014-07-23

    The study of influenza vaccines has revealed potential interactions between preexisting immunological memory and antigenic context and/or adjuvantation. In the face of antigenic diversity, the process of generating B cell adaptability is driven by cross-reactive CD4 memory cells, such as T follicular helper cells from previous infections or vaccinations. Although such "helped" B cells are capable of adapting to variant antigens, lack of CD4 help could lead to a suboptimal antibody response. Collectively, this indicates an interplay between CD4 T cells, adjuvant, and B cell adaptability.

  6. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.

    Science.gov (United States)

    Carrillo, Snaider; Harkin, Jim; McDaid, Liam; Pande, Sandeep; Cawley, Seamus; McGinley, Brian; Morgan, Fearghal

    2012-09-01

    The brain is highly efficient in how it processes information and tolerates faults. Arguably, the basic processing units are neurons and synapses that are interconnected in a complex pattern. Computer scientists and engineers aim to harness this efficiency and build artificial neural systems that can emulate the key information processing principles of the brain. However, existing approaches cannot provide the dense interconnect for the billions of neurons and synapses that are required. Recently a reconfigurable and biologically inspired paradigm based on network-on-chip (NoC) and spiking neural networks (SNNs) has been proposed as a new method of realising an efficient, robust computing platform. However, the use of the NoC as an interconnection fabric for large-scale SNNs demands a good trade-off between scalability, throughput, neuron/synapse ratio and power consumption. This paper presents a novel traffic-aware, adaptive NoC router, which forms part of a proposed embedded mixed-signal SNN architecture called EMBRACE (EMulating Biologically-inspiRed ArChitectures in hardwarE). The proposed adaptive NoC router provides the inter-neuron connectivity for EMBRACE, maintaining router communication and avoiding dropped router packets by adapting to router traffic congestion. Results are presented on throughput, power and area performance analysis of the adaptive router using a 90 nm CMOS technology which outperforms existing NoCs in this domain. The adaptive behaviour of the router is also verified on a Stratix II FPGA implementation of a 4 × 2 router array with real-time traffic congestion. The presented results demonstrate the feasibility of using the proposed adaptive NoC router within the EMBRACE architecture to realise large-scale SNNs on embedded hardware.

  7. Hair-Cell Versus Afferent Adaptation in the Semicircular Canals

    OpenAIRE

    Rabbitt, R. D.; Boyle, R.; Holstein, G. R.; Highstein, S. M.

    2004-01-01

    The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupula displacements. The dominant adaptation time constant varied considerably among afferent fibers an...

  8. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

    Directory of Open Access Journals (Sweden)

    Niina Halonen

    2016-11-01

    Full Text Available Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  9. Non-destructive on-chip cell sorting system with real-time microscopic image processing

    Directory of Open Access Journals (Sweden)

    Ichiki Takanori

    2004-06-01

    Full Text Available Abstract Studying cell functions for cellomics studies often requires the use of purified individual cells from mixtures of various kinds of cells. We have developed a new non-destructive on-chip cell sorting system for single cell based cultivation, by exploiting the advantage of microfluidics and electrostatic force. The system consists of the following two parts: a cell sorting chip made of poly-dimethylsiloxane (PDMS on a 0.2-mm-thick glass slide, and an image analysis system with a phase-contrast/fluorescence microscope. The unique features of our system include (i identification of a target from sample cells is achieved by comparison of the 0.2-μm-resolution phase-contrast and fluorescence images of cells in the microchannel every 1/30 s; (ii non-destructive sorting of target cells in a laminar flow by application of electrostatic repulsion force for removing unrequited cells from the one laminar flow to the other; (iii the use of agar gel for electrodes in order to minimize the effect on cells by electrochemical reactions of electrodes, and (iv pre-filter, which was fabricated within the channel for removal of dust contained in a sample solution from tissue extracts. The sorting chip is capable of continuous operation and we have purified more than ten thousand cells for cultivation without damaging them. Our design has proved to be very efficient and suitable for the routine use in cell purification experiments.

  10. Designing a WISHBONE Protocol Network Adapter for an Asynchronous Network-on-Chip

    CERN Document Server

    Soliman, Ahmed H M; El-Bably, M; Keshk, Hesham M A M

    2012-01-01

    The Scaling of microchip technologies, from micron to submicron and now to deep sub-micron (DSM) range, has enabled large scale systems-on-chip (SoC). In future deep submicron (DSM) designs, the interconnect effect will definitely dominate performance. Network-on-Chip (NoC) has become a promising solution to bus-based communication infrastructure limitations. NoC designs usually targets Application Specific Integrated Circuits (ASICs), however, the fabrication process costs a lot. Implementing a NoC on an FPGA does not only reduce the cost but also decreases programming and verification cycles. In this paper, an Asynchronous NoC has been implemented on a SPARTAN-3E\\textregistered device. The NoC supports basic transactions of both widely used on-chip interconnection standards, the Open Core Protocol (OCP) and the WISHBONE Protocol. Although, FPGA devices are synchronous in nature, it has been shown that they can be used to prototype a Global Asynchronous Local Synchronous (GALS) systems, comprising an Asynchr...

  11. A Nonlinear Size-Dependent Equivalent Circuit Model for Single-Cell Electroporation on Microfluidic Chips.

    Science.gov (United States)

    Shagoshtasbi, Hooman; Deng, Peigang; Lee, Yi-Kuen

    2015-08-01

    Electroporation (EP) is a process of applying a pulsed intense electric field on the cell membrane to temporarily induce nanoscale electropores on the plasma membrane of biological cells. A nonlinear size-dependent equivalent circuit model of a single-cell electroporation system is proposed to investigate dynamic electromechanical behavior of cells on microfluidic chips during EP. This model consists of size-dependent electromechanical components of a cell, electrical components of poration media, and a microfluidic chip. A single-cell microfluidic EP chip with 3D microelectrode arrays along a microchannel is designed and fabricated to experimentally analyze the permeabilization of a cell. Predicted electrical current responses of the model are in good agreement (average error of 6%) with that of single-cell EP. The proposed model can successfully predict the time responses of transmembrane voltage, pore diameter, and pore density at four different stages of permeabilization. These stages are categorized based on electromechanical changes of the lipid membrane. The current-voltage characteristic curve of the cell membrane during EP is also investigated at different EP stages in detail. The model can precisely predict the electric breakdown of different cell lines at a specific critical cell membrane voltage of the target cell lines.

  12. Analysis of DNA-chip and antigen-chip data: studies of cancer, stem cells and autoimmune diseases

    Science.gov (United States)

    Domany, Eytan

    2005-07-01

    Biology has undergone a revolution during the past decade. Deciphering the human genome has opened new horizons, among which the advent of DNA microarrays has been perhaps the most significant. These miniature measuring devices report the levels at which tens of thousands of genes are expressed in a collection of cells of interest (such as tissue from a tumor). I describe here briefly this technology and present an example of how analysis of data obtained from such high throughput experiments provides insights of possible clinical and therapeutic relevance for Acute Lymphoblastic Leukemia. Next, I describe how gene expression data is used to deduce a new design principle, " Just In Case", used by stem cells. Finally I briefly review a different novel technology, of antigen chips, which provide a fingerprint of a subject's immune system and may become a predictive clinical tool. The work reviewed here was done in collaboration with numerous colleagues and students.

  13. Raman-Spectroscopy Based Cell Identification on a Microhole Array Chip

    Directory of Open Access Journals (Sweden)

    Ute Neugebauer

    2014-04-01

    Full Text Available Circulating tumor cells (CTCs from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3 and breast cancer cells (MCF-7 and BT-20. The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting.

  14. Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications.

    Science.gov (United States)

    Tang, Qi; Liang, Min; Lu, Yi; Wong, Pak Kin; Wilmink, Gerald J; Zhang, Donna; Xin, Hao

    2016-04-04

    THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 °C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells.

  15. Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications

    Science.gov (United States)

    Tang, Qi; Liang, Min; Lu, Yi; Wong, Pak Kin; Wilmink, Gerald J.; D. Zhang, Donna; Xin, Hao

    2016-01-01

    THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 °C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells. PMID:27049392

  16. Implementation of Microfluidic Chip Electrophoresis for the Detection of B-cell Clonality

    Directory of Open Access Journals (Sweden)

    Vazan M

    2016-04-01

    Full Text Available Introduction: A clonal population of B-cells is defined as those cells arising from the mitotic division of a single somatic cell with the same rearrangement of immunoglobulin genes. This gives rise to DNA markers for each individual lymphoid cell and its progenies and enables us to study clonality in different B-cell malignancies using multiplex polymerase chain reaction - PCR. The BIOMED-2 protocol has been implemented for clonality detection in lymphoproliferative diseases and exploits multiplex PCR reaction, subsequently analyzed by heteroduplex analysis (HDA using polyacrylamide gel electrophoresis (PAGE. With the advent of miniaturization and automation of molecular biology methods, lab-on-chip technologies were developed and replace partially the conventional approaches. We tested device for microfluidic chip, which is used for B-cells clonality analysis, using a PCR reaction for three subregions called frameworks (FR of the immunoglobulin heavy locus (IGH gene.

  17. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.

    Science.gov (United States)

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li

    2014-05-01

    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients.

  18. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  19. CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population.

    Science.gov (United States)

    Tsuchiya, M; Nakajima, Y; Waku, T; Hiyoshi, H; Morishita, T; Furumai, R; Hayashi, Y; Kishimoto, H; Kimura, K; Yanagisawa, J

    2015-08-27

    Many types of cancer display heterogeneity in various features, including gene expression and malignant potential. This heterogeneity is associated with drug resistance and cancer progression. Recent studies have shown that the expression of a major protein quality control ubiquitin ligase, carboxyl terminus of Hsc70-interacting protein (CHIP), is negatively correlated with breast cancer clinicopathological stages and poor overall survival. Here we show that CHIP acts as a capacitor of heterogeneous Bcl-2 expression levels and prevents an increase in the anticancer drug-resistant population in breast cancer cells. CHIP knockdown in breast cancer cells increased variation in Bcl-2 expression levels, an antiapoptotic protein, among the cells. Our results also showed that CHIP knockdown increased the proportion of anticancer drug-resistant cells. These findings suggest that CHIP buffers variation in gene expression levels, affecting resistance to anticancer drugs. In single-cell clones derived from breast cancer cell lines, CHIP knockdown did not alter the variation in Bcl-2 expression levels and the proportion of anticancer drug-resistant cells. In contrast, when clonal cells were treated with a mutagen, the variation in Bcl-2 expression levels and proportion of anticancer drug-resistant cells were altered by CHIP knockdown. These results suggest that CHIP masks genetic variations to suppress heterogeneous Bcl-2 expression levels and prevents augmentation of the anticancer drug-resistant population of breast cancer cells. Because genetic variation is a major driver of heterogeneity, our results suggest that the degree of heterogeneity in expression levels is decided by a balance between genetic variation and the buffering capacity of CHIP.

  20. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip

    DEFF Research Database (Denmark)

    Selmeczi, David; Hansen, Thomas; Met, Özcan

    2011-01-01

    We present a hybrid chip of polymer and stainless steel designed for high-throughput continuous electroporation of cells in suspension. The chip is constructed with two parallel stainless steel mesh electrodes oriented perpendicular to the liquid flow. The relatively high hydrodynamic resistance ...

  1. Multipotent glia-like stem cells mediate stress adaptation.

    Science.gov (United States)

    Rubin de Celis, Maria F; Garcia-Martin, Ruben; Wittig, Dierk; Valencia, Gabriela D; Enikolopov, Grigori; Funk, Richard H; Chavakis, Triantafyllos; Bornstein, Stefan R; Androutsellis-Theotokis, Andreas; Ehrhart-Bornstein, Monika

    2015-06-01

    The neural crest-derived adrenal medulla is closely related to the sympathetic nervous system; however, unlike neural tissue, it is characterized by high plasticity which suggests the involvement of stem cells. Here, we show that a defined pool of glia-like nestin-expressing progenitor cells in the adult adrenal medulla contributes to this plasticity. These glia-like cells have features of adrenomedullary sustentacular cells, are multipotent, and are able to differentiate into chromaffin cells and neurons. The adrenal is central to the body's response to stress making its proper adaptation critical to maintaining homeostasis. Our results from stress experiments in vivo show the activation and differentiation of these progenitors into new chromaffin cells. In summary, we demonstrate the involvement of a new glia-like multipotent stem cell population in adrenal tissue adaptation. Our data also suggest the contribution of stem and progenitor cells in the adaptation of neuroendocrine tissue function in general.

  2. Towards a single-chip, implantable RFID system: is a single-cell radio possible?

    Science.gov (United States)

    Burke, Peter; Rutherglen, Christopher

    2010-08-01

    We present an overview of progress towards single-chip RFID solutions. To date heterogeneous integration has been appropriate for non-biological systems. However, for in-vivo sensors and even drug delivery systems, a small form factor is required. We discuss fundamental limits on the size of the form factor, the effect of the antenna, and propose a unified single-chip RFID solution appropriate for a broad range of biomedical in-vivo device applications, both current and future. Fundamental issues regarding the possibility of single cell RF radios to interface with biological function are discussed.

  3. Polymer Micro- and Nanofabrication for On-Chip Immune Cell Handling

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian

    , disposable polymer chips were fabricated by injection molding and ultrasonic welding for the generation of a large number of mature DCs in a closed microfluidic perfusion culture. By using low gas permeable tubings and chip materials, a constant pH and bubble-free culture medium was maintained for 7 days......There is an increasing interest in combining micro- and nanotechnology with mass-fabrication techniques for clinical applications such as diagnostics and therapeutics. One of the most promising strategies for developing a cancer vaccine is immunotherapy based on dendritic cells (DCs). However...

  4. Microfabrication of chip-sized scaffolds for three-dimensional cell cultivation.

    Science.gov (United States)

    Giselbrecht, Stefan; Gottwald, Eric; Truckenmueller, Roman; Trautmann, Christina; Welle, Alexander; Guber, Andreas; Saile, Volker; Gietzelt, Thomas; Weibezahn, Karl-Friedrich

    2008-05-12

    Using microfabrication technologies is a prerequisite to create scaffolds of reproducible geometry and constant quality for three-dimensional cell cultivation. These technologies offer a wide spectrum of advantages not only for manufacturing but also for different applications. The size and shape of formed cell clusters can be influenced by the exact and reproducible architecture of the microfabricated scaffold and, therefore, the diffusion path length of nutrients and gases can be controlled.1 This is unquestionably a useful tool to prevent apoptosis and necrosis of cells due to an insufficient nutrient and gas supply or removal of cellular metabolites. Our polymer chip, called CellChip, has the outer dimensions of 2 x 2 cm with a central microstructured area. This area is subdivided into an array of up to 1156 microcontainers with a typical dimension of 300 m edge length for the cubic design (cp- or cf-chip) or of 300 m diameter and depth for the round design (r-chip).2 So far, hot embossing or micro injection moulding (in combination with subsequent laborious machining of the parts) was used for the fabrication of the microstructured chips. Basically, micro injection moulding is one of the only polymer based replication techniques that, up to now, is capable for mass production of polymer microstructures.3 However, both techniques have certain unwanted limitations due to the processing of a viscous polymer melt with the generation of very thin walls or integrated through holes. In case of the CellChip, thin bottom layers are necessary to perforate the polymer and provide small pores of defined size to supply cells with culture medium e.g. by microfluidic perfusion of the containers. In order to overcome these limitations and to reduce the manufacturing costs we have developed a new microtechnical approach on the basis of a down-scaled thermoforming process. For the manufacturing of highly porous and thin walled polymer chips, we use a combination of heavy ion

  5. An Adaptive Multiuser Chip-Rate Equalizer for CDMA Underwater Communication System

    Institute of Scientific and Technical Information of China (English)

    HAN Jing; HUANG Jian-guo; SHEN Xiao-hong

    2008-01-01

    Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and compensate the channel distortion, a decentralized hypothesis-feedback equalization (HFE) algorithm based on chip-rate update has been used[1]. But due to multiple access interference (MAI), its performance suffers degradation. For this reason, successive interference cancellation hypothesis-feedback equalization (SIC-HFE) algorithm is proposed, which combines the capabilities of HFE to track the time-varying channel and SIC implemented by cross-over feedback filters to cancel out the MAI effects between users. Simulation and experiment results show that the proposed algorithm can significantly improve the performance of asynchronous multiuser CDMA underwater communication system.

  6. Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

    CERN Document Server

    Boriskina, Svetlana V

    2011-01-01

    A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strateg...

  7. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  8. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  9. High-content single-cell analysis on-chip using a laser microarray scanner.

    Science.gov (United States)

    Zhou, Jing; Wu, Yu; Lee, Sang-Kwon; Fan, Rong

    2012-12-07

    High-content cellomic analysis is a powerful tool for rapid screening of cellular responses to extracellular cues and examination of intracellular signal transduction pathways at the single-cell level. In conjunction with microfluidics technology that provides unique advantages in sample processing and precise control of fluid delivery, it holds great potential to transform lab-on-a-chip systems for high-throughput cellular analysis. However, high-content imaging instruments are expensive, sophisticated, and not readily accessible. Herein, we report on a laser scanning cytometry approach that exploits a bench-top microarray scanner as an end-point reader to perform rapid and automated fluorescence imaging of cells cultured on a chip. Using high-content imaging analysis algorithms, we demonstrated multiplexed measurements of morphometric and proteomic parameters from all single cells. Our approach shows the improvement of both sensitivity and dynamic range by two orders of magnitude as compared to conventional epifluorescence microscopy. We applied this technology to high-throughput analysis of mesenchymal stem cells on an extracellular matrix protein array and characterization of heterotypic cell populations. This work demonstrates the feasibility of a laser microarray scanner for high-content cellomic analysis and opens up new opportunities to conduct informative cellular analysis and cell-based screening in the lab-on-a-chip systems.

  10. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    Science.gov (United States)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  11. Self-adaptive phosphor coating technology for wafer-level scale chip packaging

    Institute of Scientific and Technical Information of China (English)

    Zhou Linsong; Rao Haibo; Wang Wei; Wan Xianlong; Liao Junyuan; Wang Xuemei; Zhou Da

    2013-01-01

    A new self-adaptive phosphor coating technology has been successfully developed,which adopted a slurry method combined with a self-exposure process.A phosphor suspension in the water-soluble photoresist was applied and exposed to LED blue light itself and developed to form a conformal phosphor coating with selfadaptability to the angular distribution of intensity of blue light and better-performing spatial color uniformity.The self-adaptive phosphor coating technology had been successfully adopted in the wafer surface to realize a waferlevel scale phosphor conformal coating.The first-stage experiments show satisfying results and give an adequate demonstration of the flexibility of self-adaptive coating technology on application of WLSCP.

  12. Disposable on-chip microfluidic system for buccal cell lysis, DNA purification, and polymerase chain reaction.

    Science.gov (United States)

    Cho, Woong; Maeng, Joon-Ho; Ahn, Yoomin; Hwang, Seung Yong

    2013-09-01

    This paper reports the development of a disposable, integrated biochip for DNA sample preparation and PCR. The hybrid biochip (25 × 45 mm) is composed of a disposable PDMS layer with a microchannel chamber and reusable glass substrate integrated with a microheater and thermal microsensor. Lysis, purification, and PCR can be performed sequentially on this microfluidic device. Cell lysis is achieved by heat and purification is performed by mechanical filtration. Passive check valves are integrated to enable sample preparation and PCR in a fixed sequence. Reactor temperature is needed to lysis and PCR reaction is controlled within ±1°C by PID controller of LabVIEW software. Buccal epithelial cell lysis, DNA purification, and SY158 gene PCR amplification were successfully performed on this novel chip. Our experiments confirm that the entire process, except the off-chip gel electrophoresis, requires only approximately 1 h for completion. This disposable microfluidic chip for sample preparation and PCR can be easily united with other technologies to realize a fully integrated DNA chip.

  13. Novel sequential ChIP and simplified basic ChIP protocols for promoter co-occupancy and target gene identification in human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Elayaperumal Anuratha

    2009-06-01

    Full Text Available Abstract Background The investigation of molecular mechanisms underlying transcriptional regulation, particularly in embryonic stem cells, has received increasing attention and involves the systematic identification of target genes and the analysis of promoter co-occupancy. High-throughput approaches based on chromatin immunoprecipitation (ChIP have been widely used for this purpose. However, these approaches remain time-consuming, expensive, labor-intensive, involve multiple steps, and require complex statistical analysis. Advances in this field will greatly benefit from the development and use of simple, fast, sensitive and straightforward ChIP assay and analysis methodologies. Results We initially developed a simplified, basic ChIP protocol that combines simplicity, speed and sensitivity. ChIP analysis by real-time PCR was compared to analysis by densitometry with the ImageJ software. This protocol allowed the rapid identification of known target genes for SOX2, NANOG, OCT3/4, SOX17, KLF4, RUNX2, OLIG2, SMAD2/3, BMI-1, and c-MYC in a human embryonic stem cell line. We then developed a novel Sequential ChIP protocol to investigate in vivo promoter co-occupancy, which is basically characterized by the absence of antibody-antigen disruption during the assay. It combines centrifugation of agarose beads and magnetic separation. Using this Sequential ChIP protocol we found that c-MYC associates with the SOX2/NANOG/OCT3/4 complex and identified a novel RUNX2/BMI-1/SMAD2/3 complex in BG01V cells. These two TF complexes associate with two distinct sets of target genes. The RUNX2/BMI-1/SMAD2/3 complex is associated predominantly with genes not expressed in undifferentiated BG01V cells, consistent with the reported role of those TFs as transcriptional repressors. Conclusion These simplified basic ChIP and novel Sequential ChIP protocols were successfully tested with a variety of antibodies with human embryonic stem cells, generated a number of novel

  14. Adaptation to optimal cell growth through self-organized criticality.

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells.

  15. The RootChip: an integrated microfluidic chip for plant science.

    Science.gov (United States)

    Grossmann, Guido; Guo, Woei-Jiun; Ehrhardt, David W; Frommer, Wolf B; Sit, Rene V; Quake, Stephen R; Meier, Matthias

    2011-12-01

    Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.

  16. The RootChip: An Integrated Microfluidic Chip for Plant Science[W][OA

    Science.gov (United States)

    Grossmann, Guido; Guo, Woei-Jiun; Ehrhardt, David W.; Frommer, Wolf B.; Sit, Rene V.; Quake, Stephen R.; Meier, Matthias

    2011-01-01

    Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling. PMID:22186371

  17. Activation of Na+ channels in cell membrane by capacitive stimulation with silicon chip

    Science.gov (United States)

    Schoen, Ingmar; Fromherz, Peter

    2005-11-01

    Sodium channels are the crucial electrical elements of neuronal excitation. As a step toward hybrid neuron-semiconductor devices, we studied the activation of recombinant NaV1.4 sodium channels in human embryonic kidney (HEK293) cells by stimulation from an electrolyte/oxide/silicon (EOS) capacitor. HfO2 was used as an insulator to attain a high capacitance. An effective activation was achieved by decaying voltage ramps at constant intracellular voltage at a depleted NaCl concentration in the bath to enhance the resistance of the cell-chip contact. We were also able to open sodium channels at a NaCl concentration close to physiological conditions. This experiment provides a basis for noninvasive capacitive stimulation of nerve cells with semiconductor chips.

  18. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.

    Science.gov (United States)

    Esquivel, Juan Pablo; Castellarnau, Marc; Senn, Tobias; Löchel, Bernd; Samitier, Josep; Sabaté, Neus

    2012-01-07

    The achievement of a higher degree of integration of components--especially micropumps and power sources--is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (μDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO(2) from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4-18 μL min(-1) while having an available power between 1-4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO(2) pumping action to flow the required analytes through a particular microfluidic design.

  19. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Noelia Campillo

    2016-07-01

    Full Text Available Intermittent hypoxia (IH, a hallmark of obstructive sleep apnea (OSA, plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS and consists of a cylindrical well covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time 6 s. Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

  20. A Novel Chip for Cyclic Stretch and Intermittent Hypoxia Cell Exposures Mimicking Obstructive Sleep Apnea

    Science.gov (United States)

    Campillo, Noelia; Jorba, Ignasi; Schaedel, Laura; Casals, Blai; Gozal, David; Farré, Ramon; Almendros, Isaac; Navajas, Daniel

    2016-01-01

    Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch. PMID:27524971

  1. Real-time monitoring of copper ions-induced cytotoxicity by EIS cell chips.

    Science.gov (United States)

    Primiceri, Elisabetta; Chiriacò, Maria Serena; D'Amone, Eliana; Urso, Emanuela; Ionescu, Rodica Elena; Rizzello, Antonia; Maffia, Michele; Cingolani, Roberto; Rinaldi, Ross; Maruccio, Giuseppe

    2010-08-15

    An important goal of biomedical research is the development of tools for high-throughput evaluation of drug effects and cytotoxicity tests. Here we demonstrate EIS cell chips able to monitor cell growth, morphology, adhesion and their changes as a consequence of treatment with drugs or toxic compounds. As a case study, we investigate the uptake of copper ions and its effect on two cell lines: B104 and HeLa cells. For further understanding, we also carried out in parallel with EIS studies, a complete characterization of cell morphology and changes induced by copper ions through complementary methodologies (including state-of-the-art AFM, viability test and Western blot). Our results reveal a strong correlation between EIS data and both MTT test and AFM characterization so our chip can be used as powerful tools in all biology lab in combination with other standard methods giving additional information that can be useful in a complete and deep investigation of a biological process. This chip can be used even alone replacing in vitro drug tests based on conventional biochemical methods, being very cheap and reusable and allowing to perform cytotoxicity tests without using any expensive reagent or equipment.

  2. Adaptive digital calibration techniques for narrow band low-IF receivers with on-chip PLL

    Institute of Scientific and Technical Information of China (English)

    Li Juan; Zhang Huajiang; Zhao Feng; Hong Zhiliang

    2009-01-01

    Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented. The calibration and control system, which is adopted to ensure an achievable signal-to-noise ratio and bit error rate, consists of a digitally controlled, high resolution dB-linear automatic gain control (AGC), an inphase (I) and quadrature (Q) gain and phase mismatch calibration, and an automatic frequency calibration (AFC) of a wideband voltage-controlled oscillator in a PLL based frequency synthesizer. The calibration system has a low design complexity with little power and small die area. Simulation results show that the calibration system can enlarge the dynamic range to 72 dB and minimize the phase and amplitude imbalance between I and Q to 0.08° and 0.024 dB, respectively, which means the image rejection ratio is better than 60 dB. In addition, the calibration time of the AFC is 1.12μs only with a reference clock of 100 MHz.

  3. Innovative approaches to cell biomechanics from cell migration to on-chip manipulation

    CERN Document Server

    Okeyo, Kennedy Omondi; Adachi, Taiji

    2015-01-01

    This book covers topics on mechanosensing, mechanotransduction, and actin cytoskeletal dynamics in cell motility. It will contribute to a better understanding of how cells functionally adapt to their mechanical environment as well as highlighting fundamental concepts for designing material niches for cell manipulation. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, the book is the first of its kind, providing comprehensive, integrated coverage of innovative approaches to cell biomechanics. It provides a valuable resource for seniors and graduate students studying cell biomechanics, and is also suitable for researchers interested in the application of methods and strategies in connection with the innovative approaches discussed. Each section of the book has been supplemented with concrete examples and illustrations to facilitate understanding even for readers unfamiliar with cell biomechanics.

  4. δ-OPIOID RECEPTOR ADAPTATION IN NEUROBLASTOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    D-M,Chuang; M.Belchers; J.Barg; J.Rowinski; G.Clark; C.A.Gloeckner; A.Ho; X-M.Gao; C.J.Coscia

    1993-01-01

    The mechanisms underlying tolerance and dependence arising from chronic opioid exposure are poorly understood. However, the development of neuroblastoma and neurohybrid cell culturea, has provided a simplified model for the atudy of opioid receptor adaptation. Using neuroblastoma NG108-15 cells,

  5. Microfabrication of human organs-on-chips.

    Science.gov (United States)

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  6. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  7. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.

    Science.gov (United States)

    Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro

    2015-09-01

    Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70.

  8. Pyrolyzed Photoresist Electrodes for Integration in Microfluidic Chips for Transmitter Detection from Biological Cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Argyraki, Aikaterini; Amato, Letizia;

    2013-01-01

    In this study, we show how pyrolyzed photoresist carbon electrodes can be used for amperometric detection of potassium-induced transmitter release from large groups of neuronal PC 12 cells. This opens the way for the use of carbon film electrodes in microfabricated devices for neurochemical drug...... by the difference in photoresist viscosity. By adding a soft bake step to the fabrication procedure, the flatness of pyrolyzed AZ 5214 electrodes could be improved which would facilitate their integration in microfluidic chip devices....

  9. Lab on a chip for continuous-flow magnetic cell separation.

    Science.gov (United States)

    Hejazian, Majid; Li, Weihua; Nguyen, Nam-Trung

    2015-02-21

    Separation of cells is a key application area of lab-on-a-chip (LOC) devices. Among the various methods, magnetic separation of cells utilizing microfluidic devices offers the merits of biocompatibility, efficiency, and simplicity. This review discusses the fundamental physics involved in using magnetic force to separate particles, and identifies the optimisation parameters and corresponding methods for increasing the magnetic force. The paper then elaborates the design considerations of LOC devices for continuous-flow magnetic cell separation. Examples from the recently published literature illustrate these state-of-the-art techniques.

  10. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  11. Chip, Chip, Hooray!

    Science.gov (United States)

    Kelly, Susan

    2001-01-01

    Presents a science laboratory using different brands of potato chips in which students test their oiliness, size, thickness, saltiness, quality, and cost, then analyze the results to determine the best chip. Gives a brief history of potato chips. (YDS)

  12. Characterization of bortezomib-adapted I-45 mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Peddaboina Chander

    2010-05-01

    Full Text Available Abstract Background Bortezomib, a proteasome-specific inhibitor, has emerged as a promising cancer therapeutic agent. However, development of resistance to bortezomib may pose a challenge to effective anticancer therapy. Therefore, characterization of cellular mechanisms involved in bortezomib resistance and development of effective strategies to overcome this resistance represent important steps in the advancement of bortezomib-mediated cancer therapy. Results The present study reports the development of I-45-BTZ-R, a bortezomib-resistant cell line, from the bortezomib-sensitive mesothelioma cell line I-45. I-45-BTZ-R cells showed no cross-resistance to the chemotherapeutic drugs cisplatin, 5-fluorouracil, and doxorubicin. Moreover, the bortezomib-adapted I-45-BTZ-R cells had decreased growth kinemics and did not over express proteasome subunit β5 (PSMB5 as compared to parental I-45 cells. I-45-BTZ-R cells and parental I-45 cells showed similar inhibition of proteasome activity, but I-45-BTZ-R cells exhibited much less accumulation of ubiquitinated proteins following exposure to 40 nm bortezomib. Further studies revealed that relatively low doses of bortezomib did not induce an unfolded protein response (UPR in the bortezomib-adapted cells, while higher doses induced UPR with concomitant cell death, as evidenced by higher expression of the mitochondrial chaperone protein Bip and the endoplasmic reticulum (ER stress-related pro-apoptotic protein CHOP. In addition, bortezomib exposure did not induce the accumulation of the pro-apoptotic proteins p53, Mcl-1S, and noxa in the bortezomib-adapted cells. Conclusion These results suggest that UPR evasion, together with reduced pro-apoptotic gene induction, accounts for bortezomib resistance in the bortezomib-adapted mesothelioma cell line I-45-BTZ-R.

  13. An integrated on-chip platform for negative enrichment of tumour cells.

    Science.gov (United States)

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Poenar, Daniel Puiu

    2016-08-15

    The study of cancer cells in blood, popularly called circulating tumour cells (CTCs), has exceptional prospects for cancer risk assessment and analysis. Separation and enrichment of CTCs by size-based methods suffer from a well-known recovery/purity trade-off while methods targeting certain specific surface proteins can lead to risk of losing CTCs due to Epithelial to Mesenchymal Transition (EMT) and thus adversely affect the separation efficiency. A negative selection approach is thus preferred for tumour cell isolation as it does not depend on biomarker expression or defines their physical property as the separation criteria. In this work, we developed a microfluidic chip to isolate CTCs from whole blood samples without targeting any tumour specific antigen. This chip employs a two-stage cell separation: firstly, magnetophoresis depletes the white blood cells (WBCs) from a whole blood sample and is then followed by a micro-slit membrane that enables depleting the red blood cells (RBCs) and retaining only the tumour cells. By creating strong magnetic field gradients along with customized antibody complexes to target WBCs, we are able to remove >99.9% of WBCs from 1:1 diluted blood at a sample processing rate of 500μL/min. This approach achieves an average of >80% recovery of spiked tumour cells from 2mL of whole blood in a total assay processing time of 50min without multiple processing steps.

  14. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  15. Automated single-cell motility analysis on a chip using lensfree microscopy

    Science.gov (United States)

    Pushkarsky, Ivan; Lyb, Yunbo; Weaver, Westbrook; Su, Ting-Wei; Mudanyali, Onur; Ozcan, Aydogan; di Carlo, Dino

    2014-04-01

    Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm2) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility.

  16. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.

    Science.gov (United States)

    Li, Ling; Qin, Jun; Feng, Qiang; Tang, Hao; Liu, Rong; Xu, Liqing; Chen, Zhinan

    2011-01-01

    While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P cell aggregation elimination role at all concentrations (P cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.

  17. High Throughput Studies of Cell Migration in 3D Microtissues Fabricated by a Droplet Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Xiangchen Che

    2016-05-01

    Full Text Available Arrayed three-dimensional (3D micro-sized tissues with encapsulated cells (microtissues have been fabricated by a droplet microfluidic chip. The extracellular matrix (ECM is a polymerized collagen network. One or multiple breast cancer cells were embedded within the microtissues, which were stored in arrayed microchambers on the same chip without ECM droplet shrinkage over 48 h. The migration trajectory of the cells was recorded by optical microscopy. The migration speed was calculated in the range of 3–6 µm/h. Interestingly, cells in devices filled with a continuous collagen network migrated faster than those where only droplets were arrayed in the chambers. This is likely due to differences in the length scales of the ECM network, as cells embedded in thin collagen slabs also migrate slower than those in thick collagen slabs. In addition to migration, this technical platform can be potentially used to study cancer cell-stromal cell interactions and ECM remodeling in 3D tumor-mimicking environments.

  18. Impedance spectra of patch clamp scenarios for single cells immobilized on a lab-on-a-chip

    DEFF Research Database (Denmark)

    Alberti, Massimo; Snakenborg, Detlef; Lopacinska, Joanna M.

    2014-01-01

    and simulated impedance spectra proved that the presented method could distinguish between a cell-attached mode and a whole-cell mode even with low-quality seals. In physiological conditions, the capacitance of HeLa cells was measured to *38 pF. The first gigaseal was recorded and maintained for 40 min. Once...... membrane. After incubating the chip for 24 h, HeLa cells adhered and grew on the chip surface but did not survive when trapped on the microapertures. The microfluidic system proved to work as a micro electrophysiological analysis system, and the IS-based method can be used for further studies on the post...

  19. Contrast Adaptation Decreases Complexity in Retinal Ganglion Cell Spike Train

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-Li; HUANG Shi-Yong; ZHANG Ying-Ying; LIANG Pei-Ji

    2007-01-01

    @@ The difference in temporal structures of retinal ganglion cell spike trains between spontaneous activity and firing activity after contrast adaptation is investigated. The Lempel-Ziv complexity analysis reveals that the complexity of the neural spike train decreases after contrast adaptation. This implies that the behaviour of the neuron becomes ordered, which may carry relevant information about the external stimulus. Thus, during the neuron activity after contrast adaptation, external information could be encoded in forms of some certain patterns in the temporal structure of spike train that is significantly different, compared to that of the spike train during spontaneous activity, although the firing rates in spontaneous activity and firing activity after contrast adaptation are sometime similar.

  20. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    Science.gov (United States)

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  1. The role of adapter proteins in T cell activation.

    Science.gov (United States)

    Koretzky, G A; Boerth, N J

    1999-12-01

    Engagement of antigen receptors on lymphocytes leads to a myriad of complex signal transduction cascades. Recently, work from several laboratories has led to the identification and characterization of novel adapter molecules, proteins with no intrinsic enzymatic activity but which integrate signal transduction pathways by mediating protein-protein interactions. Interestingly, it appears that many of these adapter proteins play as critical a role as the effector enzymes themselves in both lymphocyte development and activation. This review describes some of the biochemical and molecular features of several of these newly identified hematopoietic cell-specific adapter molecules highlighting their importance in regulating (both positively and negatively) signal transduction mediated by the T cell antigen receptor.

  2. Programmable System on Chip Distributed Communication and Control Approach for Human Adaptive Mechanical System

    Directory of Open Access Journals (Sweden)

    Ahmad A.M. Faudzi

    2010-01-01

    Full Text Available Problem statement: Communication and control are two main components in any Mechatronics system. They can be designed either by centralized or decentralized approach. Both approaches can be chosen based on application designed and specific requirements of the designer. In this study, decentralized or normally called distributed approach was selected to solved communication and control of a human adaptive mechanical system namely Intelligent Chair Tools (ICT. The ICT seating system is powered by thirty six intelligent pneumatic actuators to facilitate investigation of chair shapes from spring and damping effect of seating and backrest surface. Three studies are proposed from the sitting experiments namely chair shapes, chair spring and chair damping properties. Approach: PSoC microcontroller was selected based on its features of having configurable analog and digital blocks. Its flexible modules and programmable peripherals ease designer in designing the communication and control of ICT in improved and faster way. Three protocols of USB, SPI and I2C were used for the communication system of ICT using PSoC. Flow charts of each communication protocols algorithms were discussed. On the other hand, the control system used PSoC’s ADC and counter modules to read inputs of pressure and encoder respectively. PWM module is used to control the valve and data communication was achieved using I2C module. Block diagram of unified control was discussed for further understandings of the control algorithms. Results: The PSoC specification, development design and experimental evaluation of ICT system are presented and discussed. Three studies of chair shapes, chair spring property and chair damping property from sitting experiment were shown. Conclusion/Recommendations: The PSoC microcontroller selection was discussed and application of its distributed communication and control was successfully applied to ICT. This distributed approach can be applied to other

  3. One Step Quick Detection of Cancer Cell Surface Marker by Integrated NiFe-based Magnetic Biosensing Cell Cultural Chip

    Institute of Scientific and Technical Information of China (English)

    Chenchen Bao; Lei Chen; Tao Wang; Chong Lei; Furong Tian; Daxiang Cui; Yong Zhou

    2013-01-01

    RGD peptides has been used to detect cell surface integrin and direct clinical effective therapeutic drug selection. Herein we report that a quick one step detection of cell surface marker that was realized by a specially designed NiFe-based magnetic biosensing cell chip combined with functionalized magnetic nanoparti-cles. Magnetic nanoparticles with 20-30 nm in diameter were prepared by coprecipitation and modified with RGD-4C, and the resultant RGD-functionalized magnetic nanoparticles were used for targeting cancer cells cul-tured on the NiFe-based magnetic biosensing chip and distinguish the amount of cell surface receptor-integrin. Cell lines such as Calu3, Hela, A549, CaFbr, HEK293 and HUVEC exhibiting different integrin expression were chosen as test samples. Calu3, Hela, HEK293 and HUVEC cells were successfully identified. This approach has advantages in the qualitative screening test. Compared with traditional method, it is fast, sensitive, low cost, easy-operative, and needs very little human intervention. The novel method has great potential in applications such as fast clinical cell surface marker detection, and diagnosis of early cancer, and can be easily extended to other biomedical applications based on molecular recognition.

  4. Coping with loss: cell adaptation to cytoskeleton disruption

    OpenAIRE

    McGarry, David J.; Olson, Michael F

    2016-01-01

    Unravelling the role of cytoskeleton regulators may be complicated by adaptations to experimental manipulations. In this issue of Developmental Cell, Cerikan et al. (2016) reveal how acute effects of DOCK6 RhoGEF depletion on RAC1 and CDC42 activation are reversed over time by compensatory mechanisms that re-establish cellular homeostasis.

  5. Differentiation of mouse iPS cells is dependent on embryoid body size in microwell chip culture.

    Science.gov (United States)

    Miyamoto, Daisuke; Nakazawa, Kohji

    2016-10-01

    A microwell chip possessing microwells of several hundred micrometers is a promising platform for generating embryoid bodies (EBs) of stem cells. Here, we investigated the effects of initial EB size on the growth and differentiation of mouse iPS cells in microwell chip culture. We fabricated a chip that contained 195 microwells in a triangular arrangement at a diameter of 600 μm. To evaluate the effect of EB size, four similar conditions were designed with different seeding cell densities of 100, 500, 1000, and 2000 cells/EB. The cells in each microwell gradually aggregated and then spontaneously formed a single EB within 1 d of culture, and EB size increased with further cell proliferation. EB growth was regulated by the initial EB size, and the growth ability of smaller EBs was higher than that of larger EBs. Furthermore, stem cell differentiation also depended on the initial EB size, and the EBs at more than 500 cells/EB promoted hepatic and cardiac differentiations, but the EBs at 100 cells/EB preferred vascular differentiation. These results indicated that the initial EB size was one of the important factors controlling the proliferation and differentiation of stem cells in the microwell chip culture.

  6. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  7. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    Science.gov (United States)

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context.

  8. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    Science.gov (United States)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  9. Immunomagnetic Nano-Screening Chip for Circulating Tumor Cells Detection in Blood

    Science.gov (United States)

    Horton, A. P.; Lane, N.; Tam, J.; Sokolov, K.; Garner, H. R.; Uhr, J. W.; Zhang, X. J.

    2010-03-01

    We present a novel method towards diagnose cancer at an early stage via a blood test. Early diagnosis is high on the future agenda of oncologists because of significant evidence that it will result in a higher cure rate. Capture of circulating tumor cells (CTCs) which are known to escape from carcinomas at an early stage offers such an opportunity. We design, fabricate and optimize the nanomagnetic-screening chip that captures the CTCs in microfluid, and further integrate the nano-chip with the new multispectral imaging system so that it can quantify different tumor markers and automate the entire instrument. Specifically, hybrid plasmonic (Fe2O3-core Au shell) nanoparticles, conjugated a collection of antibodies especially chosen to target breast cancer CTCs, with high magnetic susceptibility will be used for effective immunomagnetic CTC isolation. Greatly increased sensitivity over previous attempts is demonstrated by decreasing the length scale for interactions between the magnetic-nanoparticle-tagged CTCs and the isolative magnetic field, while increasing the effective cross-sectional area over which this interaction takes place. The screening chip is integrated with a novel hyperspectral microscopic imaging (HMI) platform capable of recording the entire emission spectra in a single pass evaluation. The combined system will precisely quantify up to 10 tumor markers on CTCs.

  10. Mast cells in allergy and autoimmunity: implications for adaptive immunity.

    Science.gov (United States)

    Gregory, Gregory D; Brown, Melissa A

    2006-01-01

    As in the fashion industry, trends in a particular area of scientific investigation often are fleeting but then return with renewed and enthusiastic interest. Studies of mast cell biology are good examples of this. Although dogma once relegated mast cells almost exclusively to roles in pathological inflammation associated with allergic disease, these cells are emerging as important players in a number of other physiological processes. Consequently, they are quickly becoming the newest "trendy" cell, both within and outside the field of immunology. As sources of a large array of pro- and anti-inflammatory mediators, mast cells also express cell surface molecules with defined functions in lymphocyte activation and trafficking. Here, we provide an overview of the traditional and newly appreciated contributions of mast cells to both innate and adaptive immune responses.

  11. Retinal ganglion cell adaptation to small luminance fluctuations.

    Science.gov (United States)

    Freeman, Daniel K; Graña, Gilberto; Passaglia, Christopher L

    2010-08-01

    To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has involved logarithmic changes in light level. We report that luminance gain controls are recruited for remarkably small fluctuations in luminance as well. Using spike recordings from the rat optic tract, we show that ganglion cell responses to a brief flash of light are modulated in amplitude by local background fluctuations as little as 15% contrast. The time scale of the gain control is rapid (retinal locus of adaptation precedes the ganglion cell spike generator because response gain changes of on cells were uncorrelated with firing rate. The mechanism seems to reside within the inner retinal network and not in the photoreceptors, because the adaptation profiles of on and off cells differed markedly. The response gain changes follow Weber's law, suggesting that network mechanisms of luminance adaptation described in previous work modulates retinal ganglion cell sensitivity, not just when we move between different lighting environments, but also as our eyes scan a visual scene. Finally, we show that response amplitude is uniformly reduced for flashes on a modulated background that has spatial contrast, indicating that another gain control that integrates luminance signals nonlinearly over space operates within the receptive field center of rat ganglion cells.

  12. Experiment list: SRX214070 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacturer 2

  13. Experiment list: SRX214086 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available entiated || cell line=KH2 || chip antibody 1=none || chip antibody manufacturer 1=none || chip antibody 2=none || chip antibody manuf...acturer 2=none http://dbarchive.biosciencedbc.jp/kyushu-

  14. Experiment list: SRX214074 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ge=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  15. Experiment list: SRX214072 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  16. Experiment list: SRX214071 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacturer 2=

  17. Experiment list: SRX214073 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  18. Experiment list: SRX214075 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available age=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  19. Experiment list: SRX214067 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available fferentiated || cell line=F9 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufacture...r 1=Santa Cruz || chip antibody 2=none || chip antibody manufacturer 2=none http://dbarchive.bioscien

  20. GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma.

    Science.gov (United States)

    Vater, Inga; Wagner, Florian; Kreuz, Markus; Berger, Hilmar; Martín-Subero, José I; Pott, Christiane; Martinez-Climent, Jose A; Klapper, Wolfram; Krause, Kristina; Dyer, Martin J S; Gesk, Stefan; Harder, Lana; Zamo, Alberto; Dreyling, Martin; Hasenclever, Dirk; Arnold, Norbert; Siebert, Reiner

    2009-02-01

    The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability.

  1. A microfluidic multiwell chip for enzyme-free detection of mRNA from few cells.

    Science.gov (United States)

    Haider, Michaela; Ji, Bozhi; Haselgrübler, Thomas; Sonnleitner, Alois; Aberger, Fritz; Hesse, Jan

    2016-12-15

    Isogenic cell populations possess heterogeneous gene expression patterns. Most methods for mRNA expression analysis start with the reverse transcription of mRNA into cDNA, a process that can introduce strong signal variations not related to the actual mRNA levels. Miniaturized lab-on-a-chip systems offer properties - e.g. low sample dilution, low contamination - that enable new reaction schemes for molecular analyses. To enable transcription-free mRNA expression analysis of few single cells, a one-step cell lysis, target labelling and hybridisation approach as well as a corresponding passive multiwell chip with a volume of 25.5 nL/well were developed. The method enabled the parallel analysis of up to 96 samples and 6 target genes per sample. Preceding light microscopy of the living cells allowed correlating mRNA levels and cell number. As a proof-of-principle, the pancreatic cancer cell line Panc-1 was investigated for expression heterogeneity of a reference gene plus 5 genes reported to be overexpressed in cancer stem cells (CSCs). A good correlation (r(51)=0.739, p<0.001; rs(51)=0.744, p<0.001) between the cell number per well and the number of detected reference gene mRNA confirmed the proper function of the device. Moreover, a heterogeneous expression of the CSC-associated target genes was found which matched well with reports on the presence of CSCs in the Panc-1 cell line.

  2. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip

    DEFF Research Database (Denmark)

    Matos, T.; Senkbeil, Silja; Mendonça, A.

    2013-01-01

    Due to the extensive use of nucleic acid and protein analysis of bacterial samples, there is a need for simple and rapid extraction protocols for both plasmid DNA and RNA molecules as well as reporter proteins like the green fluorescent protein (GFP). In this report, an electropermeability...... can be avoided and the transiently formed pores can be closed again and the cells survive. This method has been used to extract RNA and GFP molecules under conditions of electropermeability. Plasmid DNA could be recovered when the applied voltage was increased to 2 V, thus causing complete cell lysis....... technique has been developed which is based on exposing E. coli cells to low voltages to allow extraction of nucleic acids and proteins. The flow-through electropermeability chip used consists of a microfluidic channel with integrated gold electrodes that promote cell envelope channel formation at low...

  3. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Alan Ludwiszewski

    2009-06-29

    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  4. Recent developments in capillary and chip electrophoresis of bioparticles: Viruses, organelles, and cells.

    Science.gov (United States)

    Subirats, Xavier; Blaas, Dieter; Kenndler, Ernst

    2011-06-01

    In appropriate aqueous buffer solutions, biological particles usually exhibit a particular electric surface charge due to exposed charged or chargeable functional groups (amino acid residues, acidic carbohydrate moieties, etc.). Consequently, these bioparticles can migrate in solution under the influence of an electric field allowing separation according to their electrophoretic mobilities or their pI values. Based on these properties, electromigration methods are of eminent interest for the characterization, separation, and detection of such particles. The present review discusses the research papers published between 2008 and 2010 dealing with isoelectric focusing and zone electrophoresis of viruses, organelles and microorganisms (bacteria and yeast cells) in the capillary and the chip format.

  5. Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-03-01

    Full Text Available We developed a confined microfluidic cell culture system with a bottom plate made of a microscopic slide with planar platinum sensors for the measurement of acidification, oxygen consumption, and cell adhesion. The slides were commercial slides with indium tin oxide (ITO plating or were prepared from platinum sputtering (100 nm onto a 10-nm titanium adhesion layer. Direct processing of the sensor structures (approximately three minutes per chip by an ultrashort pulse laser facilitated the production of the prototypes. pH-sensitive areas were produced by the sputtering of 60-nm Si3N4 through a simple mask made from a circuit board material. The system body and polydimethylsiloxane (PDMS molding forms for the microfluidic structures were manufactured by micromilling using a printed circuit board (PCB milling machine for circuit boards. The microfluidic structure was finally imprinted in PDMS. Our approach avoided the use of photolithographic techniques and enabled fast and cost-efficient prototyping of the systems. Alternatively, the direct production of metallic, ceramic or polymeric molding tools was tested. The use of ultrashort pulse lasers improved the precision of the structures and avoided any contact of the final structures with toxic chemicals and possible adverse effects for the cell culture in lab-on-a-chip systems.

  6. HPV Direct Flow CHIP: a new human papillomavirus genotyping method based on direct PCR from crude-cell extracts.

    Science.gov (United States)

    Herraez-Hernandez, Elsa; Alvarez-Perez, Martina; Navarro-Bustos, Gloria; Esquivias, Javier; Alonso, Sonia; Aneiros-Fernandez, Jose; Lacruz-Pelea, Cesar; Sanchez-Aguera, Magdalena; Santamaria, Javier Saenz; de Antonio, Jesus Chacon; Rodriguez-Peralto, Jose Luis

    2013-10-01

    HPV Direct Flow CHIP is a newly developed test for identifying 18 high-risk and 18 low-risk human papillomavirus (HPV) genotypes. It is based on direct PCR from crude-cell extracts, automatic flow-through hybridization, and colorimetric detection. The aim of this study was to evaluate the performance of HPV Direct Flow CHIP in the analysis of 947 samples from routine cervical screening or the follow-up of abnormal Pap smears. The specimens were dry swab samples, liquid-based cytology samples, or formalin-fixed paraffin-embedded tissues. The genotype distribution was in agreement with known epidemiological data for the Spanish population. Three different subgroups of the samples were also tested by Linear Array (LA) HPV Genotyping Test (n=108), CLART HPV2 (n=82), or Digene Hybrid Capture 2 (HC2) HPV DNA Test (n=101). HPV positivity was 73.6% by HPV Direct Flow CHIP versus 67% by LA, 65.9% by HPV Direct Flow CHIP versus 59.8% by CLART, and 62.4% by HPV Direct Flow CHIP versus 42.6% by HC2. HPV Direct Flow CHIP showed a positive agreement of 88.6% with LA (k=0.798), 87.3% with CLART (k=0.818), and 68.2% with HC2 (k=0.618). In conclusion, HPV Direct Flow CHIP results were comparable with those of the other methods tested. Although further investigation is needed to compare the performance of this new test with a gold-standard reference method, these preliminary findings evidence the potential value of HPV Direct Flow CHIP in HPV vaccinology and epidemiology studies.

  7. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    Science.gov (United States)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  8. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  9. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  10. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  11. Micro Flow Cytometer Chip Integrated with Micro-Pumps/Micro-Valves for Multi-Wavelength Cell Counting and Sorting

    Science.gov (United States)

    Chang, Chen-Min; Hsiung, Suz-Kai; Lee, Gwo-Bin

    2007-05-01

    Flow cytometry is a popular technique for counting and sorting of individual cells. This study presents a new chip-based flow cytometer capable of cell injection, counting and switching in an automatic format. The new microfluidic system is also capable of multi-wavelength detection of fluorescence-labeled cells by integrating multiple buried optical fibers within the chip. Instead of using large-scale syringe pumps, this study integrates micro-pumps and micro-valves to automate the entire cell injection and sorting process. By using pneumatic serpentine-shape (S-shape) micro-pumps to drive sample and sheath flows, the developed chip can generate hydrodynamic focusing to allow cells to pass detection regions in sequence. Two pairs of optical fibers are buried and aligned with the microchannels, which can transmit laser light sources with different wavelengths and can collect induced fluorescence signals. The cells labeled with different fluorescent dyes can be excited by the corresponding light source at different wavelengths. The fluorescence signals are then collected by avalanche photodiode (APD) sensors. Finally, a flow switching device composed of three pneumatic micro-valves is used for cell sorting function. Experimental data show that the developed flow cytometer can distinguish specific cells with different dye-labeling from mixed cell samples in one single process. The target cell samples can be also switched into appropriate outlet channels utilizing the proposed microvalve device. The developed microfluidic system is promising for miniature cell-based biomedical applications.

  12. Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass

    Science.gov (United States)

    Yen, Meng-Hua; Cheng, Ji-Yen; Wei, Cheng-Wey; Chuang, Yung-Chuan; Young, Tai-Horng

    2006-07-01

    This paper uses a widely available CO2 laser scriber (λ = 10.6 µm) to perform the direct-writing ablation of quartz, borofloat and pyrex substrates for the development of microfluidic chips and cell chips. The surface quality of the ablated microchannels and the presence of debris and distortion are examined by scanning electron microscopy, atomic force microscopy and surface profile measurement techniques. The developed laser ablation system provides a versatile and economic approach for the fabrication of glass microfluidic chips with crack-free structures. In the laser writing process, the desired microfluidic patterns are designed using commercial computer software and are then transferred to the laser scriber to ablate the trenches. This process eliminates the requirement for corrosive chemicals and photomasks, and hence the overall microchip development time is limited to less than 24 h. Additionally, since the laser writing process is not limited by the dimensions of a photomask, the microchannels can be written over a large substrate area. The machining capability and versatility of the laser writing system are demonstrated through its application to the fabrication of a borofloat microfluidic chip and the writing of a series of asymmetric trenches in a microwell array. It is shown that the minimum attainable trench width is 95 µm and that the maximum trench depth is 225 µm. The system provides an economic and powerful means of rapid glass microfluidic chip development. A rapid cell-patterning method based on this method is also demonstrated.

  13. Chip Multithreaded Consistency Model

    Institute of Scientific and Technical Information of China (English)

    Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang

    2008-01-01

    Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.

  14. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology

    Science.gov (United States)

    Park, DoYeun; Lim, Jaeho; Park, Joong Yull

    2015-01-01

    Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. Significance Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently

  15. Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip.

    Science.gov (United States)

    Chen, Sheng-Chiech; Santra, Tuhin Subhra; Chang, Chia-Jung; Chen, Tsung-Ju; Wang, Pen-Cheng; Tseng, Fan-Gang

    2012-10-01

    Single cell electroporation is one of the nonviral method which successfully allows transfection of exogenous macromolecules into individual living cell. We present localized cell membrane electroporation at single-cell level by using indium tin oxide (ITO) based transparent micro-electrodes chip with inverted microscope. A focused ion beam (FIB) technique has been successfully deployed to fabricate transparent ITO micro-electrodes with submicron gaps, which can generate more intense electric field to produce very localized cell membrane electroporation. In our approach, we have successfully achieved 0.93 μm or smaller electroporation region on the cell surface to inject PI (Propidium Iodide) dye into the cell with 60 % cell viability. This experiments successfully demonstrate the cell self-recover process from the injected PI dye intensity variation. Our localized cell membrane electroporation technique (LSCMEP) not only generates reversible electroporation process but also it provides a clear optical path for potentially monitoring/tracking of drugs to deliver in single cell level.

  16. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip

    Energy Technology Data Exchange (ETDEWEB)

    Shahini, Mehdi; Yeow, John T W, E-mail: jyeow@uwaterloo.ca [University of Waterloo, 200 University Avenue West, Waterloo, ON (Canada)

    2011-08-12

    We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.

  17. Micro solid oxide fuel cell on the chip. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M.; Hotz, N.; Bieri, N.; Poulikakos, D.

    2006-07-01

    The aim of this project is the numerical and experimental investigation of hydrocarbon-to-syngas reforming in micro reformers for incorporation into an entire micro fuel cell system. Numerical simulations are used to achieve deeper understanding of several determining aspects in such a micro reformer. These insights are used to optimize the reforming performance by proper choice of operational and geometrical parameters of a reformer. These numerical results are continued by comprehensive experimental studies. In the first chapter, the effect of wall conduction of a tubular methane micro reformer is investigated numerically. Methane is used as the representative hydrocarbon because its detailed surface reaction mechanism is known. It is found that the axial wall conduction can strongly influence the performance of the microreactor and should not be neglected without a careful a priori investigation of its impact. In the second chapter, the effect of the catalyst amount and reactor geometry on the reforming process was investigated. It was found that the hydrogen selectivity changes significantly with varying catalyst loading. Thus, the reaction path leading to higher hydrogen production becomes more important by increasing the catalyst surface site density on the active surface. Another unexpected result is the presence of optimum channel geometry and optimum catalyst amount. In the third chapter of this project, the capability of flame-made Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles catalyzing the reforming of butane to H{sub 2}- and CO-rich syngas was investigated experimentally in a packed bed reactor. The main goal of this study was the efficient reforming of butane at temperatures between 500 and 600 {sup o}C for a micro intermediate-temperature SOFC system. Our results showed that Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles proved to be a very promising material for butane-to-syngas reforming with complete butane conversion and a hydrogen yield of 77

  18. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    Science.gov (United States)

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-05

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system.

  19. Population activity changes during a trial-to-trial adaptation of bullfrog retinal ganglion cells.

    Science.gov (United States)

    Ding, Wei; Xiao, Lei; Jing, Wei; Zhang, Pu-Ming; Liang, Pei-Ji

    2014-07-09

    A 'trial-to-trial adaptation' of bullfrog retinal ganglion cells in response to a repetitive light stimulus was investigated in the present study. Using the multielectrode recording technique, we studied the trial-to-trial adaptive properties of ganglion cells and explored the activity of population neurons during this adaptation process. It was found that the ganglion cells adapted with different degrees: their firing rates were decreased in different extents from early-adaptation to late-adaptation stage, and this was accompanied by a decrease in cross-correlation strength. In addition, adaptation behavior was different for ON-response and OFF-response, which implied that the mechanism of the trial-to-trial adaptation might involve bipolar cells and/or their synapses with other neurons and the stronger adaptation in the ganglion cells' OFF-responses might reflect the requirement to avoid possible saturation in the OFF circuit.

  20. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    DEFF Research Database (Denmark)

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek;

    2013-01-01

    Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals...... with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell...... receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells...

  1. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  2. Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry.

    Science.gov (United States)

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Kim, Hyunhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2009-01-01

    HeLa cells directly immobilized on gold-patterned silicon substrate were used to assess the biological toxicity of anticancer drugs (hydroxyurea and cyclophosphamide). Immobilization of HeLa cells was confirmed by optical microscopy, and cell growth, viability and drug-related toxicity were examined by cyclic voltammetry and potentiometric stripping analysis. The voltammetric behaviors of HeLa cells displayed a quasi-reversible pattern with the peak current exhibiting a linear relationship with cell number. The attached living cells were exposed to different concentrations of hydroxyurea and cyclophosphamide as anticancer drugs, which induced the change of cyclic voltammetry current peak. As the exposed concentration of anticancer drugs was increased, the change of current peak was increased, which indicates the decrease of cell viability. Trypan Blue dyeing was performed to confirm the results of the effect of anticancer drugs on the cell viability which was obtained from cyclic voltammetry assay. The proposed direct cell immobilization method technique can be applied to the fabrication of cell chip for diagnosis, drug detection, and on-site monitoring.

  3. Pancreatic β- and α-cell adaptation in response to metabolic changes

    NARCIS (Netherlands)

    Ellenbroek, Johanne Hendrike (Rianne)

    2015-01-01

    Insulin-producing pancreatic β-cells are essential to maintain blood glucose levels within a narrow range. β-cells can adapt to an increased insulin demand by enhancing insulin secretion via increased β-cell function and/or increased β-cell mass. Inadequate β-cell adaptation leads to hyperglycemia a

  4. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  5. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  6. On-chip lithium cells for electrical and structural characterization of single nanowire electrodes

    Science.gov (United States)

    Subramanian, A.; Hudak, N. S.; Huang, J. Y.; Zhan, Y.; Lou, J.; Sullivan, J. P.

    2014-07-01

    We present a transmission electron microscopy (TEM)-compatible, hybrid nanomachined, on-chip construct for probing the structural and electrical changes in individual nanowire electrodes during lithium insertion. We have assembled arrays of individual β-phase manganese dioxide (β-MnO2) nanowires (NWs), which are employed as a model material system, into functional electrochemical cells through a combination of bottom-up (dielectrophoresis) and top-down (silicon nanomachining) unit processes. The on-chip NWs are electrochemically lithiated inside a helium-filled glovebox and their electrical conductivity is studied as a function of incremental lithium loading during initial lithiation. We observe a dramatic reduction in NW conductivity (on the order of two to three orders in magnitude), which is not reversed when the lithium is extracted from the nanoelectrode. This conductivity change is attributed to an increase in lattice disorder within the material, which is observed from TEM images of the lithiated NWs. Furthermore, electron energy loss spectroscopy (EELS) was employed to confirm the reduction in valence state of manganese, which occurs due to the transformation of MnO2 to LixMnO2.

  7. Application of a cell microarray chip system for accurate, highly sensitive, and rapid diagnosis for malaria in Uganda

    Science.gov (United States)

    Yatsushiro, Shouki; Yamamoto, Takeki; Yamamura, Shohei; Abe, Kaori; Obana, Eriko; Nogami, Takahiro; Hayashi, Takuya; Sesei, Takashi; Oka, Hiroaki; Okello-Onen, Joseph; Odongo-Aginya, Emmanuel I.; Alai, Mary Auma; Olia, Alex; Anywar, Dennis; Sakurai, Miki; Palacpac, Nirianne MQ; Mita, Toshihiro; Horii, Toshihiro; Baba, Yoshinobu; Kataoka, Masatoshi

    2016-01-01

    Accurate, sensitive, rapid, and easy operative diagnosis is necessary to prevent the spread of malaria. A cell microarray chip system including a push column for the recovery of erythrocytes and a fluorescence detector was employed for malaria diagnosis in Uganda. The chip with 20,944 microchambers (105 μm width and 50 μm depth) was made of polystyrene. For the analysis, 6 μl of whole blood was employed, and leukocytes were practically removed by filtration through SiO2-nano-fibers in a column. Regular formation of an erythrocyte monolayer in each microchamber was observed following dispersion of an erythrocyte suspension in a nuclear staining dye, SYTO 21, onto the chip surface and washing. About 500,000 erythrocytes were analyzed in a total of 4675 microchambers, and malaria parasite-infected erythrocytes could be detected in 5 min by using the fluorescence detector. The percentage of infected erythrocytes in each of 41 patients was determined. Accurate and quantitative detection of the parasites could be performed. A good correlation between examinations via optical microscopy and by our chip system was demonstrated over the parasitemia range of 0.0039–2.3438% by linear regression analysis (R2 = 0.9945). Thus, we showed the potential of this chip system for the diagnosis of malaria. PMID:27445125

  8. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry.

    Science.gov (United States)

    Peng, Anthony W; Effertz, Thomas; Ricci, Anthony J

    2013-11-20

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca(2+) entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence of adaptation in the mammalian auditory system. Recordings from rat cochlear hair cells demonstrate that altering Ca(2+) entry or internal Ca(2+) buffering has little effect on either adaptation kinetics or steady-state adaptation responses. Two additional findings include a voltage-dependent process and an extracellular Ca(2+) binding site, both modulating the resting open probability independent of adaptation. These data suggest that slow motor adaptation is negligible in mammalian auditory cells and that the remaining adaptation process is independent of calcium entry.

  9. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    Science.gov (United States)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  10. The adaptive, cut-cell Cartesian approach (warts and all)

    Science.gov (United States)

    Powell, Kenneth G.

    1995-01-01

    Solution-adaptive methods based on cutting bodies out of Cartesian grids are gaining popularity now that the ways of circumventing the accuracy problems associated with small cut cells have been developed. Researchers are applying Cartesian-based schemes to a broad class of problems now, and, although there is still development work to be done, it is becoming clearer which problems are best suited to the approach (and which are not). The purpose of this paper is to give a candid assessment, based on applying Cartesian schemes to a variety of problems, of the strengths and weaknesses of the approach as it is currently implemented.

  11. Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces.

    Science.gov (United States)

    Wang, Shunqiang; Thomas, Antony; Lee, Elaine; Yang, Shu; Cheng, Xuanhong; Liu, Yaling

    2016-04-07

    Circulating tumor cells (CTCs) in peripheral blood have been recognized as a general biomarker for diagnosing cancer and providing guidance for personalized treatments. Yet due to their rarity, the challenge for their clinical utility lies in the efficient isolation while avoiding the capture of other non-targeted white blood cells (WBCs). In this paper, a wavy-herringbone (HB) microfluidic chip coated with antibody directly against epithelial cell adhesion molecule (anti-EpCAM) was developed for highly efficient and selective isolation of tumor cells from tumor cell-spiked whole blood samples. By extending the concept of the hallmark HB-Chip in the literature, the wavy-HB chip not only achieves high capture efficiency (up to 85.0%) by micro-vortexes induced by HB structures, but also achieves high purity (up to 39.4%) due to the smooth wavy microstructures. These smooth wavy-HB structures eliminate the ultra-low shear rate regions in the traditional grooved-HB structures that lead to non-specific trapping of cells. Compared with the grooved-HB chip with sharp corners, the wavy-HB chip shows significantly higher purity while maintaining similarly high capture efficiency. Furthermore, the wavy-HB chip has up to 11% higher captured cell viability over the grooved-HB chip. The distributions of tumor cells and WBCs along the grooves and waves are investigated to help understand the mechanisms behind the better performance of the wavy-HB chip. The wavy-HB chip may serve as a promising platform for CTC capture and cancer diagnosis.

  12. A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation.

    Science.gov (United States)

    Shahriyari, Leili

    2016-01-01

    There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation.  If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively.

  13. Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva

    2016-09-19

    Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.

  14. A Single Cell Extraction Chip Using Vibration-Induced Whirling Flow and a Thermo-Responsive Gel Pattern

    Directory of Open Access Journals (Sweden)

    Takeshi Hayakawa

    2014-09-01

    Full Text Available We propose a single cell extraction chip with an open structure, which utilizes vibration-induced whirling flow and a single cell catcher. By applying a circular vibration to a micropillar array spiral pattern, a whirling flow is induced around the micropillars, and target cells are transported towards the single cell catcher placed at the center of the spiral. The single cell catcher is composed of a single-cell-sized hole pattern of thermo-responsive gel. The gel swells at low temperatures (≲32 ◦C and shrinks at high temperatures (≳32 ◦C, therefore, its volume expansion can be controlled by an integrated microheater. When the microheater is turned on, a single cell is trapped by the hole pattern of the single cell catcher. Then, when the microheater is turned off, the single cell catcher is cooled by the ambient temperature. The gel swells at this temperature, and the hole closes to catch the single cell. The caught cell can then be released into culture wells on a microtiter plate by heating the gel again. We conducted single cell extraction with the proposed chip and achieved a 60% success rate, of which 61% cells yielded live cells.

  15. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood

    OpenAIRE

    Cheng, Yinuo; Ye, Xiongying; Ma, Zengshuai; Xie, Shuai; Wang, Wenhui

    2016-01-01

    Rapid separation of white blood cells from whole blood sample is often required for their subsequent analyses of functions and phenotypes, and many advances have been made in this field. However, most current microfiltration-based cell separation microfluidic chips still suffer from low-throughput and membrane clogging. This paper reports on a high-throughput and clogging-free microfluidic filtration platform, which features with an integrated bidirectional micropump and commercially availabl...

  16. Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).

    Science.gov (United States)

    Nezhad, Amir Sanati; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama; Geitmann, Anja

    2013-07-07

    Biomechanical and mathematical modeling of plant developmental processes requires quantitative information about the structural and mechanical properties of living cells, tissues and cellular components. A crucial mechanical property of plant cells is the mechanical stiffness or Young's modulus of its cell wall. Measuring this property in situ at single cell wall level is technically challenging. Here, a bending test is implemented in a chip, called Bending-Lab-On-a-Chip (BLOC), to quantify this biomechanical property for a widely investigated cellular model system, the pollen tube. Pollen along with culture medium is introduced into a microfluidic chip and the growing pollen tube is exposed to a bending force created through fluid loading. The flexural rigidity of the pollen tube and the Young's modulus of the cell wall are estimated through finite element modeling of the observed fluid-structure interaction. An average value of 350 MPa was experimentally estimated for the Young's modulus in longitudinal direction of the cell wall of Camellia pollen tubes. This value is in agreement with the result of an independent method based on cellular shrinkage after plasmolysis and with the mechanical properties of in vitro reconstituted cellulose-callose material.

  17. Maximization of imaging resolution in optical wireless sensor/lab-on-chip/SoC networks with solar cells.

    Science.gov (United States)

    Arnon, Shlomi

    2010-09-01

    The availability of sophisticated and low-cost hardware on a single chip, for example, CMOS cameras, CPU, DSP, processors and communication transceivers, optics, microfluidics, and micromechanics, has fostered the development of system-on-chip (SoC) technology, such as lab-on-chip or wireless multimedia sensor networks (WMSNs). WMSNs are networks of wirelessly interconnected devices on a chip that are able to ubiquitously retrieve multimedia content such as video from the environment and transfer it to a central location for additional processing. In this paper, we study WMSNs that include an optical wireless communication transceiver that uses light to transmit the information. One of the primary challenges in SoC design is to attain adequate resources like energy harvesting using solar cells in addition to imaging and communication capabilities, all within stringent spatial limitations while maximizing system performances. There is an inevitable trade-off between enhancing the imaging resolution and the expense of reducing communication capacity and energy harvesting capabilities, on one hand, and increasing the communication or the solar cell size to the detriment of the imaging resolution, on the other hand. We study these trade-offs, derive a mathematical model to maximize the resolution of the imaging system, and present a numerical example that demonstrates maximum imaging resolution. Our results indicate that an eighth-order polynomial with only two constants provides the required area allocation between the different functionalities.

  18. Measurement of RBC agglutination with microscopic cell image analysis in a microchannel chip.

    Science.gov (United States)

    Cho, Chi Hyun; Kim, Ju Yeon; Nyeck, Agnes E; Lim, Chae Seung; Hur, Dae Sung; Chung, Chanil; Chang, Jun Keun; An, Seong Soo A; Shin, Sehyun

    2014-01-01

    Since Landsteiner's discovery of ABO blood groups, RBC agglutination has been one of the most important immunohematologic techniques for ABO and RhD blood groupings. The conventional RBC agglutination grading system for RhD blood typings relies on macroscopic reading, followed by the assignment of a grade ranging from (-) to (4+) to the degree of red blood cells clumping. However, with the new scoring method introduced in this report, microscopically captured cell images of agglutinated RBCs, placed in a microchannel chip, are used for analysis. Indeed, the cell images' pixel number first allows the differentiation of agglutinated and non-agglutinated red blood cells. Finally, the ratio of agglutinated RBCs per total RBC counts (CRAT) from 90 captured images is then calculated. During the trial, it was observed that the agglutinated group's CRAT was significantly higher (3.77-0.003) than that of the normal control (0). Based on these facts, it was established that the microchannel method was more suitable for the discrimination between agglutinated RBCs and non-agglutinated RhD negative, and thus more reliable for the grading of RBCs agglutination than the conventional method.

  19. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    Science.gov (United States)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  20. Isolation of cells for selective treatment and analysis using a magnetic microfluidic chip

    KAUST Repository

    Yassine, O.

    2014-05-01

    This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with E. coli (K12 strand) tagged with 2.8 μm SPBs. The results showed that E. coli can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the E. coli was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the E. coli was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.

  1. Peripheral NK cell phenotypes: multiple changing of faces of an adapting, developing cell.

    Science.gov (United States)

    Perussia, Bice; Chen, Yingying; Loza, Matthew J

    2005-02-01

    We have defined the existence of developmental relationships among human peripheral NK cells with distinct phenotypic and functional characteristics. These findings closely parallel the changes that occur in vivo during NK cell development, and in vitro in experimental culture systems supporting NK cell generation from hematopoietic progenitors. These new insights provide a simplified framework to understand NK cell immunobiology and the cellular bases for their roles in innate immunity, initiation and maintenance of immune responses via regulation of adaptive and accessory cell functions, and immune pathologies.

  2. Functional adaptation of the human β-cells after frequent exposure to noradrenaline

    DEFF Research Database (Denmark)

    Dela, Flemming

    2015-01-01

    KEY POINTS: Trained people produce less insulin than untrained; there is an adaptation of the insulin-producing cells to the trained state. The mechanism behind this adaptation is not known, but some sort of memory must be introduced into the insulin-producing cells. Here it is shown...... in noradrenaline is most likely the stimulus that introduces a memory in the insulin-producing cells. ABSTRACT: Physical training decreases glucose- and arginine-stimulated insulin secretion. The mechanism by which the pancreatic β-cells adapt to the training status of the individual is not known. We hypothesized...... the adaptation of the β-cells seen in trained people....

  3. UW VLSI chip tester

    Science.gov (United States)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  4. Adaptive switching frequency buck DC—DC converter with high-accuracy on-chip current sensor

    Science.gov (United States)

    Jinguang, Jiang; Fei, Huang; Zhihui, Xiong

    2015-05-01

    A current-mode PWM buck DC—DC converter is proposed. With the high-accuracy on-chip current sensor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC—DC converter is fabricated with the 0.5 μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained. Project supported by the National Natural Science Foundation of China (No. 41274047), the Natural Science Foundation of Jiangsu Province (No. BK2012639), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No. BC2012121), and the Changzhou Science and Technology Support (Industrial) Project (No. CE20120074).

  5. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.

    Science.gov (United States)

    Chin, Lip Ket; Lee, Chau-Hwang; Chen, Bi-Chang

    2016-05-24

    Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.

  6. Pancreatic β- and α-cell adaptation in response to metabolic changes

    OpenAIRE

    Ellenbroek, Johanne Hendrike (Rianne)

    2015-01-01

    Insulin-producing pancreatic β-cells are essential to maintain blood glucose levels within a narrow range. β-cells can adapt to an increased insulin demand by enhancing insulin secretion via increased β-cell function and/or increased β-cell mass. Inadequate β-cell adaptation leads to hyperglycemia and eventually diabetes mellitus. Therefore, it is critical to understand how the β-cell mass is regulated. We investigated β- and α-cell adaptation in response to different metabolic changes. We fo...

  7. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    Science.gov (United States)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-04-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  8. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    Science.gov (United States)

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  9. Temporal properties of pattern adaptation of relay cells in the lateral geniculate nucleus of cats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The temporal properties of pattern adaptation of relay cells induced by repeated sinusoidal drifting grating were investigated in the dorsal lateral geniculate nucleus (dLGN) of cats. The results showed that the response amplitude declined and the response latency prolonged when relay cells were pattern-adapted in dLGN, like the similar fmdings in visual cortex. However, in contrast to the result in cortex,the response phase of relay cells advanced. This implies that an inhibition with relatively long latency may participate in the pattern adaptation of dLGN cells and the adaptation in dLGN may be via a mechanism different from that of visual cortex.``

  10. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  11. Strategies for adaptation of mAb-producing CHO cells to serum-free medium

    OpenAIRE

    Costa A; Rodrigues M.; Henriques Mariana; Oliveira Rosário; Azeredo Joana

    2011-01-01

    Large-scale production of biopharmaceuticals commonly requires the use of serum-free medium, for safety and cost reasons. However, serum is essential to most mammalian cells growth, and its removal implies a very time-consuming process for cell adaptation. Thus, the aim of the study was to evaluate different strategies for cell adaptation to serum-free medium. Three cell types were used to assess the impact of transfection on adaptation: one common CHO-K1 cell line and two CHO-K1 cells tr...

  12. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2011-01-01

    of the micrometer sized holes in the meshes compared to the main channel enforces an almost homogeneous flow velocity between the meshes. Thereby, very uniform electroporation of the cells can be accomplished. Successful electroporation of 20 million human dendritic cells with mRNA is demonstrated. The performance...... of the chip is similar to that of the traditional electroporation cuvette, but without an upper limit on the number of cells to be electroporated. The device is constructed with two female Luer parts and can easily be integrated with other microfluidic components. Furthermore it is fabricated from injection...

  13. Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells.

    Science.gov (United States)

    Tobar, Jaime A; Carreño, Leandro J; Bueno, Susan M; González, Pablo A; Mora, Jorge E; Quezada, Sergio A; Kalergis, Alexis M

    2006-11-01

    Dendritic cells (DCs) constitute the link between innate and adaptive immunity by directly recognizing pathogen-associated molecular patterns (PAMPs) in bacteria and by presenting bacterial antigens to T cells. Recognition of PAMPs renders DCs as professional antigen-presenting cells able to prime naïve T cells and initiate adaptive immunity against bacteria. Therefore, interfering with DC function would promote bacterial survival and dissemination. Understanding the molecular mechanisms that have evolved in virulent bacteria to evade activation of adaptive immunity requires the characterization of virulence factors that interfere with DC function. Salmonella enterica serovar Typhimurium, the causative agent of typhoid-like disease in the mouse, can prevent antigen presentation to T cells by avoiding lysosomal degradation in DCs. Here, we show that this feature of virulent Salmonella applies in vivo to prevent activation of adaptive immunity. In addition, this attribute of virulent Salmonella requires functional expression of a type three secretion system (TTSS) and effector proteins encoded within the Salmonella pathogenicity island 2 (SPI-2). In contrast to wild-type virulent Salmonella, mutant strains carrying specific deletions of SPI-2 genes encoding TTSS components or effectors proteins are targeted to lysosomes and are no longer able to prevent DCs from activating T cells in vitro or in vivo. SPI-2 mutant strains are attenuated in vivo, showing reduced tissue colonization and enhanced T-cell activation, which confers protection against a challenge with wild-type virulent Salmonella. Our data suggest that impairment of DC function by the activity of SPI-2 gene products is crucial for Salmonella pathogenesis.

  14. Inherited adaptation of genome-rewired cells in response to a challenging environment

    Science.gov (United States)

    David, Lior; Stolovicki, Elad; Haziz, Efrat; Braun, Erez

    2010-01-01

    Despite their evolutionary significance, little is known about the adaptation dynamics of genomically rewired cells in evolution. We have confronted yeast cells carrying a rewired regulatory circuit with a severe and unforeseen challenge. The essential HIS3 gene from the histidine biosynthesis pathway was placed under the exclusive regulation of the galactose utilization system. Glucose containing medium strongly represses the GAL genes including HIS3 and these rewired cells are required to operate this essential gene. We show here that although there were no adapted cells prior to the encounter with glucose, a large fraction of cells adapted to grow in this medium and this adaptation was stably inherited. The adaptation relied on individual cells that switched into an adapted state and, thus, the adaptation was due to a response of many individual cells to the change in environment and not due to selection of rare advantageous phenotypes. The adaptation of numerous individual cells by heritable phenotypic switching in response to a challenge extends the common evolutionary framework and attests to the adaptive potential of regulatory circuits. PMID:20811567

  15. A lab-on-chip cell-based biosensor for label-free sensing of water toxicants.

    Science.gov (United States)

    Liu, F; Nordin, A N; Li, F; Voiculescu, I

    2014-04-07

    This paper presents a lab-on-chip biosensor containing an enclosed fluidic cell culturing well seeded with live cells for rapid screening of toxicants in drinking water. The sensor is based on the innovative placement of the working electrode for the electrical cell-substrate impedance sensing (ECIS) technique as the top electrode of a quartz crystal microbalance (QCM) resonator. Cell damage induced by toxic water will cause a decrease in impedance, as well as an increase in the resonant frequency. For water toxicity tests, the biosensor's unique capabilities of performing two complementary measurements simultaneously (impedance and mass-sensing) will increase the accuracy of detection while decreasing the false-positive rate. Bovine aortic endothelial cells (BAECs) were used as toxicity sensing cells. The effects of the toxicants, ammonia, nicotine and aldicarb, on cells were monitored with both the QCM and the ECIS technique. The lab-on-chip was demonstrated to be sensitive to low concentrations of toxicants. The responses of BAECs to toxic samples occurred during the initial 5 to 20 minutes depending on the type of chemical and concentrations. Testing the multiparameter biosensor with aldicarb also demonstrated the hypothesis that using two different sensors to monitor the same cell monolayer provides cross validation and increases the accuracy of detection. For low concentrations of aldicarb, the variations in impedance measurements are insignificant in comparison with the shifts of resonant frequency monitored using the QCM resonator. A highly linear correlation between signal shifts and chemical concentrations was demonstrated for each toxicant.

  16. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    Science.gov (United States)

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  17. Portuguese adaptation of the Child Health and Illness Profile, Child Edition (CHIP-CE Adaptación portuguesa del perfil de salud infantil (Child Health and Illness Profile, Child Edition, CHIP-CE Adaptação portuguesa do Child Health and Illness Profile, Child Edition (CHIP-CE

    Directory of Open Access Journals (Sweden)

    Manuel Alves Rodrigues

    2010-12-01

    Full Text Available Background: Valid and comprehensive instruments that allow us to obtain self-reports of children’s health and health-related behaviour are invaluable for understanding health and illness trajectories, for health resource planning and for evaluation of policy. Aim: The aim of this study was to describe the process of adapting the Child Health and Illness Profile, Child Edition (CHIP-CE, a self-report health status instrument for children aged 6 to 11 years, to Portuguese (Riley et al., 2004. Method: After consensual translation by experts, the CHIP-CE was administered to 255 pupils, mean age 9.93 years, and its internal consistency, construct validity and concurrent validity were evaluated. Results: The CHIP-CE Portuguese version had good internal consistency. Cronbach’s alpha coefficient was 0.83 for Satisfaction, 0.79 for Comfort, 0.67 for Resilience, 0.71 for Risk avoidance, 0.77 for Achievement and 0.88 for the total scale. Factor analysis showed a five-factor structure: Satisfaction, Comfort, Resilience, Risk avoidance and Achievement. This was similar to the original version, explaining 40.83% of the total variance. All Satisfaction and Comfort items had factor loadings on their respective domains of at least 0.30, except for 7 items. Conclusions: The properties of the CHIP-CE Portuguese version demonstrate its value for measuring children’s perceptions of their own health and well-being.Encuadramiento: Instrumentos válidos y abarcadores que permitan obtener el autorelato de salud y de comportamientos relacionados con la salud de los niños son de gran valor para comprender la salud y las trayectorias de enfermedad, para el planeamiento de recursos y para la evaluación de políticas en esta área. Objetivo: El objetivo de este estudio es describir el proceso de adaptación al portugués del Health and Illnes Profile, Child Edition, CHIP-CE, instrumento de autorelato del estado de salud de niños con edades comprendidas entre los 6 y

  18. Real time on-chip sequential adaptive principal component analysis for data feature extraction and image compression

    Science.gov (United States)

    Duong, T. A.

    2004-01-01

    In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.

  19. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry

    OpenAIRE

    Peng, A.W.; Effertz, T.; Ricci, A.J.

    2013-01-01

    Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca2+ entry through mechano-electric transducer channels is required for both forms of adaptation. This study investigates the calcium dependence ...

  20. The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip

    KAUST Repository

    Lin, Ran

    2012-03-01

    Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (C CD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and C CD. © 2012 IEEE.

  1. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  2. Experiment list: SRX367328 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siCTL http://dbarchive.bio...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  3. Experiment list: SRX367329 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hnology) || sirna transfection=siJMJD6 http://dbarchive....e=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tec

  4. Experiment list: SRX367330 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siBrd4 http://dbarchive.bi...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  5. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.

    Science.gov (United States)

    Cheng, Yinuo; Ye, Xiongying; Ma, Zengshuai; Xie, Shuai; Wang, Wenhui

    2016-01-01

    Rapid separation of white blood cells from whole blood sample is often required for their subsequent analyses of functions and phenotypes, and many advances have been made in this field. However, most current microfiltration-based cell separation microfluidic chips still suffer from low-throughput and membrane clogging. This paper reports on a high-throughput and clogging-free microfluidic filtration platform, which features with an integrated bidirectional micropump and commercially available polycarbonate microporous membranes. The integrated bidirectional micropump enables the fluid to flush micropores back and forth, effectively avoiding membrane clogging. The microporous membrane allows red blood cells passing through high-density pores in a cross-flow mixed with dead-end filtration mode. All the separation processes, including blood and buffer loading, separation, and sample collection, are automatically controlled for easy operation and high throughput. Both microbead mixture and undiluted whole blood sample are separated by the platform effectively. In particular, for white blood cell separation, the chip recovered 72.1% white blood cells with an over 232-fold enrichment ratio at a throughput as high as 37.5 μl/min. This high-throughput, clogging-free, and highly integrated platform holds great promise for point-of-care blood pretreatment, analysis, and diagnosis applications.

  6. Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices

    Directory of Open Access Journals (Sweden)

    Philippe Renaud

    2012-08-01

    Full Text Available Here we present an electrical lysis throughput of 600 microliters per minute at high cell density (108 yeast cells per ml with 90% efficiency, thus improving the current common throughput of one microliter per minute. We also demonstrate the extraction of intracellular luciferase from mammalian cells with efficiency comparable to off-chip bulk chemical lysis. The goal of this work is to develop a sample preparation module that can act as a stand-alone device or be integrated to other functions already demonstrated in miniaturized devices, including sorting and analysis, towards a true lab-on-a-chip.

  7. Managing inter-cell interference with advanced receivers and rank adaptation in 5G small cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Catania, Davide;

    2015-01-01

    The use of receivers with interference suppression capabilities is expected to be a significant performance booster in 5th Generation (5G) ultra-dense small cell networks. In this respect, they could represent an alternative to traditional frequency reuse techniques, facilitating the inter-cell...... interference management. In this paper, we evaluate whether it is possible to rely on such advanced receivers as the main tool to deal with the inter-cell interference problem. We present a system-level performance evaluation in three different dense indoor small cell scenarios using a receiver model...... that includes both interference rejection combining (IRC) and successive interference cancellation (SIC) principles, as well as different rank adaptation strategies. Our results confirm that interference suppression receivers with a supportive system design can indeed represent a valid alternative to frequency...

  8. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice

    NARCIS (Netherlands)

    Ellenbroek, J.H.; Tons, H.A.; de Graaf, N.; Loomans, C.J.; Engelse, M.A.; Vrolijk, H.; Voshol, P.J.; Rabelink, T.J.; Carlotti, F.; de Koning, E.J.

    2013-01-01

    AIMS: Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptati

  9. The impact of T cell intrinsic antigen adaptation on peripheral immune tolerance.

    Directory of Open Access Journals (Sweden)

    Nevil J Singh

    2006-10-01

    Full Text Available Overlapping roles have been ascribed for T cell anergy, clonal deletion, and regulation in the maintenance of peripheral immunological tolerance. A measurement of the individual and additive impacts of each of these processes on systemic tolerance is often lacking. In this report we have used adoptive transfer strategies to tease out the unique contribution of T cell intrinsic receptor calibration (adaptation in the maintenance of tolerance to a systemic self-antigen. Adoptively transferred naïve T cells stably calibrated their responsiveness to a persistent self-antigen in both lymphopenic and T cell-replete hosts. In the former, this state was not accompanied by deletion or suppression, allowing us to examine the unique contribution of adaptation to systemic tolerance. Surprisingly, adapting T cells could chronically help antigen-expressing B cells, leading to polyclonal hypergammaglobulinemia and pathology, in the form of mild arthritis. The helper activity mediated by CD40L and cytokines was evident even if the B cells were introduced after extended adaptation of the T cells. In contrast, in the T cell-replete host, neither arthritis nor autoantibodies were induced. The containment of systemic pathology required host T cell-mediated extrinsic regulatory mechanisms to synergize with the cell intrinsic adaptation process. These extrinsic mechanisms prevented the effector differentiation of the autoreactive T cells and reduced their precursor frequency, in vivo.

  10. Induced mutations in yeast cell populations adapting to an unforeseen challenge.

    Science.gov (United States)

    Moore, Lindsay S; Wei, Wu; Stolovicki, Elad; Benbenishty, Tamar; Wilkening, Stefan; Steinmetz, Lars M; Braun, Erez; David, Lior

    2014-01-01

    The modern evolutionary synthesis assumes that mutations occur at random, independently of the environment in which they confer an advantage. However, there are indications that cells facing challenging conditions can adapt rapidly, utilizing processes beyond selection of pre-existing genetic variation. Here, we show that a strong regulatory challenge can induce mutations in many independent yeast cells, in the absence of general mutagenesis. Whole genome sequencing of cell lineages reveals a repertoire of independent mutations within a single lineage that arose only after the cells were exposed to the challenging environment, while other cells in the same lineage adapted without any mutation in their genomes. Thus, our experiments uncovered multiple alternative routes for heritable adaptation that were all induced in the same lineage during a short time period. Our results demonstrate the existence of adaptation mechanisms beyond random mutation, suggesting a tight connection between physiological and genetic processes.

  11. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  12. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  13. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells.

    Science.gov (United States)

    Mattei, Fabrizio; Schiavoni, Giovanna; De Ninno, Adele; Lucarini, Valeria; Sestili, Paola; Sistigu, Antonella; Fragale, Alessandra; Sanchez, Massimo; Spada, Massimo; Gerardino, Annamaria; Belardelli, Filippo; Businaro, Luca; Gabriele, Lucia

    2014-10-01

    A full elucidation of events occurring inside the cancer microenvironment is fundamental for the optimization of more effective therapies. In the present study, the cross-talk between cancer and immune cells was examined by employing mice deficient (KO) in interferon regulatory factor (IRF)-8, a transcription factor essential for induction of competent immune responses. The in vivo results showed that IRF-8 KO mice were highly permissive to B16.F10 melanoma growth and metastasis due to failure of their immune cells to exert proper immunosurveillance. These events were found to be dependent on soluble factors released by cells of the immune system capable of shaping the malignant phenotype of melanoma cells. An on-chip model was then generated to further explore the reciprocal interactions between the B16.F10 and immune cells. B16.F10 and immune cells were co-cultured in a microfluidic device composed of three culturing chambers suitably inter-connected by an array of microchannels; mutual interactions were then followed using time-lapse microscopy. It was observed that WT immune cells migrated through the microchannels towards the B16.F10 cells, establishing tight interactions that in turn limited tumor spread. In contrast, IRF-8 KO immune cells poorly interacted with the melanoma cells, resulting in a more invasive behavior of the B16.F10 cells. These results suggest that IRF-8 expression plays a key role in the cross-talk between melanoma and immune cells, and under-score the value of cell-on-chip approaches as useful in vitro tools to reconstruct complex in vivo microenvironments on a microscale level to explore cell interactions such as those occurring within a cancer immunoenvironment.

  14. Nanoporous Glass Integrated in Volumetric Bar-Chart Chip for Point-of-Care Diagnostics of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Li, Ying; Xuan, Jie; Song, Yujun; Qi, Wenjin; He, Bangshun; Wang, Ping; Qin, Lidong

    2016-01-26

    Point-of-care (POC) testing has the potential to enable rapid, low-cost, and large-scale screening. POC detection of a multiplexed biomarker panel can facilitate the early diagnosis of non-small cell lung cancer (NSCLC) and, thus, may allow for more timely surgical intervention for life-saving treatment. Herein, we report the nanoporous glass (NPG) integrated volumetric bar-chart chip (V-Chip) for POC detection of the three NSCLC biomarkers CEA, CYFRA 21-1, and SCCA, by the naked eye. The 3D nanostructures in the NPG membrane efficiently increase the number of binding sites for antibodies and decrease the diffusion distance between antibody and antigen, enabling the low detection limit and rapid analysis time of the NPG-V-Chip. We utilized the NPG-V-Chip to test the NSCLC biomarker panel and found that the limit of detection can reach 50 pg/mL (10-fold improvement over the original V-Chip), and the total assay time can be decreased from 4 to 0.5 h. We then detected CEA in 21 serum samples from patients with common cancers, and the on-chip results showed good correlation with the clinical results. We further assayed 10 lung cancer samples using the device and confirmed the results obtained using conventional ELISA methods. In summary, the NPG-V-Chip platform has the ability of multiplex, low detection limit, low cost, lack of need for accessory equipment, and rapid analysis time, which may render the V-Chip a useful platform for quantitative POC detection in resource-limited settings and personalized diagnostics.

  15. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  16. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    Science.gov (United States)

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  17. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.

    Science.gov (United States)

    Walther, Christa G; Whitfield, Robert; James, David C

    2016-04-01

    The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.

  18. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Directory of Open Access Journals (Sweden)

    Yair Katzir

    Full Text Available The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is

  19. Experiment list: SRX087269 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -RXRa || chip antibody supplier=in-house antibody [generated by immunization of r...ce_name=embryonal carcinoma cells || cell line=F9 embryonal carcinoma cells || chip antibody=polyclonal anti

  20. ADAPTIVE LAYERED CARTESIAN CUT CELL METHOD FOR THE UNSTRUCTURED HEXAHEDRAL GRIDS GENERATION

    Institute of Scientific and Technical Information of China (English)

    WU Peining; TAN Jianrong; LIU Zhenyu

    2007-01-01

    Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the unstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.

  1. Adaptive responses to dasatinib-treated lung squamous cell cancer cells harboring DDR2 mutations.

    Science.gov (United States)

    Bai, Yun; Kim, Jae-Young; Watters, January M; Fang, Bin; Kinose, Fumi; Song, Lanxi; Koomen, John M; Teer, Jamie K; Fisher, Kate; Chen, Yian Ann; Rix, Uwe; Haura, Eric B

    2014-12-15

    DDR2 mutations occur in approximately 4% of lung squamous cell cancer (SCC) where the tyrosine kinase inhibitor dasatinib has emerged as a new therapeutic option. We found that ERK and AKT phosphorylation was weakly inhibited by dasatinib in DDR2-mutant lung SCC cells, suggesting that dasatinib inhibits survival signals distinct from other oncogenic receptor tyrosine kinases (RTK) and/or compensatory signals exist that dampen dasatinib activity. To gain better insight into dasatinib's action in these cells, we assessed altered global tyrosine phosphorylation (pY) after dasatinib exposure using a mass spectrometry-based quantitative phosphoproteomics approach. Overlaying protein-protein interaction relationships upon this dasatinib-regulated pY network revealed decreased phosphorylation of Src family kinases and their targets. Conversely, dasatinib enhanced tyrosine phosphorylation in a panel of RTK and their signaling adaptor complexes, including EGFR, MET/GAB1, and IGF1R/IRS2, implicating a RTK-driven adaptive response associated with dasatinib. To address the significance of this observation, these results were further integrated with results from a small-molecule chemical library screen. We found that dasatinib combined with MET and insulin-like growth factor receptor (IGF1R) inhibitors had a synergistic effect, and ligand stimulation of EGFR and MET rescued DDR2-mutant lung SCC cells from dasatinib-induced loss of cell viability. Importantly, we observed high levels of tyrosine-phosphorylated EGFR and MET in a panel of human lung SCC tissues harboring DDR2 mutations. Our results highlight potential RTK-driven adaptive-resistant mechanisms upon DDR2 targeting, and they suggest new, rationale cotargeting strategies for DDR2-mutant lung SCC.

  2. Plasma-on-chip device for stable irradiation of cells cultured in media with a low-temperature atmospheric pressure plasma.

    Science.gov (United States)

    Okada, Tomohiro; Chang, Chun-Yao; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru; Kumagai, Shinya

    2016-09-01

    We have developed a micro electromechanical systems (MEMS) device which enables plasma treatment for cells cultured in media. The device, referred to as the plasma-on-chip, comprises microwells and microplasma sources fabricated together in a single chip. The microwells have through-holes between the microwells and microplasma sources. Each microplasma source is located on the backside of each microwells. The reactive components generated by the microplasma sources pass through the through-holes and reach cells cultured in the microwells. In this study, a plasma-on-chip device was modified for a stable plasma treatment. The use of a dielectric barrier discharge (DBD) technique allowed a stable plasma treatment up to 3 min. The plasma-on-chip with the original electrode configuration typically had the maximum stable operation time of around 1 min. Spectral analysis of the plasma identified reactive species such as O and OH radicals that can affect the activity of cells. Plasma treatment was successfully performed on yeast (Saccharomyces cerevisiae) and green algae (Chlorella) cells. While no apparent change was observed with yeast, the treatment degraded the activity of the Chlorella cells and decreased their fluorescence. The device has the potential to help understand interactions between plasma and cells.

  3. Differential Adaptive Response and Survival of Salmonella enterica Serovar Enteritidis Planktonic and Biofilm Cells Exposed to Benzalkonium Chloride▿

    Science.gov (United States)

    Mangalappalli-Illathu, Anil K.; Vidović, Sinisa; Korber, Darren R.

    2008-01-01

    This study examined the adaptive response and survival of planktonic and biofilm phenotypes of Salmonella enterica serovar Enteritidis adapted to benzalkonium chloride (BC). Planktonic cells and biofilms were continuously exposed to 1 μg ml−1 of BC for 144 h. The proportion of BC-adapted biofilm cells able to survive a lethal BC treatment (30 μg ml−1) was significantly higher (4.6-fold) than that of BC-adapted planktonic cells. Similarly, there were 18.3-fold more survivors among the BC-adapted biofilm cells than among their nonadapted (i.e., without prior BC exposure) cell counterparts at the lethal BC concentration, and this value was significantly higher than the value for BC-adapted planktonic cells versus nonadapted cells (3.2-fold). A significantly higher (P < 0.05) proportion of surviving cells was noticed among BC-adapted biofilm cells relative to BC-adapted planktonic cells following a 10-min heat shock at 55°C. Fatty acid composition was significantly influenced by phenotype (planktonic cells or biofilm) and BC adaptation. Cell surface roughness of biofilm cells was also significantly greater (P < 0.05) than that of planktonic cells. Key proteins upregulated in BC-adapted planktonic and biofilm cells included CspA, TrxA, Tsf, YjgF, and a probable peroxidase, STY0440. Nine and 17 unique proteins were upregulated in BC-adapted planktonic and biofilm cells, respectively. These results suggest that enhanced biofilm-specific upregulation of 17 unique proteins, along with the increased expression of CspA, TrxA, Tsf, YjgF, and a probable peroxidase, phenotype-specific alterations in cell surface roughness, and a shift in fatty acid composition conferred enhanced survival to the BC-adapted biofilm cell population relative to their BC-adapted planktonic cell counterparts. PMID:18663028

  4. New method for selection of hydrogen peroxide adapted bifidobacteria cells using continuous culture and immobilized cell technology

    Directory of Open Access Journals (Sweden)

    Meile Leo

    2010-07-01

    Full Text Available Abstract Background Oxidative stress can severely compromise viability of bifidobacteria. Exposure of Bifidobacterium cells to oxygen causes accumulation of reactive oxygen species, mainly hydrogen peroxide, leading to cell death. In this study, we tested the suitability of continuous culture under increasing selective pressure combined with immobilized cell technology for the selection of hydrogen peroxide adapted Bifidobacterium cells. Cells of B. longum NCC2705 were immobilized in gellan-xanthan gum gel beads and used to continuously ferment MRS medium containing increasing concentration of H2O2 from 0 to 130 ppm. Results At the beginning of the culture, high cell density of 1013 CFU per litre of reactor was tested. The continuous culture gradually adapted to increasing H2O2 concentrations. However, after increasing the H2O2 concentration to 130 ppm the OD of the culture decreased to 0. Full wash out was prevented by the immobilization of the cells in gel matrix. Hence after stopping the stress, it was possible to re-grow the cells that survived the highest lethal dose of H2O2 and to select two adapted colonies (HPR1 and HPR2 after plating of the culture effluent. In contrast to HPR1, HPR2 showed stable characteristics over at least 70 generations and exhibited also higher tolerance to O2 than non adapted wild type cells. Preliminary characterization of HPR2 was carried out by global genome expression profile analysis. Two genes coding for a protein with unknown function and possessing trans-membrane domains and an ABC-type transporter protein were overexpressed in HPR2 cells compared to wild type cells. Conclusions Our study showed that continuous culture with cell immobilization is a valid approach for selecting cells adapted to hydrogen peroxide. Elucidation of H2O2 adaptation mechanisms in HPR2 could be helpful to develop oxygen resistant bifidobacteria.

  5. Catalysis of Protein Folding by Chaperones Accelerates Evolutionary Dynamics in Adapting Cell Populations

    OpenAIRE

    Murat Cetinbaş; Shakhnovich, Eugene I.

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly f...

  6. Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jana Verena Roedig

    Full Text Available The genome of influenza A viruses is constantly changing (genetic drift resulting in small, gradual changes in viral proteins. Alterations within antibody recognition sites of the viral membrane glycoproteins hemagglutinin (HA and neuraminidase (NA result in an antigenetic drift, which requires the seasonal update of human influenza virus vaccines. Generally, virus adaptation is necessary to obtain sufficiently high virus yields in cell culture-derived vaccine manufacturing. In this study detailed HA N-glycosylation pattern analysis was combined with in-depth pyrosequencing analysis of the virus genomic RNA. Forward and backward adaptation from Madin-Darby Canine Kidney (MDCK cells to African green monkey kidney (Vero cells was investigated for two closely related influenza A virus PR/8/34 (H1N1 strains: from the National Institute for Biological Standards and Control (NIBSC or the Robert Koch Institute (RKI. Furthermore, stability of HA N-glycosylation patterns over ten consecutive passages and different harvest time points is demonstrated. Adaptation to Vero cells finally allowed efficient influenza A virus replication in Vero cells. In contrast, during back-adaptation the virus replicated well from the very beginning. HA N-glycosylation patterns were cell line dependent and stabilized fast within one (NIBSC-derived virus or two (RKI-derived virus successive passages during adaptation processes. However, during adaptation new virus variants were detected. These variants carried "rescue" mutations on the genomic level within the HA stem region, which result in amino acid substitutions. These substitutions finally allowed sufficient virus replication in the new host system. According to adaptation pressure the composition of the virus populations varied. In Vero cells a selection for "rescue" variants was characteristic. After back-adaptation to MDCK cells some variants persisted at indifferent frequencies, others slowly diminished and even

  7. Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration.

    Science.gov (United States)

    Lee, Kwang Ho; Lee, Ki Hwa; Lee, Jeonghoon; Choi, Hyuk; Lee, Donghee; Park, Yongdoo; Lee, Sang-Hoon

    2014-04-01

    A biomimetic hydrogel was integrated into microfluidic chips to monitor glioma cell alignment and migration. The extracellular matrix-based biomimetic hydrogel was remodeled by matrix metalloprotease (MMP) secreted by glioma cells and the hydrogel could thus be used to assess cellular behavior. Both static and dynamic cell growth conditions (flow rate of 0.1 mL/h) were used. Cell culture medium with and without vascular endothelial growth factor (VEGF), insensitive VEGF and tissue inhibitor of metalloproteinases (TIMP) were employed to monitor cell behavior. A concentration gradient formed in the hydrogel resulted in differences in cell behavior. Glioma cell viability in the microchannel was 75-85%. Cells in the VEGF-loaded microchannels spread extensively, degrading the MMP-sensitive hydrogel, and achieved cell sizes almost fivefold larger than seen in the control medium. Our integrated system can be used as a model for the study of cellular behavior in a controlled microenvironment generated by fluidic conditions in a biomimetic matrix.

  8. SELDI-TOF-MS ProteinChip array profiling of T-cell clones propagated in long-term culture identifies human profilin-1 as a potential bio-marker of immunosenescence

    Directory of Open Access Journals (Sweden)

    Longdin Robin

    2007-06-01

    Full Text Available Abstract Background The adaptive immune response requires waves of T-cell clonal expansion on contact with pathogen and elimination after clearance of the source of antigen. However, lifelong persistent infections with common viruses cause chronic antigenic stimulation which takes its toll on adaptive immunity in late life. Chronic antigenic stress results in deregulation of the T-cell response and accumulation of anergic cells. Longitudinal studies of the elderly show that this impacts on survival. Identifying the nature of the defects in chronically-stimulated T-cells and protein bio-markers of these dysfunctional cells would help to understand age-associated compromised T-cell function (immunosenescence and facilitate the development of targeted intervention strategies. The purpose of this work was to use surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS to analyse proteins associated with T-cell senescence in order to identify potential bio-markers. Clonal populations of T-cells isolated from elderly octogenarian and centenarian donors were grown in vitro until senescence, and early passage and late passage (pre-senescent cells were analysed using SELDI-TOF-MS ProteinChip arrays. Results Discriminant analysis identified several protein or peptide peaks in the region of 14.5–16.5 kDa that were associated with T-cell clone senescence. Human profilin-1, a ubiquitous protein associated with actin remodelling and cellular motility was unambiguously identified. Altered expression of profilin-1 in senescent T-cell clones was confirmed by Western blot analysis. Conclusion Due to the proposed roles of profilin-1 in cellular survival, cytoskeleton remodelling, motility, and proliferation, it is hypothesised that differential expression of profilin-1 in ageing may contribute directly to immunosenescence.

  9. Using the SELDI Protein Chip System to Detect Changes in Protein Expression in Vero Cells after Infection

    Institute of Scientific and Technical Information of China (English)

    Zhi-jun LIU; Bin WANG; Zhi-yong YAN; Xu-xia SONG; Dong-meng QIAN; Zhi-qiang BAI

    2007-01-01

    Human herpes simplex virus 1 (HSV-1) causes facial,ocular,and encephalitic disease and is associated with latent infection and cancer.Here,we developed a means of studying the pathogenesis of HSV-1 infection at the protein level by using the SELDI Protein Chip to detect changes of protein expression in Vero cells cultured in vitro.After infection with HSV-1 and culture for 12,24 or 48 h,cells were harvested and lysed.IMAC3 arrays were applied to SELDI-TOF-MS to detect proteomic differences before and after infection.The chip detected a series of differentially expressed protein peaks.Interestingly,both peaks at 16 912 Da and 17 581 Da corresponded precisely with the molecular mass of ISG 15,which may participate in antiviral activity during the process of infection.Thus,the results we obtained can serve as a basis to study the pathogenesis of HSV-1 and the interaction between the virus and its host.In addition,they can help in the discovery of new therapeutic targets for treatment of HSV-1 infection.

  10. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV.

    Science.gov (United States)

    Rölle, Alexander; Brodin, Petter

    2016-03-01

    The immune system of an individual human is determined by heritable traits and a continuous process of adaptation to a broad variety of extrinsic, non-heritable factors such as viruses, bacteria, dietary components and more. Cytomegalovirus (CMV) successfully infects the majority of the human population and establishes latency, thereby exerting a life-long influence on the immune system of its host. CMV has been shown to influence the majority of immune parameters in healthy individuals. Here we focus on adaptive changes induced by CMV in subsets of Natural Killer (NK) cells, changes that question our very definition of adaptive and innate immunity by suggesting that adaptations of immune cells to environmental influences occur across the entire human immune system and not restricted to the classical adaptive branch of the immune system.

  11. Mobilizing forces -CD4~+ helper T cells script adaptive immunity

    Institute of Scientific and Technical Information of China (English)

    Frédérick Masson; Gabrielle T Belz

    2010-01-01

    Traditionally, CD4~+ T cells have been understood to play a key role in 'helping' CD8~+ T cells undergo efficient activation and proliferation in response to foreign pathogens. This has been thought to be directed primarily by CD4~+ T cell interactions with dendritic cells (DCs) [1, 2] that convert 'unlicenced' DCs into DCs capable of implementing a full blown immune response ('licenced' DCs).

  12. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS

    Directory of Open Access Journals (Sweden)

    Friedrich Karlheinz

    2010-01-01

    Full Text Available Abstract In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS. Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma.

  13. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA.

    Science.gov (United States)

    Lewis, Cody W; Golsteyn, Roy M

    2016-11-16

    We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.

  14. Sensory Adaptation in Naive Peripheral CD4 T Cells

    OpenAIRE

    Smith, Katy; Seddon, Benedict; Purbhoo, Marco A.; Zamoyska, Rose; Fisher, Amanda G.; Merkenschlager, Matthias

    2001-01-01

    T cell receptor interactions with peptide/major histocompatibility complex (pMHC) ligands control the selection of T cells in the thymus as well as their homeostasis in peripheral lymphoid organs. Here we show that pMHC contact modulates the expression of CD5 by naive CD4 T cells in a process that requires the continued expression of p56lck. Reduced CD5 levels in T cells deprived of pMHC contact are predictive of elevated Ca2+ responses to subsequent TCR engagement by anti-CD3 or nominal anti...

  15. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  16. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens

    DEFF Research Database (Denmark)

    Marquez, M.-E.; Ellmeier, W.; Sanchez-Guajardo, Vanesa Maria;

    2005-01-01

    Adaptation of the T cell activation threshold may be one mechanism to control autoreactivity. To investigate its occurrence in vivo, we engineered a transgenic mouse model with increased TCR-dependent excitability by expressing a Zap70 gain-of-function mutant (ZAP-YEEI) in postselection CD8...... ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage....... thymocytes and T cells. Increased basal phosphorylation of the Zap70 substrate linker for activation of T cells was detected in ZAP-YEEI-bearing CD8 T cells. However, these cells were not activated, but had reduced levels of TCR and CD5. Moreover, they produced lower cytokine amounts and showed faster...

  17. Adapting human pluripotent stem cells to high-throughput and high-content screening.

    Science.gov (United States)

    Desbordes, Sabrina C; Studer, Lorenz

    2013-01-01

    The increasing use of human pluripotent stem cells (hPSCs) as a source of cells for drug discovery, cytotoxicity assessment and disease modeling requires their adaptation to large-scale culture conditions and screening formats. Here, we describe a simple and robust protocol for the adaptation of human embryonic stem cells (hESCs) to high-throughput screening (HTS). This protocol can also be adapted to human induced pluripotent stem cells (hiPSCs) and high-content screening (HCS). We also describe a 7-d assay to identify compounds with an effect on hESC self-renewal and differentiation. This assay can be adapted to a variety of applications. The procedure involves the culture expansion of hESCs, their adaptation to 384-well plates, the addition of small molecules or other factors, and finally data acquisition and processing. In this protocol, the optimal number of hESCs plated in 384-well plates has been adapted to HTS/HCS assays of 7 d.

  18. Experiment list: SRX214083 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ufacturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacturer...tage=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody man

  19. Experiment list: SRX214082 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available facturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...age=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manu

  20. Experiment list: SRX186172 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1=YY1 || chip antibody manufacturer 1=Abcam || chip antibody 2=YY1 || chip antibody manufacturer 2=Santa Cru...ip-Seq; Mus musculus; ChIP-Seq source_name=Rag1 -/- pro-B cells || chip antibody

  1. Experiment list: SRX214077 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available erentiated || treatment=Overexpress Sox17_V5 tagged || cell line=KH2 || chip antibody 1=Sox17 || chip antibody manufacture...r 1=R&D || chip antibody 2=V5 || chip antibody manufacturer 2=Invit

  2. Experiment list: SRX214080 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufa

  3. Experiment list: SRX214078 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufactur...er 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture

  4. Experiment list: SRX214084 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available turer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox17-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufac

  5. Experiment list: SRX214081 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufa

  6. Experiment list: SRX214076 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ferentiated || treatment=Overexpress Sox17-V5 tagged || cell line=KH2 || chip antibody 1=Sox17 || chip antibody manufacture...r 1=R&D || chip antibody 2=V5 || chip antibody manufacturer 2=Invi

  7. Experiment list: SRX214079 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufacture...r 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture

  8. Constant Power Control of a Proton Exchange Membrane Fuel Cell through Adaptive Fuzzy Sliding Mode

    Directory of Open Access Journals (Sweden)

    Minxiu Yan

    2013-05-01

    Full Text Available Fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. The paper describes a mathematical model of proton exchange membrane fuel cells by analyzing the working mechanism of the proton exchange membrane fuel cell. Furthermore, an adaptive fuzzy sliding mode controller is designed for the constant power output of PEMFC system. Simulation results prove that adaptive fuzzy sliding mode control has better control effect than conventional fuzzy sliding mode control.

  9. A Distributed Taxation Based Rank Adaptation Scheme for 5G Small Cells

    DEFF Research Database (Denmark)

    Catania, Davide; Cattoni, Andrea Fabio; Mahmood, Nurul Huda

    2015-01-01

    The further densification of small cells impose high and undesirable levels of inter-cell interference. Multiple Input Multiple Output (MIMO) systems along with advanced receiver techniques provide us with extra degrees of freedom to combat such a problem. With such tools, rank adaptation algorit...

  10. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...

  11. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.

  12. Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme

    Science.gov (United States)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.

  13. Adapt or die: how eukaryotic cells respond to prolonged activation of the spindle assembly checkpoint.

    Science.gov (United States)

    Rossio, Valentina; Galati, Elena; Piatti, Simonetta

    2010-12-01

    Many cancer-treating compounds used in chemotherapies, the so-called antimitotics, target the mitotic spindle. Spindle defects in turn trigger activation of the SAC (spindle assembly checkpoint), a surveillance mechanism that transiently arrests cells in mitosis to provide the time for error correction. When the SAC is satisfied, it is silenced. However, after a variable amount of time, cells escape from the mitotic arrest, even if the SAC is not satisfied, through a process called adaptation or mitotic slippage. Adaptation weakens the killing properties of antimitotics, ultimately giving rise to resistant cancer cells. We summarize here the mechanisms underlying this process and propose a strategy to identify the factors involved using budding yeast as a model system. Inhibition of factors involved in SAC adaptation could have important therapeutic applications by potentiating the ability of antimitotics to cause cell death.

  14. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  15. Sensory Adaptation of Dictyostelium discoideum Cells to Chemotactic Signals

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1983-01-01

    Postvegetative Dictyostelium discoideum cells react chemotactically to gradients of cAMP, folic acid, and pterin. In the presence of a constant concentration of 10-5 M cAMP cells move at random. They still are able to respond to superimposed gradients of cAMP, although the response is less efficient

  16. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage.

  17. Gene expression profile differences in high and low metastatic human ovarian cancer cell lines by gene chip

    Institute of Scientific and Technical Information of China (English)

    许沈华; 牟瀚舟; 吕桂泉; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 程勇; 杨文

    2002-01-01

    Objectives To study the difference between gene expressions of high (H0-8910PM) and low (HO-8910) metastatic human ovarian carcinoma cell lines and screen novel associated genes by cDNA microarray. Methods cDNA retro-transcribed from equal quantities of mRNA derived from high and low metastatic tumor cells or normal ovarian tissues were labeled with Cy5 and Cy3 fluorescein as probes. The mixed probe was hybridized with two pieces of BioDoor 4096 double dot human whole gene chip and scanned with a ScanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results A total of 355 genes with expression levels more than 3 times larger were found by comparing the HO-8910 cell with normal ovarian epithelial cells. A total of 323 genes with expression levels more than 3 times larger in HO-8910PM cells compared to normal ovarian epithelium cells were also detected. A total of 165 genes whose expression levels were more than two times those of HO-8910PM cells compared to their mother cell line (HO-8910) were detected. Twenty-one genes with expression levels >3 times were found from comparison of these two tumor cell lines.Conclusions cDNA microarray techniques are effective in screening differential gene expression between two human ovarian cancer cell lines (H0-8910PM; HO-8910) and normal ovarian epithelial cells. These genes may be related to the genesis and development of ovarian carcinoma. Analysis of the human ovarian cancer gene expression profile with cDNA microarray may help in gene diagnosis, treatment and prevention.

  18. Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform.

    Directory of Open Access Journals (Sweden)

    Josefina Dykes

    Full Text Available BACKGROUND: Excessive collection of platelets is an unwanted side effect in current centrifugation-based peripheral blood progenitor cell (PBPC apheresis. We investigated a novel microchip-based acoustophoresis technique, utilizing ultrasonic standing wave forces for the removal of platelets from PBPC products. By applying an acoustic standing wave field onto a continuously flowing cell suspension in a micro channel, cells can be separated from the surrounding media depending on their physical properties. STUDY DESIGN AND METHODS: PBPC samples were obtained from patients (n = 15 and healthy donors (n = 6 and sorted on an acoustophoresis-chip. The acoustic force was set to separate leukocytes from platelets into a target fraction and a waste fraction, respectively. The PBPC samples, the target and the waste fractions were analysed for cell recovery, purity and functionality. RESULTS: The median separation efficiency of leukocytes to the target fraction was 98% whereas platelets were effectively depleted by 89%. PBPC samples and corresponding target fractions were similar in the percentage of CD34+ hematopoetic progenitor/stem cells as well as leukocyte/lymphocyte subset distributions. Median viability was 98%, 98% and 97% in the PBPC samples, the target and the waste fractions, respectively. Results from hematopoietic progenitor cell assays indicated a preserved colony-forming ability post-sorting. Evaluation of platelet activation by P-selectin (CD62P expression revealed a significant increase of CD62P+ platelets in the target (19% and waste fractions (20%, respectively, compared to the PBPC input samples (9%. However, activation was lower when compared to stored blood bank platelet concentrates (48%. CONCLUSION: Acoustophoresis can be utilized to efficiently deplete PBPC samples of platelets, whilst preserving the target stem/progenitor cell and leukocyte cell populations, cell viability and progenitor cell colony-forming ability

  19. The MRL proteins: adapting cell adhesion, migration and growth.

    Science.gov (United States)

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  20. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    Science.gov (United States)

    Balakrishnan, A.; Mueller, C.; Reinecke, H.

    2014-11-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH4. Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH4. The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm2) when driven by the catalytic hydrolysis of chemical hydride (NaBH4 and the prototype system shows run time more than 15 hours.

  1. A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells.

    Science.gov (United States)

    Ismail, Ahmed; Seo, Mitsunori; Takebayashi, Yumiko; Kamiya, Yuji; Nick, Peter

    2015-08-01

    Water-related stress is considered a major type of plant stress. Osmotic stress, in particular, represents the common part of all water-related stresses. Therefore, plants have evolved different adaptive mechanisms to cope with osmotic-related disturbances. In the current work, two grapevine cell lines that differ in their osmotic adaptability, Vitis rupestris and Vitis riparia, were investigated under mannitol-induced osmotic stress. To dissect signals that lead to adaptability from those related to sensitivity, osmotic-triggered responses with respect to jasmonic acid (JA) and its active form JA-Ile, abscisic acid (ABA), and stilbene compounds, as well as the expression of their related genes were observed. In addition, the transcript levels of the cellular homeostasis gene NHX1 were examined. The data are discussed with a hypothesis suggesting that a balance of JA and ABA status might correlate with cellular responses, either guiding cells to sensitivity or to progress toward adaptation.

  2. Adaptation of HIV-1 Depends on the Host-Cell Environment

    Science.gov (United States)

    van Opijnen, Tim; de Ronde, Anthony; Boerlijst, Maarten C.; Berkhout, Ben

    2007-01-01

    Many viruses have the ability to rapidly develop resistance against antiviral drugs and escape from the host immune system. To which extent the host environment affects this adaptive potential of viruses is largely unknown. Here we show that for HIV-1, the host-cell environment is key to the adaptive potential of the virus. We performed a large-scale selection experiment with two HIV-1 strains in two different T-cell lines (MT4 and C8166). Over 110 days of culture, both virus strains adapted rapidly to the MT4 T-cell line. In contrast, when cultured on the C8166 T-cell line, the same strains did not show any increase in fitness. By sequence analyses and infections with viruses expressing either yellow or cyan fluorescent protein, we were able to show that the absence of adaptation was linked to a lower recombination rate in the C8166 T-cell line. Our findings suggest that if we can manipulate the host-cellular factors that mediate viral evolution, we may be able to significantly retard viral adaptability. PMID:17342205

  3. Experiment list: SRX107356 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ll type=embryonal carcinoma cells || cell line=F9 || comment=Chromatin IP against RXRa. In house polyclonal ...PB105 (MDTKHFLPLDFSTQVNSSSLNSPTGRGC)] || chip antibody=in-house polyclonal Ab against RXRa || chip antibody

  4. Programmable Laser-Assisted Surface Microfabrication on a Poly(Vinyl Alcohol)-Coated Glass Chip with Self-Changing Cell Adhesivity for Heterotypic Cell Patterning.

    Science.gov (United States)

    Li, Yi-Chen; Lin, Meng-Wei; Yen, Meng-Hua; Fan, Sabrina Mai-Yi; Wu, June-Tai; Young, Tai-Horng; Cheng, Ji-Yen; Lin, Sung-Jan

    2015-10-14

    Organs are composed of heterotypic cells with patterned architecture that enables intercellular interaction to perform specific functions. In tissue engineering, the ability to pattern heterotypic cells into desired arrangement will allow us to model complex tissues in vitro and to create tissue equivalents for regeneration. This study was aimed at developing a method for fast heterotypic cell patterning with controllable topological manipulation on a glass chip. We found that poly(vinyl alcohol)-coated glass showed a biphasic change in adhesivity to cells in vitro: low adhesivity in the first 24 h and higher adhesivity at later hours due to increased serum protein adsorption. Combining programmable CO2 laser ablation to remove poly(vinyl alcohol) and glass, we were able to create arrays of adhesive microwells of adjustable patterns. We tested whether controllable patterns of epithelial-mesenchymal interaction could be created. When skin dermal papilla cells and fibroblasts were seeded respectively 24 h apart, we were able to pattern these two cells into aggregates of dermal papilla cells in arrays of microwells in a background of fibroblasts sheet. Seeded later, keratinocytes attached to these mesenchymal cells. Keratinocytes contacting dermal papilla cells started to differentiate toward a hair follicle fate, demonstrating patternable epithelial-mesenchymal interaction. This method allows fast adjustable heterotypic cell patterning and surface topology control and can be applied to the investigation of heterotypic cellular interaction and creation of tissue equivalent in vitro.

  5. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    Science.gov (United States)

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  6. No Evidence for a Low Linear Energy Transfer Adaptive Response in Irradiated RKO Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Lewis, Adam J.; Morgan, William F.

    2011-01-06

    It has become increasingly evident from reports in the literature that there are many confounding factors that are capable of modulating radiation induced non-targeted responses such as the bystander effect and the adaptive response. In this paper we examine recent data that suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low LET exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.

  7. Cytometer on a Chip

    Science.gov (United States)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (approximately 50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of one the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the

  8. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP–Chip

    Directory of Open Access Journals (Sweden)

    Weishaupt Holger

    2010-01-01

    Full Text Available Abstract Dynamic chromatin structure is a fundamental property of gene transcriptional regulation, and has emerged as a critical modulator of physiological processes during cellular differentiation and development. Analysis of chromatin structure using molecular biology and biochemical assays in rare somatic stem and progenitor cells is key for understanding these processes but poses a great challenge because of their reliance on millions of cells. Through the development of a miniaturized genome-scale chromatin immunoprecipitation method (miniChIP–chip, we have documented the genome-wide chromatin states of low abundant populations that comprise hematopoietic stem cells and immediate progeny residing in murine bone marrow. In this report, we describe the miniChIP methodology that can be used for increasing an understanding of the epigenetic mechanisms underlying hematopoietic stem and progenitor cell function. Application of this method will reveal the contribution of dynamic chromatin structure in regulating the function of other somatic stem cell populations, and how this process becomes perturbed in pathological conditions. Additional file 1 Click here for file

  9. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  10. Part II-mechanism of adaptation: A549 cells adapt to high concentration of nitric oxide through bypass of cell cycle checkpoints.

    Science.gov (United States)

    Aqil, Madeeha; Deliu, Zane; Elseth, Kim M; Shen, Grace; Xue, Jiaping; Radosevich, James A

    2014-03-01

    Previous work has shown enhanced survival capacity in high nitric oxide (HNO)-adapted tumor cells. In Part I of this series of manuscripts, we have shown that A549-HNO cells demonstrate an improved growth profile under UV and X-ray radiation treatment. These cells exhibit increased expression of proteins involved in DNA damage recognition and repair pathway, both the non-homologous end joining pathway and homologous recombination. These include Ku80, DNA-PK, XLF ligase and MRN complex proteins. Further, the A549-HNO cells show high levels of ATM, ATR, Chk1 and Chk2, and phospho-p53. Activation of these molecules may lead to cell cycle arrest and apoptosis due to DNA damage. This is observed in parent A549 cells in response to NO donor treatment; however, the A549-HNO cells proliferate and inhibit apoptosis. Cell cycle analysis showed slowed progression through S phase which will allow time for DNA repair. Thus, to better understand the increased growth rate in A549-HNO when compared to the parent cell line A549, we studied molecular mechanisms involved in cell cycle regulation in A549-HNO cells. During the initial time period of NO donor treatment, we observe high levels of cyclin/Cdk complexes involved in regulating various stages of the cell cycle. This would lead to bypass of G1-S and G2-M checkpoints. The HNO cells also show much higher expression of Cdc25A. Cdc25A activates Cdk molecules involved in different phases of the cell cycle. In addition, there is enhanced phosphorylation of the Rb protein in HNO cells. This leads to inactivation of Rb/E2F checkpoint regulating G1-S transition. This may lead to faster progression in S phase. Thus, all of these perturbations in HNO cells lead to accelerated cell cycle progression and a higher growth rate. We also assessed expression of cell cycle inhibitors in HNO cells. Interestingly, the HNO cells show a significant decline in p21CIP1 at initial time points, but with prolonged exposure, the levels were much higher

  11. Analysis of TNF-α-induced Leukocyte Adhesion to Vascular Endothelial Cells Regulated by Fluid Shear Stress Using Microfluidic Chip-based Technology

    Institute of Scientific and Technical Information of China (English)

    LI Yuan; YANG De-yu; LIAO Juan; GONG Fang; HE Ping; LIU Bei-zhong

    2015-01-01

    This paper aims to the research of the impact of fluid shear stress on the adhesion between vascular endothelial cells and leukocyte induced by tumor necrosis factor-α(TNF-α) by microfliudic chip technology. Microfluidic chip was fabricated by soft lithograph;Endothelial microfluidic chip was constructed by optimizing types of the extracellular matrix proteins modified in the microchannel and cell incubation time;human umbilical vein endothelial cells EA.Hy926 lined in the microchannel were exposed to fluid shear stress of 1.68 dynes/cm2 and 8.4 dynes/cm2 respectively. Meanwhile, adhesion between EA.Hy926 cells and leukocyte was induced by TNF-αunder a flow condition. EA. Hy926 cell cultured in the static condition was used as control group. The numbers of fluorescently-labeled leukocyte in microchannel were counted to quantize the adhesion level between EA. Hy926 cells and leukocyte; cell immunofluorescence technique was used to detect the intercellular adhesion molecule (ICAM-1) expression. The constructed endothelial microfluidic chip can afford to the fluid shear stress and respond to exogenous stimulus of TNF-α;compared with the adhesion numbers of leukocyte in control group, adhesion between EA. Hy926 cells exposed to low fluid shear stress and leukocyte was reduced under the stimulus of TNF-α at a concentration of 10 ng/ml(P<0.05);leukocyte adhesion with EA. Hy926 cells exposed to high fluid shear stress was reduced significantly than EA. Hy926 cells in control group and EA.1Hy926 cells exposed to low fluid shear stress ( P<0.01); the regulation mechanism of fluid shear stress to the adhesion between EA. Hy926 cells and leukocyte induced by TNF-αwas through the way of ICAM-1. The endothelial microfluidic chip fabricated in this paper could be used to study the functions of endothelial cell in vitro and provide a new technical platform for exploring the pathophysiology of the related cardiovascular system diseases under a flow environment.

  12. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    Science.gov (United States)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  13. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Science.gov (United States)

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.

  14. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  15. Adaptability and variability of the cell functions to the environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tadatoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1995-02-01

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author).

  16. Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Hyonchol Kim

    Full Text Available An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF and fluorescent (FL images at 200 frames per second (fps; by using this system, we examined the effectiveness of using imaging biomarkers for the identification of clustered circulating tumor cells (CTCs. Sample blood of rats in which a prostate cancer cell line (MAT-LyLu had been pre-implanted was applied to a microchannel on a disposable microchip after staining the nuclei using fluorescent dye for their visualization, and the acquired images were measured and compared with those of healthy rats. In terms of the results, clustered cells having (1 cell area larger than 200 µm2 and (2 nucleus area larger than 90 µm2 were specifically observed in cancer cell-implanted blood, but were not observed in healthy rats. In addition, (3 clusters having more than 3 nuclei were specific for cancer-implanted blood and (4 a ratio between the actual perimeter and the perimeter calculated from the obtained area, which reflects a shape distorted from ideal roundness, of less than 0.90 was specific for all clusters having more than 3 nuclei and was also specific for cancer-implanted blood. The collected clusters larger than 300 µm2 were examined by quantitative gene copy number assay, and were identified as being CTCs. These results indicate the usefulness of the imaging biomarkers for characterizing clusters, and all of the four examined imaging biomarkers-cluster area, nuclei area, nuclei number, and ratio of perimeter-can identify clustered CTCs in blood with the same level of preciseness using multi-imaging cytometry.

  17. Effects of pattern shape on adaptation of dLGN cell

    Institute of Scientific and Technical Information of China (English)

    JIN Jianzhong; XU Pengjing; LI Xiangrui; ZHOU Yifeng

    2003-01-01

    Pattern adaptation is one of the fundamental sensory processes in the visual system. In this study, we compared pattern adaptation induced by two types of sinusoidal drifting grating in dLGN cells of cat. The two types ofgrating have the same parameters (e.g. spatial frequency, temporal frequency and contrast) except their pattern shapes, one of which is normal grating and the other annular grating. The results suggested that the annular grating elicited stronger response and stronger pattern adaptation than the normal grating. This is consistent with the adaptation and aftereffect to the two types of drifting gratings seen in psychology and may reflect the subcortical neural mechanism underlying these psychological phenomena.

  18. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.

    Science.gov (United States)

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-06-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96.

  19. Effects of Copper-phenanthroline on Pentschlorophenol-induced Adaptation and Cell Death of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    XUE-WEN ZHANG; RONG-GUI LI; XIN WANG; SHUAN-HU ZHOU

    2007-01-01

    Objective To evaluate the effects of copper-phenanthroline (CuOP) on pentachlorophenol (PCP)-induced adaptation and cell death of Escherichia coli. Methods Bacterial growth and adaptation to PCP were monitored spectrophotometrically at 600 nm. Inactivation of bacterial cells was determined from colony count on agar dishes. Cellular ATP content and accumulation of PCP were assessed by chemiluminescence and HPLC analysis respectively. The formation of PCP-Cu-OP complex was shown by UV-visible spectra. Results Escherichia coli (E. coli) could adapt to PCP, a wood preservative and insecticide used in agriculture. The adaptation of E. coli to PCP prevented its death to the synergistic cytotoxicity of CuOP plus PCP and declined cellular accumulation and uncoupling of oxidative phosphorylafion of PCP. Furthermore, CuOP and PCP neither produced reactive oxygen species (ROS) nor had a synergistic effect on uncoupling of oxidative phosphorylation in E.coli. The synergistic cytotoxicity of CuOP and PCP in E. coli might be due to the formation of lipophillc PCP-Cu-OP complex.Conclsion Our data suggested that adaptation of E. coli to PCP decreased the synergistic effects of CuOP and PCP on prokaryotic cell death due to the formation of lipophilic PCP-Cu-OP complex, but it had no effect on the uncoupling of oxidative phosphorylation and production of reactive oxygen species in E. coli.

  20. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Sang-Hyug Park

    Full Text Available Adipose tissue-derived stem cells (ASCs are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen and integrin (CD11b and CD31 expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1 and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  1. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.

  2. Optimality and adaptation of phenotypically switching cells in fluctuating environments.

    Science.gov (United States)

    Belete, Merzu Kebede; Balázsi, Gábor

    2015-12-01

    Stochastic switching between alternative phenotypic states is a common cellular survival strategy during unforeseen environmental fluctuations. Cells can switch between different subpopulations that proliferate at different rates in different environments. Optimal population growth is typically assumed to occur when phenotypic switching rates match environmental switching rates. However, it is not well understood how this optimum behaves as a function of the growth rates of phenotypically different cells. In this study, we use mathematical and computational models to test how the actual parameters associated with optimal population growth differ from those assumed to be optimal. We find that the predicted optimum is practically always valid if the environmental durations are long. However, the regime of validity narrows as environmental durations shorten, especially if subpopulation growth rate differences differ from each other (are asymmetric) in two environments. Furthermore, we study the fate of mutants with switching rates previously predicted to be optimal. We find that mutants which match their phenotypic switching rates with the environmental ones can only sweep the population if the assumed optimum is valid, but not otherwise.

  3. Optimality and adaptation of phenotypically switching cells in fluctuating environments

    Science.gov (United States)

    Belete, Merzu Kebede; Balázsi, Gábor

    2015-12-01

    Stochastic switching between alternative phenotypic states is a common cellular survival strategy during unforeseen environmental fluctuations. Cells can switch between different subpopulations that proliferate at different rates in different environments. Optimal population growth is typically assumed to occur when phenotypic switching rates match environmental switching rates. However, it is not well understood how this optimum behaves as a function of the growth rates of phenotypically different cells. In this study, we use mathematical and computational models to test how the actual parameters associated with optimal population growth differ from those assumed to be optimal. We find that the predicted optimum is practically always valid if the environmental durations are long. However, the regime of validity narrows as environmental durations shorten, especially if subpopulation growth rate differences differ from each other (are asymmetric) in two environments. Furthermore, we study the fate of mutants with switching rates previously predicted to be optimal. We find that mutants which match their phenotypic switching rates with the environmental ones can only sweep the population if the assumed optimum is valid, but not otherwise.

  4. Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2013-01-01

    This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts...... for the boost converter large-signal dynamics as well as for the fuel-cell nonlinear characteristics. The adaptive nonlinear controller involves online estimation of the DC bus impedance ‘seen’ by the converter. The control objective is threefold: (i) asymptotic stability of the closed loop system, (ii) output...... voltage regulation under bus impedance uncertainties and (iii) equal current sharing between modules. It is formally shown, using theoretical analysis and simulations, that the developed adaptive controller actually meets its control objectives....

  5. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  6. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  7. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress

    Directory of Open Access Journals (Sweden)

    Paulina Kucharzewska

    2013-03-01

    Full Text Available Cells are constantly subjected to various types of endogenous and exogenous stressful stimuli, which can cause serious and even permanent damage. The ability of a cell to sense and adapt to environmental alterations is thus vital to maintain tissue homeostasis during development and adult life. Here, we review some of the major phenotypic characteristics of the hostile tumour microenvironment and the emerging roles of extracellular vesicles in these events.

  8. File list: DNS.CDV.10.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Endocardial_cells.bed ...

  9. File list: Unc.CDV.50.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Endocardial_cells hg19 Unclassified Cardiovascular Endocardial cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Endocardial_cells.bed ...

  10. File list: His.CDV.20.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Endocardial_cells hg19 Histone Cardiovascular Endocardial cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Endocardial_cells.bed ...

  11. File list: Unc.CDV.05.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Endocardial_cells hg19 Unclassified Cardiovascular Endocardial cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Endocardial_cells.bed ...

  12. File list: DNS.CDV.05.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Endocardial_cells.bed ...

  13. File list: His.CDV.10.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Endocardial_cells hg19 Histone Cardiovascular Endocardial cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Endocardial_cells.bed ...

  14. File list: DNS.CDV.50.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Endocardial_cells.bed ...

  15. File list: His.CDV.05.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Endocardial_cells hg19 Histone Cardiovascular Endocardial cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.AllAg.Endocardial_cells.bed ...

  16. File list: Unc.PSC.50.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.Unclassified.AllCell mm9 Unclassified Unclassified Pluripotent stem cell...73,SRX355578 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.Unclassified.AllCell.bed ...

  17. File list: Unc.PSC.10.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.10.Unclassified.AllCell mm9 Unclassified Unclassified Pluripotent stem cell...25,SRX213761 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.10.Unclassified.AllCell.bed ...

  18. File list: Unc.PSC.05.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.Unclassified.AllCell mm9 Unclassified Unclassified Pluripotent stem cell...8,SRX1034724 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.Unclassified.AllCell.bed ...

  19. File list: Unc.PSC.20.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.Unclassified.AllCell mm9 Unclassified Unclassified Pluripotent stem cell...44,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.Unclassified.AllCell.bed ...

  20. File list: His.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  1. File list: His.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  2. File list: His.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  3. File list: His.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  4. File list: DNS.CDV.20.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Endocardial_cells.bed ...

  5. File list: Unc.CDV.20.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Endocardial_cells hg19 Unclassified Cardiovascular Endocardial cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Endocardial_cells.bed ...

  6. File list: His.CDV.50.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Endocardial_cells hg19 Histone Cardiovascular Endocardial cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Endocardial_cells.bed ...

  7. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  8. Relation of spontaneous transformation in cell culture to adaptive growth and clonal heterogeneity.

    Science.gov (United States)

    Rubin, A L; Yao, A; Rubin, H

    1990-01-01

    Cell transformation in culture is marked by the appearance of morphologically altered cells that continue to multiply to form discrete foci in confluent sheets when the surrounding cells are inhibited. These foci occur spontaneously in early-passage NIH 3T3 cells grown to confluency in 10% calf serum (CS) but are not seen in cultures grown to confluency in 2% CS. However, repeated passage of the cells at low density in 2% CS gives rise to an adapted population that grows to increasingly higher saturation densities and produces large numbers of foci in 2% CS. The increased saturation density of the adapted population in 2% CS is retained upon repeated passage in 10% CS, but the number and size of the foci produced in 2% CS gradually decrease under this regime. Clonal analysis confirms that the focus-forming potential of most if not all of the cells in a population increases in response to a continuously applied growth constraint, although only a small fraction of the population may actually form foci in a given assay. The acquired capacity for focus formation varies widely in clones derived from the adapted population and changes in diverse ways upon further passage of the clones. We propose that the adaptive changes result from progressive selection of successive phenotypic variations in growth capacity that occur spontaneously. The process designated progressive state selection resolves the apparent dichotomy between spontaneous mutation with selection on the one hand and induction on the other, by introducing selection among fluctuating states or metabolic patterns rather than among genetically altered cells.

  9. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  10. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Bocsi, Jozsef; Di Berardino, Marco; Tarnok, Attila

    2012-11-07

    Impedance flow cytometry (IFC) was evaluated as a possible alternative to fluorescence-based methods for on-line quality monitoring of hybridoma cells. Hybridoma cells were cultured at different cell densities and viability was estimated by means of IFC and fluorescence-based flow cytometry (FCM). Cell death was determined by measuring the impedance phase value at high frequency in low conductivity buffer. IFC data correlate well with reference FCM measurements using AnnexinV and 7-AAD staining. Hybridoma cells growing at different densities in cell culture revealed a density-dependent subpopulation pattern. Living cells of high density cultures show reduced impedance amplitudes, indicating particular cellular changes. Dead cell subpopulations become evident in cultures with increasing cell densities. In addition, a novel intermediate subpopulation, which most probably represents apoptotic cells, was identified. These results emphasize the extraordinary sensitivity of high frequency impedance measurements and their suitability for hybridoma cell culture quality control.

  11. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within...... adaptation and to identify key determinants of viral replication efficiency in cells and within host animals....

  12. Monitoring changes in proteome during stepwise adaptation of a MDCK cell line from adherence to growth in suspension.

    Science.gov (United States)

    Kluge, Sabine; Benndorf, Dirk; Genzel, Yvonne; Scharfenberg, Klaus; Rapp, Erdmann; Reichl, Udo

    2015-08-20

    Adaptation of continuous cell lines to growth in suspension in a chemically defined medium has significant advantages for design and optimization in manufacturing of biologicals. In this work, changes in the protein expression level during a step-wise adaptation of an adherent Madin Darby canine kidney (MDCK) cell line to suspension growth were analyzed. Therefore, three cell line adaptations were performed independently. Two adaptations were monitored closely to characterize short term changes in protein expression levels after serum deprivation. In addition, initial stages of suspension growth were analyzed for both adaptations. The third adaptation involved MDCK suspension cells (MDCKSUS2) grown over an extended time period to achieve robust growth characteristics. Here, cells of the final stage of adaptation were compared with their parental cell line (MDCKADH). A combination of two dimensional differential gel electrophoresis for relative protein quantification and tandem mass spectrometry for protein identification enabled insights into cellular physiology. The two closely monitored cell line adaptations followed different routes regarding specific changes in protein expression but resulted in similar proteome profiles at the initial stages of suspension growth analyzed. Compared to the MDCKADH cells more than 90% of all changes in the protein expression level were identified after serum deprivation and were related to cytoskeletal structure, genetic information processing and cellular metabolism. Myosin proteins, involved in cellular detachment by actin-myosin contractile mechanisms were also differentially expressed. Interestingly, for both of the two adaptations, proteins linked for tumorigenicity, like lactoylglutathione lyase and sulfotransferase 1A1 were differentially expressed. In contrast, none of these proteins were differentially expressed for the MDCKSUS2 cell line. Overall, proteomic monitoring allowed identification of key proteins involved in

  13. File list: ALL.PSC.05.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.iPS_cells mm9 All antigens Pluripotent stem cell iPS cells SRX9774...30,SRX146524,SRX146522,SRX146547 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.05.AllAg.iPS_cells.bed ...

  14. File list: ALL.PSC.20.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.iPS_cells mm9 All antigens Pluripotent stem cell iPS cells SRX9773...30,SRX146522,SRX146547 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.20.AllAg.iPS_cells.bed ...

  15. File list: His.PSC.10.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.iPS_cells hg19 Histone Pluripotent stem cell iPS cells SRX110016,S...315,SRX381309 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.AllAg.iPS_cells.bed ...

  16. File list: DNS.PSC.50.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.iPS_cells hg19 DNase-seq Pluripotent stem cell iPS cells SRX040379...,SRX040378,SRX135563,SRX040376,SRX040377,SRX189427,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.iPS_cells.bed ...

  17. File list: His.PSC.10.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.iPS_cells mm9 Histone Pluripotent stem cell iPS cells SRX977417,SR...RX127372,SRX1090869,SRX127376,SRX035977,SRX146530,SRX146547,SRX146522 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.AllAg.iPS_cells.bed ...

  18. File list: DNS.PSC.10.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.iPS_cells hg19 DNase-seq Pluripotent stem cell iPS cells SRX040379...,SRX040378,SRX040377,SRX040376,SRX135563,SRX189427,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_cells.bed ...

  19. File list: Oth.PSC.05.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.iPS_cells mm9 TFs and others Pluripotent stem cell iPS cells SRX65...RX146524 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.AllAg.iPS_cells.bed ...

  20. File list: His.PSC.20.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.iPS_cells hg19 Histone Pluripotent stem cell iPS cells SRX110015,S...315,SRX381309 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.iPS_cells.bed ...

  1. File list: ALL.PSC.50.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.iPS_cells mm9 All antigens Pluripotent stem cell iPS cells SRX9773...1,SRX035985,SRX1090869 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.50.AllAg.iPS_cells.bed ...

  2. File list: ALL.PSC.20.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.iPS_cells hg19 All antigens Pluripotent stem cell iPS cells SRX088...27,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.20.AllAg.iPS_cells.bed ...

  3. File list: DNS.PSC.05.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.iPS_cells hg19 DNase-seq Pluripotent stem cell iPS cells SRX040379...,SRX040378,SRX040377,SRX040376,SRX135563,SRX189427,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.iPS_cells.bed ...

  4. File list: Oth.PSC.50.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.iPS_cells mm9 TFs and others Pluripotent stem cell iPS cells SRX97...RX146524 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.AllAg.iPS_cells.bed ...

  5. File list: ALL.PSC.10.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.iPS_cells hg19 All antigens Pluripotent stem cell iPS cells SRX753...09,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.10.AllAg.iPS_cells.bed ...

  6. File list: Oth.PSC.10.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.iPS_cells mm9 TFs and others Pluripotent stem cell iPS cells SRX65...RX146524 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.AllAg.iPS_cells.bed ...

  7. File list: ALL.PSC.50.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.iPS_cells hg19 All antigens Pluripotent stem cell iPS cells SRX088...16,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.50.AllAg.iPS_cells.bed ...

  8. File list: His.PSC.05.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.iPS_cells hg19 Histone Pluripotent stem cell iPS cells SRX317576,S...077,SRX317607 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.AllAg.iPS_cells.bed ...

  9. File list: ALL.PSC.10.AllAg.STAP_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.STAP_cells mm9 All antigens Pluripotent stem cell STAP cells SRX47...2660,SRX472654,SRX472663,SRX472665,SRX472656,SRX472662,SRX472661,SRX472664,SRX472655 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.10.AllAg.STAP_cells.bed ...

  10. File list: DNS.PSC.20.AllAg.Embryonic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.Embryonic_Stem_Cells hg19 DNase-seq Pluripotent stem cell Embryonic Stem... Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.20.AllAg.Embryonic_Stem_Cells.bed ...

  11. File list: Pol.PSC.05.AllAg.Embryonic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.Embryonic_Stem_Cells hg19 RNA polymerase Pluripotent stem cell Embryonic Stem... Cells SRX019617 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.Embryonic_Stem_Cells.bed ...

  12. File list: DNS.PSC.50.AllAg.Embryonic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.Embryonic_Stem_Cells hg19 DNase-seq Pluripotent stem cell Embryonic Stem... Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.Embryonic_Stem_Cells.bed ...

  13. File list: DNS.PSC.05.AllAg.Embryonic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.Embryonic_Stem_Cells hg19 DNase-seq Pluripotent stem cell Embryonic Stem... Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.Embryonic_Stem_Cells.bed ...

  14. File list: Pol.PSC.50.AllAg.Embryonic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.Embryonic_Stem_Cells hg19 RNA polymerase Pluripotent stem cell Embryonic Stem... Cells SRX019617 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.AllAg.Embryonic_Stem_Cells.bed ...

  15. File list: Unc.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  16. File list: ALL.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  17. File list: Unc.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  18. File list: ALL.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  19. File list: Unc.Emb.05.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.05.AllAg.Gonadal_somatic_cells.bed ...

  20. File list: ALL.Emb.10.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Gonadal_somatic_cells.bed ...

  1. File list: ALL.Emb.20.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Gonadal_somatic_cells mm9 All antigens Embryo Gonadal somatic cell...s SRX685753 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Gonadal_somatic_cells.bed ...

  2. File list: Unc.Emb.50.AllAg.Gonadal_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Gonadal_somatic_cells mm9 Unclassified Embryo Gonadal somatic cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Gonadal_somatic_cells.bed ...

  3. File list: His.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.05.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  4. File list: His.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  5. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  6. File list: His.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  7. File list: His.Utr.05.AllAg.Ovarian_granulosa_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.AllAg.Ovarian_granulosa_cells hg19 Histone Uterus Ovarian granulosa cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.AllAg.Ovarian_granulosa_cells.bed ...

  8. File list: His.Utr.10.AllAg.Ovarian_granulosa_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.AllAg.Ovarian_granulosa_cells hg19 Histone Uterus Ovarian granulosa cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.AllAg.Ovarian_granulosa_cells.bed ...

  9. File list: His.Utr.50.AllAg.Ovarian_granulosa_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.50.AllAg.Ovarian_granulosa_cells hg19 Histone Uterus Ovarian granulosa cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.AllAg.Ovarian_granulosa_cells.bed ...

  10. File list: His.Utr.20.AllAg.Ovarian_granulosa_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.AllAg.Ovarian_granulosa_cells hg19 Histone Uterus Ovarian granulosa cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.20.AllAg.Ovarian_granulosa_cells.bed ...

  11. Effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Wen-Jian; ZHENG Rong-Liang

    2005-01-01

    The heavy ions with high linear energy transfer and high relative biological effectiveness are much more deleterious on the male germ cells, ones of the most radiosensitive cells of the body, than low-LET ionizing radiation such as X-ray or gamma-ray. The effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics and the possible mechanism of this adaptation are summarized in our laboratory. Our results showed that the heavy ion irradiation significantly increased the frequencies of chromosomal aberrations in spermatogonia and spermatocytes of mice, the low dose heavy ion irradiation could induce significant adaptative response on mouse testes and human sperm, and pre-exposure of mouse testes with low-dose heavy ion can markedly alleviate damage effects induced by subsequent high-dose irradiation. The increase of SOD activity and decrease of lipid peroxidation levels induced by low-dose ionizing radiation may be involved in this adaptative response mechanism. These studies may provide useful theoretical and clinical bases for radioprotection of reproductive potential and assessment of genetic risks for human exposed to heavy ions in radiotherapy and in outer space environment.

  12. Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3.

    Science.gov (United States)

    Bolaños, Juan P

    2013-06-15

    Besides the necessary changes in the expression of cell cycle-related proteins, cancer cells undergo a profound series of metabolic adaptations focused to satisfy their excessive demand for biomass. An essential metabolic transformation of these cells is increased glycolysis, which is currently the focus of anticancer therapies. Several key players have been identified, so far, that adapt glycolysis to allow an increased proliferation in cancer. In this issue of the Biochemical Journal, Novellasdemunt and colleagues elegantly identify a novel mechanism by which MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2], a key component of the MAPK pathway, up-regulates glycolysis in response to stress in cancer cells. The authors found that, by phosphorylating specific substrate residues, MK2 promotes both increased the gene transcription and allosteric activation of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), a key glycolysis-promoting enzyme. These results reveal a novel pathway through which MK2 co-ordinates metabolic adaptation to cell proliferation in cancer and highlight PFKFB3 as a potential therapeutic target in this devastating disease.

  13. Synchronization of cells with activator-inhibitor pathways through adaptive environment-mediated coupling

    Science.gov (United States)

    Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.; Tchawoua, C.; Kofane, T. C.

    2015-11-01

    In this paper, we report the synchronized dynamics of cells with activator-inhibitor pathways via an adaptive environment-mediated coupling scheme with feedbacks and control mechanisms. The adaptive character of the extracellular medium is modeled via its damping parameter as a physiological response aiming at annihilating the cellular differentiation existing between the chaotic biochemical pathways of the cells, in order to preserve homeostasis. We perform an investigation on the existence and stability of the synchronization manifold of the coupled system under the proposed coupling pattern. Both mathematical and computational tools suggest the accessibility of conducive prerequisites (conditions) for the emergence of a robust synchronous regime. The relevance of a phase-synchronized dynamics is appraised and several numerical indicators advocate for the prevalence of this fascinating phenomenon among the interacting cells in the phase space.

  14. Fine tuning of the threshold of T cell selection by the Nck adapters.

    Science.gov (United States)

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Schmitt, Sabine; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter J; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-12-15

    Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire.

  15. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  16. Development of a high-throughput Candida albicans biofilm chip.

    Science.gov (United States)

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  17. The adapter protein ADAP is required for selected dendritic cell functions

    Directory of Open Access Journals (Sweden)

    Togni Mauro

    2012-06-01

    Full Text Available Abstract Background The cytosolic adaptor protein ADAP (adhesion and degranulation promoting adapter protein is expressed by T cells, natural killer cells, myeloid cells and platelets. ADAP is involved in T-cell-receptor-mediated inside-out signaling, which leads to integrin activation, adhesion and reorganization of the actin cytoskeleton. However, little is known about the role of ADAP in myeloid cells. In the present study, we analyzed the function of ADAP in bone-marrow-derived dendritic cells (BMDCs from ADAP-deficient mice. Results ADAP-deficient BMDCs showed almost normal levels of antigen uptake, adhesion, maturation, migration from the periphery to the draining lymph nodes, antigen-specific T-cell activation, and production of the proinflammatory cytokines IL-6 and TNF-∝. Furthermore, we provide evidence that the activation of signaling pathways after lipopolysaccharide (LPS stimulation are not affected by the loss of ADAP. In contrast, ADAP-deficient BMDCs showed defects in CD11c-mediated cellular responses, with significantly diminished production of IL-6, TNF-∝ and IL-10. Actin polymerization was enhanced after CD11c integrin stimulation. Conclusions In summary, we propose that the adapter molecule ADAP is critical for selected CD11c integrin-mediated functions of dendritic cells.

  18. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity.

    Science.gov (United States)

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  19. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  20. Context and location dependence of adaptive Foxp3+ regulatory T cell formation during immunopathological conditions

    OpenAIRE

    Heiber, Joshua F.; Geiger, Terrence L

    2012-01-01

    Circulating Foxp3+ regulatory T cells (Treg) may arise in the thymus (natural Treg, nTreg) or through the adaptive upregulation of Foxp3 after T cell activation (induced Treg, iTreg). In this brief review, we explore evidence for the formation and function of iTreg during pathologic conditions. Determining the ontogeny and function of Treg populations has relied on the use of manipulated systems in which either iTreg or nTreg are absent, or lineage tracing of T cell clones through repertoire ...

  1. Experiment list: SRX180159 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sd || cell type=hemogenic endothelium || chip antibody=CEBPb || chip antibody vendor=santa cruz biotechnol...ogy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachData/bw/SRX180159.bw http://

  2. Experiment list: SRX112178 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available line=OS25 ES cells || chip antibody=8WG16 (MMS-126R, Covance) || chip antibody manufacturer=Covance || chromatin=Fixed || beads=Magn...etic beads http://dbarchive.biosciencedbc.jp/kyushu-u/mm

  3. Experiment list: SRX769793 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Primary thioglycollate-elicited peritoneal macrophages || strain=C57Bl6 || chip t...arget=RXR || chip antibody=sc-553, sc-774 || genotype=wild-type || cell type=macrophages http://dbarchive.bi

  4. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte

    2014-01-01

    OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...... for mitogenic activity in INS-1E cells. Proteins and peptides in mitogenic active serum fractions were identified by amino acid sequencing and mass spectrometry. MAIN OUTCOME MEASURES: Presence of circulating beta cell proliferating factors. RESULTS: Late gestational pregnancy serum significantly increased...

  5. CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity

    Science.gov (United States)

    Pereira, Catia S.

    2016-01-01

    Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes. PMID:28070524

  6. An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells.

    Science.gov (United States)

    Ker, Dai Fei Elmer; Weiss, Lee E; Junkers, Silvina N; Chen, Mei; Yin, Zhaozheng; Sandbothe, Michael F; Huh, Seung-il; Eom, Sungeun; Bise, Ryoma; Osuna-Highley, Elvira; Kanade, Takeo; Campbell, Phil G

    2011-01-01

    Current cell culture practices are dependent upon human operators and remain laborious and highly subjective, resulting in large variations and inconsistent outcomes, especially when using visual assessments of cell confluency to determine the appropriate time to subculture cells. Although efforts to automate cell culture with robotic systems are underway, the majority of such systems still require human intervention to determine when to subculture. Thus, it is necessary to accurately and objectively determine the appropriate time for cell passaging. Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be especially important for efficient, cost-effective stem cell-based therapies. Toward this goal we developed a real-time computer vision-based system that monitors the degree of cell confluency with a precision of 0.791±0.031 and recall of 0.559±0.043. The system consists of an automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially imaged and the data is uploaded to the server that performs computer vision processing, predicts when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-based interface for remote cell culture monitoring. Human operators are also notified via text messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching this threshold. This system was successfully used to direct the expansion of a paradigm stem cell population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed no difference for myogenic and osteogenic differentiation. This automated vision-based system has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization and quality assurance/quality control, and it could be integrated with current and developing robotic cell

  7. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators

    Science.gov (United States)

    Jia, Yanxin; Kiss, István Z.

    2017-01-01

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries. PMID:28387237

  8. The Mechanism of Adaptation of Breast Cancer Cells to Hypoxia: Role of AMPK/mTOR Signaling Pathway.

    Science.gov (United States)

    Sorokin, D V; Scherbakov, A M; Yakushina, I A; Semina, S E; Gudkova, M V; Krasil'nikov, M A

    2016-02-01

    We studied the mechanisms of adaptation of human breast cancer cells MCF-7 to hypoxia and analyzed the role of AMPK/mTOR signaling pathway in the maintenance of cell proliferation under hypoxic conditions. It was found that long-term culturing (30 days or more) of MCF-7 cells under hypoxic conditions induced their partial adaptation to hypoxia. Cell adaptation to hypoxia was associated with attenuation of hypoxia-dependent AMPK induction with simultaneous constitutive activation of mTOR and Akt. These findings suggest that these proteins can be promising targets for targeted therapy of tumors developing under hypoxic conditions.

  9. Low power proton exchange membrane fuel cell system identification and adaptive control

    Science.gov (United States)

    Yang, Yee-Pien; Wang, Fu-Cheng; Chang, Hsin-Ping; Ma, Ying-Wei; Weng, Biing-Jyh

    This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can be used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties. From a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying parameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the recursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device to excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the unmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy to improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive controller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results.

  10. [Proliferation characteristics of a PK-15 cell-adapted strain of porcine parvovirus].

    Science.gov (United States)

    Wu, Yun-Fei; Zhu, Ling; Xu, Zhi-Wen; Fu, Meng-Jin; Chen, Lei; Yang, Ai-Guo; Guo, Wan-Zhu

    2013-06-01

    To study the proliferation characteristics of PPV in differently infected way and the variance of concentrations in different cells. A strain of porcine parvovirus(PPV) was adapted to PK-15 cells, and a Real-time fluorescent quantitative PCR (FQ-PCR) assay was developed based on the specific region of the NS1 gene of PPV to quantify the PPV. The FQ-PCR was used to measure the viral concentration of virus-infected cells by simultaneous or step by step inoculation and plot one-step growth curves. The proliferation characteristics of PPV strain in different cells lines (HeLa, MDBK, PK-15 ,ST, F81, BHK-21 and Marc-145) was also compared. The results showed the PK-15 cell -adapted strain of PPV produced CPE after 12 passages, and maintained stable CPE at the following 10 messages. The one-step growth curve showed that the virus concentration of simultaneous inoculation was higher than that of the step-by-step inoculation, and the proliferation cycle of step-by-step inoculation was shorter. The proliferation ability of PPV strain in different cells showed that CPE appeared first inPK-15, followed by ST, HeLa and MDBK, and the virus concentration was highest in ST, followed byPK-15, MDBK and HeLa. NO proliferation was observed in F81, BHK-21 and Marc-145 cells. These findings lay a material foundation for the basic researches on PPV and the development of vaccine.

  11. Low power proton exchange membrane fuel cell system identification and adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yee-Pien; Wang, Fu-Cheng; Ma, Ying-Wei [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping; Weng, Biing-Jyh [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D. (Taiwan)

    2007-02-10

    This paper proposes a systematic method of system identification and control of a proton exchange membrane (PEM) fuel cell. This fuel cell can be used for low-power communication devices involving complex electrochemical reactions of nonlinear and time-varying dynamic properties. From a system point of view, the dynamic model of PEM fuel cell is reduced to a configuration of two inputs, hydrogen and air flow rates, and two outputs, cell voltage and current. The corresponding transfer functions describe linearized subsystem dynamics with finite orders and time-varying parameters, which are expressed as discrete-time auto-regression moving-average with auxiliary input models for system identification by the recursive least square algorithm. In the experiments, a pseudo-random binary sequence of hydrogen or air flow rate is fed to a single fuel cell device to excite its dynamics. By measuring the corresponding output signals, each subsystem transfer function of reduced order is identified, while the unmodeled, higher-order dynamics and disturbances are described by the auxiliary input term. This provides a basis of adaptive control strategy to improve the fuel cell performance in terms of efficiency, as well as transient and steady state specifications. Simulation shows that adaptive controller is robust to the variation of fuel cell system dynamics, and it has proved promising from the experimental results. (author)

  12. File list: Oth.Unc.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.50.Crotonyl_lysine.AllCell.bed ...

  13. File list: Oth.Pan.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.Crotonyl_lysine.AllCell.bed ...

  14. File list: Oth.Plc.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.20.Crotonyl_lysine.AllCell.bed ...

  15. File list: Oth.Unc.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.10.Crotonyl_lysine.AllCell.bed ...

  16. File list: Oth.Unc.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.20.Crotonyl_lysine.AllCell.bed ...

  17. File list: Oth.Pan.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.Crotonyl_lysine.AllCell.bed ...

  18. File list: Oth.Plc.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.05.Crotonyl_lysine.AllCell.bed ...

  19. File list: Oth.Pan.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.Crotonyl_lysine.AllCell.bed ...

  20. File list: Oth.Plc.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.10.Crotonyl_lysine.AllCell.bed ...

  1. File list: Oth.Prs.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.50.Crotonyl_lysine.AllCell.bed ...

  2. File list: Oth.Prs.10.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.10.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.10.Crotonyl_lysine.AllCell.bed ...

  3. File list: Oth.Plc.50.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Plc.50.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Placenta http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Plc.50.Crotonyl_lysine.AllCell.bed ...

  4. File list: Oth.Prs.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.05.Crotonyl_lysine.AllCell.bed ...

  5. File list: Oth.Prs.20.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.20.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Prostate http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Prs.20.Crotonyl_lysine.AllCell.bed ...

  6. File list: Oth.Unc.05.Crotonyl_lysine.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.Crotonyl_lysine.AllCell mm9 TFs and others Crotonyl lysine Unclassified ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Unc.05.Crotonyl_lysine.AllCell.bed ...

  7. File list: His.Plc.20.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.20.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.20.AllAg.Trophoblast_giant_cells.bed ...

  8. File list: His.Plc.10.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.10.AllAg.Trophoblast_giant_cells.bed ...

  9. File list: His.Plc.50.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.50.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.50.AllAg.Trophoblast_giant_cells.bed ...

  10. File list: His.Plc.05.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.05.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.05.AllAg.Trophoblast_giant_cells.bed ...

  11. File list: His.Adl.10.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.10.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.10.AllAg.Temperature_sensitive_cells.bed ...

  12. File list: His.Adl.50.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.50.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.50.AllAg.Temperature_sensitive_cells.bed ...

  13. File list: His.Adl.20.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.20.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.20.AllAg.Temperature_sensitive_cells.bed ...

  14. File list: His.Adl.05.AllAg.Temperature_sensitive_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adl.05.AllAg.Temperature_sensitive_cells dm3 Histone Adult Temperature sensitiv...barchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Adl.05.AllAg.Temperature_sensitive_cells.bed ...

  15. File list: Unc.Unc.10.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Unc.10.Unclassified.AllCell sacCer3 Unclassified Unclassified Unclassified http...://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Unc.Unc.10.Unclassified.AllCell.bed ...

  16. File list: ALL.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.20.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  17. File list: ALL.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.50.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  18. File list: ALL.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.05.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  19. File list: ALL.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.10.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  20. File list: Unc.Kid.05.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.05.Unclassified.AllCell hg19 Unclassified Unclassified Kidney SRX130265,SRX...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Kid.05.Unclassified.AllCell.bed ...

  1. File list: Unc.Kid.20.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.20.Unclassified.AllCell hg19 Unclassified Unclassified Kidney SRX130265,SRX...2 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Kid.20.Unclassified.AllCell.bed ...

  2. File list: Unc.Kid.10.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.10.Unclassified.AllCell mm9 Unclassified Unclassified Kidney SRX1116348,SRX...1116347 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Kid.10.Unclassified.AllCell.bed ...

  3. File list: Unc.Epd.10.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.10.Unclassified.AllCell mm9 Unclassified Unclassified Epidermis SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.10.Unclassified.AllCell.bed ...

  4. File list: Unc.Epd.20.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.20.Unclassified.AllCell mm9 Unclassified Unclassified Epidermis SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.20.Unclassified.AllCell.bed ...

  5. File list: Unc.Kid.50.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.50.Unclassified.AllCell mm9 Unclassified Unclassified Kidney SRX1116348,SRX...1116347 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Kid.50.Unclassified.AllCell.bed ...

  6. File list: Unc.Epd.05.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.05.Unclassified.AllCell mm9 Unclassified Unclassified Epidermis SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.05.Unclassified.AllCell.bed ...

  7. File list: Unc.Kid.50.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.50.Unclassified.AllCell hg19 Unclassified Unclassified Kidney SRX130265,SRX...8 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Kid.50.Unclassified.AllCell.bed ...

  8. File list: Unc.Kid.05.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.05.Unclassified.AllCell mm9 Unclassified Unclassified Kidney SRX1116348,SRX...1116347 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Kid.05.Unclassified.AllCell.bed ...

  9. File list: Unc.Epd.50.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Epd.50.Unclassified.AllCell mm9 Unclassified Unclassified Epidermis SRX352044 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Epd.50.Unclassified.AllCell.bed ...

  10. File list: Unc.Kid.20.Unclassified.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Kid.20.Unclassified.AllCell mm9 Unclassified Unclassified Kidney SRX1116348,SRX...1116347 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Kid.20.Unclassified.AllCell.bed ...

  11. File list: Oth.Gon.20.AllAg.Germline_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Germline_stem_cells mm9 TFs and others Gonad Germline stem cells S...RX1060557 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Germline_stem_cells.bed ...

  12. File list: Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachio...cephalic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  13. File list: ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachio...cephalic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  14. File list: Oth.ALL.05.GRHL2.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.GRHL2.AllCell hg19 TFs and others GRHL2 All cell types SRX268452,SRX2684...50,SRX268451,SRX360001 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.GRHL2.AllCell.bed ...

  15. File list: Oth.ALL.50.Erg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Erg.AllCell mm9 TFs and others Erg All cell types SRX884089,SRX884088,SR...X310200,SRX283740,SRX283735,SRX283750,SRX283745,SRX275703,SRX275705 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Erg.AllCell.bed ...

  16. File list: Oth.ALL.20.Erg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Erg.AllCell mm9 TFs and others Erg All cell types SRX884089,SRX884088,SR...X310200,SRX283740,SRX283735,SRX275705,SRX283750,SRX283745,SRX275703 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Erg.AllCell.bed ...

  17. File list: Oth.ALL.05.Erg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Erg.AllCell mm9 TFs and others Erg All cell types SRX884089,SRX884088,SR...X283740,SRX283735,SRX283750,SRX275705,SRX310200,SRX275703,SRX283745 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Erg.AllCell.bed ...

  18. File list: Oth.ALL.10.Erg.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Erg.AllCell mm9 TFs and others Erg All cell types SRX884089,SRX884088,SR...X283740,SRX283735,SRX310200,SRX275705,SRX275703,SRX283745,SRX283750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.10.Erg.AllCell.bed ...

  19. File list: Oth.ALL.20.pan.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.pan.AllCell dm3 TFs and others pan All cell types SRX467061,SRX467060,SR...X467066 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.20.pan.AllCell.bed ...

  20. File list: Oth.ALL.50.pan.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.pan.AllCell dm3 TFs and others pan All cell types SRX467061,SRX467066,SR...X467060 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.50.pan.AllCell.bed ...

  1. File list: Oth.ALL.05.pan.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.pan.AllCell dm3 TFs and others pan All cell types SRX467061,SRX495319,SR...X467066,SRX467060 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.05.pan.AllCell.bed ...

  2. File list: Oth.ALL.10.pan.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.pan.AllCell dm3 TFs and others pan All cell types SRX467066,SRX467061,SR...X467060,SRX495319 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.10.pan.AllCell.bed ...

  3. File list: Oth.ALL.05.ph-d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.ph-d.AllCell dm3 TFs and others ph-d All cell types SRX027826,SRX027825,...SRX474588,SRX681794,SRX681770,SRX474590,SRX474587,SRX474589 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.05.ph-d.AllCell.bed ...

  4. File list: Oth.PSC.50.Runx1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Runx1.AllCell mm9 TFs and others Runx1 Pluripotent stem cell SRX825830,S...RX825828,SRX825829,SRX825831,SRX065539,SRX825833,SRX825832,SRX065538,SRX065537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Runx1.AllCell.bed ...

  5. File list: Oth.ALL.05.Runx1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Runx1.AllCell mm9 TFs and others Runx1 All cell types SRX825830,SRX82582...22473,SRX105460 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Runx1.AllCell.bed ...

  6. File list: Oth.ALL.05.snpc-4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.snpc-4.AllCell ce10 TFs and others snpc-4 All cell types SRX118222,SRX33...043971,SRX043973 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.05.snpc-4.AllCell.bed ...

  7. File list: Oth.ALL.10.snpc-4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.snpc-4.AllCell ce10 TFs and others snpc-4 All cell types SRX118222,SRX33...043971,SRX043973 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.10.snpc-4.AllCell.bed ...

  8. File list: Oth.ALL.20.snpc-4.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.snpc-4.AllCell ce10 TFs and others snpc-4 All cell types SRX331282,SRX33...043971 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.20.snpc-4.AllCell.bed ...

  9. File list: His.PSC.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.Pan_lysine_crotonylation.AllCell.bed ...

  10. File list: His.ALL.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Al...l cell types SRX099897,SRX099894 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.10.Pan_lysine_crotonylation.AllCell.bed ...

  11. File list: His.PSC.50.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.Pan_lysine_crotonylation.AllCell.bed ...

  12. File list: His.ALL.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation A...ll cell types SRX099891 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.ALL.10.Pan_lysine_crotonylation.AllCell.bed ...

  13. File list: His.ALL.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.ALL.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Al...l cell types SRX099894,SRX099897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.ALL.20.Pan_lysine_crotonylation.AllCell.bed ...

  14. File list: His.PSC.10.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.Pan_lysine_crotonylation.AllCell hg19 Histone Pan lysine crotonylation P...luripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.Pan_lysine_crotonylation.AllCell.bed ...

  15. File list: His.PSC.20.Pan_lysine_crotonylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.Pan_lysine_crotonylation.AllCell mm9 Histone Pan lysine crotonylation Pl...uripotent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.Pan_lysine_crotonylation.AllCell.bed ...

  16. File list: ALL.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 All antigens Blood Carcinoma, Squamou...s Cell SRX1156552,SRX1156554,SRX1426082,SRX1156555,SRX1156553 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  17. File list: DNS.Bld.10.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Carcinoma,_Squamous_Cell mm9 DNase-seq Blood Carcinoma, Squamous C...ell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.Carcinoma,_Squamous_Cell.bed ...

  18. File list: ALL.Bld.10.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Carcinoma,_Squamous_Cell mm9 All antigens Blood Carcinoma, Squamou...s Cell SRX1156552,SRX1156554,SRX1426082,SRX1156555,SRX1156553 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Carcinoma,_Squamous_Cell.bed ...

  19. File list: Oth.Bld.10.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Carcinoma,_Squamous_Cell mm9 TFs and others Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Carcinoma,_Squamous_Cell.bed ...

  20. File list: ALL.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 All antigens Blood Carcinoma, Squamou...s Cell SRX1156552,SRX1426082,SRX1156554,SRX1156555,SRX1156553 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  1. File list: Unc.Bld.20.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Carcinoma,_Squamous_Cell mm9 Unclassified Blood Carcinoma, Squamou...s Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Carcinoma,_Squamous_Cell.bed ...

  2. File list: DNS.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 DNase-seq Blood Carcinoma, Squamous C...ell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  3. File list: Unc.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 Unclassified Blood Carcinoma, Squamou...s Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  4. File list: Pol.Bld.10.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Carcinoma,_Squamous_Cell mm9 RNA polymerase Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Carcinoma,_Squamous_Cell.bed ...

  5. File list: Pol.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 RNA polymerase Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  6. File list: Unc.Bld.10.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Carcinoma,_Squamous_Cell mm9 Unclassified Blood Carcinoma, Squamou...s Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Carcinoma,_Squamous_Cell.bed ...

  7. File list: His.Bld.20.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Carcinoma,_Squamous_Cell mm9 Histone Blood Carcinoma, Squamous Cel...l SRX1426082,SRX1156554,SRX1156555 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Carcinoma,_Squamous_Cell.bed ...

  8. File list: Oth.Bld.20.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Carcinoma,_Squamous_Cell mm9 TFs and others Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Carcinoma,_Squamous_Cell.bed ...

  9. File list: ALL.Bld.20.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Carcinoma,_Squamous_Cell mm9 All antigens Blood Carcinoma, Squamou...s Cell SRX1426082,SRX1156552,SRX1156554,SRX1156555,SRX1156553 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Carcinoma,_Squamous_Cell.bed ...

  10. File list: Oth.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 TFs and others Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  11. File list: Oth.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 TFs and others Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  12. File list: DNS.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 DNase-seq Blood Carcinoma, Squamous C...ell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  13. File list: DNS.Bld.20.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Carcinoma,_Squamous_Cell mm9 DNase-seq Blood Carcinoma, Squamous C...ell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.Carcinoma,_Squamous_Cell.bed ...

  14. File list: Unc.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 Unclassified Blood Carcinoma, Squamou...s Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  15. File list: His.Bld.10.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Carcinoma,_Squamous_Cell mm9 Histone Blood Carcinoma, Squamous Cel...l SRX1156554,SRX1426082,SRX1156555 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Carcinoma,_Squamous_Cell.bed ...

  16. File list: Pol.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 RNA polymerase Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  17. File list: Pol.Bld.20.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Carcinoma,_Squamous_Cell mm9 RNA polymerase Blood Carcinoma, Squam...ous Cell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Carcinoma,_Squamous_Cell.bed ...

  18. File list: His.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 Histone Blood Carcinoma, Squamous Cel...l SRX1156554,SRX1426082,SRX1156555 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  19. File list: His.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 Histone Blood Carcinoma, Squamous Cel...l SRX1426082,SRX1156554,SRX1156555 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  20. File list: Oth.ALL.20.Pof.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Pof.AllCell dm3 TFs and others Pof All cell types SRX288030,SRX467106,SR...X288029,SRX287900,SRX287899 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.20.Pof.AllCell.bed ...

  1. File list: Oth.ALL.50.Maf.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Maf.AllCell mm9 TFs and others Maf All cell types SRX187205,SRX187204,SR...X288146,SRX288145,SRX187206,SRX187203 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Maf.AllCell.bed ...

  2. File list: Oth.ALL.05.Maf.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Maf.AllCell mm9 TFs and others Maf All cell types SRX288146,SRX288145,SR...X187205,SRX187204,SRX187206,SRX187203 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Maf.AllCell.bed ...

  3. File list: Oth.ALL.20.Maf.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Maf.AllCell mm9 TFs and others Maf All cell types SRX187205,SRX187204,SR...X288145,SRX288146,SRX187206,SRX187203 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.20.Maf.AllCell.bed ...

  4. File list: Oth.ALL.10.Maf.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Maf.AllCell mm9 TFs and others Maf All cell types SRX187205,SRX288146,SR...X187204,SRX288145,SRX187206,SRX187203 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.10.Maf.AllCell.bed ...

  5. File list: His.PSC.50.H2B.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.H2B.AllCell mm9 Histone H2B Pluripotent stem cell SRX1034714,SRX1034721,...SRX1034715,SRX1034720 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.H2B.AllCell.bed ...

  6. File list: Oth.ALL.10.vfl.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.vfl.AllCell dm3 TFs and others vfl All cell types SRX858997,SRX858995,SR...X858991,SRX858993,SRX084384,SRX084385,SRX084383,SRX647436,SRX647437 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.10.vfl.AllCell.bed ...

  7. File list: Oth.ALL.20.vfl.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.vfl.AllCell dm3 TFs and others vfl All cell types SRX858995,SRX858991,SR...X858997,SRX858993,SRX084384,SRX084385,SRX084383,SRX647436,SRX647437 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.20.vfl.AllCell.bed ...

  8. File list: Oth.ALL.50.vfl.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.vfl.AllCell dm3 TFs and others vfl All cell types SRX858995,SRX858991,SR...X858997,SRX858993,SRX084384,SRX084385,SRX084383,SRX647436,SRX647437 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.50.vfl.AllCell.bed ...

  9. File list: Oth.ALL.05.vfl.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.vfl.AllCell dm3 TFs and others vfl All cell types SRX858997,SRX858991,SR...X858995,SRX858993,SRX084384,SRX084385,SRX084383,SRX647436,SRX647437 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.05.vfl.AllCell.bed ...

  10. File list: Oth.ALL.50.Med.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Med.AllCell dm3 TFs and others Med All cell types SRX1021231,SRX1021230,...SRX1021232 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.50.Med.AllCell.bed ...

  11. File list: Oth.ALL.05.Med.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Med.AllCell dm3 TFs and others Med All cell types SRX1021230,SRX1021231,...SRX1021232 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.ALL.05.Med.AllCell.bed ...

  12. File list: Oth.ALL.50.Med1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Med1.AllCell mm9 TFs and others Med1 All cell types SRX657147,SRX657149,...319,SRX022694,SRX657139,SRX355576,SRX355581,SRX657154,SRX657137,SRX800018,SRX800019 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Med1.AllCell.bed ...

  13. File list: Oth.PSC.05.Med12.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Med12.AllCell mm9 TFs and others Med12 Pluripotent stem cell SRX022692,S...RX022693,SRX651987 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Med12.AllCell.bed ...

  14. File list: DNS.Oth.05.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Trabecular_meshwork_cells hg19 DNase-seq Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.05.AllAg.Trabecular_meshwork_cells.bed ...

  15. File list: Unc.Oth.05.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Trabecular_meshwork_cells hg19 Unclassified Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.05.AllAg.Trabecular_meshwork_cells.bed ...

  16. File list: Pol.Oth.50.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Trabecular_meshwork_cells hg19 RNA polymerase Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.AllAg.Trabecular_meshwork_cells.bed ...

  17. File list: Pol.Oth.05.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Trabecular_meshwork_cells hg19 RNA polymerase Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.05.AllAg.Trabecular_meshwork_cells.bed ...

  18. File list: ALL.Oth.20.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Trabecular_meshwork_cells hg19 All antigens Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.20.AllAg.Trabecular_meshwork_cells.bed ...

  19. File list: Oth.Oth.05.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Trabecular_meshwork_cells hg19 TFs and others Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.05.AllAg.Trabecular_meshwork_cells.bed ...

  20. File list: His.Oth.20.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Trabecular_meshwork_cells hg19 Histone Others Trabecular meshwork ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.AllAg.Trabecular_meshwork_cells.bed ...

  1. File list: Unc.Oth.50.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Trabecular_meshwork_cells hg19 Unclassified Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.50.AllAg.Trabecular_meshwork_cells.bed ...

  2. File list: DNS.Oth.50.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Trabecular_meshwork_cells hg19 DNase-seq Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.50.AllAg.Trabecular_meshwork_cells.bed ...

  3. File list: DNS.Oth.10.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Trabecular_meshwork_cells hg19 DNase-seq Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.10.AllAg.Trabecular_meshwork_cells.bed ...

  4. File list: Oth.Oth.10.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Trabecular_meshwork_cells hg19 TFs and others Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.10.AllAg.Trabecular_meshwork_cells.bed ...

  5. File list: His.Oth.05.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Trabecular_meshwork_cells hg19 Histone Others Trabecular meshwork ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.05.AllAg.Trabecular_meshwork_cells.bed ...

  6. File list: Unc.Oth.10.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Trabecular_meshwork_cells hg19 Unclassified Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.10.AllAg.Trabecular_meshwork_cells.bed ...

  7. File list: Pol.Oth.20.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Trabecular_meshwork_cells hg19 RNA polymerase Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.AllAg.Trabecular_meshwork_cells.bed ...

  8. File list: ALL.Oth.50.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Trabecular_meshwork_cells hg19 All antigens Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.50.AllAg.Trabecular_meshwork_cells.bed ...

  9. File list: DNS.Oth.20.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Trabecular_meshwork_cells hg19 DNase-seq Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.20.AllAg.Trabecular_meshwork_cells.bed ...

  10. File list: ALL.Oth.10.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Trabecular_meshwork_cells hg19 All antigens Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.10.AllAg.Trabecular_meshwork_cells.bed ...

  11. File list: Unc.Oth.20.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Trabecular_meshwork_cells hg19 Unclassified Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.20.AllAg.Trabecular_meshwork_cells.bed ...

  12. File list: ALL.Oth.05.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Trabecular_meshwork_cells hg19 All antigens Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.05.AllAg.Trabecular_meshwork_cells.bed ...

  13. File list: His.Oth.10.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Trabecular_meshwork_cells hg19 Histone Others Trabecular meshwork ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.10.AllAg.Trabecular_meshwork_cells.bed ...

  14. File list: His.Oth.50.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Trabecular_meshwork_cells hg19 Histone Others Trabecular meshwork ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.AllAg.Trabecular_meshwork_cells.bed ...

  15. File list: Oth.Oth.50.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Trabecular_meshwork_cells hg19 TFs and others Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Trabecular_meshwork_cells.bed ...

  16. File list: Oth.Oth.20.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Trabecular_meshwork_cells hg19 TFs and others Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.20.AllAg.Trabecular_meshwork_cells.bed ...

  17. File list: Pol.Oth.10.AllAg.Trabecular_meshwork_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.10.AllAg.Trabecular_meshwork_cells hg19 RNA polymerase Others Trabecular meshwork... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.10.AllAg.Trabecular_meshwork_cells.bed ...

  18. File list: Oth.ALL.20.ETS1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.ETS1.AllCell hg19 TFs and others ETS1 All cell types SRX212441,SRX212439...10,SRX644405,SRX015825,SRX084525,SRX212437 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.ETS1.AllCell.bed ...

  19. File list: Oth.ALL.50.ETS1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.ETS1.AllCell hg19 TFs and others ETS1 All cell types SRX212441,SRX212439...87,SRX015825,SRX644410,SRX084525,SRX212437 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.50.ETS1.AllCell.bed ...

  20. File list: Oth.ALL.10.ETS1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.ETS1.AllCell hg19 TFs and others ETS1 All cell types SRX212441,SRX212439...33,SRX644410,SRX644405,SRX015825,SRX212437 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.ETS1.AllCell.bed ...