WorldWideScience

Sample records for cell cardiopoiesis discovery

  1. Stem cell technology for drug discovery and development.

    Science.gov (United States)

    Hook, Lilian A

    2012-04-01

    Stem cells have enormous potential to revolutionise the drug discovery process at all stages, from target identification through to toxicology studies. Their ability to generate physiologically relevant cells in limitless supply makes them an attractive alternative to currently used recombinant cell lines or primary cells. However, realisation of the full potential of stem cells is currently hampered by the difficulty in routinely directing stem cell differentiation to reproducibly and cost effectively generate pure populations of specific cell types. In this article we discuss how stem cells have already been used in the drug discovery process and how novel technologies, particularly in relation to stem cell differentiation, can be applied to attain widespread adoption of stem cell technology by the pharmaceutical industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Cell and small animal models for phenotypic drug discovery

    Directory of Open Access Journals (Sweden)

    Szabo M

    2017-06-01

    Full Text Available Mihaly Szabo,1 Sara Svensson Akusjärvi,1 Ankur Saxena,1 Jianping Liu,2 Gayathri Chandrasekar,1 Satish S Kitambi1 1Department of Microbiology Tumor, and Cell Biology, 2Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden Abstract: The phenotype-based drug discovery (PDD approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery. Keywords: phenotype, screening, PDD, discovery, zebrafish, drug

  3. Stem cells and the pancreas: from discovery to clinical approach

    Directory of Open Access Journals (Sweden)

    Angelica Dessì

    2016-02-01

    Full Text Available The existence of stem cells within the adult pancreas is supported by the ability of this organ to regenerate its endocrine component in various conditions such as pregnancy and following partial pancreatectomy. Several studies have shown that progenitor or adult stem cells may reside within the pancreas and particularly in the pancreatic ducts, including acinar cells and islets of Langerhans. The discovery of human pluripotent stem cells in the pancreas, and the possibility of development of strategies for generating these, represented a turning point for the therapeutic interventions of type 1 diabetes.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  4. Automated cell type discovery and classification through knowledge transfer

    Science.gov (United States)

    Lee, Hao-Chih; Kosoy, Roman; Becker, Christine E.

    2017-01-01

    Abstract Motivation: Recent advances in mass cytometry allow simultaneous measurements of up to 50 markers at single-cell resolution. However, the high dimensionality of mass cytometry data introduces computational challenges for automated data analysis and hinders translation of new biological understanding into clinical applications. Previous studies have applied machine learning to facilitate processing of mass cytometry data. However, manual inspection is still inevitable and becoming the barrier to reliable large-scale analysis. Results: We present a new algorithm called Automated Cell-type Discovery and Classification (ACDC) that fully automates the classification of canonical cell populations and highlights novel cell types in mass cytometry data. Evaluations on real-world data show ACDC provides accurate and reliable estimations compared to manual gating results. Additionally, ACDC automatically classifies previously ambiguous cell types to facilitate discovery. Our findings suggest that ACDC substantially improves both reliability and interpretability of results obtained from high-dimensional mass cytometry profiling data. Availability and Implementation: A Python package (Python 3) and analysis scripts for reproducing the results are availability on https://bitbucket.org/dudleylab/acdc. Contact: brian.kidd@mssm.edu or joel.dudley@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28158442

  5. Recent discoveries concerning the tumor - mesenchymal stem cell interactions.

    Science.gov (United States)

    Lazennec, Gwendal; Lam, Paula Y

    2016-12-01

    Tumor microenvironment plays a crucial role in coordination with cancer cells in the establishment, growth and dissemination of the tumor. Among cells of the microenvironment, mesenchymal stem cells (MSCs) and their ability to evolve into cancer associated fibroblasts (CAFs) have recently generated a major interest in the field. Numerous studies have described the potential pro- or anti-tumorigenic action of MSCs. The goal of this review is to synthesize recent and emerging discoveries concerning the mechanisms by which MSCs can be attracted to tumor sites, how they can generate CAFs and by which way MSCs are able to modulate the growth, response to treatments, angiogenesis, invasion and metastasis of tumors. The understanding of the role of MSCs in tumor development has potential and clinical applications in terms of cancer management. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Human embryonic stem cell technologies and drug discovery.

    Science.gov (United States)

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  7. Discovery of the cancer stem cell related determinants of radioresistance

    International Nuclear Information System (INIS)

    Peitzsch, Claudia; Kurth, Ina; Kunz-Schughart, Leoni; Baumann, Michael; Dubrovska, Anna

    2013-01-01

    Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies

  8. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction.

    Science.gov (United States)

    Kremer, Lea; Schultz-Fademrecht, Carsten; Baumann, Matthias; Habenberger, Peter; Choidas, Axel; Klebl, Bert; Kordes, Susanne; Schöler, Hans R; Sterneckert, Jared; Ziegler, Slava; Schneider, Gisbert; Waldmann, Herbert

    2017-10-09

    Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch +/- medulloblastoma cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cell type discovery using single-cell transcriptomics: implications for ontological representation.

    Science.gov (United States)

    Aevermann, Brian D; Novotny, Mark; Bakken, Trygve; Miller, Jeremy A; Diehl, Alexander D; Osumi-Sutherland, David; Lasken, Roger S; Lein, Ed S; Scheuermann, Richard H

    2018-05-01

    Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing 'big data', enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.

  10. Induced Pluripotent Stem Cells for Regenerative Cardiovascular Therapies and Biomedical Discovery

    OpenAIRE

    Nsair, Ali; MacLellan, W. Robb

    2011-01-01

    The discovery of induced pluripotent stem cells (iPSC) has, in the short time since their discovery, revolutionized the field of stem cell biology. This technology allows the generation of a virtually unlimited supply of cells with pluripotent potential similar to that of embryonic stem cells (ESC). However, in contrast to ESC, iPSC are not subject to the same ethical concerns and can be easily generated from living individuals. For the first time, patient-specific iPSC can be generated and o...

  11. Macro cell assisted cell discovery method for 5G mobile networks

    DEFF Research Database (Denmark)

    Marcano, Andrea; Christiansen, Henrik Lehrmann

    2016-01-01

    , and requires a new system design. The aspects concerning the impact of using mmWave frequencies on the medium access (MAC) layer are one of the topics that need to be further analyzed. In this article we focus on the cell discovery process of the MAC laywe for mmWave communications. A new approach assuming...... a joint search of the user equipment (UE) between the mmWave small cell (SC) and the macro cell (MC) is proposed. The performance of this method is analyzed and compared with existing methods. The results show that using the MC as aid during the search process can allow for up to 99% improvement in terms...

  12. Stem cells: a model for screening, discovery and development of drugs.

    Science.gov (United States)

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.

  13. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  14. Impact of New Camera Technologies on Discoveries in Cell Biology.

    Science.gov (United States)

    Stuurman, Nico; Vale, Ronald D

    2016-08-01

    New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy. © 2016 Marine Biological Laboratory.

  15. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders.

    Science.gov (United States)

    Han, Chanshuai; Chaineau, Mathilde; Chen, Carol X-Q; Beitel, Lenore K; Durcan, Thomas M

    2018-01-01

    Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs) from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop "first-of-their-kind" disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI) and its partners are piloting an "Open Science" model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  16. Open Science Meets Stem Cells: A New Drug Discovery Approach for Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Chanshuai Han

    2018-02-01

    Full Text Available Neurodegenerative diseases are a challenge for drug discovery, as the biological mechanisms are complex and poorly understood, with a paucity of models that faithfully recapitulate these disorders. Recent advances in stem cell technology have provided a paradigm shift, providing researchers with tools to generate human induced pluripotent stem cells (iPSCs from patient cells. With the potential to generate any human cell type, we can now generate human neurons and develop “first-of-their-kind” disease-relevant assays for small molecule screening. Now that the tools are in place, it is imperative that we accelerate discoveries from the bench to the clinic. Using traditional closed-door research systems raises barriers to discovery, by restricting access to cells, data and other research findings. Thus, a new strategy is required, and the Montreal Neurological Institute (MNI and its partners are piloting an “Open Science” model. One signature initiative will be that the MNI biorepository will curate and disseminate patient samples in a more accessible manner through open transfer agreements. This feeds into the MNI open drug discovery platform, focused on developing industry-standard assays with iPSC-derived neurons. All cell lines, reagents and assay findings developed in this open fashion will be made available to academia and industry. By removing the obstacles many universities and companies face in distributing patient samples and assay results, our goal is to accelerate translational medical research and the development of new therapies for devastating neurodegenerative disorders.

  17. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Directory of Open Access Journals (Sweden)

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  18. Discovery of a stem-like multipotent cell fate.

    Science.gov (United States)

    Paffhausen, Emily S; Alowais, Yasir; Chao, Cara W; Callihan, Evan C; Creswell, Karen; Bracht, John R

    2018-01-01

    Adipose derived stem cells (ASCs) can be obtained from lipoaspirates and induced in vitro to differentiate into bone, cartilage, and fat. Using this powerful model system we show that after in vitro adipose differentiation a population of cells retain stem-like qualities including multipotency. They are lipid (-), retain the ability to propagate, express two known stem cell markers, and maintain the capacity for trilineage differentiation into chondrocytes, adipocytes, and osteoblasts. However, these cells are not traditional stem cells because gene expression analysis showed an overall expression profile similar to that of adipocytes. In addition to broadening our understanding of cellular multipotency, our work may be particularly relevant to obesity-associated metabolic disorders. The adipose expandability hypothesis proposes that inability to differentiate new adipocytes is a primary cause of metabolic syndrome in obesity, including diabetes and cardiovascular disease. Here we have defined a differentiation-resistant stem-like multipotent cell population that may be involved in regulation of adipose expandability in vivo and may therefore play key roles in the comorbidities of obesity.

  19. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  20. Gastric and colonic mantle cell lymphoma - incidental discovery.

    Science.gov (United States)

    Pitigoi, Dan; Stoica, Victor; Stoia, Razvan; Dobrea, Camelia; Becheanu, Gabriel; Diculescu, Mircea

    2009-03-01

    A 65-year old patient, with no medical history, was admitted for lower gastrointestinal bleeding. On clinical examination the patient seemed to be in good health. However the examination was completed with a rectosigmoidoscopy revealing the presence of mucosal erosions, ulcerations, multiple papulae. The histopathological examination raised the suspicion of a colonic lymphoma. Gastric biopsies suggested a gastric MALT type lymphoma associated to the colonic lymphoma, but the immunohistochemical profile corresponded to a mantle cell lymphoma. In spite of the general poor prognosis of mantle cell lymphoma, our patient had a good clinical and endoscopic response to the standard cyclophosphamide, vincristine, prednisone (CVP) therapy. The cases of gastric and colonic mantle lymphoma are rare, the response to therapy is poor; fortunately, our patient had a complete resolution after completion of the six cycles of chemotherapy.

  1. Stem cells: a model for screening, discovery and development of drugs

    OpenAIRE

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficac...

  2. Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery.

    Science.gov (United States)

    Nsair, Ali; MacLellan, W Robb

    2011-04-30

    The discovery of induced pluripotent stem cells (iPSC) has, in the short time since their discovery, revolutionized the field of stem cell biology. This technology allows the generation of a virtually unlimited supply of cells with pluripotent potential similar to that of embryonic stem cells (ESC). However, in contrast to ESC, iPSC are not subject to the same ethical concerns and can be easily generated from living individuals. For the first time, patient-specific iPSC can be generated and offer a supply of genetically identical cells that can be differentiated into all somatic cell types for potential use in regenerative therapies or drug screening and testing. As the techniques for generation of iPSC lines are constantly evolving, new uses for human iPSC are emerging from in-vitro disease modeling to high throughput drug discovery and screening. This technology promises to revolutionize the field of medicine and offers new hope for understanding and treatment of numerous diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    Energy Technology Data Exchange (ETDEWEB)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  4. Stem cells: a model for screening, discovery and development of drugs

    Directory of Open Access Journals (Sweden)

    Kitambi SS

    2011-09-01

    Full Text Available Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.Keywords: therapeutics, stem cells, cancer stem cells, screening models, drug development, high throughput screening

  5. Discovery of novel inducers of cellular differentiation using HL-60 promyelocytic cells.

    Science.gov (United States)

    Mata-Greenwood, E; Ito, A; Westenburg, H; Cui, B; Mehta, R G; Kinghorn, A D; Pezzuto, J M

    2001-01-01

    Non-physiological inducers of terminal differentiation have been used as novel therapies for the prevention and therapy of cancer. We have used cultured HL-60 promyelocytic cells to monitor differentiation, proliferation and cell death events as induced by a large set of extracts derived from plants. Screening of more than 1400 extracts led to the discovery of 34 with potent activity (ED50 Petiveria alliacea, and desmethylrocaglamide from Aglaia ponapensis. Zapotin demonstrated the most favorable biological profile in that induction of differentiation correlated with proliferation arrest, and a lack of cytotoxicity. We conclude that the HL-60 cell model is a useful system for the discovery of novel pharmacophores with potential to suppress the process of carcinogenesis, and that flavonoids may be especially useful in this capacity.

  6. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  7. 76 FR 51374 - Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and...

    Science.gov (United States)

    2011-08-18

    ... direct-discovery technology for use in FDA laboratories. C. Eligibility Information The technology...] Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and... technology to molecularly characterize peptide epitopes that are processed and presented on soluble HLA...

  8. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments.

    Science.gov (United States)

    McGivern, Jered V; Ebert, Allison D

    2014-04-01

    In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A cell-based fluorescent glucose transporter assay for SGLT2 inhibitor discovery

    Directory of Open Access Journals (Sweden)

    Yi Huan

    2013-04-01

    Full Text Available The sodium/glucose cotransporter 2 (SGLT2 is responsible for the majority of glucose reabsorption in the kidney, and currently, SGLT2 inhibitors are considered as promising hypoglycemic agents for the treatment of type 2 diabetes mellitus. By constructing CHO cell lines that stably express the human SGLT2 transmembrane protein, along with a fluorescent glucose transporter assay that uses 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]2-deoxyglucose (2-NBDG as a glucose analog, we have developed a nonradioactive, cell-based assay for the discovery and characterization of SGLT2 inhibitors.

  10. High content live cell imaging for the discovery of new antimalarial marine natural products

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2012-01-01

    Full Text Available Abstract Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.

  11. High content live cell imaging for the discovery of new antimalarial marine natural products.

    Science.gov (United States)

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  12. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data.

    Science.gov (United States)

    Yip, Shun H; Sham, Pak Chung; Wang, Junwen

    2018-02-21

    Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell populations through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq) allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detection of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demonstrate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods and potential issues in these tools are discussed and recommendations are made.

  13. Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

    DEFF Research Database (Denmark)

    Vieira Campos, Diana Alexandra; Freitas, Daniela; Gomes, Joana

    2015-01-01

    biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SC lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses...... at least partially truncated O-glycans. Overall we identified 499 O-glycoproteins and 1,236 O-glycosites in gastric cancer SCs, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer...... with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to demonstrate that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set...

  14. An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures

    Directory of Open Access Journals (Sweden)

    Francesca Aredia

    2016-01-01

    Full Text Available We recently employed three-dimensional (3D silicon microstructures (SMSs consisting in arrays of 3 μm-thick silicon walls separated by 50 μm-deep, 5 μm-wide gaps, as microincubators for monitoring the biomechanical properties of tumor cells. They were here applied to investigate the in vitro behavior of HT1080 human fibrosarcoma cells driven to apoptosis by the chemotherapeutic drug Bleomycin. Our results, obtained by fluorescence microscopy, demonstrated that HT1080 cells exhibited a great ability to colonize the narrow gaps. Remarkably, HT1080 cells grown on 3D-SMS, when treated with the DNA damaging agent Bleomycin under conditions leading to apoptosis, tended to shrink, reducing their volume and mimicking the normal behavior of apoptotic cells, and were prone to leave the gaps. Finally, we performed label-free detection of cells adherent to the vertical silicon wall, inside the gap of 3D-SMS, by exploiting optical low coherence reflectometry using infrared, low power radiation. This kind of approach may become a new tool for increasing automation in the drug discovery area. Our results open new perspectives in view of future applications of the 3D-SMS as the core element of a lab-on-a-chip suitable for screening the effect of new molecules potentially able to kill tumor cells.

  15. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    Directory of Open Access Journals (Sweden)

    Neil O Carragher

    2011-04-01

    Full Text Available Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.

  16. Regenerative Medicine, Disease Modelling, and Drug Discovery in Human Pluripotent Stem Cell-Derived Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Navin Gupta

    2017-08-01

    Full Text Available The multitude of research clarifying critical factors in embryonic organ development has been instrumental in human stem cell research. Mammalian organogenesis serves as the archetype for directed differentiation protocols, subdividing the process into a series of distinct intermediate stages that can be chemically induced and monitored for the expression of stage-specific markers. Significant advances over the past few years include established directed differentiation protocols of human embryonic stem cells and human induced pluripotent stem cells (hiPSC into human kidney organoids in vitro. Human kidney tissue in vitro simulates the in vivo response when subjected to nephrotoxins, providing a novel screening platform during drug discovery to facilitate identification of lead candidates, reduce developmental expenditures, and reduce future rates of drug-induced acute kidney injury. Patient-derived hiPSC, which bear naturally occurring DNA mutations, may allow for modelling of human genetic diseases to enable determination of pathological mechanisms and screening for novel therapeutics. In addition, recent advances in genome editing with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 enable the generation of specific mutations to study genetic disease, with non-mutated lines serving as an ideal isogenic control. The growing population of patients with end-stage kidney disease is a worldwide healthcare problem, with high morbidity and mortality rates, that warrants the discovery of novel forms of renal replacement therapy. Coupling the outlined advances in hiPSC research with innovative bioengineering techniques, such as decellularised kidney and three-dimensional printed scaffolds, may contribute to the development of bioengineered transplantable human kidney tissue as a means of renal replacement therapy.

  17. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Anahit Penesyan

    2015-03-01

    Full Text Available Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  18. Discovery of fuel cell anode electrocatalysts and dehydrogenation catalysts using combinatorial techniques

    Science.gov (United States)

    Chan, Benny Chun Wai

    A gas diffusion optical screening method was developed for the discovery of catalysts for the electro-oxidation of reformate gas (H2 with 100 ppm CO). The screening cell was designed to accommodate a gas diffusion layer, 715 member catalyst array, and an electrolyte container. Since protons are generated during H2 oxidation, a pH sensitive fluorphore was used to identify active compositions. The cell showed no detectable iR drop across the array and ranked activity of two commercial PtRu and one Pt catalysts. Over 95% of a given catalyst fluoresced at the initial onset potential and a 5 mV difference in onset potential of two different catalysts was statistically different. A gas diffusion half cell was designed similar to the optical screening cell to obtain current-potential curves of bulk catalysts. The screening results correlated with half cell and fuel cell data, internally validating the method. The combinatorial method was then applied to search for catalysts in the PtRuMoIrRh composition space. The catalysts on the array were prepared by hydrogen reduction of the metals salts on carbon. The most active catalysts were from the Pt enriched regions of the PtRuMoRh quaternary. Bulk catalysts were prepared from the active regions and tested in the gas diffusion half cell. The most active catalysts in the optical screening were also the most active catalysts in the half cell. When any homemade catalysts were compared to commercial PtRu, however, the performance was worse. A high surface area, high catalyst activity synthetic method is the most important factor to reliably screen catalysts for "real world" fuel cell application. High surface area catalysts were tested for direct methanol oxidation activity. The optical screening method was compared with disk electrode, high throughput fuel cell testing, and fuel cell testing. Six catalysts examined included two commercial PtRu catalysts, a Pt catalyst, and three homemade PtRu catalysts of varying activity

  19. In vitro Fab display: a cell-free system for IgG discovery

    Science.gov (United States)

    Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.

    2014-01-01

    Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053

  20. A fully automated primary screening system for the discovery of therapeutic antibodies directly from B cells.

    Science.gov (United States)

    Tickle, Simon; Howells, Louise; O'Dowd, Victoria; Starkie, Dale; Whale, Kevin; Saunders, Mark; Lee, David; Lightwood, Daniel

    2015-04-01

    For a therapeutic antibody to succeed, it must meet a range of potency, stability, and specificity criteria. Many of these characteristics are conferred by the amino acid sequence of the heavy and light chain variable regions and, for this reason, can be screened for during antibody selection. However, it is important to consider that antibodies satisfying all these criteria may be of low frequency in an immunized animal; for this reason, it is essential to have a mechanism that allows for efficient sampling of the immune repertoire. UCB's core antibody discovery platform combines high-throughput B cell culture screening and the identification and isolation of single, antigen-specific IgG-secreting B cells through a proprietary technique called the "fluorescent foci" method. Using state-of-the-art automation to facilitate primary screening, extremely efficient interrogation of the natural antibody repertoire is made possible; more than 1 billion immune B cells can now be screened to provide a useful starting point from which to identify the rare therapeutic antibody. This article will describe the design, construction, and commissioning of a bespoke automated screening platform and two examples of how it was used to screen for antibodies against two targets. © 2014 Society for Laboratory Automation and Screening.

  1. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Koech, Phillip K.; Plymale, Andrew E.; Landorf, Elizabeth V.; Konopka, Allan; Collart, Frank; Lipton, Mary S.; Romine, Margaret F.; Wright, Aaron T.

    2016-02-02

    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are critically needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically-predicted functions. Of particular importance are transport mechanisms, used to shuttle nutrients and metabolites across cell mem-branes, such as B vitamins, which are indispensable to metabolic reactions crucial to the survival of diverse microbes ranging from members of environmental microbial communities to human pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, and characterization of intra-cellular enzyme-cofactor/nutrient associations are needed to enable a significantly improved understanding of microbial biochemis-try and physiology, how microbes associate with others, and how they sense and respond to environmental perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular protein-cofactor associations through live cell labeling of the filamentous anoxygenic pho-toheterotroph, Chloroflexus aurantiacus J-10-fl, known for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by iden-tifying B vitamin transport and disposition mechanisms required for survival.

  2. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes.

    Science.gov (United States)

    Lee, Erinna F; Clarke, Oliver B; Evangelista, Marco; Feng, Zhiping; Speed, Terence P; Tchoubrieva, Elissaveta B; Strasser, Andreas; Kalinna, Bernd H; Colman, Peter M; Fairlie, W Douglas

    2011-04-26

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.

  3. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    Science.gov (United States)

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with “BH3 mimetic” drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment. PMID:21444803

  4. Drug Repositioning Discovery for Early- and Late-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2014-01-01

    Full Text Available Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

  5. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display

    OpenAIRE

    Baskar, Sivasubramanian; Suschak, Jessica M.; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W.; Pavletic, Steven Z.; Bishop, Michael R.; Rader, Christoph

    2009-01-01

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera w...

  6. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models.

    Science.gov (United States)

    Atienzar, Franck A; Tilmant, Karen; Gerets, Helga H; Toussaint, Gaelle; Speeckaert, Sebastien; Hanon, Etienne; Depelchin, Olympe; Dhalluin, Stephane

    2011-07-01

    The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.

  7. Ten years since the discovery of iPS cells: The current state of their clinical application.

    Science.gov (United States)

    Aznar, J; Tudela, J

    On the 10-year anniversary of the discovery of induced pluripotent stem cells, we review the main results from their various fields of application, the obstacles encountered during experimentation and the potential applications in clinical practice. The efficacy of induced pluripotent cells in clinical experimentation can be equated to that of human embryonic stem cells; however, unlike stem cells, induced pluripotent cells do not involve the severe ethical difficulties entailed by the need to destroy human embryos to obtain them. The finding of these cells, which was in its day a true scientific milestone worthy of a Nobel Prize in Medicine, is currently enveloped by light and shadow: high hopes for regenerative medicine versus the, as of yet, poorly controlled risks of unpredictable reactions, both in the processes of dedifferentiation and subsequent differentiation to the cell strains employed for therapeutic or experimentation goals. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  8. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  9. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  10. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity......). Finally, we compute volatility discovery for 30 actively traded stocks in the U.S. and report that Nyse and Arca dominate Nasdaq....

  11. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?

    Science.gov (United States)

    Ledur, Pítia Flores; Onzi, Giovana Ravizzoni; Zong, Hui; Lenz, Guido

    2017-09-15

    In cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of in vivo cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells in vivo . Glioblastoma (GBM) is one of the most aggressive and heterogeneous tumor types and the GBM research field would certainly benefit from culture conditions that could maintain the original plethora of phenotype of the cells. Here, we review culture media and supplementation options for GBM cultures, the rationale behind their use, and how much those choices affect drug-screening outcomes. We provide an overview of 120 papers that use primary GBM cultures and discuss the current predominant conditions. We also show important primary research data indicating that "mis-cultured" glioma cells can acquire unnatural drug sensitivity, which would have devastating effects for clinical translations. Finally, we propose the concurrent test of four culture conditions to minimize the loss of cell coverage in culture.

  12. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    Science.gov (United States)

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  13. A Review of Human Pluripotent Stem Cell-Derived Cardiomyocytes for High-Throughput Drug Discovery, Cardiotoxicity Screening and Publication Standards

    OpenAIRE

    Mordwinkin, Nicholas M.; Burridge, Paul W.; Wu, Joseph C.

    2012-01-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results, and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and ...

  14. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  15. Discovery of a novel gene involved in autolysis of Clostridium cells.

    Science.gov (United States)

    Yang, Liejian; Bao, Guanhui; Zhu, Yan; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2013-06-01

    Cell autolysis plays important physiological roles in the life cycle of clostridial cells. Understanding the genetic basis of the autolysis phenomenon of pathogenic Clostridium or solvent producing Clostridium cells might provide new insights into this important species. Genes that might be involved in autolysis of Clostridium acetobutylicum, a model clostridial species, were investigated in this study. Twelve putative autolysin genes were predicted in C. acetobutylicum DSM 1731 genome through bioinformatics analysis. Of these 12 genes, gene SMB_G3117 was selected for testing the in tracellular autolysin activity, growth profile, viable cell numbers, and cellular morphology. We found that overexpression of SMB_G3117 gene led to earlier ceased growth, significantly increased number of dead cells, and clear electrolucent cavities, while disruption of SMB_G3117 gene exhibited remarkably reduced intracellular autolysin activity. These results indicate that SMB_G3117 is a novel gene involved in cellular autolysis of C. acetobutylicum.

  16. A human monoclonal antibody drug and target discovery platform for B-cell chronic lymphocytic leukemia based on allogeneic hematopoietic stem cell transplantation and phage display.

    Science.gov (United States)

    Baskar, Sivasubramanian; Suschak, Jessica M; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W; Pavletic, Steven Z; Bishop, Michael R; Rader, Christoph

    2009-11-12

    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera were negative. To identify post-alloHSCT serum antibodies and subsequently B-CLL cell-surface antigens they recognize, we generated a human antibody-binding fragment (Fab) library from post-alloHSCT peripheral blood mononuclear cells and selected it on primary B-CLL cells by phage display. A panel of Fab with B-CLL cell-surface reactivity was strongly enriched. Selection was dominated by highly homologous Fab predicted to bind the same antigen. One Fab was converted to immunoglobulin G1 and analyzed for reactivity with peripheral blood mononuclear cells from B-CLL patients and healthy volunteers. Cell-surface antigen expression was restricted to primary B cells and up-regulated in primary B-CLL cells. Mining post-alloHSCT antibody repertoires offers a novel route to discover fully human monoclonal antibodies and identify antigens of potential therapeutic relevance to B-CLL and possibly other cancers. Trials described herein were registered at www.clinicaltrials.gov as nos. NCT00055744 and NCT00003838.

  17. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  18. Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics

    DEFF Research Database (Denmark)

    Bordbar, Aarash; McCloskey, Douglas; Zielinski, Daniel C

    2015-01-01

    Understanding individual variation is fundamental to personalized medicine. Yet interpreting complex phenotype data, such as multi-compartment metabolomic profiles, in the context of genotype data for an individual is complicated by interactions within and between cells and remains an unresolved...... challenge. Here, we constructed multi-omic, data-driven, personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy individuals based on fasting-state plasma and erythrocyte metabolomics and whole-genome genotyping. We show that personalized kinetic rate constants, rather than...

  19. First haemorheological experiment on NASA space shuttle 'Discovery' STS 51-C: aggregation of red cells.

    Science.gov (United States)

    Dintenfass, L; Osman, P D; Jedrzejczyk, H

    1985-01-01

    The 'secret' D.O.D. Mission on flight STS 51-C also carried nearly 100 kg of automated instrumentation of the Australian experiment on aggregation of red cells ("ARC"). The automated Slit-Capillary Photo Viscometer contained blood samples from subjects with history of coronary heart disease, cancer of the colon, insulin-dependent diabetes, etc., as well as normals. The experiment ran for nine hours, according to the program of its microcomputers. When shuttle landed and instrumentation recovered and opened in the presence of NASA quality control officers, it was obvious that experiment was a success. Tentative and preliminary results can be summarized as follows: red cells did not change shape under zero gravity; red cells do aggregate under zero gravity, although the size of aggregates is smaller than on the ground; the morphology of aggregates of red cells appears to be of rouleaux type under zero gravity, notwithstanding the fact that pathological blood was used. These results will have to be confirmed in the future flights. The background and history of development of the project are described, and put into context of our general haemorheological studies.

  20. Discovery of molecular markers to discriminate corneal endothelial cells in the human body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Clevers, J.C.; van de Wetering, M.L.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  1. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    NARCIS (Netherlands)

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji; Forrest, Alistair R. R.; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Geijtenbeek, Teunis B.

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant

  2. Sciatica leading to the discovery of a renal cell carcinoma | Lakmichi ...

    African Journals Online (AJOL)

    Metastatic renal cell cancer is not exceptional in kidney cancer (30% of patients with kidneyl cancer). Its prognosis is particularly severe. However, sciatic neuralgia (sciatica) remains an exceptional revealing clinical sign of this disease. The authors report the case of a patient admitted with right sciatica as chief complain, ...

  3. Beyond Discovery

    DEFF Research Database (Denmark)

    Korsgaard, Steffen; Sassmannshausen, Sean Patrick

    2017-01-01

    In this chapter we explore four alternatives to the dominant discovery view of entrepreneurship; the development view, the construction view, the evolutionary view, and the Neo-Austrian view. We outline the main critique points of the discovery presented in these four alternatives, as well...

  4. Chemical Discovery

    Science.gov (United States)

    Brown, Herbert C.

    1974-01-01

    The role of discovery in the advance of the science of chemistry and the factors that are currently operating to handicap that function are considered. Examples are drawn from the author's work with boranes. The thesis that exploratory research and discovery should be encouraged is stressed. (DT)

  5. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells

    Directory of Open Access Journals (Sweden)

    Bernardas Morkunas

    2016-07-01

    Full Text Available Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.

  6. Discovery and characterization of a novel CCND1/MRCK gene fusion in mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Chioniso Patience Masamha

    2016-03-01

    Full Text Available Abstract The t(11;14 translocation resulting in constitutive cyclin D1 expression is an early event in mantle cell lymphoma (MCL transformation. Patients with a highly proliferative phenotype produce cyclin D1 transcripts with truncated 3′UTRs that evade miRNA regulation. Here, we report the recurrence of a novel gene fusion in MCL cell lines and MCL patient isolates that consists of the full protein coding region of cyclin D1 (CCND1 and a 3′UTR consisting of sequences from both the CCND1 3′UTR and myotonic dystrophy kinase-related Cdc42-binding kinase's (MRCK intron one. The resulting CCND1/MRCK mRNA is resistant to CCND1-targeted miRNA regulation, and targeting the MRCK region of the chimeric 3′UTR with siRNA results in decreased CCND1 levels.

  7. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.

    Science.gov (United States)

    Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook

    2012-03-31

    The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.

  8. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    OpenAIRE

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial ou...

  9. Brown-Like Adipocyte Progenitors Derived from Human iPS Cells: A New Tool for Anti-obesity Drug Discovery and Cell-Based Therapy?

    Science.gov (United States)

    Yao, Xi; Salingova, Barbara; Dani, Christian

    2018-04-10

    Alternative strategies are urgently required to fight obesity and associated metabolic disorders including diabetes and cardiovascular diseases. Brown and brown-like adipocytes (BAs) store fat, but in contrast to white adipocytes, activated BAs are equipped to dissipate energy stored. Therefore, BAs represent promising cell targets to counteract obesity. However, the scarcity of BAs in adults is a major limitation for a BA-based therapy of obesity, and the notion to increase the BA mass by transplanting BA progenitors (BAPs) in obese patients recently emerged. The next challenge is to identify an abundant and reliable source of BAPs. In this chapter, we describe the capacity of human-induced pluripotent stem cells (hiPSCs) to generate BAPs able to differentiate at a high efficiency with no gene transfer. This cell model represents an unlimited source of human BAPs that in a near future may be a suitable tool for both therapeutic transplantation and for the discovery of novel efficient and safe anti-obesity drugs. The generation of a relevant cell model, such as hiPSC-BAs in 3D adipospheres enriched with macrophages and endothelial cells to better mimic the microenvironment within the adipose tissue, will be the next critical step.

  10. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components?

    Science.gov (United States)

    Tosar, Juan Pablo; Cayota, Alfonso; Eitan, Erez; Halushka, Marc K; Witwer, Kenneth W

    2017-01-01

    In a recently published study, Anna Krichevsky and colleagues raise the important question of whether results of in vitro extracellular RNA (exRNA) studies, including extracellular vesicle (EV) investigations, are confounded by the presence of RNA in cell culture medium components such as foetal bovine serum (FBS). The answer, according to their data, is a resounding "yes". Even after lengthy ultracentrifugation to remove bovine EVs from FBS, the majority of exRNA in FBS remained. Although technical factors may affect the degree of depletion, residual EVs and exRNA in FBS could influence the conclusions of in vitro studies: certainly, for secreted RNA, and possibly also for cell-associated RNA. In this commentary, we critically examine some of the literature in this field, including a recent study from some of the authors of this piece, in light of the Wei et al. study and explore how cell culture-derived RNAs may affect what we think we know about EV RNAs. These findings hold particular consequence as the field moves towards a deeper understanding of EV-RNA associations and potential functions.

  11. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    glioma stem cell populations. That the data always fit a power-law suggests that: (i clone sizes follow continuous, non-random, and scale-free hierarchy; (ii precise biologic rules that reflect self-organizing emergent behaviors govern the generation of neurospheres. That the power-law behavior and the original GS heterogeneity are maintained over multiple passages indicates that these rules are invariant. These self-organizing mechanisms very likely underlie tumor heterogeneity during tumor growth. Discovery of this power-law behavior provides a mechanism that could be targeted in the development of new, more effective, anti-cancer agents.

  12. Higgs Discovery

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery \\cite{Foadi:2012bb} that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired...... via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative......I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within...

  13. Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes.

    Science.gov (United States)

    Zhang, Jin; Griffith, Malachi; Miller, Christopher A; Griffith, Obi L; Spencer, David H; Walker, Jason R; Magrini, Vincent; McGrath, Sean D; Ly, Amy; Helton, Nichole M; Trissal, Maria; Link, Daniel C; Dang, Ha X; Larson, David E; Kulkarni, Shashikant; Cordes, Matthew G; Fronick, Catrina C; Fulton, Robert S; Klco, Jeffery M; Mardis, Elaine R; Ley, Timothy J; Wilson, Richard K; Maher, Christopher A

    2017-11-01

    To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  14. T cell receptor-transgenic primary T cells as a tool for discovery of leukaemia-associated antigens

    NARCIS (Netherlands)

    Ivanov, R.; Hol, S.; Aarts, T. I.; Hagenbeek, A.; Ebeling, S. B.

    2006-01-01

    Identification of a broad array of leukaemia-associated antigens is a crucial step towards immunotherapy of haematological malignancies. However, it is frequently hampered by the decrease of proliferative potential and functional activity of T cell clones used for screening procedures. Transfer of

  15. Nobel Prize Honors Autophagy Discovery.

    Science.gov (United States)

    2016-12-01

    Japanese cell biologist Yoshinori Ohsumi, PhD, was awarded this year's Nobel Prize in Physiology or Medicine for his discovery of autophagy. His groundbreaking studies in yeast cells illuminated how cells break down and recycle damaged material, a process that is critical to the survival of both normal cells and some cancer cells. ©2016 American Association for Cancer Research.

  16. Predicting Causal Relationships from Biological Data: Applying Automated Casual Discovery on Mass Cytometry Data of Human Immune Cells

    KAUST Repository

    Triantafillou, Sofia; Lagani, Vincenzo; Heinze-Deml, Christina; Schmidt, Angelika; Tegner, Jesper; Tsamardinos, Ioannis

    2017-01-01

    Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated causal discovery from limited experiments exist, but have so far rarely been tested in systems biology applications. In this work, we apply state-of-the art causal discovery methods on a large collection of public mass cytometry data sets, measuring intra-cellular signaling proteins of the human immune system and their response to several perturbations. We show how different experimental conditions can be used to facilitate causal discovery, and apply two fundamental methods that produce context-specific causal predictions. Causal predictions were reproducible across independent data sets from two different studies, but often disagree with the KEGG pathway databases. Within this context, we discuss the caveats we need to overcome for automated causal discovery to become a part of the routine data analysis in systems biology.

  17. Predicting Causal Relationships from Biological Data: Applying Automated Casual Discovery on Mass Cytometry Data of Human Immune Cells

    KAUST Repository

    Triantafillou, Sofia

    2017-03-31

    Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated causal discovery from limited experiments exist, but have so far rarely been tested in systems biology applications. In this work, we apply state-of-the art causal discovery methods on a large collection of public mass cytometry data sets, measuring intra-cellular signaling proteins of the human immune system and their response to several perturbations. We show how different experimental conditions can be used to facilitate causal discovery, and apply two fundamental methods that produce context-specific causal predictions. Causal predictions were reproducible across independent data sets from two different studies, but often disagree with the KEGG pathway databases. Within this context, we discuss the caveats we need to overcome for automated causal discovery to become a part of the routine data analysis in systems biology.

  18. Discovery of TUG-770

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Hansen, Steffen V F; Urban, Christian

    2013-01-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical...

  19. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    Science.gov (United States)

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  1. Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells

    KAUST Repository

    Triantafillou, Sofia; Lagani, Vincenzo; Heinze-Deml, Christina; Schmidt, Angelika; Tegner, Jesper; Tsamardinos, Ioannis

    2017-01-01

    Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated  causal discovery from limited experiments exist, but have so far rarely been tested in systems biology applications. In this work, we apply state-of-the art causal discovery methods on a large collection of public mass cytometry data sets, measuring intra-cellular signaling proteins of the human immune system and their response to several perturbations. We show how different experimental conditions can be used to facilitate causal discovery, and apply two fundamental methods that produce context-specific causal predictions. Causal predictions were reproducible across independent data sets from two different studies, but often disagree with the KEGG pathway databases. Within this context, we discuss the caveats we need to overcome for automated causal discovery to become a part of the routine data analysis in systems biology.

  2. Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells

    KAUST Repository

    Triantafillou, Sofia

    2017-09-29

    Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated  causal discovery from limited experiments exist, but have so far rarely been tested in systems biology applications. In this work, we apply state-of-the art causal discovery methods on a large collection of public mass cytometry data sets, measuring intra-cellular signaling proteins of the human immune system and their response to several perturbations. We show how different experimental conditions can be used to facilitate causal discovery, and apply two fundamental methods that produce context-specific causal predictions. Causal predictions were reproducible across independent data sets from two different studies, but often disagree with the KEGG pathway databases. Within this context, we discuss the caveats we need to overcome for automated causal discovery to become a part of the routine data analysis in systems biology.

  3. Discovery Mondays

    CERN Multimedia

    2003-01-01

    Many people don't realise quite how much is going on at CERN. Would you like to gain first-hand knowledge of CERN's scientific and technological activities and their many applications? Try out some experiments for yourself, or pick the brains of the people in charge? If so, then the «Lundis Découverte» or Discovery Mondays, will be right up your street. Starting on May 5th, on every first Monday of the month you will be introduced to a different facet of the Laboratory. CERN staff, non-scientists, and members of the general public, everyone is welcome. So tell your friends and neighbours and make sure you don't miss this opportunity to satisfy your curiosity and enjoy yourself at the same time. You won't have to listen to a lecture, as the idea is to have open exchange with the expert in question and for each subject to be illustrated with experiments and demonstrations. There's no need to book, as Microcosm, CERN's interactive museum, will be open non-stop from 7.30 p.m. to 9 p.m. On the first Discovery M...

  4. The pivotal role of multimodality reporter sensors in drug discovery: from cell based assays to real time molecular imaging.

    Science.gov (United States)

    Ray, Pritha

    2011-04-01

    Development and marketing of new drugs require stringent validation that are expensive and time consuming. Non-invasive multimodality molecular imaging using reporter genes holds great potential to expedite these processes at reduced cost. New generations of smarter molecular imaging strategies such as Split reporter, Bioluminescence resonance energy transfer, Multimodality fusion reporter technologies will further assist to streamline and shorten the drug discovery and developmental process. This review illustrates the importance and potential of molecular imaging using multimodality reporter genes in drug development at preclinical phases.

  5. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    Science.gov (United States)

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  6. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  7. MHC-I Ligand Discovery Using Targeted Database Searches of Mass Spectrometry Data: Implications for T-Cell Immunotherapies

    DEFF Research Database (Denmark)

    Murphy, J. Patrick; Konda, Prathyusha; Kowalewski, Daniel J.

    2017-01-01

    Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I pept...

  8. Colworth prize lecture 2016: exploiting new biological targets from a whole-cell phenotypic screening campaign for TB drug discovery.

    Science.gov (United States)

    Moynihan, Patrick Joseph; Besra, Gurdyal S

    2017-10-01

    Mycobacterium tuberculosis is the aetiological agent of tuberculosis (TB) and is the leading bacterial cause of mortality and morbidity in the world. One third of the world's population is infected with TB, and in conjunction with HIV represents a serious problem that urgently needs addressing. TB is a disease of poverty and mostly affects young adults in their productive years, primarily in the developing world. The most recent report from the World Health Organisation states that 8 million new cases of TB were reported and that ~1.5 million people died from TB. The efficacy of treatment is threatened by the emergence of multi-drug and extensively drug-resistant strains of M. tuberculosis. It can be argued that, globally, M. tuberculosis is the single most important infectious agent affecting mankind. Our research aims to establish an academic-industrial partnership with the goal of discovering new drug targets and hit-to-lead new chemical entities for TB drug discovery.

  9. Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines.

    Science.gov (United States)

    Grancara, Silvia; Ohkubo, Shinji; Artico, Marco; Ciccariello, Mauro; Manente, Sabrina; Bragadin, Marcantonio; Toninello, Antonio; Agostinelli, Enzo

    2016-10-01

    Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria

  10. From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU.

    Science.gov (United States)

    Pellegrini, Graziella; Lambiase, Alessandro; Macaluso, Claudio; Pocobelli, Augusto; Deng, Sophie; Cavallini, Gian Maria; Esteki, Roza; Rama, Paolo

    2016-06-01

    In 1997, the human corneal epithelium was reconstructed in vitro and transplanted on patients. Later, it became a routine treatment, before regulations considered advanced therapy medicinal products and drugs on the same lines. Manufacturing, before and after good manufacturing practice setting, was established in different facilities and the clinical application in several hospitals. Advanced therapy medicinal products, including stem cells, are unique products with different challenges than other drugs: some uncertainties, in addition to benefit, cannot be avoided. This review will focus on all recent developments in the stem cell-based corneal therapy.

  11. Discovery of a novel, monocationic, small-molecule inhibitor of scrapie prion accumulation in cultured sheep microglia and Rov cells.

    Directory of Open Access Journals (Sweden)

    James B Stanton

    Full Text Available Prion diseases, including sheep scrapie, are neurodegenerative diseases with the fundamental pathogenesis involving conversion of normal cellular prion protein (PrP(C to disease-associated prion protein (PrP(Sc. Chemical inhibition of prion accumulation is widely investigated, often using rodent-adapted prion cell culture models. Using a PrP(Sc-specific ELISA we discovered a monocationic phenyl-furan-benzimidazole (DB772, which has previously demonstrated anti-pestiviral activity and represents a chemical category previously untested for anti-prion activity, that inhibited PrP(Sc accumulation and prion infectivity in primary sheep microglial cell cultures (PRNP 136VV/154RR/171QQ and Rov9 cultures (VRQ-ovinized RK13 cells. We investigated potential mechanisms of this anti-prion activity by evaluating PrP(C expression with quantitative RT-PCR and PrP ELISA, comparing the concentration-dependent anti-prion and anti-pestiviral effects of DB772, and determining the selectivity index. Results demonstrate at least an approximate two-log inhibition of PrP(Sc accumulation in the two cell systems and confirmed that the inhibition of PrP(Sc accumulation correlates with inhibition of prion infectivity. PRNP transcripts and total PrP protein concentrations within cell lysates were not decreased; thus, decreased PrP(C expression is not the mechanism of PrP(Sc inhibition. PrP(Sc accumulation was multiple logs more resistant than pestivirus to DB772, suggesting that the anti-PrP(Sc activity was independent of anti-pestivirus activity. The anti-PrP(Sc selectivity index in cell culture was approximately 4.6 in microglia and 5.5 in Rov9 cells. The results describe a new chemical category that inhibits ovine PrP(Sc accumulation in primary sheep microglia and Rov9 cells, and can be used for future studies into the treatment and mechanism of prion diseases.

  12. Bio-Activity and Dereplication-Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Dürr, Claudia; Knudsen, Peter Boldsen

    2013-01-01

    The purpose of this study was to identify and characterize fungal natural products (NPs) with in vitro bioactivity towards leukemia cells. We based our screening on a combined analytical and bio-guided approach of LC-DAD-HRMS dereplication, explorative solid-phase extraction (E-SPE), and a co...

  13. High-throughput discovery of T cell epitopes in type 1 diabetes using DNA barcode labelledpeptide-MHC multimers

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Bentzen, Amalie Kai; Overgaard, A. Julie

    2016-01-01

    applying a novel technology where the selection of MHC-multimer binding T cells is followed by amplification and sequencing of MHC multimer-associated DNA barcodes revealing their recognition. This technique enables simultaneous detection of >1000 specificities. Identifying post translational modifications...

  14. An in vivo-like tumor stem cell-related glioblastoma in vitro model for drug discovery

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Aaberg-Jessen, Charlotte; Nørregaard, Annette

    confirming the results obtained with hemotoxylin-eosin staining and confocal microscopy. Both in vitro and in vivo, U87 implants had a very high proliferation index, whereas the invasive phenotype of SJ-1 only had a low index as shown by Ki-67 immunohistochemistry. Immunohistochemistry for the stem cell...

  15. Cancer immunogenomic approach to neoantigen discovery in a checkpoint blockade responsive murine model of oral cavity squamous cell carcinoma

    Science.gov (United States)

    Zolkind, Paul; Przybylski, Dariusz; Marjanovic, Nemanja; Nguyen, Lan; Lin, Tianxiang; Johanns, Tanner; Alexandrov, Anton; Zhou, Liye; Allen, Clint T.; Miceli, Alexander P.; Schreiber, Robert D.; Artyomov, Maxim; Dunn, Gavin P.; Uppaluri, Ravindra

    2018-01-01

    Head and neck squamous cell carcinomas (HNSCC) are an ideal immunotherapy target due to their high mutation burden and frequent infiltration with lymphocytes. Preclinical models to investigate targeted and combination therapies as well as defining biomarkers to guide treatment represent an important need in the field. Immunogenomics approaches have illuminated the role of mutation-derived tumor neoantigens as potential biomarkers of response to checkpoint blockade as well as representing therapeutic vaccines. Here, we aimed to define a platform for checkpoint and other immunotherapy studies using syngeneic HNSCC cell line models (MOC2 and MOC22), and evaluated the association between mutation burden, predicted neoantigen landscape, infiltrating T cell populations and responsiveness of tumors to anti-PD1 therapy. We defined dramatic hematopoietic cell transcriptomic alterations in the MOC22 anti-PD1 responsive model in both tumor and draining lymph nodes. Using a cancer immunogenomics pipeline and validation with ELISPOT and tetramer analysis, we identified the H-2Kb-restricted ICAM1P315L (mICAM1) as a neoantigen in MOC22. Finally, we demonstrated that mICAM1 vaccination was able to protect against MOC22 tumor development defining mICAM1 as a bona fide neoantigen. Together these data define a pre-clinical HNSCC model system that provides a foundation for future investigations into combination and novel therapeutics. PMID:29423108

  16. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2009-06-01

    Full Text Available Abstract Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.

  17. Discovery of the rare HLA-B*39:77 allele in an unrelated Taiwanese bone marrow stem cell donor using the sequence-based typing method.

    Science.gov (United States)

    Yang, K L; Lee, S K; Lin, P Y

    2013-08-01

    We detected a rare HLA-B locus allele, B*39:77, in a Taiwanese unrelated marrow stem cell donor in our routine HLA sequence-based typing (SBT) exercise for a possible haematopoietic stem cell donation. In exons 2, 3 and 4, the DNA sequence of B*39:77 is identical to the sequence of B*39:01:01:01 except one nucleotide at nucleotide position 733 (G->A) in exon 4. The nucleotide variation caused one amino acid alteration at residue 221 (Gly->Ser). B*39:77 was probably derived from a nucleotide substitution event involving B*39:01:01:01. The probable HLA-A, -B, -C, -DRB1 and -DQB1 haplotype in association with B*39:77 may be deduced as A*02:01-B*39:77-C*07:02-DRB1*08:03-DQB1*06:01. Our discovery of B*39:77 in Taiwanese adds further polymorphism of B*39 variants in Taiwanese population. © 2013 John Wiley & Sons Ltd.

  18. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Patsharaporn Techasintana

    Full Text Available Due to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs and microRNAs (miRNAs. RNA immunoprecipitation (RIP methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1 and family members are major stabilizers of mRNA. Many labs have identified HuR mRNA targets; however, many of these analyses have been performed in cell lines and oftentimes are not independent biological replicates. Little is known about how HuR target mRNAs behave in conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using independent biological replicates, we generated a high coverage RIP-Seq data set (>160 million reads that was analyzed using bioinformatics methods specifically designed to find direct mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological replicates were sequenced by RNA-Seq (>425 million reads to identify indirect HuR targets. These direct and indirect targets were combined to determine canonical pathways in CD4+ T cell activation and differentiation for which HuR plays an important role. We show that HuR may regulate genes in multiple canonical pathways involved in T cell activation especially the CD28 family signaling pathway. These data provide insights into potential HuR-regulated genes during T cell activation and immune mechanisms.

  19. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    OpenAIRE

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Link, Brian K.; Zou, Lihua

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include...

  20. Bio-Activity and Dereplication-Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Tanja Thorskov Bladt

    2013-11-01

    Full Text Available The purpose of this study was to identify and characterize fungal natural products (NPs with in vitro bioactivity towards leukemia cells. We based our screening on a combined analytical and bio-guided approach of LC-DAD-HRMS dereplication, explorative solid-phase extraction (E-SPE, and a co-culture platform of CLL and stromal cells. A total of 289 fungal extracts were screened and we tracked the activity to single compounds in seven of the most active extracts. The novel ophiobolin U was isolated together with the known ophiobolins C, H, K as well as 6-epiophiobolins G, K and N from three fungal strains in the Aspergillus section Usti. Ophiobolins A, B, C and K displayed bioactivity towards leukemia cells with induction of apoptosis at nanomolar concentrations. The remaining ophiobolins were mainly inactive or only slightly active at micromolar concentrations. Dereplication of those ophiobolin derivatives possessing different activity in combination with structural analysis allowed a correlation of the chemical structure and conformation with the extent of bioactivity, identifying the hydroxy group at C3 and an aldehyde at C21, as well as the A/B-cis ring structure, as indispensible for the strong activity of the ophiobolins. The known compounds penicillic acid, viridicatumtoxin, calbistrin A, brefeldin A, emestrin A, and neosolaniol monoacetate were identified from the extracts and also found generally cytotoxic.

  1. Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.

    Science.gov (United States)

    Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J

    2008-02-15

    KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.

  2. Microscopy Opening Up New Cancer Discovery Avenues

    Science.gov (United States)

    Today’s high-powered microscopes are allowing researchers to study the fine details of individual cells and to peer into cells, opening up new avenues of discovery about the inner workings of cells, including the events that can cause healthy cells to tra

  3. Cell-free translational screening of an expression sequence tag library of Clonorchis sinensis for novel antigen discovery.

    Science.gov (United States)

    Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung

    2017-05-01

    The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.

  4. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó

    2014-01-01

    of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades...... walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting...... on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect...

  5. Usability of Discovery Portals

    OpenAIRE

    Bulens, J.D.; Vullings, L.A.E.; Houtkamp, J.M.; Vanmeulebrouk, B.

    2013-01-01

    As INSPIRE progresses to be implemented in the EU, many new discovery portals are built to facilitate finding spatial data. Currently the structure of the discovery portals is determined by the way spatial data experts like to work. However, we argue that the main target group for discovery portals are not spatial data experts but professionals with limited spatial knowledge, and a focus outside the spatial domain. An exploratory usability experiment was carried out in which three discovery p...

  6. Usability of Discovery Portals

    NARCIS (Netherlands)

    Bulens, J.D.; Vullings, L.A.E.; Houtkamp, J.M.; Vanmeulebrouk, B.

    2013-01-01

    As INSPIRE progresses to be implemented in the EU, many new discovery portals are built to facilitate finding spatial data. Currently the structure of the discovery portals is determined by the way spatial data experts like to work. However, we argue that the main target group for discovery portals

  7. Discovery and the atom

    International Nuclear Information System (INIS)

    1989-01-01

    ''Discovery and the Atom'' tells the story of the founding of nuclear physics. This programme looks at nuclear physics up to the discovery of the neutron in 1932. Animation explains the science of the classic experiments, such as the scattering of alpha particles by Rutherford and the discovery of the nucleus. Archive film shows the people: Lord Rutherford, James Chadwick, Marie Curie. (author)

  8. Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho

    2010-12-14

    Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.

  9. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells.

    Science.gov (United States)

    Chen, Yamei; Cang, Shundong; Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J W

    2016-05-03

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.

  10. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    Science.gov (United States)

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  11. Topology Discovery Using Cisco Discovery Protocol

    OpenAIRE

    Rodriguez, Sergio R.

    2009-01-01

    In this paper we address the problem of discovering network topology in proprietary networks. Namely, we investigate topology discovery in Cisco-based networks. Cisco devices run Cisco Discovery Protocol (CDP) which holds information about these devices. We first compare properties of topologies that can be obtained from networks deploying CDP versus Spanning Tree Protocol (STP) and Management Information Base (MIB) Forwarding Database (FDB). Then we describe a method of discovering topology ...

  12. Learning from the failures of drug discovery in B-cell non-Hodgkin lymphomas and perspectives for the future: chronic lymphocytic leukemia and diffuse large B-cell lymphoma as two ends of a spectrum in drug development.

    Science.gov (United States)

    Kubuschok, Boris; Trepel, Martin

    2017-07-01

    Despite substantial recent advances, there is still an unmet need for better therapies in B-cell non Hodgkin lymphomas (B-NHL), especially in relapsed or refractory disease. Many novel targeted drugs have been developed based on a better molecular understanding of B-NHL. Areas covered: This article focuses on chronic lymphocytic leukemia (CLL) as a representative for indolent lymphomas and paradigmatic for the tremendous progress in treating B-NHL on the one hand and diffuse large B-cell lymphoma (DLBCL) as a representative for aggressive lymphomas and paradigmatic for many unsolved problems in lymphoma treatment or the other hand. We highlight salient points in current therapies targeting genetic, epigenetic, immunological and microenvironmental alterations. Possible reasons for drug failure in clinical trials like tumor heterogeneity, clonal evolution and drug resistance mechanisms are discussed. Based thereon, some perspectives for further drug discovery are given. Expert opinion: In view of the pathogenetic complexity of lymphomas, therapies targeting exclusively a single alteration may fail because resistance mechanisms are present either initially or evolve during treatment. Therefore, future therapies in B-NHL may have to target the greatest possible number of genetic, immunological or epigenetic alterations still allowing tolerability and to monitor these alterations during therapy.

  13. Service Discovery At Home

    NARCIS (Netherlands)

    Sundramoorthy, V.; Scholten, Johan; Jansen, P.G.; Hartel, Pieter H.

    Service discovery is a fady new field that kicked off since the advent of ubiquitous computing and has been found essential in the making of intelligent networks by implementing automated discovery and remote control between deviies. This paper provides an ovewiew and comparison of several prominent

  14. Academic Drug Discovery Centres

    DEFF Research Database (Denmark)

    Kirkegaard, Henriette Schultz; Valentin, Finn

    2014-01-01

    Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic...

  15. Decades of Discovery

    Science.gov (United States)

    2011-06-01

    For the past two-and-a-half decades, the Office of Science at the U.S. Department of Energy has been at the forefront of scientific discovery. Over 100 important discoveries supported by the Office of Science are represented in this document.

  16. Service discovery at home

    NARCIS (Netherlands)

    Sundramoorthy, V.; Scholten, Johan; Jansen, P.G.; Hartel, Pieter H.

    2003-01-01

    Service discovery is a fairly new field that kicked off since the advent of ubiquitous computing and has been found essential in the making of intelligent networks by implementing automated discovery and remote control between devices. This paper provides an overview and comparison of several

  17. "Eureka, Eureka!" Discoveries in Science

    Science.gov (United States)

    Agarwal, Pankaj

    2011-01-01

    Accidental discoveries have been of significant value in the progress of science. Although accidental discoveries are more common in pharmacology and chemistry, other branches of science have also benefited from such discoveries. While most discoveries are the result of persistent research, famous accidental discoveries provide a fascinating…

  18. The Greatest Mathematical Discovery?

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  19. Multidimensional process discovery

    NARCIS (Netherlands)

    Ribeiro, J.T.S.

    2013-01-01

    Typically represented in event logs, business process data describe the execution of process events over time. Business process intelligence (BPI) techniques such as process mining can be applied to get strategic insight into business processes. Process discovery, conformance checking and

  20. Fateful discovery almost forgotten

    CERN Multimedia

    1989-01-01

    "The discovery of the fission of uranium exactly half a century ago is at risk of passing unremarked because of the general ambivalence towards the consequences of this development. Can that be wise?" (4 pages)

  1. Toxins and drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  2. Defining Creativity with Discovery

    OpenAIRE

    Wilson, Nicholas Charles; Martin, Lee

    2017-01-01

    The standard definition of creativity has enabled significant empirical and theoretical advances, yet contains philosophical conundrums concerning the nature of novelty and the role of recognition and values. In this work we offer an act of conceptual valeting that addresses these issues and in doing so, argue that creativity definitions can be extended through the use of discovery. Drawing on dispositional realist philosophy we outline why adding the discovery and bringing into being of new ...

  3. On the antiproton discovery

    International Nuclear Information System (INIS)

    Piccioni, O.

    1989-01-01

    The author of this article describes his own role in the discovery of the antiproton. Although Segre and Chamberlain received the Nobel Prize in 1959 for its discovery, the author claims that their experimental method was his idea which he communicated to them informally in December 1954. He describes how his application for citizenship (he was Italian), and other scientists' manipulation, prevented him from being at Berkeley to work on the experiment himself. (UK)

  4. Discovery Driven Growth

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj

    2009-01-01

    Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august......Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august...

  5. The π discovery

    International Nuclear Information System (INIS)

    Fowler, P.H.

    1988-01-01

    The paper traces the discovery of the Π meson. The discovery was made by exposure of nuclear emulsions to cosmic radiation at high altitudes, with subsequent scanning of the emulsions for meson tracks. Disintegration of nuclei by a negative meson, and the decay of a Π meson were both observed. Further measurements revealed the mass of the meson. The studies carried out on the origin of the Π-mesons, and their mode of decay, are both described. (U.K.)

  6. Discovery of charm

    International Nuclear Information System (INIS)

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D 0 ,D + charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976. 27 references

  7. Discovery: Pile Patterns

    Science.gov (United States)

    de Mestre, Neville

    2017-01-01

    Earlier "Discovery" articles (de Mestre, 1999, 2003, 2006, 2010, 2011) considered patterns from many mathematical situations. This article presents a group of patterns used in 19th century mathematical textbooks. In the days of earlier warfare, cannon balls were stacked in various arrangements depending on the shape of the pile base…

  8. Discovery and Innovation

    African Journals Online (AJOL)

    Discovery and Innovation is a journal of the African Academy of Sciences (AAS) ... World (TWAS) meant to focus attention on science and technology in Africa and the ... of Non-wood Forest Products: Potential Impacts and Challenges in Africa ...

  9. The discovery of fission

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1978-01-01

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  10. The Discovery of America

    Science.gov (United States)

    Martin, Paul S.

    1973-01-01

    Discusses a model for explaining the spread of human population explosion on North American continent since its discovery 12,000 years ago. The model may help to map the spread of Homo sapiens throughout the New World by using the extinction chronology of the Pleistocene megafauna. (Author/PS)

  11. A NOVEL PIPELINE FOR DRUG DISCOVERY IN NEUROPSYCHIATRIC DISORDERS USING HIGH-CONTENT SINGLE-CELL SCREENING OF SIGNALLING NETWORK RESPONSES EX VIVO

    OpenAIRE

    Lago Cooke, Santiago Guillermo

    2016-01-01

    The current work entails the development of a novel high content platform for the measurement of kinetic ligand responses across cell signalling networks at the single-cell level in distinct PBMC subtypes ex vivo. Using automated sample preparation, fluorescent cellular barcoding and flow cytometry the platform is capable of detecting 21, 840 parallel cell signalling responses in each PBMC sample. We apply this platform to characterize the effects of neuropsychiatric treatments and CNS ligand...

  12. Systematic analysis of cell cycle effects of common drugs leads to the discovery of a suppressive interaction between gemfibrozil and fluoxetine.

    Science.gov (United States)

    Hoose, Scott A; Duran, Camille; Malik, Indranil; Eslamfam, Shabnam; Shasserre, Samantha C; Downing, S Sabina; Hoover, Evelyn M; Dowd, Katherine E; Smith, Roger; Polymenis, Michael

    2012-01-01

    Screening chemical libraries to identify compounds that affect overall cell proliferation is common. However, in most cases, it is not known whether the compounds tested alter the timing of particular cell cycle transitions. Here, we evaluated an FDA-approved drug library to identify pharmaceuticals that alter cell cycle progression in yeast, using DNA content measurements by flow cytometry. This approach revealed strong cell cycle effects of several commonly used pharmaceuticals. We show that the antilipemic gemfibrozil delays initiation of DNA replication, while cells treated with the antidepressant fluoxetine severely delay progression through mitosis. Based on their effects on cell cycle progression, we also examined cell proliferation in the presence of both compounds. We discovered a strong suppressive interaction between gemfibrozil and fluoxetine. Combinations of interest among diverse pharmaceuticals are difficult to identify, due to the daunting number of possible combinations that must be evaluated. The novel interaction between gemfibrozil and fluoxetine suggests that identifying and combining drugs that show cell cycle effects might streamline identification of drug combinations with a pronounced impact on cell proliferation.

  13. Systematic analysis of cell cycle effects of common drugs leads to the discovery of a suppressive interaction between gemfibrozil and fluoxetine.

    Directory of Open Access Journals (Sweden)

    Scott A Hoose

    Full Text Available Screening chemical libraries to identify compounds that affect overall cell proliferation is common. However, in most cases, it is not known whether the compounds tested alter the timing of particular cell cycle transitions. Here, we evaluated an FDA-approved drug library to identify pharmaceuticals that alter cell cycle progression in yeast, using DNA content measurements by flow cytometry. This approach revealed strong cell cycle effects of several commonly used pharmaceuticals. We show that the antilipemic gemfibrozil delays initiation of DNA replication, while cells treated with the antidepressant fluoxetine severely delay progression through mitosis. Based on their effects on cell cycle progression, we also examined cell proliferation in the presence of both compounds. We discovered a strong suppressive interaction between gemfibrozil and fluoxetine. Combinations of interest among diverse pharmaceuticals are difficult to identify, due to the daunting number of possible combinations that must be evaluated. The novel interaction between gemfibrozil and fluoxetine suggests that identifying and combining drugs that show cell cycle effects might streamline identification of drug combinations with a pronounced impact on cell proliferation.

  14. On reliable discovery of molecular signatures

    Directory of Open Access Journals (Sweden)

    Björkegren Johan

    2009-01-01

    Full Text Available Abstract Background Molecular signatures are sets of genes, proteins, genetic variants or other variables that can be used as markers for a particular phenotype. Reliable signature discovery methods could yield valuable insight into cell biology and mechanisms of human disease. However, it is currently not clear how to control error rates such as the false discovery rate (FDR in signature discovery. Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult to replicate in independent studies, casting doubts on their reliability. Results We demonstrate that with modern prediction methods, signatures that yield accurate predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail to replicate in independent studies due to limited statistical power. Thus, neither stability nor predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a general statistical hypothesis testing framework that for the first time provides FDR control for signature discovery. Our method is demonstrated to be correct in simulation studies. When applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR in three cases, while two data sets yielded no significant findings. Conclusion Our approach enables reliable discovery of molecular signatures from genome-wide data with current sample sizes. The statistical framework developed herein is potentially applicable to a wide range of prediction problems in bioinformatics.

  15. Discovery and structure-activity relationship of novel 4-hydroxy-thiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators.

    Science.gov (United States)

    Li, Ridong; Ning, Xianling; Zhou, Shuo; Lin, Zhiqiang; Wu, Xingyu; Chen, Hong; Bai, Xinyu; Wang, Xin; Ge, Zemei; Li, Runtao; Yin, Yuxin

    2018-01-01

    Pyruvate kinase M2 isoform (PKM2) is a crucial protein responsible for aerobic glycolysis of cancer cells. Activation of PKM2 may alter aberrant metabolism in cancer cells. In this study, we discovered a 4-hydroxy-thiazolidine-2-thione compound 2 as a novel PKM2 activator from a random screening of an in-house compound library. Then a series of novel 4-hydroxy-thiazolidine-2-thione derivatives were designed and synthesized for screening as potent PKM2 activators. Among these, some compounds showed higher PKM2 activation activity than lead compound 2 and also exhibited significant anti-proliferative activities on human cancer cell lines at nanomolar concentration. The compound 5w was identified as the most potent antitumor agent, which showed excellent anti-proliferative effects with IC 50 values from 0.46 μM to 0.81 μM against H1299, HCT116, Hela and PC3 cell lines. 5w also showed less cytotoxicity in non-tumor cell line HELF compared with cancer cells. In addition, Preliminary pharmacological studies revealed that 5w arrests the cell cycle at the G2/M phase in HCT116 cell line. The best PKM2 activation by compound 5t was rationalized through docking studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. The neutron discovery

    International Nuclear Information System (INIS)

    Six, J.

    1987-01-01

    The neutron: who had first the idea, who discovered it, who established its main properties. To these apparently simple questions, multiple answers exist. The progressive discovery of the neutron is a marvellous illustration of some characteristics of the scientific research, where the unforeseen may be combined with the expected. This discovery is replaced in the context of the 1930's scientific effervescence that succeeded the revolutionary introduction of quantum mechanics. This book describes the works of Bothe, the Joliot-Curie and Chadwick which led to the neutron in an unexpected way. A historical analysis allows to give a new interpretation on the hypothesis suggested by the Joliot-Curie. Some texts of these days will help the reader to revive this fascinating story [fr

  17. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  18. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  19. Fateful discovery almost forgotten

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The paper reviews the discovery of the fission of uranium, which took place fifty years ago. A description is given of the work of Meitner and Frisch in interpreting the Fermi data on the bombardment of uranium nuclei with neutrons, i.e. proposing fission. The historical events associated with the development and exploitation of uranium fission are described, including the Manhattan Project, Hiroshima and Nagasaki, Shippingport, and Chernobyl. (U.K.)

  20. Discovery as a process

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1994-05-01

    The three great myths, which form a sort of triumvirate of misunderstanding, are the Eureka! myth, the hypothesis myth, and the measurement myth. These myths are prevalent among scientists as well as among observers of science. The Eureka! myth asserts that discovery occurs as a flash of insight, and as such is not subject to investigation. This leads to the perception that discovery or deriving a hypothesis is a moment or event rather than a process. Events are singular and not subject to description. The hypothesis myth asserts that proper science is motivated by testing hypotheses, and that if something is not experimentally testable then it is not scientific. This myth leads to absurd posturing by some workers conducting empirical descriptive studies, who dress up their study with a ``hypothesis`` to obtain funding or get it published. Methods papers are often rejected because they do not address a specific scientific problem. The fact is that many of the great breakthroughs in silence involve methods and not hypotheses or arise from largely descriptive studies. Those captured by this myth also try to block funding for those developing methods. The third myth is the measurement myth, which holds that determining what to measure is straightforward, so one doesn`t need a lot of introspection to do science. As one ecologist put it to me ``Don`t give me any of that philosophy junk, just let me out in the field. I know what to measure.`` These myths lead to difficulties for scientists who must face peer review to obtain funding and to get published. These myths also inhibit the study of science as a process. Finally, these myths inhibit creativity and suppress innovation. In this paper I first explore these myths in more detail and then propose a new model of discovery that opens the supposedly miraculous process of discovery to doser scrutiny.

  1. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells.

    Science.gov (United States)

    Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R

    2018-04-01

    Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.

  2. The discovery of long-term potentiation.

    Science.gov (United States)

    Lømo, Terje

    2003-04-29

    This paper describes circumstances around the discovery of long-term potentiation (LTP). In 1966, I had just begun independent work for the degree of Dr medicinae (PhD) in Per Andersen's laboratory in Oslo after an eighteen-month apprenticeship with him. Studying the effects of activating the perforant path to dentate granule cells in the hippocampus of anaesthetized rabbits, I observed that brief trains of stimuli resulted in increased efficiency of transmission at the perforant path-granule cell synapses that could last for hours. In 1968, Tim Bliss came to Per Andersen's laboratory to learn about the hippocampus and field potential recording for studies of possible memory mechanisms. The two of us then followed up my preliminary results from 1966 and did the experiments that resulted in a paper that is now properly considered to be the basic reference for the discovery of LTP.

  3. 14 CFR 406.143 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Discovery. 406.143 Section 406.143... Transportation Adjudications § 406.143 Discovery. (a) Initiation of discovery. Any party may initiate discovery... after a complaint has been filed. (b) Methods of discovery. The following methods of discovery are...

  4. Arrayed antibody library technology for therapeutic biologic discovery.

    Science.gov (United States)

    Bentley, Cornelia A; Bazirgan, Omar A; Graziano, James J; Holmes, Evan M; Smider, Vaughn V

    2013-03-15

    Traditional immunization and display antibody discovery methods rely on competitive selection amongst a pool of antibodies to identify a lead. While this approach has led to many successful therapeutic antibodies, targets have been limited to proteins which are easily purified. In addition, selection driven discovery has produced a narrow range of antibody functionalities focused on high affinity antagonism. We review the current progress in developing arrayed protein libraries for screening-based, rather than selection-based, discovery. These single molecule per microtiter well libraries have been screened in multiplex formats against both purified antigens and directly against targets expressed on the cell surface. This facilitates the discovery of antibodies against therapeutically interesting targets (GPCRs, ion channels, and other multispanning membrane proteins) and epitopes that have been considered poorly accessible to conventional discovery methods. Copyright © 2013. Published by Elsevier Inc.

  5. Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells.

    Science.gov (United States)

    Hayashi, Yohei; Caboni, Laura; Das, Debanu; Yumoto, Fumiaki; Clayton, Thomas; Deller, Marc C; Nguyen, Phuong; Farr, Carol L; Chiu, Hsiu-Ju; Miller, Mitchell D; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Tomoda, Kiichiro; Conklin, Bruce R; Wilson, Ian A; Yamanaka, Shinya; Fletterick, Robert J

    2015-04-14

    NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.

  6. Causality discovery technology

    Science.gov (United States)

    Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.

    2012-11-01

    Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

  7. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  8. Discovery, SAR, and Radiolabeling of Halogenated Benzimidazole Carboxamide Antagonists as Useful Tools for (alpha)4(beta)1 Integrin Expressed on T- and B-cell Lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R D; Natarajan, A; Lau, E Y; Andrei, M; Solano, D M; Lightstone, F C; DeNardo, S J; Lam, K S; Kurth, M J

    2010-02-08

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homology models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.

  9. Advanced cell culture technology for essential oil production and micro array studies leading to discovery of genes for fragrance compounds in Michelia alba (Cempaka Putih)

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norazlina Nordin; Edrina Azlan

    2006-01-01

    Michelia spp. is known to produce high value essential oil for perfumery industry. The essence of world's most expensive perfumes, such as JOY and Jadore, is based on the oil of Michelia spp. One major problem anticipated in this approach, based on our early experiments, is limited amount of fragrance produced in cell cultures. The appropriate strategy is to superimpose DNA micro array studies on top of the cell culture project. The study covers natural flower development phases that led to the identification of genes or sets of genes that regulate the production of the fragrance. Seven developmental stages of Michelia alba flower namely Stage 5 to 11 were investigated for their volatile constituents. The essential oil was isolated by Simultaneous Distillation Extraction technique and the oil obtained was subjected to GC-MS analysis. In total, seventy-seven compounds representing 93-98% of the overall volatiles compounds were identified on the basis of mass spectra and retention indices. Thirty-three of these compounds belonged to isoprenoids group which comprised 30-50% of the total volatile compounds whereas the remaining belonged to fatty acid derivatives, benzenoid, phenylpropanoid and other hydrocarbon compounds. Studies were conducted to optimize culture parameters for scaling-up the production of callus, suspension cell cultures and somatic and product accumulation of essential oils using bioreactor technology. (Author)

  10. Computational methods in drug discovery

    OpenAIRE

    Sumudu P. Leelananda; Steffen Lindert

    2016-01-01

    The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery project...

  11. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  12. Discovery of 2',4'-dimethoxychalcone as a Hsp90 inhibitor and its effect on iressa-resistant non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Seo, Young Ho

    2015-10-01

    Heat shock protein 90 (Hsp90) is a ATP dependent molecular chaperone and has emerged as an attractive therapeutic target in the war on cancer due to its role in regulating maturation and stabilization of numerous oncogenic proteins. In this study, we discovered that 2',4'-dimethoxychalcone (1b) disrupted Hsp90 chaperoning function and inhibited the growth of iressa-resistant non-small cell lung cancer (NSCLC, H1975). The result suggested that 2',4'-dimethoxychalcone (1b) could serve as a potential therapeutic lead to circumvent the drug resistance acquired by EGFR mutation and Met amplification.

  13. Hippocampus discovery First steps

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available The first steps of the discovery, and the main discoverers, of the hippocampus are outlined. Arantius was the first to describe a structure he named "hippocampus" or "white silkworm". Despite numerous controversies and alternate designations, the term hippocampus has prevailed until this day as the most widely used term. Duvernoy provided an illustration of the hippocampus and surrounding structures, considered the first by most authors, which appeared more than one and a half century after Arantius' description. Some authors have identified other drawings and texts which they claim predate Duvernoy's depiction, in studies by Vesalius, Varolio, Willis, and Eustachio, albeit unconvincingly. Considering the definition of the hippocampal formation as comprising the hippocampus proper, dentate gyrus and subiculum, Arantius and Duvernoy apparently described the gross anatomy of this complex. The pioneering studies of Arantius and Duvernoy revealed a relatively small hidden formation that would become one of the most valued brain structures.

  14. Serendipitous discovery of potent human head and neck squamous cell carcinoma anti-cancer molecules: A fortunate failure of a rational molecular design.

    Science.gov (United States)

    Zagni, Chiara; Pistarà, Venerando; Oliveira, Luciana A; Castilho, Rogerio M; Romeo, Giovanni; Chiacchio, Ugo; Rescifina, Antonio

    2017-12-01

    Histone deacetylase inhibitors (HDACis) play an important role as valuable drugs targeted to cancer therapy: several HDACis are currently being tested in clinical trials. Two new potential HDACis 1a and 1d, characterized by the presence of a biphenyl-4-sulfonamide group as a connection unit between the N-{4-[(E)-(2-formylhydrazinylidene)methyl]-3-hydroxyphenyl} and the 2-hydroxy-N-(trifluoroacetyl)benzamide moiety, respectively, as two zinc-binding group (ZBG), have been designed, synthesized and tested for their biological activity. Surprisingly, compounds 1a and 12, this last exclusively obtained in place of 1d, exhibited a very low HDAC inhibitory activity. A serendipitous assay of these two compounds, conducted on three chemoresistant cell lines of head and neck squamous cell carcinoma (HNSCC), showed their antiproliferative activity at low nanomolar concentrations, better than cisplatin. In vitro, biological assays indicated that compounds 1a and 12 are able to increase acetylation of histone H3 and to interfere with the PI3K/Akt/mTOR pathway by inducing the accumulation of PTEN protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Final report on LDRD project : elucidating performance of proton-exchange-membrane fuel cells via computational modeling with experimental discovery and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao Yang (Pennsylvania State University, University Park, PA); Pasaogullari, Ugur (Pennsylvania State University, University Park, PA); Noble, David R.; Siegel, Nathan P.; Hickner, Michael A.; Chen, Ken Shuang

    2006-11-01

    In this report, we document the accomplishments in our Laboratory Directed Research and Development project in which we employed a technical approach of combining experiments with computational modeling and analyses to elucidate the performance of hydrogen-fed proton exchange membrane fuel cells (PEMFCs). In the first part of this report, we document our focused efforts on understanding water transport in and removal from a hydrogen-fed PEMFC. Using a transparent cell, we directly visualized the evolution and growth of liquid-water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. We further carried out a detailed experimental study to observe, via direct visualization, the formation, growth, and instability of water droplets at the GDL/GFC interface using a specially-designed apparatus, which simulates the cathode operation of a PEMFC. We developed a simplified model, based on our experimental observation and data, for predicting the onset of water-droplet instability at the GDL/GFC interface. Using a state-of-the-art neutron imaging instrument available at NIST (National Institute of Standard and Technology), we probed liquid-water distribution inside an operating PEMFC under a variety of operating conditions and investigated effects of evaporation due to local heating by waste heat on water removal. Moreover, we developed computational models for analyzing the effects of micro-porous layer on net water transport across the membrane and GDL anisotropy on the temperature and water distributions in the cathode of a PEMFC. We further developed a two-phase model based on the multiphase mixture formulation for predicting the liquid saturation, pressure drop, and flow maldistribution across the PEMFC cathode channels. In the second part of this report, we document our efforts on modeling the electrochemical performance of PEMFCs. We developed a constitutive model for predicting proton conductivity in polymer electrolyte membranes and compared

  16. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao

    2012-01-01

    The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Towards 3rd generation organic tandem solar cells with 20% efficiency: Accelerated discovery and rational design of carbon-based photovoltaic materials through massive distributed volunteer computing

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-11-04

    Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace traditional energy sources. Our broad efforts have expanded the knowledge of possible donor materials for organic photovoltaics, while increasing access of our results to the world through the Clean Energy Project database (www.molecularspace.org). Machine learning techniques, including Gaussian Processes have been used to calibrate frontier molecular orbital energies, and OPV bulk properties (open-circuit voltage, percent conversion efficiencies, and short-circuit current). This grant allowed us to delve into the solid-state properties of OPVs (charge-carrier dynamics). One particular example allowed us to predict charge-carrier dynamics and make predictions about future hydrogen-bonded materials.

  18. Discovery of peroxisome proliferator-activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line.

    Science.gov (United States)

    Tachibana, Keisuke; Yuzuriha, Tomohiro; Tabata, Ryotaro; Fukuda, Syohei; Maegawa, Takashi; Takahashi, Rika; Tanimoto, Keiichi; Tsujino, Hirofumi; Nunomura, Kazuto; Lin, Bangzhong; Matsuura, Yoshiharu; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro Js; Kodama, Tatsuhiko; Kobayashi, Tadayuki; Ishimoto, Kenji; Miyachi, Hiroyuki; Doi, Takefumi

    2018-05-15

    Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that belongs to the superfamily of nuclear hormone receptors. PPARα is mainly expressed in the liver, where it activates fatty acid oxidation and lipoprotein metabolism and improves plasma lipid profiles. Therefore, PPARα activators are often used to treat patients with dyslipidemia. To discover additional PPARα activators as potential compounds for use in hypolipidemic drugs, here we established human hepatoblastoma cell lines with luciferase reporter expression from the promoters containing peroxisome proliferator responsive elements (PPRE) and tetracycline-regulated expression of full-length human PPARα to quantify the effects of chemical ligands on PPARα activity. Using the established cell-based PPARα-activator screening system to screen a library of > 12,000 chemical compounds, we identified several hit compounds with basic chemical skeletons different from those of known PPARα agonists. One of the hit compounds, a 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivative we termed compound 3, selectively up-regulated PPARα transcriptional activity, leading to PPARα target gene expression both in vitro and in vivo. Of note, the half-maximal effective concentrations of the hit compounds were lower than that of the known PPARα ligand fenofibrate. Finally, fenofibrate or compound 3 treatment of high fructose-fed rats having elevated plasma triglyceride levels for 14 days indicated that compound 3 reduces plasma triglyceride levels with similar efficiency as fenofibrate. These observations raise the possibility that 1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives might be effective drug candidates for selective targeting of PPARα to manage dyslipidemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  20. Discovery and development of new antibacterial drugs: learning from experience?

    Science.gov (United States)

    Jackson, Nicole; Czaplewski, Lloyd; Piddock, Laura J V

    2018-06-01

    Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.

  1. Materials Discovery | Materials Science | NREL

    Science.gov (United States)

    Discovery Materials Discovery Images of red and yellow particles NREL's research in materials characterization of sample by incoming beam and measuring outgoing particles, with data being stored and analyzed Staff Scientist Dr. Zakutayev specializes in design of novel semiconductor materials for energy

  2. Service discovery using Bloom filters

    NARCIS (Netherlands)

    Goering, P.T.H.; Heijenk, Geert; Lelieveldt, B.P.F.; Haverkort, Boudewijn R.H.M.; de Laat, C.T.A.M.; Heijnsdijk, J.W.J.

    A protocol to perform service discovery in adhoc networks is introduced in this paper. Attenuated Bloom filters are used to distribute services to nodes in the neighborhood and thus enable local service discovery. The protocol has been implemented in a discrete event simulator to investigate the

  3. On the pulse of discovery

    Science.gov (United States)

    2017-12-01

    What started 50 years ago as a `smudge' on paper has flourished into a fundamental field of astrophysics replete with unexpected applications and exciting discoveries. To celebrate the discovery of pulsars, we look at the past, present and future of pulsar astrophysics.

  4. 29 CFR 2700.56 - Discovery; general.

    Science.gov (United States)

    2010-07-01

    ...(c) or 111 of the Act has been filed. 30 U.S.C. 815(c) and 821. (e) Completion of discovery... 29 Labor 9 2010-07-01 2010-07-01 false Discovery; general. 2700.56 Section 2700.56 Labor... Hearings § 2700.56 Discovery; general. (a) Discovery methods. Parties may obtain discovery by one or more...

  5. 19 CFR 207.109 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Discovery. 207.109 Section 207.109 Customs Duties... and Committee Proceedings § 207.109 Discovery. (a) Discovery methods. All parties may obtain discovery under such terms and limitations as the administrative law judge may order. Discovery may be by one or...

  6. 30 CFR 44.24 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Discovery. 44.24 Section 44.24 Mineral... Discovery. Parties shall be governed in their conduct of discovery by appropriate provisions of the Federal... discovery. Alternative periods of time for discovery may be prescribed by the presiding administrative law...

  7. 19 CFR 356.20 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Discovery. 356.20 Section 356.20 Customs Duties... § 356.20 Discovery. (a) Voluntary discovery. All parties are encouraged to engage in voluntary discovery... sanctions proceeding. (b) Limitations on discovery. The administrative law judge shall place such limits...

  8. 24 CFR 180.500 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Discovery. 180.500 Section 180.500... OPPORTUNITY CONSOLIDATED HUD HEARING PROCEDURES FOR CIVIL RIGHTS MATTERS Discovery § 180.500 Discovery. (a) In general. This subpart governs discovery in aid of administrative proceedings under this part. Discovery in...

  9. 15 CFR 25.21 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Discovery. 25.21 Section 25.21... Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for..., discovery is available only as ordered by the ALJ. The ALJ shall regulate the timing of discovery. (d...

  10. 39 CFR 963.14 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Discovery. 963.14 Section 963.14 Postal Service... PANDERING ADVERTISEMENTS STATUTE, 39 U.S.C. 3008 § 963.14 Discovery. Discovery is to be conducted on a... such discovery as he or she deems reasonable and necessary. Discovery may include one or more of the...

  11. 22 CFR 224.21 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Discovery. 224.21 Section 224.21 Foreign....21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of... parties, discovery is available only as ordered by the ALJ. The ALJ shall regulate the timing of discovery...

  12. Discovery Mondays: Surveyors' Tools

    CERN Multimedia

    2003-01-01

    Surveyors of all ages, have your rulers and compasses at the ready! This sixth edition of Discovery Monday is your chance to learn about the surveyor's tools - the state of the art in measuring instruments - and see for yourself how they work. With their usual daunting precision, the members of CERN's Surveying Group have prepared some demonstrations and exercises for you to try. Find out the techniques for ensuring accelerator alignment and learn about high-tech metrology systems such as deviation indicators, tracking lasers and total stations. The surveyors will show you how they precisely measure magnet positioning, with accuracy of a few thousandths of a millimetre. You can try your hand at precision measurement using different types of sensor and a modern-day version of the Romans' bubble level, accurate to within a thousandth of a millimetre. You will learn that photogrammetry techniques can transform even a simple digital camera into a remarkable measuring instrument. Finally, you will have a chance t...

  13. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  14. 'The Lusiads', poem of discovery

    Directory of Open Access Journals (Sweden)

    Natasha Furlan Felizi

    2016-07-01

    Full Text Available The article proposes reading Os Lusíadas as a discovery journey. Discovery here read as aletheia or “revelation”, as proposed by Sophia de Mello Brey­ner Andresen in 1980. Using Martin Heidegger’s notion of aletheia in the book Parmenides along with Jorge de Sena and Sophia de Mello Breyner Andresen reflections on Camões, I’ll seek to point out alternative readings for Os Lusíadas as a “discovery journey”.

  15. Discovery of natural resources

    Science.gov (United States)

    Guild, P.W.

    1976-01-01

    Mankind will continue to need ores of more or less the types and grades used today to supply its needs for new mineral raw materials, at least until fusion or some other relatively cheap, inexhaustible energy source is developed. Most deposits being mined today were exposed at the surface or found by relatively simple geophysical or other prospecting techniques, but many of these will be depleted in the foreseeable future. The discovery of deeper or less obvious deposits to replace them will require the conjunction of science and technology to deduce the laws that governed the concentration of elements into ores and to detect and evaluate the evidence of their whereabouts. Great theoretical advances are being made to explain the origins of ore deposits and understand the general reasons for their localization. These advances have unquestionable value for exploration. Even a large deposit is, however, very small, and, with few exceptions, it was formed under conditions that have long since ceased to exist. The explorationist must suppress a great deal of "noise" to read and interpret correctly the "signals" that can define targets and guide the drilling required to find it. Is enough being done to ensure the long-term availability of mineral raw materials? The answer is probably no, in view of the expanding consumption and the difficulty of finding new deposits, but ingenuity, persistence, and continued development of new methods and tools to add to those already at hand should put off the day of "doing without" for many years. The possibility of resource exhaustion, especially in view of the long and increasing lead time needed to carry out basic field and laboratory studies in geology, geophysics, and geochemistry and to synthesize and analyze the information gained from them counsels against any letting down of our guard, however (17). Research and exploration by government, academia, and industry must be supported and encouraged; we cannot wait until an eleventh

  16. Supernovae Discovery Efficiency

    Science.gov (United States)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  17. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  18. Discovery of the iron isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Twenty-eight iron isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  19. Discovery of the silver isotopes

    International Nuclear Information System (INIS)

    Schuh, A.; Fritsch, A.; Ginepro, J.Q.; Heim, M.; Shore, A.; Thoennessen, M.

    2010-01-01

    Thirty-eight silver isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  20. Synthetic biology of antimicrobial discovery

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  1. Discovery of the cadmium isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Thoennessen, M.

    2010-01-01

    Thirty-seven cadmium isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    country of discovery as well as the production mechanism used to produce the isotopes. ... the disintegration products of bombarded uranium, as a consequence of a ..... advanced accelerator and newly developed separation and detection ...

  3. Synthetic biology of antimicrobial discovery.

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  4. The discovery of 'heavy light'

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The history of the discoveries of fundamental quanta is described starting from Maxwell's theory of electromagnetism up to the development of a theory of weak interaction and the detection of the W and Z bosons. (HSI).

  5. Discovery – Development of Rituximab

    Science.gov (United States)

    NCI funded the development of rituximab, one of the first monoclonal antibody cancer treatments. With the discovery of rituximab, more than 70 percent of patients diagnosed with non-hodgkin lymphoma now live five years past their initial diagnosis.

  6. Radioactivity. Centenary of radioactivity discovery

    International Nuclear Information System (INIS)

    Charpak, G.; Tubiana, M.; Bimbot, R.

    1997-01-01

    This small booklet was edited for the occasion of the exhibitions of the celebration of the centenary of radioactivity discovery which took place in various locations in France from 1996 to 1998. It recalls some basic knowledge concerning radioactivity and its applications: history of discovery, atoms and isotopes, radiations, measurement of ionizing radiations, natural and artificial radioactivity, isotope dating and labelling, radiotherapy, nuclear power and reactors, fission and fusion, nuclear wastes, dosimetry, effects and radioprotection. (J.S.)

  7. Computational methods in drug discovery

    Directory of Open Access Journals (Sweden)

    Sumudu P. Leelananda

    2016-12-01

    Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  8. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    Science.gov (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  9. 42 CFR 426.432 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Discovery. 426.432 Section 426.432 Public Health... § 426.432 Discovery. (a) General rule. If the ALJ orders discovery, the ALJ must establish a reasonable timeframe for discovery. (b) Protective order—(1) Request for a protective order. Any party receiving a...

  10. 40 CFR 27.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Discovery. 27.21 Section 27.21... Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for..., discovery is available only as ordered by the presiding officer. The presiding officer shall regulate the...

  11. 13 CFR 134.213 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Discovery. 134.213 Section 134.213... OFFICE OF HEARINGS AND APPEALS Rules of Practice for Most Cases § 134.213 Discovery. (a) Motion. A party may obtain discovery only upon motion, and for good cause shown. (b) Forms. The forms of discovery...

  12. 37 CFR 41.150 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Discovery. 41.150 Section 41... COMMERCE PRACTICE BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES Contested Cases § 41.150 Discovery. (a) Limited discovery. A party is not entitled to discovery except as authorized in this subpart. The...

  13. 19 CFR 354.10 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Discovery. 354.10 Section 354.10 Customs Duties... ANTIDUMPING OR COUNTERVAILING DUTY ADMINISTRATIVE PROTECTIVE ORDER § 354.10 Discovery. (a) Voluntary discovery. All parties are encouraged to engage in voluntary discovery procedures regarding any matter, not...

  14. 14 CFR 13.220 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Discovery. 13.220 Section 13.220... INVESTIGATIVE AND ENFORCEMENT PROCEDURES Rules of Practice in FAA Civil Penalty Actions § 13.220 Discovery. (a) Initiation of discovery. Any party may initiate discovery described in this section, without the consent or...

  15. 49 CFR 604.38 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Discovery. 604.38 Section 604.38 Transportation... TRANSPORTATION CHARTER SERVICE Hearings. § 604.38 Discovery. (a) Permissible forms of discovery shall be within the discretion of the PO. (b) The PO shall limit the frequency and extent of discovery permitted by...

  16. 15 CFR 719.10 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Discovery. 719.10 Section 719.10... Discovery. (a) General. The parties are encouraged to engage in voluntary discovery regarding any matter... the Federal Rules of Civil Procedure relating to discovery apply to the extent consistent with this...

  17. 14 CFR 16.213 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Discovery. 16.213 Section 16.213... PRACTICE FOR FEDERALLY-ASSISTED AIRPORT ENFORCEMENT PROCEEDINGS Hearings § 16.213 Discovery. (a) Discovery... discovery permitted by this section if a party shows that— (1) The information requested is cumulative or...

  18. 28 CFR 76.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Discovery. 76.21 Section 76.21 Judicial... POSSESSION OF CERTAIN CONTROLLED SUBSTANCES § 76.21 Discovery. (a) Scope. Discovery under this part covers... as a general guide for discovery practices in proceedings before the Judge. However, unless otherwise...

  19. 36 CFR 1150.63 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Discovery. 1150.63 Section... PRACTICE AND PROCEDURES FOR COMPLIANCE HEARINGS Prehearing Conferences and Discovery § 1150.63 Discovery. (a) Parties are encouraged to engage in voluntary discovery procedures. For good cause shown under...

  20. 10 CFR 13.21 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Discovery. 13.21 Section 13.21 Energy NUCLEAR REGULATORY COMMISSION PROGRAM FRAUD CIVIL REMEDIES § 13.21 Discovery. (a) The following types of discovery are...) Unless mutually agreed to by the parties, discovery is available only as ordered by the ALJ. The ALJ...

  1. 49 CFR 1121.2 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Discovery. 1121.2 Section 1121.2 Transportation... TRANSPORTATION RULES OF PRACTICE RAIL EXEMPTION PROCEDURES § 1121.2 Discovery. Discovery shall follow the procedures set forth at 49 CFR part 1114, subpart B. Discovery may begin upon the filing of the petition for...

  2. 24 CFR 26.18 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Discovery. 26.18 Section 26.18... PROCEDURES Hearings Before Hearing Officers Discovery § 26.18 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery procedures, which may commence at any time after an answer has...

  3. 38 CFR 42.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Discovery. 42.21 Section... IMPLEMENTING THE PROGRAM FRAUD CIVIL REMEDIES ACT § 42.21 Discovery. (a) The following types of discovery are... creation of a document. (c) Unless mutually agreed to by the parties, discovery is available only as...

  4. 22 CFR 521.21 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Discovery. 521.21 Section 521.21 Foreign... Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for... interpreted to require the creation of a document. (c) Unless mutually agreed to by the parties, discovery is...

  5. 31 CFR 10.71 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Discovery. 10.71 Section 10.71 Money... SERVICE Rules Applicable to Disciplinary Proceedings § 10.71 Discovery. (a) In general. Discovery may be... relevance, materiality and reasonableness of the requested discovery and subject to the requirements of § 10...

  6. 42 CFR 426.532 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Discovery. 426.532 Section 426.532 Public Health... § 426.532 Discovery. (a) General rule. If the Board orders discovery, the Board must establish a reasonable timeframe for discovery. (b) Protective order—(1) Request for a protective order. Any party...

  7. 39 CFR 955.15 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Discovery. 955.15 Section 955.15 Postal Service... APPEALS § 955.15 Discovery. (a) The parties are encouraged to engage in voluntary discovery procedures. In connection with any deposition or other discovery procedure, the Board may issue any order which justice...

  8. 49 CFR 1503.633 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Discovery. 1503.633 Section 1503.633... Rules of Practice in TSA Civil Penalty Actions § 1503.633 Discovery. (a) Initiation of discovery. Any party may initiate discovery described in this section, without the consent or approval of the ALJ, at...

  9. 43 CFR 35.21 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Discovery. 35.21 Section 35.21 Public... AND STATEMENTS § 35.21 Discovery. (a) The following types of discovery are authorized: (1) Requests...) Unless mutually agreed to by the parties, discovery is available only as ordered by the ALJ. The ALJ...

  10. 14 CFR 1264.120 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Discovery. 1264.120 Section 1264.120... PENALTIES ACT OF 1986 § 1264.120 Discovery. (a) The following types of discovery are authorized: (1..., discovery is available only as ordered by the presiding officer. The presiding officer shall regulate the...

  11. 22 CFR 128.6 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Discovery. 128.6 Section 128.6 Foreign... Discovery. (a) Discovery by the respondent. The respondent, through the Administrative Law Judge, may... discovery if the interests of national security or foreign policy so require, or if necessary to comply with...

  12. 37 CFR 11.52 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Discovery. 11.52 Section 11... Disciplinary Proceedings; Jurisdiction, Sanctions, Investigations, and Proceedings § 11.52 Discovery. Discovery... establishes that discovery is reasonable and relevant, the hearing officer, under such conditions as he or she...

  13. 24 CFR 26.42 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Discovery. 26.42 Section 26.42... PROCEDURES Hearings Pursuant to the Administrative Procedure Act Discovery § 26.42 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery procedures, which may commence at any time...

  14. 49 CFR 386.37 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Discovery. 386.37 Section 386.37 Transportation... and Hearings § 386.37 Discovery. (a) Parties may obtain discovery by one or more of the following...; and requests for admission. (b) Discovery may not commence until the matter is pending before the...

  15. 29 CFR 1955.32 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Discovery. 1955.32 Section 1955.32 Labor Regulations...) PROCEDURES FOR WITHDRAWAL OF APPROVAL OF STATE PLANS Preliminary Conference and Discovery § 1955.32 Discovery... allow discovery by any other appropriate procedure, such as by interrogatories upon a party or request...

  16. 31 CFR 16.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Discovery. 16.21 Section 16.21 Money... FRAUD CIVIL REMEDIES ACT OF 1986 § 16.21 Discovery. (a) The following types of discovery are authorized... to require the creation of a document. (c) Unless mutually agreed to by the parties, discovery is...

  17. 15 CFR 766.9 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Discovery. 766.9 Section 766.9... PROCEEDINGS § 766.9 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery... provisions of the Federal Rules of Civil Procedure relating to discovery apply to the extent consistent with...

  18. 43 CFR 4.1130 - Discovery methods.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Discovery methods. 4.1130 Section 4.1130... Special Rules Applicable to Surface Coal Mining Hearings and Appeals Discovery § 4.1130 Discovery methods. Parties may obtain discovery by one or more of the following methods— (a) Depositions upon oral...

  19. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  20. A new approach to the rationale discovery of polymeric biomaterials

    Science.gov (United States)

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  1. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  2. Deep Learning in Drug Discovery.

    Science.gov (United States)

    Gawehn, Erik; Hiss, Jan A; Schneider, Gisbert

    2016-01-01

    Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Discovery of the Higgs boson

    CERN Document Server

    Sharma, Vivek

    2016-01-01

    The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.

  4. Bioinformatics in translational drug discovery.

    Science.gov (United States)

    Wooller, Sarah K; Benstead-Hume, Graeme; Chen, Xiangrong; Ali, Yusuf; Pearl, Frances M G

    2017-08-31

    Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications. © 2017 The Author(s).

  5. Drug discovery for alopecia: gone today, hair tomorrow.

    Science.gov (United States)

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-03-01

    Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.

  6. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  7. The discovery of subatomic particles

    International Nuclear Information System (INIS)

    Weinberg, S.

    1984-01-01

    This book developed from a course for students with no prior training in mathematics of physics to learn about the achievements of 20th century physics and classical physics. It covers the discovery of fundamental particles of ordinary atoms: the electron, the proton, and the neutron. The general outline is historical and it is for readers unfamiliar with classical physics who wish to understand the ideas and experiments that make up the history of 20th century physics. Contents include: A world of particles, the discovery of the electron, the atomic scale, the nucleus, more particles

  8. Quarks, history of a discovery

    International Nuclear Information System (INIS)

    Husson, D.

    2000-01-01

    This book gives a presentation of quarks and stresses on the historical aspects of the studies that led to their discovery. The 'aesthetical' motivations of the scientists in their research are explained with only a minimum of mathematical concepts. (J.S.)

  9. On the threshold of discovery

    International Nuclear Information System (INIS)

    Cherenkov, P.A.

    1986-01-01

    The author, the discoverer of the Cherenkov radiation, recalls some interesting circumstances of his discoery 50 years ago and puts it into the context of the knowledge of the period. The discovery of Cherenkov radiation which today is in practice used especially for the detection of charged particles, was correctly understood and appreciated somewhat belatedly. At first the discovery was met with distrust and the original article announcing it was rejected by the magazine Nature. In effect, the discovery was not the result of any planned experiment but was the by-product of another research. It was, of course, allowed by previous achievements in various fields of physics, namely progress reached in the study of luminescence by S.I. Vavilov and his pupils. The discovery was made during an experimental study of luminescence induced in liquids by the β and γ radiations of uranyl salts. During his attempts to suppress the background radiation from vessel walls the autor found a ''background'' from pure solvent which differed from luminescence by being independent of the concentration, temperature and viscosity of the liquid. A closer examination of the phenomenon more or less by accident revealed its marked spatial asymmetry which had major importance for the development of the theory of the new phenomenon by I.V. Tamm and I.M. Frank. (A.K.)

  10. DISCOVERY IN THE URBAN SPRAWL.

    Science.gov (United States)

    HYMOVITZ, LEON

    FOR A CULTURAL ENRICHMENT PROJECT ("DISCOVERY") IN A DISADVANTAGED PHILADELPIA HIGH SCHOOL, ATTENDANCE AT MUSIC, ART, AND THEATER EVENTS EARNED POINTS TOWARD A CERTIFICATE. THE STUDENTS ELECTED THE EVENTS FROM A PREPARED LIST OF ACTIVITIES, WHICH OFTEN WERE MADE PART OF THE ACADEMIC PROGRAM AND THE SCHOOL ASSEMBLIES. AS WELL AS OFFERING…

  11. Hubble 15 years of discovery

    CERN Document Server

    Lindberg Christensen, Lars; Kornmesser, M

    2006-01-01

    Hubble: 15 Years of Discovery was a key element of the European Space Agency's 15th anniversary celebration activities for the 1990 launch of the NASA/ESA Hubble Space Telescope. As an observatory in space, Hubble is one of the most successful scientific projects of all time, both in terms of scientific output and its immediate public appeal.

  12. Applied metabolomics in drug discovery.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S

    2016-08-01

    The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.

  13. Translational medicine and drug discovery

    National Research Council Canada - National Science Library

    Littman, Bruce H; Krishna, Rajesh

    2011-01-01

    ..., and examples of their application to real-life drug discovery and development. The latest thinking is presented by researchers from many of the world's leading pharmaceutical companies, including Pfizer, Merck, Eli Lilly, Abbott, and Novartis, as well as from academic institutions and public- private partnerships that support translational research...

  14. New oil and gas discoveries

    International Nuclear Information System (INIS)

    Alazard-Toux, N.

    2004-01-01

    During the period 1999-2003, new oil and gas fields generated additional reserves of nearly 11 000 bcm of natural gas and 62 Gbbl of oil and condensates, volumes very much superior to those discovered in the five previous years. Two-thirds of these discoveries were located offshore, half in deep water. (author)

  15. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  16. Structural Biology Guides Antibiotic Discovery

    Science.gov (United States)

    Polyak, Steven

    2014-01-01

    Modern drug discovery programs require the contribution of researchers in a number of specialist areas. One of these areas is structural biology. Using X-ray crystallography, the molecular basis of how a drug binds to its biological target and exerts its mode of action can be defined. For example, a drug that binds into the active site of an…

  17. Using directed information for influence discovery in interconnected dynamical systems

    Science.gov (United States)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  18. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  19. Revisiting lab-on-a-chip technology for drug discovery.

    Science.gov (United States)

    Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas

    2012-08-01

    The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

  20. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    Science.gov (United States)

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  1. Quantifying the Ease of Scientific Discovery.

    Science.gov (United States)

    Arbesman, Samuel

    2011-02-01

    It has long been known that scientific output proceeds on an exponential increase, or more properly, a logistic growth curve. The interplay between effort and discovery is clear, and the nature of the functional form has been thought to be due to many changes in the scientific process over time. Here I show a quantitative method for examining the ease of scientific progress, another necessary component in understanding scientific discovery. Using examples from three different scientific disciplines - mammalian species, chemical elements, and minor planets - I find the ease of discovery to conform to an exponential decay. In addition, I show how the pace of scientific discovery can be best understood as the outcome of both scientific output and ease of discovery. A quantitative study of the ease of scientific discovery in the aggregate, such as done here, has the potential to provide a great deal of insight into both the nature of future discoveries and the technical processes behind discoveries in science.

  2. Arthritis Genetics Analysis Aids Drug Discovery

    Science.gov (United States)

    ... NIH Research Matters January 13, 2014 Arthritis Genetics Analysis Aids Drug Discovery An international research team identified 42 new ... Edition Distracted Driving Raises Crash Risk Arthritis Genetics Analysis Aids Drug Discovery Oxytocin Affects Facial Recognition Connect with Us ...

  3. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein

    2014-01-01

    therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes...

  4. The circumstances of minor planet discovery

    International Nuclear Information System (INIS)

    Pilcher, F.

    1989-01-01

    The circumstances of discoveries of minor planets are presented in tabular form. Complete data are given for planets 2125-4044, together with notes pertaining to these planets. Information in the table includes the permanent number; the official name; for planets 330 and forward, the table includes the provisional designation attached to the discovery apparition and the year, month, the day of discovery, and the discovery place

  5. Genome engineering for microbial natural product discovery.

    Science.gov (United States)

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Guided discovery learning in geometry learning

    Science.gov (United States)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-03-01

    Geometry is a part of the mathematics that must be learned in school. The purpose of this research was to determine the effect of Guided Discovery Learning (GDL) toward geometry learning achievement. This research had conducted at junior high school in Sukoharjo on academic years 2016/2017. Data collection was done based on student’s work test and documentation. Hypothesis testing used two ways analysis of variance (ANOVA) with unequal cells. The results of this research that GDL gave positive effect towards mathematics learning achievement. GDL gave better mathematics learning achievement than direct learning. There was no difference of mathematics learning achievement between male and female. There was no an interaction between sex differences and learning models toward student’s mathematics learning achievement. GDL can be used to improve students’ mathematics learning achievement in geometry.

  7. 15 CFR 280.210 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Discovery. 280.210 Section 280.210... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS FASTENER QUALITY Enforcement § 280.210 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery...

  8. 6 CFR 13.21 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Discovery. 13.21 Section 13.21 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.21 Discovery. (a) In general. (1) The following types of discovery are authorized: (i) Requests for production of...

  9. 42 CFR 1005.7 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Discovery. 1005.7 Section 1005.7 Public Health... OF EXCLUSIONS, CIVIL MONEY PENALTIES AND ASSESSMENTS § 1005.7 Discovery. (a) A party may make a... and any forms of discovery, other than those permitted under paragraph (a) of this section, are not...

  10. 42 CFR 405.1037 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Discovery. 405.1037 Section 405.1037 Public Health... Appeals Under Original Medicare (Part A and Part B) Alj Hearings § 405.1037 Discovery. (a) General rules. (1) Discovery is permissible only when CMS or its contractor elects to participate in an ALJ hearing...

  11. 45 CFR 99.23 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Discovery. 99.23 Section 99.23 Public Welfare... DEVELOPMENT FUND Hearing Procedures § 99.23 Discovery. The Department, the Lead Agency, and any individuals or groups recognized as parties shall have the right to conduct discovery (including depositions) against...

  12. 29 CFR 1603.210 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Discovery. 1603.210 Section 1603.210 Labor Regulations... GOVERNMENT EMPLOYEE RIGHTS ACT OF 1991 Hearings § 1603.210 Discovery. (a) Unless otherwise ordered by the administrative law judge, discovery may begin as soon as the complaint has been transmitted to the administrative...

  13. 41 CFR 60-30.33 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Discovery. 60-30.33... 11246 Expedited Hearing Procedures § 60-30.33 Discovery. (a) Any party may serve requests for admissions... with § 60-30.8, the Administrative Law Judge may allow the taking of depositions. Other discovery will...

  14. 45 CFR 150.435 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Discovery. 150.435 Section 150.435 Public Welfare... AND INDIVIDUAL INSURANCE MARKETS Administrative Hearings § 150.435 Discovery. (a) The parties must identify any need for discovery from the opposing party as soon as possible, but no later than the time for...

  15. 10 CFR 1013.21 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Discovery. 1013.21 Section 1013.21 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) PROGRAM FRAUD CIVIL REMEDIES AND PROCEDURES § 1013.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and...

  16. 20 CFR 355.21 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Discovery. 355.21 Section 355.21 Employees... UNDER THE PROGRAM FRAUD CIVIL REMEDIES ACT OF 1986 § 355.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and copying; (2) Requests...

  17. 34 CFR 81.16 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Discovery. 81.16 Section 81.16 Education Office of the... Discovery. (a) The parties to a case are encouraged to exchange relevant documents and information voluntarily. (b) The ALJ, at a party's request, may order compulsory discovery described in paragraph (c) of...

  18. 10 CFR 2.1018 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Discovery. 2.1018 Section 2.1018 Energy NUCLEAR REGULATORY... Geologic Repository § 2.1018 Discovery. (a)(1) Parties, potential parties, and interested governmental participants in the high-level waste licensing proceeding may obtain discovery by one or more of the following...

  19. 45 CFR 213.23a - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Discovery. 213.23a Section 213.23a Public Welfare... Discovery. The Department and any party named in the notice issued pursuant to § 213.11 shall have the right to conduct discovery (including depositions) against opposing parties. Rules 26-37 of the Federal...

  20. 29 CFR 2200.208 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Discovery. 2200.208 Section 2200.208 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION RULES OF PROCEDURE Simplified Proceedings § 2200.208 Discovery. Discovery, including requests for admissions, will only be...

  1. 47 CFR 65.105 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Discovery. 65.105 Section 65.105... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Procedures § 65.105 Discovery. (a) Participants... evidence. (c) Discovery requests pursuant to § 65.105(b), including written interrogatories, shall be filed...

  2. 28 CFR 71.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Discovery. 71.21 Section 71.21 Judicial... REMEDIES ACT OF 1986 Implementation for Actions Initiated by the Department of Justice § 71.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for...

  3. 13 CFR 134.310 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Discovery. 134.310 Section 134.310 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION RULES OF PROCEDURE GOVERNING CASES BEFORE THE... Designations § 134.310 Discovery. Discovery will not be permitted in appeals from size determinations or NAICS...

  4. 20 CFR 498.207 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Discovery. 498.207 Section 498.207 Employees... § 498.207 Discovery. (a) For the purpose of inspection and copying, a party may make a request to...) Any form of discovery other than that permitted under paragraph (a) of this section, such as requests...

  5. 29 CFR 1905.25 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Discovery. 1905.25 Section 1905.25 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 Hearings § 1905.25 Discovery. (a) Depositions. (1) For reasons of... discovery. Whenever appropriate to a just disposition of any issue in a hearing, the presiding hearing...

  6. 34 CFR 33.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Discovery. 33.21 Section 33.21 Education Office of the Secretary, Department of Education PROGRAM FRAUD CIVIL REMEDIES ACT § 33.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and copying...

  7. 42 CFR 93.512 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Discovery. 93.512 Section 93.512 Public Health... Process § 93.512 Discovery. (a) Request to provide documents. A party may only request another party to...) Responses to a discovery request. Within 30 days of receiving a request for the production of documents, a...

  8. 49 CFR 209.313 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Discovery. 209.313 Section 209.313 Transportation... TRANSPORTATION RAILROAD SAFETY ENFORCEMENT PROCEDURES Disqualification Procedures § 209.313 Discovery. (a... parties. Discovery is designed to enable a party to obtain relevant information needed for preparation of...

  9. 12 CFR 1780.26 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Discovery. 1780.26 Section 1780.26 Banks and... OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Prehearing Proceedings § 1780.26 Discovery. (a) Limits on discovery. Subject to the limitations set out in paragraphs (b), (d), and (e) of this...

  10. 37 CFR 2.120 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Discovery. 2.120 Section 2... COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Procedure in Inter Partes Proceedings § 2.120 Discovery. (a... to disclosure and discovery shall apply in opposition, cancellation, interference and concurrent use...

  11. 45 CFR 160.516 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Discovery. 160.516 Section 160.516 Public Welfare... ADMINISTRATIVE REQUIREMENTS Procedures for Hearings § 160.516 Discovery. (a) A party may make a request to... forms of discovery, other than those permitted under paragraph (a) of this section, are not authorized...

  12. 46 CFR 550.502 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Discovery. 550.502 Section 550.502 Shipping FEDERAL... Proceedings § 550.502 Discovery. The Commission may authorize a party to a proceeding to use depositions, written interrogatories, and discovery procedures that, to the extent practicable, are in conformity with...

  13. 28 CFR 18.7 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Discovery. 18.7 Section 18.7 Judicial Administration DEPARTMENT OF JUSTICE OFFICE OF JUSTICE PROGRAMS HEARING AND APPEAL PROCEDURES § 18.7 Discovery.... Such order may be entered upon a showing that the deposition is necessary for discovery purposes, and...

  14. 10 CFR 205.198 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Discovery. 205.198 Section 205.198 Energy DEPARTMENT OF... of Proposed Disallowance, and Order of Disallowance § 205.198 Discovery. (a) If a person intends to file a Motion for Discovery, he must file it at the same time that he files his Statement of Objections...

  15. 42 CFR 3.516 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Discovery. 3.516 Section 3.516 Public Health PUBLIC... AND PATIENT SAFETY WORK PRODUCT Enforcement Program § 3.516 Discovery. (a) A party may make a request... and any forms of discovery, other than those permitted under paragraph (a) of this section, are not...

  16. 12 CFR 908.46 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Discovery. 908.46 Section 908.46 Banks and... PRACTICE AND PROCEDURE IN HEARINGS ON THE RECORD Pre-Hearing Proceedings § 908.46 Discovery. (a) Limits on discovery. Subject to the limitations set out in paragraphs (b), (d), and (e) of this section, any party to...

  17. 15 CFR 785.8 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Discovery. 785.8 Section 785.8... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE ADDITIONAL PROTOCOL REGULATIONS ENFORCEMENT § 785.8 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery regarding any matter, not...

  18. 22 CFR 35.21 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Discovery. 35.21 Section 35.21 Foreign Relations DEPARTMENT OF STATE CLAIMS AND STOLEN PROPERTY PROGRAM FRAUD CIVIL REMEDIES § 35.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for...

  19. 29 CFR 22.21 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Discovery. 22.21 Section 22.21 Labor Office of the Secretary of Labor PROGRAM FRAUD CIVIL REMEDIES ACT OF 1986 § 22.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and copying; (2) Requests...

  20. 42 CFR 430.86 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Discovery. 430.86 Section 430.86 Public Health... Plans and Practice to Federal Requirements § 430.86 Discovery. CMS and any party named in the notice issued under § 430.70 has the right to conduct discovery (including depositions) against opposing parties...

  1. 21 CFR 17.23 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Discovery. 17.23 Section 17.23 Food and Drugs FOOD... HEARINGS § 17.23 Discovery. (a) No later than 60 days prior to the hearing, unless otherwise ordered by the..., depositions, and any forms of discovery, other than those permitted under paragraphs (a) and (e) of this...

  2. 45 CFR 96.65 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Discovery. 96.65 Section 96.65 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION BLOCK GRANTS Hearing Procedure § 96.65 Discovery. The use of interrogatories, depositions, and other forms of discovery shall not be allowed. ...

  3. 7 CFR 1.322 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Discovery. 1.322 Section 1.322 Agriculture Office of... Under the Program Fraud Civil Remedies Act of 1986 § 1.322 Discovery. (a) The following types of discovery are authorized: (1) Requests for production, inspection and photocopying of documents; (2...

  4. 45 CFR 1386.103 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Discovery. 1386.103 Section 1386.103 Public... Hearing Procedures § 1386.103 Discovery. The Department and any party named in the Notice issued pursuant to § 1386.90 has the right to conduct discovery (including depositions) against opposing parties as...

  5. 45 CFR 79.21 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Discovery. 79.21 Section 79.21 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for...

  6. 49 CFR 31.21 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Discovery. 31.21 Section 31.21 Transportation Office of the Secretary of Transportation PROGRAM FRAUD CIVIL REMEDIES § 31.21 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and...

  7. 12 CFR 308.520 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Discovery. 308.520 Section 308.520 Banks and... PROCEDURE Program Fraud Civil Remedies and Procedures § 308.520 Discovery. (a) The following types of discovery are authorized: (1) Requests for production of documents for inspection and copying; (2) Requests...

  8. 47 CFR 1.729 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Discovery. 1.729 Section 1.729..., and Reports Involving Common Carriers Formal Complaints § 1.729 Discovery. (a) Subject to paragraph (i... seek discovery of any non-privileged matter that is relevant to the material facts in dispute in the...

  9. 7 CFR 283.12 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Discovery. 283.12 Section 283.12 Agriculture... of $50,000 or More § 283.12 Discovery. (a) Dispositions—(1) Motion for taking deposition. Only upon a... exist if the information sought appears reasonably calculated to lead to the discovery of admissible...

  10. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based drug discovery approach, we have identified small-molecule histidine-kinase

  11. 29 CFR 18.13 - Discovery methods.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Discovery methods. 18.13 Section 18.13 Labor Office of the... ADMINISTRATIVE LAW JUDGES General § 18.13 Discovery methods. Parties may obtain discovery by one or more of the following methods: Depositions upon oral examination or written questions; written interrogatories...

  12. Glycoscience aids in biomarker discovery

    Directory of Open Access Journals (Sweden)

    Serenus Hua1,2 & Hyun Joo An1,2,*

    2012-06-01

    Full Text Available The glycome consists of all glycans (or carbohydrates within abiological system, and modulates a wide range of important biologicalactivities, from protein folding to cellular communications.The mining of the glycome for disease markers representsa new paradigm for biomarker discovery; however, this effortis severely complicated by the vast complexity and structuraldiversity of glycans. This review summarizes recent developmentsin analytical technology and methodology as applied tothe fields of glycomics and glycoproteomics. Mass spectrometricstrategies for glycan compositional profiling are described, as arepotential refinements which allow structure-specific profiling.Analytical methods that can discern protein glycosylation at aspecific site of modification are also discussed in detail.Biomarker discovery applications are shown at each level ofanalysis, highlighting the key role that glycoscience can play inhelping scientists understand disease biology.

  13. Cyber-Enabled Scientific Discovery

    International Nuclear Information System (INIS)

    Chan, Tony; Jameson, Leland

    2007-01-01

    It is often said that numerical simulation is third in the group of three ways to explore modern science: theory, experiment and simulation. Carefully executed modern numerical simulations can, however, be considered at least as relevant as experiment and theory. In comparison to physical experimentation, with numerical simulation one has the numerically simulated values of every field variable at every grid point in space and time. In comparison to theory, with numerical simulation one can explore sets of very complex non-linear equations such as the Einstein equations that are very difficult to investigate theoretically. Cyber-enabled scientific discovery is not just about numerical simulation but about every possible issue related to scientific discovery by utilizing cyberinfrastructure such as the analysis and storage of large data sets, the creation of tools that can be used by broad classes of researchers and, above all, the education and training of a cyber-literate workforce

  14. Astrobiology, discovery, and societal impact

    CERN Document Server

    Dick, Steven J

    2018-01-01

    The search for life in the universe, once the stuff of science fiction, is now a robust worldwide research program with a well-defined roadmap probing both scientific and societal issues. This volume examines the humanistic aspects of astrobiology, systematically discussing the approaches, critical issues, and implications of discovering life beyond Earth. What do the concepts of life and intelligence, culture and civilization, technology and communication mean in a cosmic context? What are the theological and philosophical implications if we find life - and if we do not? Steven J. Dick argues that given recent scientific findings, the discovery of life in some form beyond Earth is likely and so we need to study the possible impacts of such a discovery and formulate policies to deal with them. The remarkable and often surprising results are presented here in a form accessible to disciplines across the sciences, social sciences, and humanities.

  15. [Artificial Intelligence in Drug Discovery].

    Science.gov (United States)

    Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi

    2018-04-01

    According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.

  16. A quantum causal discovery algorithm

    Science.gov (United States)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  17. Semiconductor technology in protein kinase research and drug discovery: sensing a revolution.

    Science.gov (United States)

    Bhalla, Nikhil; Di Lorenzo, Mirella; Estrela, Pedro; Pula, Giordano

    2017-02-01

    Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Discovery of Approximate Differential Dependencies

    OpenAIRE

    Liu, Jixue; Kwashie, Selasi; Li, Jiuyong; Ye, Feiyue; Vincent, Millist

    2013-01-01

    Differential dependencies (DDs) capture the relationships between data columns of relations. They are more general than functional dependencies (FDs) and and the difference is that DDs are defined on the distances between values of two tuples, not directly on the values. Because of this difference, the algorithms for discovering FDs from data find only special DDs, not all DDs and therefore are not applicable to DD discovery. In this paper, we propose an algorithm to discover DDs from data fo...

  19. The discovery of the antiproton

    International Nuclear Information System (INIS)

    Chamberlain, Owen

    1989-01-01

    A number of groups of particle physicists competed to provide track evidence of the existence of Dirac's postulated antiproton in the mid-1950s. The work of the several teams is described briefly. The author describes the work of his own group on the Bevatron in more detail, and how they finally observed the antiproton. The article finishes with an assessment of the importance of this discovery. (UK)

  20. Gas reserves, discoveries and production

    International Nuclear Information System (INIS)

    Saniere, A.

    2006-01-01

    Between 2000 and 2004, new discoveries, located mostly in the Asia/Pacific region, permitted a 71% produced reserve replacement rate. The Middle East and the offshore sector represent a growing proportion of world gas production Non-conventional gas resources are substantial but are not exploited to any significant extent, except in the United States, where they account for 30% of U.S. gas production. (author)

  1. Sea Level Rise Data Discovery

    Science.gov (United States)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  2. A New Universe of Discoveries

    Science.gov (United States)

    Córdova, France A.

    2016-01-01

    The convergence of emerging advances in astronomical instruments, computational capabilities and talented practitioners (both professional and civilian) is creating an extraordinary new environment for making numerous fundamental discoveries in astronomy, ranging from the nature of exoplanets to understanding the evolution of solar systems and galaxies. The National Science Foundation is playing a critical role in supporting, stimulating, and shaping these advances. NSF is more than an agency of government or a funding mechanism for the infrastructure of science. The work of NSF is a sacred trust that every generation of Americans makes to those of the next generation, that we will build on the body of knowledge we inherit and continue to push forward the frontiers of science. We never lose sight of NSF's obligation to "explore the unexplored" and inspire all of humanity with the wonders of discovery. As the only Federal agency dedicated to the support of basic research and education in all fields of science and engineering, NSF has empowered discoveries across a broad spectrum of scientific inquiry for more than six decades. The result is fundamental scientific research that has had a profound impact on our nation's innovation ecosystem and kept our nation at the very forefront of the world's science-and-engineering enterprise.

  3. Discovery of a Makemakean Moon

    Science.gov (United States)

    Parker, Alex H.; Buie, Marc W.; Grundy, Will M.; Noll, Keith S.

    2016-01-01

    We describe the discovery of a satellite in orbit about the dwarf planet (136472) Makemake. This satellite, provisionally designated S/2015 (136472) 1, was detected in imaging data collected with the Hubble Space Telescope's Wide Field Camera 3 on UTC 2015 April 27 at 7.80 +/- 0.04 mag fainter than Makemake and at a separation of 0farcs57. It likely evaded detection in previous satellite searches due to a nearly edge-on orbital configuration, placing it deep within the glare of Makemake during a substantial fraction of its orbital period. This configuration would place Makemake and its satellite near a mutual event season. Insufficient orbital motion was detected to make a detailed characterization of its orbital properties, prohibiting a measurement of the system mass with the discovery data alone. Preliminary analysis indicates that if the orbit is circular, its orbital period must be longer than 12.4 days and must have a semimajor axis > or approx. = 21,000 km. We find that the properties of Makemake's moon suggest that the majority of the dark material detected in the system by thermal observations may not reside on the surface of Makemake, but may instead be attributable to S/2015 (136472) 1 having a uniform dark surface. This dark moon hypothesis can be directly tested with future James Webb Space Telescope observations. We discuss the implications of this discovery for the spin state, figure, and thermal properties of Makemake and the apparent ubiquity of trans-Neptunian dwarf planet satellites.

  4. Socratic Questioning-Guided Discovery

    Directory of Open Access Journals (Sweden)

    M. Hakan Türkçapar

    2012-04-01

    Full Text Available “Socratic Method” is a way of teaching philosophical thinking and knowledge by asking questions which was used by antique period greek philosopher Socrates. Socrates was teaching knowledge to his followers by asking questions and the conversation between them was named “Socratic Dialogues”. In this meaning, no novel knowledge is taught to the individual but only what is formerly known is reminded and rediscovered. The form of socratic questioning which is used during the process of cognitive behavioral therapy is known as Guided Discovery. In this method it is aimed to make the client notice the piece of knowledge which he could notice but is not aware with a series of questions. Socratic method or guided discovery consists of several steps which are: Identifying the problem by listening to the client and making reflections, finding alternatives by examining and evaluating, reidentification by using the newly found information and questioning the old distorted belief and reaching to a conclusion and applying it. Question types used during these procedures are, questions for gaining information, questions revealing the meanings, questions revealing the beliefs, questions about behaviours during the similar past experiences, analyse questions and analytic synthesis questions. In order to make the patient feel understood it is important to be empathetic and summarising the problem during the interview. In this text, steps of Socratic Questioning-Guided Discovery will be reviewed with sample dialogues after eachstep. [JCBPR 2012; 1(1.000: 15-20

  5. A historical reflection on the discovery of human retroviruses.

    Science.gov (United States)

    Vahlne, Anders

    2009-05-01

    The discovery of HIV-1 as the cause of AIDS was one of the major scientific achievements during the last century. Here the events leading to this discovery are reviewed with particular attention to priority and actual contributions by those involved. Since I would argue that discovering HIV was dependent on the previous discovery of the first human retrovirus HTLV-I, the history of this discovery is also re-examined. The first human retroviruses (HTLV-I) was first reported by Robert C. Gallo and coworkers in 1980 and reconfirmed by Yorio Hinuma and coworkers in 1981. These discoveries were in turn dependent on the previous discovery by Gallo and coworkers in 1976 of interleukin 2 or T-cell growth factor as it was called then. HTLV-II was described by Gallo's group in 1982. A human retrovirus distinct from HTLV-I and HTLV-II in that it was shown to have the morphology of a lentivirus was in my mind described for the first time by Luc Montagnier in an oral presentation at Cold Spring Harbor in September of 1983. This virus was isolated from a patient with lymphadenopathy using the protocol previously described for HTLV by Gallo. The first peer reviewed paper by Montagnier's group of such a retrovirus, isolated from two siblings of whom one with AIDS, appeared in Lancet in April of 1984. However, the proof that a new human retrovirus (HIV-1) was the cause of AIDS was first established in four publications by Gallo's group in the May 4th issue of Science in 1984.

  6. A historical reflection on the discovery of human retroviruses

    Directory of Open Access Journals (Sweden)

    Vahlne Anders

    2009-05-01

    Full Text Available Abstract The discovery of HIV-1 as the cause of AIDS was one of the major scientific achievements during the last century. Here the events leading to this discovery are reviewed with particular attention to priority and actual contributions by those involved. Since I would argue that discovering HIV was dependent on the previous discovery of the first human retrovirus HTLV-I, the history of this discovery is also re-examined. The first human retroviruses (HTLV-I was first reported by Robert C. Gallo and coworkers in 1980 and reconfirmed by Yorio Hinuma and coworkers in 1981. These discoveries were in turn dependent on the previous discovery by Gallo and coworkers in 1976 of interleukin 2 or T-cell growth factor as it was called then. HTLV-II was described by Gallo's group in 1982. A human retrovirus distinct from HTLV-I and HTLV-II in that it was shown to have the morphology of a lentivirus was in my mind described for the first time by Luc Montagnier in an oral presentation at Cold Spring Harbor in September of 1983. This virus was isolated from a patient with lymphadenopathy using the protocol previously described for HTLV by Gallo. The first peer reviewed paper by Montagnier's group of such a retrovirus, isolated from two siblings of whom one with AIDS, appeared in Lancet in April of 1984. However, the proof that a new human retrovirus (HIV-1 was the cause of AIDS was first established in four publications by Gallo's group in the May 4th issue of Science in 1984.

  7. DISCOVERY OF A MAKEMAKEAN MOON

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Alex H.; Buie, Marc W. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Grundy, Will M. [Lowell Observatory, Flagstaff, AZ (United States); Noll, Keith S., E-mail: aparker@boulder.swri.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-01

    We describe the discovery of a satellite in orbit about the dwarf planet (136472) Makemake. This satellite, provisionally designated S/2015 (136472) 1, was detected in imaging data collected with the Hubble Space Telescope ’s Wide Field Camera 3 on UTC 2015 April 27 at 7.80 ± 0.04 mag fainter than Makemake and at a separation of 0.″57. It likely evaded detection in previous satellite searches due to a nearly edge-on orbital configuration, placing it deep within the glare of Makemake during a substantial fraction of its orbital period. This configuration would place Makemake and its satellite near a mutual event season. Insufficient orbital motion was detected to make a detailed characterization of its orbital properties, prohibiting a measurement of the system mass with the discovery data alone. Preliminary analysis indicates that if the orbit is circular, its orbital period must be longer than 12.4 days and must have a semimajor axis ≳21,000 km. We find that the properties of Makemake’s moon suggest that the majority of the dark material detected in the system by thermal observations may not reside on the surface of Makemake, but may instead be attributable to S/2015 (136472) 1 having a uniform dark surface. This “dark moon hypothesis” can be directly tested with future James Webb Space Telescope observations. We discuss the implications of this discovery for the spin state, figure, and thermal properties of Makemake and the apparent ubiquity of trans-Neptunian dwarf planet satellites.

  8. Polar Domain Discovery with Sparkler

    Science.gov (United States)

    Duerr, R.; Khalsa, S. J. S.; Mattmann, C. A.; Ottilingam, N. K.; Singh, K.; Lopez, L. A.

    2017-12-01

    The scientific web is vast and ever growing. It encompasses millions of textual, scientific and multimedia documents describing research in a multitude of scientific streams. Most of these documents are hidden behind forms which require user action to retrieve and thus can't be directly accessed by content crawlers. These documents are hosted on web servers across the world, most often on outdated hardware and network infrastructure. Hence it is difficult and time-consuming to aggregate documents from the scientific web, especially those relevant to a specific domain. Thus generating meaningful domain-specific insights is currently difficult. We present an automated discovery system (Figure 1) using Sparkler, an open-source, extensible, horizontally scalable crawler which facilitates high throughput and focused crawling of documents pertinent to a particular domain such as information about polar regions. With this set of highly domain relevant documents, we show that it is possible to answer analytical questions about that domain. Our domain discovery algorithm leverages prior domain knowledge to reach out to commercial/scientific search engines to generate seed URLs. Subject matter experts then annotate these seed URLs manually on a scale from highly relevant to irrelevant. We leverage this annotated dataset to train a machine learning model which predicts the `domain relevance' of a given document. We extend Sparkler with this model to focus crawling on documents relevant to that domain. Sparkler avoids disruption of service by 1) partitioning URLs by hostname such that every node gets a different host to crawl and by 2) inserting delays between subsequent requests. With an NSF-funded supercomputer Wrangler, we scaled our domain discovery pipeline to crawl about 200k polar specific documents from the scientific web, within a day.

  9. Guided Discovery with Socratic Questioning

    Directory of Open Access Journals (Sweden)

    M. Hakan Türkçapar

    2015-04-01

    Full Text Available “The Socratic method” is a way of teaching philosophical thinking and knowledge by asking questions. It was first used by in ancient times by the Greek philosopher Socrates who taught his followers by asking questions; these conversations between them are known as “Socratic dialogues”. In this methodology, no new knowledge is taught to the individual; rather, the individual is guided to remember and rediscover what was formerly known through this process. The main method used in cognitive therapy is guided discovery. There are various methods of guided discovery in cognitive therapy. The form of verbal exchange between the therapist and client which is used during the process of cognitive behavioral therapy is known as “socratic questioning”. In this method the goal is to make the client rediscover, with a series of questions, a piece of knowledge which he could otherwise know but is not presently conscious of. The Socratic Questioning consists of several steps, including: identifying the problem by listening to the client and making reflections, finding alternatives by examining and evaluating, reidentification by using the newly rediscovered information and questioning the old distorted belief, and reaching a new conclusion and applying it. Question types used during these procedures are: questions for collecting information, questions revealing meanings, questions revealing beliefs, questions about behaviours during similar past experiences, analytic questions and analytic synthesis questions. In order to make the patient feel understood, it is important to be empathetic and summarize the problem during the interview. In this text, steps of Socratic Questioning-Guided Discovery will be reviewed with sample dialogues provided for each step. [JCBPR 2015; 4(1.000: 47-53

  10. Knowledge discovery from data streams

    CERN Document Server

    Gama, Joao

    2010-01-01

    Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams.The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks,

  11. The discovery of uranium fission

    International Nuclear Information System (INIS)

    Brix, P.

    1990-01-01

    Uranium was discovered 200 years ago. Its radioactive character was first demonstrated in 1896 and two years later radium was extracted from uranium minerals. In 1911 studies with alpha rays from radioactive decay led to the unexpected discovery of the atomic nucleus. Exposure of beryllium to alpha rays yielded neutrons, first detected in 1932. Starting in 1934, neutron irradiation of uranium produced radioactive substances erroneously attributed to transuranium elements but with confusing properties. Painstaking experiments by chemists left no doubt on 17 December 1938 that barium was produced by these irradiations: the neutrons had split some uranium nuclei. The physics of the fission process was understood two weeks later; after a few months, neutron multiplication was found to be probable. This review deals with the eminent scientists involved, their successes, errors and disappointments, and the unexpected insights which occurred on the paths and detours of scientific research. It is, therefore, instructive also to discuss how fission was not discovered. The momentous discovery must be considered inevitable; the great tragedy was that Germany started World War II just at the time when the possibility of nuclear chain reactions and bombs became known. The consequences and anxieties that remain after 50 years of nuclear fission demand that mankind act with reason and conscience to maintain peace. (author)

  12. Astroparticle physics: puzzles and discoveries

    International Nuclear Information System (INIS)

    Berezinsky, V

    2008-01-01

    Puzzles often give birth to the great discoveries, the false discoveries sometimes stimulate the exiting ideas in theoretical physics. The historical examples of both are described in Introduction and in section 'Cosmological Puzzles'. From existing puzzles most attention is given to Ultra High Energy Cosmic Ray (UHECR) puzzle and to cosmological constant problem. The 40-years old UHECR problem consisted in absence of the sharp steepening in spectrum of extragalactic cosmic rays caused by interaction with CMB radiation. This steepening is known as Greisen-Zatsepin-Kuzmin (GZK) cutoff. It is demonstrated here that the features of interaction of cosmic ray protons with CMB are seen now in the spectrum in the form of the dip and beginning of the GZK cutoff. The most serious cosmological problem is caused by large vacuum energy of the known elementary-particle fields which exceeds at least by 45 orders of magnitude the cosmological vacuum energy. The various ideas put forward to solve this problem during last 40 years, have weaknesses and cannot be accepted as the final solution of this puzzle. The anthropic approach is discussed

  13. Discovery of Allostery in PKA Signaling.

    Science.gov (United States)

    Zhang, Ping; Kornev, Alexandr P; Wu, Jian; Taylor, Susan S

    2015-06-01

    cAMP-dependent protein kinase (PKA) was the second protein kinase to be discovered and the PKA catalytic (C) subunit serves as a prototype for the large protein kinase superfamily that contains over 500 gene products. The protein kinases regulate much of biology in eukaryotic cells and they are now also a major therapeutic target. Although PKA was discovered nearly 50 years ago and the subsequent discovery of the regulatory subunits that bind cAMP and release the catalytic activity from the holoenzyme followed quickly. Thus in PKA we see the convergence of two major signaling mechanisms - protein phosphorylation and second messenger signaling through cAMP. Crystallography provides a foundation for understanding function, and the structure of the isolated regulatory (R) and C-subunits have been extremely informative. Yet it is the R 2 C 2 holoenzyme that predominates in cells, and one can only appreciate the allosteric features of PKA signaling by seeing the full length protein. The symmetry and the quaternary constraints that one R:C hetero-dimer exerts on the other in the holoenzyme simply are not present in the isolated subunits or even in the R:C hetero-dimer.

  14. Integration of Antibody Array Technology into Drug Discovery and Development.

    Science.gov (United States)

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  15. The discovery of radioactivity: the centenary

    International Nuclear Information System (INIS)

    Patil, S.K.

    1995-01-01

    In the last decade of the nineteenth century, a number of fundamental discoveries of outstanding importance were made unexpectedly which marked the beginning of a new era in physics. A cascade of spectacular discoveries began with the announcement of the discovery of x-rays by Roentgen followed by the discoveries, in quick succession, of radioactivity by Becquerel, of Zeeman effect, of electron by J.J. Thomson, and of polonium and radium by the Curies. Both x-rays and radioactivity have wide applications in scientific, medical and industrial fields and have made outstanding contribution to the advancement of human knowledge and welfare. Radioactivity is well known and no other discovery in the field of physics or chemistry has had a more profound effect on our fundamental knowledge of nature. Present article, on the occasion of the centenary of the discovery of radioactivity, makes an attempt to describe some glimpses of the history of radioactivity. (author). 59 refs

  16. mHealth Visual Discovery Dashboard.

    Science.gov (United States)

    Fang, Dezhi; Hohman, Fred; Polack, Peter; Sarker, Hillol; Kahng, Minsuk; Sharmin, Moushumi; al'Absi, Mustafa; Chau, Duen Horng

    2017-09-01

    We present Discovery Dashboard, a visual analytics system for exploring large volumes of time series data from mobile medical field studies. Discovery Dashboard offers interactive exploration tools and a data mining motif discovery algorithm to help researchers formulate hypotheses, discover trends and patterns, and ultimately gain a deeper understanding of their data. Discovery Dashboard emphasizes user freedom and flexibility during the data exploration process and enables researchers to do things previously challenging or impossible to do - in the web-browser and in real time. We demonstrate our system visualizing data from a mobile sensor study conducted at the University of Minnesota that included 52 participants who were trying to quit smoking.

  17. Discovery of massive neutral vector mesons

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Personal accounts of the discovery of massive neutral vector mesons (psi particles) are given by researchers S. Ting, G. Goldhaber, and B. Richter. The double-arm spectrometer and the Cherenkov effect are explained in a technical note, and the solenoidal magnetic detector is discussed in an explanatory note for nonspecialists. Reprints of three papers in Physical Review Letters which announced the discovery of the particles are given: Experimental observation of a heavy particle J, Discovery of a narrow resonance in e + e - annihilation, and Discovery of a second narrow resonance in e + e - annihilation. A discussion of subsequent developments and scientific biographies of the three authors are also presented. 25 figures

  18. Recent discoveries of anticancer flavonoids.

    Science.gov (United States)

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Specificity of discoveries in radiochemistry

    International Nuclear Information System (INIS)

    Krivomazov, A.N.

    1977-01-01

    The development of radiochemistry as a science is elucidated. On the basis of original papers and archives materials which have become available only recently, specific features of opening the law of radioactive displacements and isotopy of radioactive elements are presented in detail. A contribution of Hevesy, Russel, Fajans, and Soddy into the solution of this problem is considered; an important role of Rutherford in putting down the priority conflict is shown. Two stages of scientific generalization are singled out in the history of opening the law of radioactive displacements: the stage of the rules and the stage of the laws. On this basis the solutions of the priority problems have been reconsidered. It is shown that the history of radiochemistry is rich in discoveries which have undergone a relatively long evolution

  20. Big Data in Drug Discovery.

    Science.gov (United States)

    Brown, Nathan; Cambruzzi, Jean; Cox, Peter J; Davies, Mark; Dunbar, James; Plumbley, Dean; Sellwood, Matthew A; Sim, Aaron; Williams-Jones, Bryn I; Zwierzyna, Magdalena; Sheppard, David W

    2018-01-01

    Interpretation of Big Data in the drug discovery community should enhance project timelines and reduce clinical attrition through improved early decision making. The issues we encounter start with the sheer volume of data and how we first ingest it before building an infrastructure to house it to make use of the data in an efficient and productive way. There are many problems associated with the data itself including general reproducibility, but often, it is the context surrounding an experiment that is critical to success. Help, in the form of artificial intelligence (AI), is required to understand and translate the context. On the back of natural language processing pipelines, AI is also used to prospectively generate new hypotheses by linking data together. We explain Big Data from the context of biology, chemistry and clinical trials, showcasing some of the impressive public domain sources and initiatives now available for interrogation. © 2018 Elsevier B.V. All rights reserved.

  1. A Tale of Two Discoveries: Comparing the Usability of Summon and EBSCO Discovery Service

    Science.gov (United States)

    Foster, Anita K.; MacDonald, Jean B.

    2013-01-01

    Web-scale discovery systems are gaining momentum among academic libraries as libraries seek a means to provide their users with a one-stop searching experience. Illinois State University's Milner Library found itself in the unique position of having access to two distinct discovery products, EBSCO Discovery Service and Serials Solutions' Summon.…

  2. Accounting for discovery bias in genomic prediction

    Science.gov (United States)

    Our objective was to evaluate an approach to mitigating discovery bias in genomic prediction. Accuracy may be improved by placing greater emphasis on regions of the genome expected to be more influential on a trait. Methods emphasizing regions result in a phenomenon known as “discovery bias” if info...

  3. Intraday Price Discovery in Fragmented Markets

    NARCIS (Netherlands)

    S.R. Ozturk (Sait); M. van der Wel (Michel); D.J.C. van Dijk (Dick)

    2014-01-01

    textabstractFor many assets, trading is fragmented across multiple exchanges. Price discovery measures summarize the informativeness of trading on each venue for discovering the asset’s true underlying value. We explore intraday variation in price discovery using a structural model with

  4. 40 CFR 209.22 - Other discovery.

    Science.gov (United States)

    2010-07-01

    ... PRACTICE GOVERNING PROCEEDINGS UNDER THE NOISE CONTROL ACT OF 1972 Rules of Practice Governing Hearings for Orders Issued Under Section 11(d) of the Noise Control Act § 209.22 Other discovery. (a) Further... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Other discovery. 209.22 Section 209.22...

  5. 12 CFR 509.102 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Discovery. 509.102 Section 509.102 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY RULES OF PRACTICE AND PROCEDURE IN ADJUDICATORY PROCEEDINGS Local Rules § 509.102 Discovery. (a) In general. A party may take the deposition of an...

  6. 7 CFR 283.28 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Discovery. 283.28 Section 283.28 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... Appeals of QC Claims of Less Than $50,000 § 283.28 Discovery. Upon motion and as ordered by the ALJ...

  7. 43 CFR 4.826 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... Review Under Part 17 of This Title-Nondiscrimination in Federally Assisted Programs of the Department of... the person from whom discovery is sought, and for good cause shown, the administrative law judge may make any order which justice requires to limit or condition discovery in order to protect a party or...

  8. Can biochemistry drive drug discovery beyond simple potency measurements?

    Science.gov (United States)

    Chène, Patrick

    2012-04-01

    Among the fields of expertise required to develop drugs successfully, biochemistry holds a key position in drug discovery at the interface between chemistry, structural biology and cell biology. However, taking the example of protein kinases, it appears that biochemical assays are mostly used in the pharmaceutical industry to measure compound potency and/or selectivity. This limited use of biochemistry is surprising, given that detailed biochemical analyses are commonly used in academia to unravel molecular recognition processes. In this article, I show that biochemistry can provide invaluable information on the dynamics and energetics of compound-target interactions that cannot be obtained on the basis of potency measurements and structural data. Therefore, an extensive use of biochemistry in drug discovery could facilitate the identification and/or development of new drugs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Blueprint for antimicrobial hit discovery targeting metabolic networks.

    Science.gov (United States)

    Shen, Y; Liu, J; Estiu, G; Isin, B; Ahn, Y-Y; Lee, D-S; Barabási, A-L; Kapatral, V; Wiest, O; Oltvai, Z N

    2010-01-19

    Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy.

  11. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  12. Accelerators for Discovery Science and Security applications

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M., E-mail: alan_todd@mail.aesys.net; Bluem, H.P.; Jarvis, J.D.; Park, J.H.; Rathke, J.W.; Schultheiss, T.J.

    2015-05-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15–50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug–cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection.

  13. Accelerators for Discovery Science and Security applications

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Bluem, H.P.; Jarvis, J.D.; Park, J.H.; Rathke, J.W.; Schultheiss, T.J.

    2015-01-01

    Several Advanced Energy Systems (AES) accelerator projects that span applications in Discovery Science and Security are described. The design and performance of the IR and THz free electron laser (FEL) at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin that is now an operating user facility for physical chemistry research in molecular and cluster spectroscopy as well as surface science, is highlighted. The device was designed to meet challenging specifications, including a final energy adjustable in the range of 15–50 MeV, low longitudinal emittance (<50 keV-psec) and transverse emittance (<20 π mm-mrad), at more than 200 pC bunch charge with a micropulse repetition rate of 1 GHz and a macropulse length of up to 15 μs. Secondly, we will describe an ongoing effort to develop an ultrafast electron diffraction (UED) source that is scheduled for completion in 2015 with prototype testing taking place at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). This tabletop X-band system will find application in time-resolved chemical imaging and as a resource for drug–cell interaction analysis. A third active area at AES is accelerators for security applications where we will cover some top-level aspects of THz and X-ray systems that are under development and in testing for stand-off and portal detection

  14. The discovery of the periodic table as a case of simultaneous discovery.

    Science.gov (United States)

    Scerri, Eric

    2015-03-13

    The article examines the question of priority and simultaneous discovery in the context of the discovery of the periodic system. It is argued that rather than being anomalous, simultaneous discovery is the rule. Moreover, I argue that the discovery of the periodic system by at least six authors in over a period of 7 years represents one of the best examples of a multiple discovery. This notion is supported by a new view of the evolutionary development of science through a mechanism that is dubbed Sci-Gaia by analogy with Lovelock's Gaia hypothesis. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Automated discovery systems and the inductivist controversy

    Science.gov (United States)

    Giza, Piotr

    2017-09-01

    The paper explores possible influences that some developments in the field of branches of AI, called automated discovery and machine learning systems, might have upon some aspects of the old debate between Francis Bacon's inductivism and Karl Popper's falsificationism. Donald Gillies facetiously calls this controversy 'the duel of two English knights', and claims, after some analysis of historical cases of discovery, that Baconian induction had been used in science very rarely, or not at all, although he argues that the situation has changed with the advent of machine learning systems. (Some clarification of terms machine learning and automated discovery is required here. The key idea of machine learning is that, given data with associated outcomes, software can be trained to make those associations in future cases which typically amounts to inducing some rules from individual cases classified by the experts. Automated discovery (also called machine discovery) deals with uncovering new knowledge that is valuable for human beings, and its key idea is that discovery is like other intellectual tasks and that the general idea of heuristic search in problem spaces applies also to discovery tasks. However, since machine learning systems discover (very low-level) regularities in data, throughout this paper I use the generic term automated discovery for both kinds of systems. I will elaborate on this later on). Gillies's line of argument can be generalised: thanks to automated discovery systems, philosophers of science have at their disposal a new tool for empirically testing their philosophical hypotheses. Accordingly, in the paper, I will address the question, which of the two philosophical conceptions of scientific method is better vindicated in view of the successes and failures of systems developed within three major research programmes in the field: machine learning systems in the Turing tradition, normative theory of scientific discovery formulated by Herbert Simon

  16. Swift: 10 Years of Discovery

    Science.gov (United States)

    2014-12-01

    The conference Swift: 10 years of discovery was held in Roma at La Sapienza University on Dec. 2-5 2014 to celebrate 10 years of Swift successes. Thanks to a large attendance and a lively program, it provided the opportunity to review recent advances of our knowledge of the high-energy transient Universe both from the observational and theoretical sides. When Swift was launched on November 20, 2004, its prime objective was to chase Gamma-Ray Bursts and deepen our knowledge of these cosmic explosions. And so it did, unveiling the secrets of long and short GRBs. However, its multi-wavelength instrumentation and fast scheduling capabilities made it the most versatile mission ever flown. Besides GRBs, Swift has observed, and contributed to our understanding of, an impressive variety of targets including AGNs, supernovae, pulsars, microquasars, novae, variable stars, comets, and much more. Swift is continuously discovering rare and surprising events distributed over a wide range of redshifts, out to the most distant transient objects in the Universe. Such a trove of discoveries has been addressed during the conference with sessions dedicated to each class of events. Indeed, the conference in Rome was a spectacular celebration of the Swift 10th anniversary. It included sessions on all types of transient and steady sources. Top scientists from around the world gave invited and contributed talks. There was a large poster session, sumptuous lunches, news interviews and a glorious banquet with officials attending from INAF and ASI. All the presentations, as well as several conference pictures, can be found in the conference website (http://www.brera.inaf.it/Swift10/Welcome.html). These proceedings have been collected owing to the efforts of Paolo D’Avanzo who has followed each paper from submission to final acceptance. Our warmest thanks to Paolo for all his work. The Conference has been made possible by the support from La Sapienza University as well as from the ARAP

  17. Discovery Mondays: Zoom on materials

    CERN Multimedia

    2003-01-01

    Following the success of the first Discovery Monday, which had over 100 visitors, the series of evening events in Microcosm continues. On Monday 2nd June, discover the world of materials. Find out how CERN scientists examine, manufacture and study different materials, at different scales. Did you know for example that using electrons you can observe a hair at a scale equivalent to looking at a boat with the naked eye? Also, that using ultrasound, you can measure the thickness of an object that is completely inaccessible? Find out more about these techniques, and also the high-tech machining and soldering that is carried out in CERN's central workshop. Plus, see how engineers can detect tiny leaks through solder points - essential for maintaining the vacuum in the LHC. The evening is open to all, without reservation, suggested age 12 and above. Rendez-vous in Microcosm on Monday 2nd June From 19.30 - 21.00 Free entry For more information : http://www.cern.ch/microcosm Using a scanning microscope, the head o...

  18. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  19. Knowledge Discovery from Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2014-01-01

    Full Text Available The framework as well as the particular algorithms of pattern recognition process is widely adopted in structural health monitoring (SHM. However, as a part of the overall process of knowledge discovery from data bases (KDD, the results of pattern recognition are only changes and patterns of changes of data features. In this paper, based on the similarity between KDD and SHM and considering the particularity of SHM problems, a four-step framework of SHM is proposed which extends the final goal of SHM from detecting damages to extracting knowledge to facilitate decision making. The purposes and proper methods of each step of this framework are discussed. To demonstrate the proposed SHM framework, a specific SHM method which is composed by the second order structural parameter identification, statistical control chart analysis, and system reliability analysis is then presented. To examine the performance of this SHM method, real sensor data measured from a lab size steel bridge model structure are used. The developed four-step framework of SHM has the potential to clarify the process of SHM to facilitate the further development of SHM techniques.

  20. The Discovery of Dabigatran Etexilate

    Directory of Open Access Journals (Sweden)

    Joanne evan Ryn

    2013-02-01

    Full Text Available Thromboembolic disease is a major cause of mortality and morbidity in the developed world and is caused by an excessive stimulation of coagulation. Thrombin is a key serine protease in the coagulation cascade and numerous efforts have been made to develop safe and effective orally active direct thrombin inhibitors (DTIs. Current anticoagulant therapy includes the use of indirect thrombin inhibitors (e.g. heparins, low-molecular-weight-heparins [LMWHs] and vitamin K antagonists (VKA such as warfarin. However there are several caveats in the clinical use of these agents including narrow therapeutic window, parenteral delivery, and food- and drug-drug interactions. Dabigatran is a synthetic, reversible DTI with high affinity and specificity for its target binding both free and clot-bound thrombin, and offers a favorable pharmacokinetic profile. Large randomized clinical trials have demonstrated that dabigatran provides comparable or superior thromboprophylaxis in multiple thromboembolic disease indications compared to standard of care. This minireview will highlight the discovery and development of dabigatran, the first in a class of new oral anticoagulant (NOAC agents to be licensed worldwide for the prevention of thromboembolism in the setting of orthopedic surgery and stroke prevent in atrial fibrillation.

  1. West Nile Virus Drug Discovery

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2013-12-01

    Full Text Available The outbreak of West Nile virus (WNV in 1999 in the USA, and its continued spread throughout the Americas, parts of Europe, the Middle East and Africa, underscored the need for WNV antiviral development. Here, we review the current status of WNV drug discovery. A number of approaches have been used to search for inhibitors of WNV, including viral infection-based screening, enzyme-based screening, structure-based virtual screening, structure-based rationale design, and antibody-based therapy. These efforts have yielded inhibitors of viral or cellular factors that are critical for viral replication. For small molecule inhibitors, no promising preclinical candidate has been developed; most of the inhibitors could not even be advanced to the stage of hit-to-lead optimization due to their poor drug-like properties. However, several inhibitors developed for related members of the family Flaviviridae, such as dengue virus and hepatitis C virus, exhibited cross-inhibition of WNV, suggesting the possibility to re-purpose these antivirals for WNV treatment. Most promisingly, therapeutic antibodies have shown excellent efficacy in mouse model; one of such antibodies has been advanced into clinical trial. The knowledge accumulated during the past fifteen years has provided better rationale for the ongoing WNV and other flavivirus antiviral development.

  2. Shotgun Proteomics and Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    W. Hayes McDonald

    2002-01-01

    Full Text Available Coupling large-scale sequencing projects with the amino acid sequence information that can be gleaned from tandem mass spectrometry (MS/MS has made it much easier to analyze complex mixtures of proteins. The limits of this “shotgun” approach, in which the protein mixture is proteolytically digested before separation, can be further expanded by separating the resulting mixture of peptides prior to MS/MS analysis. Both single dimensional high pressure liquid chromatography (LC and multidimensional LC (LC/LC can be directly interfaced with the mass spectrometer to allow for automated collection of tremendous quantities of data. While there is no single technique that addresses all proteomic challenges, the shotgun approaches, especially LC/LC-MS/MS-based techniques such as MudPIT (multidimensional protein identification technology, show advantages over gel-based techniques in speed, sensitivity, scope of analysis, and dynamic range. Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.

  3. [Fortuitous discovery of gallbladder cancer].

    Science.gov (United States)

    Chiche, L; Metairie, S

    2001-12-01

    The prognosis of gallbladder cancer is basically dependent on the histological stage at diagnosis. In practice, the discovery of a small cancer of the bladder, generally during cholecystectomy give the patient a better care for curative treatment. The advent of laparoscopy has increased the number of cholecstectomies and could increase the frequency of this situation but also raises the difficult problem of metastatic dissemination. In the literature the figures on parietal metastasis after laparoscopy have ranged from 125% to 19%. The median delay to diagnosis of recurrence is 6 months. The cause of this phenomenon (role of the pneumoperitoneum) remains poorly elucidated. Risk factors for the development of a metastasis on the trocar orifice are: rupture of the gallbladder perioperatively and extraction of the gallbladder without protection. It is important to keep in mind this exceptional but serious risk and apply rigorous operative technique. In case of suspected gallbladder we do not advocate laparoscopy. Surgery (hepatectomy, lymphodenectomy, possibly resection of the biliary tract) would be indicted for all stages except pTis and T1a, taking into consideration the localization of the tumor and the patient's general status. It is also classical to recommend resection of the trocar orifices after laparoscopic cholecystectomy. There is a dual challenge today for small-sized gallbladder cancer: improving treatment and avoiding poorer prognosis due to the specific problems raised by laparoscopy.

  4. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Discovery of Uniformly Expanding Universe

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2012-01-01

    Full Text Available Saul Perlmutter and the Brian Schmidt – Adam Riess teams reported that their Friedmann-model GR-based analysis of their supernovae magnitude-redshift data re- vealed a new phenomenon of “dark energy” which, it is claimed, forms 73% of the energy / matter density of the present-epoch universe, and which is linked to the further claim of an accelerating expansion of the universe. In 2011 Perlmutter, Schmidt and Riess received the Nobel Prize in Physics “for the discovery of the accelerating ex- pansion of the Universe through observations of distant supernovae”. Here it is shown that (i a generic model-independent analysis of this data reveals a uniformly expanding universe, (ii their analysis actually used Newtonian gravity, and finally (iii the data, as well as the CMB fluctuation data, does not require “dark energy” nor “dark matter”, but instead reveals the phenomenon of a dynamical space, which is absent from the Friedmann model.

  6. Students Excited by Stellar Discovery

    Science.gov (United States)

    2011-02-01

    In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second -- an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU). The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. "Every day, I told myself, 'I have to find a pulsar. I better find a pulsar before this class ends,'" said Mabry. When she actually made the discovery, she could barely contain her excitement. "I started screaming and jumping up and down." Thompson was similarly expressive. "After three years of searching, I hadn't found a single thing," he said, "but when I did, I threw my hands up in the air and said, 'Yes!'." Snider said, "It actually feels really neat to be the first person to ever see something like that. It's an uplifting feeling." As part of the PSC, the students analyze real data from NRAO's Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students' teachers -- Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School -- all introduced the PSC in their classes, and interested students formed teams to continue the work. Even before the discovery, Mabry simply enjoyed the search. "It just feels like you're actually doing something," she said. "It's a good feeling." Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the

  7. Functional principles of registry-based service discovery

    NARCIS (Netherlands)

    Sundramoorthy, V.; Tan, C.; Hartel, P.H.; Hartog, den J.I.; Scholten, J.

    2005-01-01

    As Service Discovery Protocols (SDP) are becoming increasingly important for ubiquitous computing, they must behave according to predefined principles. We present the functional Principles of Service Discovery for robust, registry-based service discovery. A methodology to guarantee adherence to

  8. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  9. Biomarkers: in medicine, drug discovery, and environmental health

    National Research Council Canada - National Science Library

    Vaidya, Vishal S; Bonventre, Joseph V

    2010-01-01

    ... Identification Using Mass Spectrometry Sample Preparation Protein Quantitation Examples of Biomarker Discovery and Evaluation Challenges in Proteomic Biomarker Discovery The Road Forward: Targeted ...

  10. Anatomy of the Crowd4Discovery crowdfunding campaign.

    Science.gov (United States)

    Perlstein, Ethan O

    2013-01-01

    Crowdfunding allows the public to fund creative projects, including curiosity-driven scientific research. Last Fall, I was part of a team that raised $25,460 from an international coalition of "micropatrons" for an open, pharmacological research project called Crowd4Discovery. The goal of Crowd4Discovery is to determine the precise location of amphetamines inside mouse brain cells, and we are sharing the results of this project on the Internet as they trickle in. In this commentary, I will describe the genesis of Crowd4Discovery, our motivations for crowdfunding, an analysis of our fundraising data, and the nuts and bolts of running a crowdfunding campaign. Science crowdfunding is in its infancy but has already been successfully used by an array of scientists in academia and in the private sector as both a supplement and a substitute to grants. With traditional government sources of funding for basic scientific research contracting, an alternative model that couples fundraising and outreach - and in the process encourages more openness and accountability - may be increasingly attractive to researchers seeking to diversify their funding streams.

  11. Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Wang, Yingjun; Zhang, Mingzhi; Xu, Huanan; Wang, Yifei; Li, Zhaoming; Chang, Yu; Wang, Xinhuan; Fu, Xiaorui; Zhou, Zhiyuan; Yang, Siyuan; Wang, Bei; Shang, Yufeng

    2017-09-22

    Diffuse large B-cell lymphoma (DLBCL) is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel prognostic markers and therapeutic targets of DLBCL. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the development of cancer. By using the next generation HiSeq sequencing assay, we determined lncRNAs exhibiting differential expression between DLBCL patients and healthy controls. Then, RT-qPCR was performed for identification in clinical samples and cell materials, and lncRNA PANDA was verified to be down-regulated in DLBCL patients and have considerable diagnostic potential. In addition, decreased serum PANDA level was correlated to poorer clinical outcome and lower overall survival in DLBCL patients. Subsequently, we determined the experimental role of lncRNA PANDA in DLBCL progression. Luciferase reporter assay and chromatin immunoprecipitation assay suggested that lncRNA PANDA was induced by p53 and p53 interacts with the promoter region of PANDA. Cell functional assay further indicated that PANDA functioned as a tumor suppressor gene through the suppression of cell growth by a G0/G1 cell cycle arrest in DLBCL. More importantly, Cignal Signal Transduction Reporter Array and western blot assay showed that lncRNA PANDA inactivated the MAPK/ERK signaling pathway. In conclusion, our integrated approach demonstrates that PANDA in DLBCL confers a tumor suppressive function through inhibiting cell proliferation and silencing MAPK/ERK signaling pathway. Thus, PANDA may be a promising therapeutic target for patients with DLBCL.

  12. Effective Online Group Discovery in Trajectory Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel together. The framework adopts a sampling-independen......GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel together. The framework adopts a sampling......-independent approach that makes no assumptions about when positions are sampled, gives no special importance to sampling points, and naturally supports the use of approximate trajectories. The framework's algorithms exploit state-of-the-art, density-based clustering (DBScan) to identify groups. The groups are scored...

  13. Drug discovery and developments in developing countries ...

    African Journals Online (AJOL)

    the major burden being in developing countries. Many of ... The driving force for drug discovery and development by pharmaceutical firms ... world and particularly in the third world countries ..... GFHR (2000) Global Forum for Health Research:.

  14. Story of Superconductivity: A Serendipitous Discovery

    Indian Academy of Sciences (India)

    , offered a glimmerof hope to make this dream possible. It was a discoverytotally unexpected at that time, and we owe this discovery tothe painstaking andmethodical investigations of Onnes – firstto produce very low temperatures, and then ...

  15. Discovery of nuclear fission in Berlin 1938

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The story of the discovery of nuclear fission, one of the most exciting stories of how a scientific puzzle was finally solved and how the scientists involved were blind to many obvious indications, is described. (author). 29 refs

  16. Discovery of two new gravitation lens systems

    International Nuclear Information System (INIS)

    Guertler, J.

    1988-01-01

    The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures

  17. Queen's discovery lauded by top scientific journal

    CERN Multimedia

    McGrady, S

    2002-01-01

    A scientific breakthrough at Queen's University's Sudbury Neutrino Observatory has received major international recognition. The journal Science ranked the discovery that cracked the "neutrino problem" second, in the journal's top 10 scientific achievements of 2002 (1/2 page).

  18. Price discovery in European natural gas markets

    International Nuclear Information System (INIS)

    Schultz, Emma; Swieringa, John

    2013-01-01

    We provide the first high-frequency investigation of price discovery within the physical and financial layers of Europe's natural gas markets. Testing not only looks at short-term return dynamics, but also considers each security's contribution to price equilibrium in the longer-term. Results show that UK natural gas futures traded on the Intercontinental Exchange display greater price discovery than physical trading at various hubs throughout Europe. - Highlights: • We use intraday data to gauge price discovery in European natural gas markets. • We explore short and long-term dynamics in physical and financial market layers. • Results show ICE's UK natural gas futures are the main venue for price discovery

  19. Discovery of Intrinsic Primitives on Triangle Meshes

    KAUST Repository

    Solomon, Justin; Ben-Chen, Mirela; Butscher, Adrian; Guibas, Leonidas

    2011-01-01

    The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones

  20. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W

    2003-01-01

    ...) and registered with Internet Information Server (IIS), and can be applied in numerous fashions This project uses the NET capabilities to create a distributed discovery service (called as UNWSDS...

  1. Applications of fiber-optics-based nanosensors to drug discovery.

    Science.gov (United States)

    Vo-Dinh, Tuan; Scaffidi, Jonathan; Gregas, Molly; Zhang, Yan; Seewaldt, Victoria

    2009-08-01

    Fiber-optic nanosensors are fabricated by heating and pulling optical fibers to yield sub-micron diameter tips and have been used for in vitro analysis of individual living mammalian cells. Immobilization of bioreceptors (e.g., antibodies, peptides, DNA) selective to targeting analyte molecules of interest provides molecular specificity. Excitation light can be launched into the fiber, and the resulting evanescent field at the tip of the nanofiber can be used to excite target molecules bound to the bioreceptor molecules. The fluorescence or surface-enhanced Raman scattering produced by the analyte molecules is detected using an ultra-sensitive photodetector. This article provides an overview of the development and application of fiber-optic nanosensors for drug discovery. The nanosensors provide minimally invasive tools to probe subcellular compartments inside single living cells for health effect studies (e.g., detection of benzopyrene adducts) and medical applications (e.g., monitoring of apoptosis in cells treated with anticancer drugs).

  2. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast

    DEFF Research Database (Denmark)

    Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick

    2015-01-01

    developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied...... the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines....... However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery...

  3. XMRV Discovery and Prostate Cancer-Related Research

    Directory of Open Access Journals (Sweden)

    David E. Kang

    2011-01-01

    Full Text Available Xenotropic murine leukemia virus-related virus (XMRV was first reported in 2006 in a study of human prostate cancer patients with genetic variants of the antiviral enzyme, RNase L. Subsequent investigations in North America, Europe, Asia, and Africa have either observed or failed to detect XMRV in patients (prostate cancer, chronic fatigue syndrome-myalgic encephalomyelitis (CFS-ME, and immunosuppressed with respiratory tract infections or normal, healthy, control individuals. The principal confounding factors are the near ubiquitous presence of mouse-derived reagents, antibodies and cells, and often XMRV itself, in laboratories. XMRV infects and replicates well in many human cell lines, but especially in certain prostate cancer cell lines. XMRV also traffics to prostate in a nonhuman primate model of infection. Here, we will review the discovery of XMRV and then focus on prostate cancer-related research involving this intriguing virus.

  4. The University of New Mexico Center for Molecular Discovery

    Science.gov (United States)

    Edwards, Bruce S.; Gouveia, Kristine; Oprea, Tudor I.; Sklar, Larry A.

    2015-01-01

    The University of New Mexico Center for Molecular Discovery (UNMCMD) is an academic research center that specializes in discovery using high throughput flow cytometry (HTFC) integrated with virtual screening, as well as knowledge mining and drug informatics. With a primary focus on identifying small molecules that can be used as chemical probes and as leads for drug discovery, it is a central core resource for research and translational activities at UNM that supports implementation and management of funded screening projects as well as “up-front” services such as consulting for project design and implementation, assistance in assay development and generation of preliminary data for pilot projects in support of competitive grant applications. The HTFC platform in current use represents advanced, proprietary technology developed at UNM that is now routinely capable of processing bioassays arrayed in 96-, 384- and 1536-well formats at throughputs of 60,000 or more wells per day. Key programs at UNMCMD include screening of research targets submitted by the international community through NIH’s Molecular Libraries Program; a multi-year effort involving translational partnerships at UNM directed towards drug repurposing - identifying new uses for clinically approved drugs; and a recently established personalized medicine initiative for advancing cancer therapy by the application of “smart” oncology drugs in selected patients based on response patterns of their cancer cells in vitro. UNMCMD discoveries, innovation, and translation have contributed to a wealth of inventions, patents, licenses and publications, as well as startup companies, clinical trials and a multiplicity of domestic and international collaborative partnerships to further the research enterprise. PMID:24409953

  5. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  6. The discovery of the structure of DNA

    Science.gov (United States)

    Squires, G. L.

    2003-04-01

    On 25 April 1953, Nature published a letter by Francis Crick and James Watson, at the Cavendish Laboratory, Cambridge, proposing a structure for DNA. This letter marked the beginning of a revolution in biology. Besides Crick and Watson, two other scientists, Rosalind Franklin and Maurice Wilkins, played key roles in the discovery. After sketching the early careers of the four scientists, the present article gives an account of the physics and chemistry involved in the discovery, and the events leading up to it.

  7. Fission and the discovery of isotopes

    International Nuclear Information System (INIS)

    Thoennessen, M.

    2014-01-01

    The discovery of new isotopes requires new developments in accelerator and detector technology. The new RI Beam Factory at RIKEN and the future projects FAIR at GSI and FRIB at MSU promise to expand the nuclear horizon even further. In the talk a short history of the role that fission played in the discovery of isotopes will be presented and future perspectives will be discussed

  8. The Gozo discovery bus : a successful experiment

    OpenAIRE

    Vella, Maryrose

    2008-01-01

    The introduction of a tourist discovery bus in Gozo came about as a result of an EU Project which is part of the Interreg III B Archimed programmes in which the Islands and Small States Institute of the University of Malta participated. Other countries participating in this programme besides Malta, represented by the Islands and Small States Institute, are Italy, Cyprus and Greece. The discovery bus service was aimed at encouraging more tourists to come to Gozo and enabling them to visit stra...

  9. Discovery of the Higgs boson and beyond

    International Nuclear Information System (INIS)

    Godbole, Rohini

    2014-01-01

    This talk is about the Higgs mechanism, the theoretical discovery of which, was awarded the 2013 Nobel Prize. It also discusses the discovery of the Higgs boson at the large hadron collider which provided the experimental proof that made the Nobel prize possible. It covers the implications of these for the quest of unravelling the fundamental laws of nature which seem to govern both, the behavior of the ultra small (subatomic particles) and the ultra large (the cosmos)

  10. Studying Scientific Discovery by Computer Simulation.

    Science.gov (United States)

    1983-03-30

    Mendel’s laws of inheritance, the law of Gay- Lussac for gaseous reactions, tile law of Dulong and Petit, the derivation of atomic weights by Avogadro...neceseary mid identify by block number) scientific discovery -ittri sic properties physical laws extensive terms data-driven heuristics intensive...terms theory-driven heuristics conservation laws 20. ABSTRACT (Continue on revere. side It necessary and identify by block number) Scientific discovery

  11. Applying genetics in inflammatory disease drug discovery

    DEFF Research Database (Denmark)

    Folkersen, Lasse; Biswas, Shameek; Frederiksen, Klaus Stensgaard

    2015-01-01

    , with several notable exceptions, the journey from a small-effect genetic variant to a functional drug has proven arduous, and few examples of actual contributions to drug discovery exist. Here, we discuss novel approaches of overcoming this hurdle by using instead public genetics resources as a pragmatic guide...... alongside existing drug discovery methods. Our aim is to evaluate human genetic confidence as a rationale for drug target selection....

  12. Roentgen and the discovery of X rays

    International Nuclear Information System (INIS)

    Gueret, Ph.

    1998-01-01

    In 1901, the first Nobel price of physics was attributed to Roentgen for his discovery of X rays. This paper recalls through the career of this physicist and research worker, the different steps that led him to this discovery. This paper tries also to solve the 'Roentgen mystery', i.e. the reasons that led him to stop his research work just after this exploit. (J.S.)

  13. Shuttle Discovery Landing at Edwards

    Science.gov (United States)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  14. Reporting Astronomical Discoveries: Past, Now, and Future

    Science.gov (United States)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere

  15. History, Discovery, and Classification of lncRNAs.

    Science.gov (United States)

    Jarroux, Julien; Morillon, Antonin; Pinskaya, Marina

    2017-01-01

    The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of

  16. 12 CFR 747.24 - Scope of document discovery.

    Science.gov (United States)

    2010-01-01

    ... act of Congress, or the principles of common law provide. (d) Time limits. All discovery, including... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Scope of document discovery. 747.24 Section 747... of Practice and Procedure § 747.24 Scope of document discovery. (a) Limits on discovery. (1) Subject...

  17. The development of high-content screening (HCS) technology and its importance to drug discovery.

    Science.gov (United States)

    Fraietta, Ivan; Gasparri, Fabio

    2016-01-01

    High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.

  18. Target-oriented discovery of a new esterase-producing strain Enterobacter sp. ECU1107 for whole cell-catalyzed production of (2S,3R)-3-phenylglycidate as a chiral synthon of Taxol.

    Science.gov (United States)

    Zhou, Dong-Jie; Pan, Jiang; Yu, Hui-Lei; Zheng, Gao-Wei; Xu, Jian-He

    2013-07-01

    A new strain, Enterobacter sp. ECU1107, was identified among over 200 soil isolates using a two-step screening strategy for the enantioselective synthesis of (2S,3R)-3-phenylglycidate methyl ester (PGM), a key intermediate for production of a potent anticancer drug Taxol®. An organic-aqueous biphasic system was employed to reduce spontaneous hydrolysis of the substrate PGM and isooctane was found to be the most suitable organic solvent. The temperature and pH optima of the whole cell-mediated bioreaction were 40 °C and 6.0, respectively. Under these reaction conditions, the enantiomeric excess (ee(s)) of (2S,3R)-PGM recovered was greater than 99 % at approximately 50 % conversion. The total substrate loading in batch reaction could reach 600 mM. By using whole cells of Enterobacter sp. ECU1107, (2S,3R)-PGM was successfully prepared in decagram scale in a 1.0-l mechanically stirred reactor, affording the chiral epoxy ester in >99 % ee s and 43.5 % molar yield based on the initial load of racemic substrate.

  19. Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)–Mixed Lineage Leukemia (MLL) Protein–Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Hacer; Li, Yangbing; Liu, Liu; Ji, Jiao; Lee, Shirley; Chen, Yong; Yang, Jiuling; Huang, Liyue; Bernard, Denzil; Xu, Jing; Townsend, Elizabeth C.; Cao, Fang; Ran, Xu; Li, Xiaoqin; Wen, Bo; Sun, Duxin; Stuckey, Jeanne A; Lei, Ming; Dou, Yali; Wang, Shaomeng (Michigan)

    2017-06-06

    We report herein the design, synthesis, and evaluation of macrocyclic peptidomimetics that bind to WD repeat domain 5 (WDR5) and block the WDR5–mixed lineage leukemia (MLL) protein–protein interaction. Compound 18 (MM-589) binds to WDR5 with an IC50 value of 0.90 nM (Ki value <1 nM) and inhibits the MLL H3K4 methyltransferase (HMT) activity with an IC50 value of 12.7 nM. Compound 18 potently and selectively inhibits cell growth in human leukemia cell lines harboring MLL translocations and is >40 times better than the previously reported compound MM-401. Cocrystal structures of 16 and 18 complexed with WDR5 provide structural basis for their high affinity binding to WDR5. Additionally, we have developed and optimized a new AlphaLISA-based MLL HMT functional assay to facilitate the functional evaluation of these designed compounds. Compound 18 represents the most potent inhibitor of the WDR5–MLL interaction reported to date, and further optimization of 18 may yield a new therapy for acute leukemia.

  20. Choosing Discovery: A Literature Review on the Selection and Evaluation of Discovery Layers

    Science.gov (United States)

    Moore, Kate B.; Greene, Courtney

    2012-01-01

    Within the next few years, traditional online public access catalogs will be replaced by more robust and interconnected discovery layers that can serve as primary public interfaces to simultaneously search many separate collections of resources. Librarians have envisioned this type of discovery tool since the 1980s, and research shows that…

  1. Fragment-based drug discovery and protein–protein interactions

    Directory of Open Access Journals (Sweden)

    Turnbull AP

    2014-09-01

    -dimensional character. These physiochemical properties can potentially be exploited in the rational design of PPI-specific fragment libraries and correlate well with optimized PPI inhibitors, which tend to have properties outside currently accepted guidelines for drug-likeness. Several examples of small-molecule PPI inhibitors derived from fragment-based drug discovery now exist and are described in this review, including navitoclax, a novel Bcl-2 family inhibitor which has entered Phase II clinical trials in patients with small-cell lung cancer and chronic lymphocytic leukemia.Keywords: hot spot, druggability, ligandability

  2. Resource-estimation models and predicted discovery

    International Nuclear Information System (INIS)

    Hill, G.W.

    1982-01-01

    Resources have been estimated by predictive extrapolation from past discovery experience, by analogy with better explored regions, or by inference from evidence of depletion of targets for exploration. Changes in technology and new insights into geological mechanisms have occurred sufficiently often in the long run to form part of the pattern of mature discovery experience. The criterion, that a meaningful resource estimate needs an objective measure of its precision or degree of uncertainty, excludes 'estimates' based solely on expert opinion. This is illustrated by development of error measures for several persuasive models of discovery and production of oil and gas in USA, both annually and in terms of increasing exploration effort. Appropriate generalizations of the models resolve many points of controversy. This is illustrated using two USA data sets describing discovery of oil and of U 3 O 8 ; the latter set highlights an inadequacy of available official data. Review of the oil-discovery data set provides a warrant for adjusting the time-series prediction to a higher resource figure for USA petroleum. (author)

  3. Predicting future discoveries from current scientific literature.

    Science.gov (United States)

    Petrič, Ingrid; Cestnik, Bojan

    2014-01-01

    Knowledge discovery in biomedicine is a time-consuming process starting from the basic research, through preclinical testing, towards possible clinical applications. Crossing of conceptual boundaries is often needed for groundbreaking biomedical research that generates highly inventive discoveries. We demonstrate the ability of a creative literature mining method to advance valuable new discoveries based on rare ideas from existing literature. When emerging ideas from scientific literature are put together as fragments of knowledge in a systematic way, they may lead to original, sometimes surprising, research findings. If enough scientific evidence is already published for the association of such findings, they can be considered as scientific hypotheses. In this chapter, we describe a method for the computer-aided generation of such hypotheses based on the existing scientific literature. Our literature-based discovery of NF-kappaB with its possible connections to autism was recently approved by scientific community, which confirms the ability of our literature mining methodology to accelerate future discoveries based on rare ideas from existing literature.

  4. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  5. [Human babesiosis--recent discoveries].

    Science.gov (United States)

    Mitrović, Sanja; Kranjcić-Zec, Ivana; Arsić-Arsenijević, Valentina; Dzamić, Aleksandar; Radonjić, Ivana

    2004-01-01

    Babesiosis is caused by intraerythrocytic parasites of the genus Babesia, which is a common animal infection worldwide. This protozoa requires both a competent vertebrate and a nonvertebrate host (Ixodes sp. etc.) to maintain the transmission cycle. Human babesiosis is predominantly caused by Babesia microti (rodent-borne piroplasm, an emerging zoonosis in humans in North America) and by Babesia divergens (bovine pathogen, in Europe). Occasionally, infection in America is caused also by a newly recognized species, so-called WA1 piroplasm. The spectrum of human babesiosis in the USA is broad, and ranges from an apparently silent infection to a fulminant. In Europe, babesiosis is considerably rarer, but more lethal (42% mortality rate in Europe and 5% in the USA, for clinically apparent infections) and mostly in splenectomized patients. Various determinants are involved in the severity of infection, such as age, immunocompetence and coinfection with other pathogens (Borrelia burgdorferi). B. microti antigens can trigger specific activation of T-cells and the infection can be effectively controlled by a Th1-dominant CD4+ T-cell response. The diagnosis of babesiosis should include examination of blood smears stained by Giemsa, as well as serologic evaluation with indirect immunofluorescent antibody tests and possibly PCR. The treatment of babesiosis depends on severity of cases; if it is mild it resolves spontaneously, whereas very severe cases with B. divergens require prompt treatment that includes erythrocyte exchange transfuision along with intravenous clindamycin and oral quinine to arrest hemolysis and prevent renalfailure. This paper offers an overview of recent developments in the investigation of Babesia sp. and babesiosis.

  6. Bioinformatics for discovery of microbiome variation

    DEFF Research Database (Denmark)

    Brejnrod, Asker Daniel

    of various molecular methods to build hypotheses about the impact of a copper contaminated soil. The introduction is a broad introduction to the field of microbiome research with a focus on the technologies that enable these discoveries and how some of the broader issues have related to this thesis......Sequencing based tools have revolutionized microbiology in recent years. Highthroughput DNA sequencing have allowed high-resolution studies on microbial life in many different environments and at unprecedented low cost. These culture-independent methods have helped discovery of novel bacteria...... 1 ,“Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies”, benchmarked the performance of a variety of popular statistical methods for discovering differentially abundant bacteria . between...

  7. Neutron Diffraction and Inorganic Materials Discovery

    International Nuclear Information System (INIS)

    Rosseinsky, M.J.

    2005-01-01

    Full text: The discovery of complex inorganic materials is an important academic and technological challenge because of the opportunities these systems offer for observation of new phenomena, and the questions they pose for fundamental understanding. This presentation will illustrate the key role of neutron powder diffraction in enabling the discovery of new classes of materials, and in evaluating their properties and the conditions under which they need to be processed to optimise their behaviour in devices for applications. New chemistry is illustrated by the transition metal oxide hydrides, where both structure and ionic mobility required neutron scattering characterisation. The relationship between chemistry, structure and properties will be addressed by considering the difficulties in inducing superconductivity in analogues of magnesium diboride. The role of both neutron and X-ray diffraction in evaluating the processing of microwave dielectric ceramics will be highlighted, with the discovery of new phases shown to be a useful bonus in this type of in-situ study. (author)

  8. Virtual drug discovery: beyond computational chemistry?

    Science.gov (United States)

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  9. Predictors of timing of pregnancy discovery.

    Science.gov (United States)

    McCarthy, Molly; Upadhyay, Ushma; Biggs, M Antonia; Anthony, Renaisa; Holl, Jennifer; Roberts, Sarah Cm

    2018-04-01

    Earlier pregnancy discovery is important in the context of prenatal and abortion care. We evaluated characteristics associated with later pregnancy discovery among women seeking abortion care. Data come from a survey of women seeking abortion care at four family planning facilities in Utah. The participants completed a survey during the state-mandated abortion information visit they are required to complete prior to having an abortion. The outcome in this study was pregnancy discovery before versus after 6 weeks since respondents' last menstrual period (LMP). We used logistic regression to estimate the relationship between sociodemographic and health-related independent variables of interest and pregnancy discovery before versus after 6 weeks. Among the 458 women in the sample, 28% discovered their pregnancy later than 6 weeks since LMP. Most (n=366, 80%) knew the exact date of their LMP and a significant minority estimated it (n=92, 20%). Those who estimated the date of their LMP had higher odds of later pregnancy discovery than those who knew the exact date (adjusted odds ratio (aOR)=1.81[1.07-3.07]). Those who used illicit drugs weekly, daily, or almost daily had higher odds of later pregnancy discovery (aOR=6.33[2.44, 16.40]). Women who did not track their menstrual periods and those who frequently used drugs had higher odds of discovering their pregnancies later. Women who estimated the date of their LMP and who frequently used drugs may benefit from strategies to help them recognize their pregnancies earlier and link them to care when they discover their pregnancies later. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Net present value approaches for drug discovery.

    Science.gov (United States)

    Svennebring, Andreas M; Wikberg, Jarl Es

    2013-12-01

    Three dedicated approaches to the calculation of the risk-adjusted net present value (rNPV) in drug discovery projects under different assumptions are suggested. The probability of finding a candidate drug suitable for clinical development and the time to the initiation of the clinical development is assumed to be flexible in contrast to the previously used models. The rNPV of the post-discovery cash flows is calculated as the probability weighted average of the rNPV at each potential time of initiation of clinical development. Practical considerations how to set probability rates, in particular during the initiation and termination of a project is discussed.

  11. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  12. Henri Becquerel: the discovery of radioactivity

    International Nuclear Information System (INIS)

    Allisy, A.

    1996-01-01

    This paper recalls the history of the Becquerel family, the fascinating time of the discovery of radioactivity as well as some important related research published before the radium age. Henri Becquerel was the third in the line of a family of scientists which extended over more than a hundred years. Following in the footsteps of his father and grandfather gave him a thorough grounding in scientific research methods. Science at the turn of the century was very exciting, the discovery of X rays had just been announced and scientists everywhere were hoping to discover new phenomena. (author)

  13. Using Discovery Learning to Encourage Creative Thinking

    Directory of Open Access Journals (Sweden)

    Mardia Hi. Rahman

    2017-10-01

    Full Text Available Creative thinking ability development is needed to be implemented by every educator including lecturers to their students. Therefore, they need to seriously act and design their learning process. One of the ways to develop student’s creative thinking is using discovery learning model. This research is conducted in physics education study program in 2016 with students who took learning and teaching class as research subject. From the research analysis result and discussion, it can be concluded that discovery learning model can encourage students’ creative thinking ability in learning and teaching strategy subject.

  14. The discovery of the tau lepton

    International Nuclear Information System (INIS)

    Perl, M.L.

    1992-09-01

    The discovery of the tau lepton and the third generation of fermions came from the convergence of three physics streams in the late 1960's and early 1970's. These streams were: the failed attempts by myself and others to understand the connection between the electron and the muon, the development of electron-positron storage rings, and the development of the theory of sequential leptons. In this paper I give the history of the discovery of the tau and the measurement of its major properties-the properties which established the tau as a sequential lepton

  15. Discovery stories in the science classroom

    Science.gov (United States)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  16. The centenary of discovery of radium

    International Nuclear Information System (INIS)

    Mazeron, J.-J.; Gerbaulet, A.

    1998-01-01

    Henri Becquerel presented the discovery of radium by Pierre and Marie Curie at the Paris Academy of Science on 26th December 1898. One century later, radium has been abandoned, mainly for radiation protection difficulties. It is, however, likely that modern techniques of brachytherapy have inherited to those designed for radium sources, and that radium has cured thousands and thousands patients all over the world for about eighty years. The history of discovery and medical use of radium is summarised. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Computational neuropharmacology: dynamical approaches in drug discovery.

    Science.gov (United States)

    Aradi, Ildiko; Erdi, Péter

    2006-05-01

    Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.

  18. From the nucleus discovery to DWBA

    International Nuclear Information System (INIS)

    Fernandez, B.

    2007-01-01

    The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones

  19. Preclinical experimental models of drug metabolism and disposition in drug discovery and development

    Directory of Open Access Journals (Sweden)

    Donglu Zhang

    2012-12-01

    Full Text Available Drug discovery and development involve the utilization of in vitro and in vivo experimental models. Different models, ranging from test tube experiments to cell cultures, animals, healthy human subjects, and even small numbers of patients that are involved in clinical trials, are used at different stages of drug discovery and development for determination of efficacy and safety. The proper selection and applications of correct models, as well as appropriate data interpretation, are critically important in decision making and successful advancement of drug candidates. In this review, we discuss strategies in the applications of both in vitro and in vivo experimental models of drug metabolism and disposition.

  20. Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO 2 Anchoring Characteristics for Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M. [Cavendish; ISIS; Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Department; Blood-Forsythe, Martin A. [Cavendish; Lin, Tze-Chia [Cavendish; Pattison, Philip [Swiss; Gong, Yun [Cavendish; Vázquez-Mayagoitia, Álvaro [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States; Waddell, Paul G. [Cavendish; Australian Centre for Neutron Scattering, Australian Nuclear Science; Zhang, Lei [Cavendish; Koumura, Nagatoshi [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Mori, Shogo [Division

    2017-07-25

    Donor-pi-acceptor dyes containing thiophenyl pi-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S center dot center dot center dot C equivalent to N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the pi-conjugated portion of MK-44 shows that this S center dot center dot center dot C equivalent to N bonding underpins the highly efficient intramolecular charge transfer(ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S center dot center dot center dot C equivalent to N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of,MK-2. More generally, this study provides the first unequivocal evidence for an S center dot center dot center dot C equivalent to N

  1. The Discovery of the Double Helix

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Professor James D. Watson has kindly agreed to make a presentation on the 1953 finding of the Double Helix at the Cavendish Laboratory by Francis Crick and himself. Being one of the greatest scientific discoveries in human history, little else needs to be added.

  2. Discovery and preclinical development of new antibiotics.

    Science.gov (United States)

    Hughes, Diarmaid; Karlén, Anders

    2014-05-01

    Antibiotics are the medical wonder of our age, but an increasing frequency of resistance among key pathogens is rendering them less effective. If this trend continues the consequences for cancer patients, organ transplant patients, and indeed the general community could be disastrous. The problem is complex, involving abuse and overuse of antibiotics (selecting for an increasing frequency of resistant bacteria), together with a lack of investment in discovery and development (resulting in an almost dry drug development pipeline). Remedial approaches to the problem should include taking measures to reduce the selective pressures for resistance development, and taking measures to incentivize renewed investment in antibiotic discovery and development. Bringing new antibiotics to the clinic is critical because this is currently the only realistic therapy that can ensure the level of infection control required for many medical procedures. Here we outline the complex process involved in taking a potential novel antibiotic from the initial discovery of a hit molecule, through lead and candidate drug development, up to its entry into phase I clinical trials. The stringent criteria that a successful drug must meet, balancing high efficacy in vivo against a broad spectrum of pathogens, with minimal liabilities against human targets, explain why even with sufficient investment this process is prone to a high failure rate. This emphasizes the need to create a well-funded antibiotic discovery and development pipeline that can sustain the continuous delivery of novel candidate drugs into clinical trials, to ensure the maintenance of the advanced medical procedures we currently take for granted.

  3. Knowledge discovery in the prediction of bankruptcy

    NARCIS (Netherlands)

    Almeida, R.J.; Vieira, S.M.; Milea, D.V.; Kaymak, U.; Costa Sousa, da J.M.; Carvalho, J.P.; Dubois, D.; Kaymak, U.

    2009-01-01

    Knowledge discovery in databases (KDD) is the process of discovering interesting knowledge from large amounts of data. However, real-world datasets have problems such as incompleteness, redundancy, inconsistency, noise, etc. All these problems affect the performance of data mining algorithms. Thus,

  4. Discovery – Methotrexate: Chemotherapy Treatment for Cancer

    Science.gov (United States)

    Prior to the 1950s, treatment for the majority of cancers was limited to either surgery or the use of radiation. The discovery of the use of methotrexate in curing a rare cancer marked the first time a cancer had been cured. This led to the development of many of today’s common cancer treatments.

  5. 41 CFR 105-70.021 - Discovery.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Discovery. 105-70.021 Section 105-70.021 Public Contracts and Property Management Federal Property Management Regulations System..., papers, and other data and documentary evidence. Nothing contained herein shall be interpreted to require...

  6. 5 CFR 185.122 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Discovery. 185.122 Section 185.122 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PROGRAM FRAUD CIVIL REMEDIES..., answers, records, accounts, papers, and other data and documentary evidence. Nothing contained herein...

  7. (Self-) Discovery Service: Helping Students Help Themselves

    Science.gov (United States)

    Debonis, Rocco; O'Donnell, Edward; Thomes, Cynthia

    2012-01-01

    EBSCO Discovery Service (EDS) has been heavily used by UMUC students since its implementation in fall 2011, but experience has shown that it is not always the most appropriate source for satisfying students' information needs and that they often need assistance in understanding how the tool works and how to use it effectively. UMUC librarians have…

  8. Scientific Discoveries the Year I Was Born

    Science.gov (United States)

    Cherif, Abour

    2012-01-01

    The author has successfully used a learning activity titled "The Year I Was Born" to motivate students to conduct historical research and present key scientific discoveries from their birth year. The activity promotes writing, helps students enhance their scientific literacy, and also improves their attitude toward the learning of science. As one…

  9. Comment on "drug discovery: turning the titanic".

    Science.gov (United States)

    Lesterhuis, W Joost; Bosco, Anthony; Lake, Richard A

    2014-03-26

    The pathobiology-based approach to research and development has been the dominant paradigm for successful drug discovery over the last decades. We propose that the molecular and cellular events that govern a resolving, rather than an evolving, disease may reveal new druggable pathways.

  10. The discovery and development of antiretroviral agents

    NARCIS (Netherlands)

    Lange, Joep M. A.; Ananworanich, Jintanat

    2014-01-01

    Since the discovery of HIV as the causative agent of AIDS in 1983/1984, remarkable progress has been made in finding antiretroviral drugs (ARVs) that are effective against it. A major breakthrough occurred in 1996 when it was found that triple drug therapy (HAART) could durably suppress viral

  11. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  12. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  13. Zavoisky and the Discovery of EPR

    Indian Academy of Sciences (India)

    IAS Admin

    moved to Kazan. In 1926, after finishing the nine-year secondary ... year student, he got a patent for an invention. Zavoisky was ... Early Attempts at NMR and Interruption by World War II ... band modulation) and, in some cases, he did not even apply the constant ... was awarded the Lenin Prize for the discovery of EPR. In the.

  14. Secure Service Discovery in Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; van Dijk, H.W.; De Cock, Danny; Preneel, Bart; Kung, Antonio; d'Hooge, Michel

    2006-01-01

    This paper presents an architecture for secure service discovery for use in home networks. We give an overview and rationale of a cluster-based home network architecture that bridges different, often vendor specific, network technologies. We show how it integrates security, communication, and

  15. The next generation of targeted mutation discovery

    NARCIS (Netherlands)

    Harakalova, M.

    2013-01-01

    Sequencing technologies (NGS) now allows efficient analysis of the complete protein-coding regions of genomes (exomes) for multiple samples in a single sequencing run. In Chapter 2, we present our results with a genomic DNA pooling strategy for rare variant discovery on a NGS platform. The high

  16. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 40 CFR 164.51 - Other discovery.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Other discovery. 164.51 Section 164.51... GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS TO... OTHER HEARINGS CALLED PURSUANT TO SECTION 6 OF THE ACT General Rules of Practice Concerning Proceedings...

  18. Resource Discovery within the Networked "Hybrid" Library.

    Science.gov (United States)

    Leigh, Sally-Anne

    This paper focuses on the development, adoption, and integration of resource discovery, knowledge management, and/or knowledge sharing interfaces such as interactive portals, and the use of the library's World Wide Web presence to increase the availability and usability of information services. The introduction addresses changes in library…

  19. Introduction to fragment-based drug discovery.

    Science.gov (United States)

    Erlanson, Daniel A

    2012-01-01

    Fragment-based drug discovery (FBDD) has emerged in the past decade as a powerful tool for discovering drug leads. The approach first identifies starting points: very small molecules (fragments) that are about half the size of typical drugs. These fragments are then expanded or linked together to generate drug leads. Although the origins of the technique date back some 30 years, it was only in the mid-1990s that experimental techniques became sufficiently sensitive and rapid for the concept to be become practical. Since that time, the field has exploded: FBDD has played a role in discovery of at least 18 drugs that have entered the clinic, and practitioners of FBDD can be found throughout the world in both academia and industry. Literally dozens of reviews have been published on various aspects of FBDD or on the field as a whole, as have three books (Jahnke and Erlanson, Fragment-based approaches in drug discovery, 2006; Zartler and Shapiro, Fragment-based drug discovery: a practical approach, 2008; Kuo, Fragment based drug design: tools, practical approaches, and examples, 2011). However, this chapter will assume that the reader is approaching the field with little prior knowledge. It will introduce some of the key concepts, set the stage for the chapters to follow, and demonstrate how X-ray crystallography plays a central role in fragment identification and advancement.

  20. Conference Abstracts: Translational Science and Drug Discovery ...

    African Journals Online (AJOL)

    ... and Drug Discovery: Impact on Health, Wellness, Environment and Economics" conference, July 27-29th, 2015, at the Hennessy Park Hotel, Ebène Cybercity, Mauritius. The conference was hosted by the Society for Free radical Research Africa and the International Association of Medical and Biomedical Researchers.

  1. Discovery Learning: Zombie, Phoenix, or Elephant?

    Science.gov (United States)

    Bakker, Arthur

    2018-01-01

    Discovery learning continues to be a topic of heated debate. It has been called a zombie, and this special issue raises the question whether it may be a phoenix arising from the ashes to which the topic was burnt. However, in this commentary I propose it is more like an elephant--a huge topic approached by many people who address different…

  2. Translating Genomic Discoveries to Cure Ultrahypermutant ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Translating Genomic Discoveries to Cure Ultrahypermutant Mismatch Repair Deficient Brain Tumours. Malignant brain tumours are the most common cause of death among children with cancer, but there is no known cure. This project will advance research in this important field. Inherited mutations and childhood cancer.

  3. Computer-Assisted Discovery and Proof

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2007-12-10

    With the advent of powerful, widely-available mathematical software, combined with ever-faster computer hardware, we are approaching a day when both the discovery and proof of mathematical facts can be done in a computer-assisted manner. his article presents several specific examples of this new paradigm in action.

  4. Neutron Stars and the Discovery of Pulsars.

    Science.gov (United States)

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  5. Rough – Granular Computing knowledge discovery models

    Directory of Open Access Journals (Sweden)

    Mohammed M. Eissa

    2016-11-01

    Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.

  6. Social Relationship Discovery Via Call Records

    Directory of Open Access Journals (Sweden)

    Zhao Wen-Zhe

    2017-01-01

    Full Text Available Telecom users constitute a huge, but relatively sparse social network. Community discovery has been a research topic of data mining. Traditional algorithms are greatly influenced by outliers. This paper presents a new algorithm based on social triangle theory. Experiments show that the new algorithm is effective.

  7. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to

  8. Inseparability of science history and discovery

    Directory of Open Access Journals (Sweden)

    J. M. Herndon

    2010-04-01

    Full Text Available Science is very much a logical progression through time. Progressing along a logical path of discovery is rather like following a path through the wilderness. Occasionally the path splits, presenting a choice; the correct logical interpretation leads to further progress, the wrong choice leads to confusion. By considering deeply the relevant science history, one might begin to recognize past faltering in the logical progression of observations and ideas and, perhaps then, to discover new, more precise understanding. The following specific examples of science faltering are described from a historical perspective: (1 Composition of the Earth's inner core; (2 Giant planet internal energy production; (3 Physical impossibility of Earth-core convection and Earth-mantle convection, and; (4 Thermonuclear ignition of stars. For each example, a revised logical progression is described, leading, respectively, to: (1 Understanding the endo-Earth's composition; (2 The concept of nuclear georeactor origin of geo- and planetary magnetic fields; (3 The invalidation and replacement of plate tectonics; and, (4 Understanding the basis for the observed distribution of luminous stars in galaxies. These revised logical progressions clearly show the inseparability of science history and discovery. A different and more fundamental approach to making scientific discoveries than the frequently discussed variants of the scientific method is this: An individual ponders and through tedious efforts arranges seemingly unrelated observations into a logical sequence in the mind so that causal relationships become evident and new understanding emerges, showing the path for new observations, for new experiments, for new theoretical considerations, and for new discoveries. Science history is rich in "seemingly unrelated observations" just waiting to be logically and causally related to reveal new discoveries.

  9. Discovery in a World of Mashups

    Science.gov (United States)

    King, T. A.; Ritschel, B.; Hourcle, J. A.; Moon, I. S.

    2014-12-01

    When the first digital information was stored electronically, discovery of what existed was through file names and the organization of the file system. With the advent of networks, digital information was shared on a wider scale, but discovery remained based on file and folder names. With a growing number of information sources, named based discovery quickly became ineffective. The keyword based search engine was one of the first types of a mashup in the world of Web 1.0. Embedded links from one document to another with prescribed relationships between files and the world of Web 2.0 was formed. Search engines like Google used the links to improve search results and a worldwide mashup was formed. While a vast improvement, the need for semantic (meaning rich) discovery was clear, especially for the discovery of scientific data. In response, every science discipline defined schemas to describe their type of data. Some core schemas where shared, but most schemas are custom tailored even though they share many common concepts. As with the networking of information sources, science increasingly relies on data from multiple disciplines. So there is a need to bring together multiple sources of semantically rich information. We explore how harvesting, conceptual mapping, facet based search engines, search term promotion, and style sheets can be combined to create the next generation of mashups in the emerging world of Web 3.0. We use NASA's Planetary Data System and NASA's Heliophysics Data Environment to illustrate how to create a multi-discipline mash-up.

  10. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    Directory of Open Access Journals (Sweden)

    Avi Raveh

    Full Text Available Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable

  11. A systematic approach to novel virus discovery in emerging infectious disease outbreaks.

    Science.gov (United States)

    Sridhar, Siddharth; To, Kelvin K W; Chan, Jasper F W; Lau, Susanna K P; Woo, Patrick C Y; Yuen, Kwok-Yung

    2015-05-01

    The discovery of novel viruses is of great importance to human health-both in the setting of emerging infectious disease outbreaks and in disease syndromes of unknown etiology. Despite the recent proliferation of many efficient virus discovery methods, careful selection of a combination of methods is important to demonstrate a novel virus, its clinical associations, and its relevance in a timely manner. The identification of a patient or an outbreak with distinctive clinical features and negative routine microbiological workup is often the starting point for virus hunting. This review appraises the roles of culture, electron microscopy, and nucleic acid detection-based methods in optimizing virus discovery. Cell culture is generally slow but may yield viable virus. Although the choice of cell line often involves trial and error, it may be guided by the clinical syndrome. Electron microscopy is insensitive but fast, and may provide morphological clues to choice of cell line or consensus primers for nucleic acid detection. Consensus primer PCR can be used to detect viruses that are closely related to known virus families. Random primer amplification and high-throughput sequencing can catch any virus genome but cannot yield an infectious virion for testing Koch postulates. A systematic approach that incorporates carefully chosen combinations of virus detection techniques is required for successful virus discovery. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Discovery of novel bacterial toxins by genomics and computational biology.

    Science.gov (United States)

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  13. Proteomics for discovery of candidate colorectal cancer biomarkers

    Science.gov (United States)

    Álvarez-Chaver, Paula; Otero-Estévez, Olalla; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers. PMID:24744574

  14. Induced Pluripotent Stem Cells for Regenerative Medicine

    OpenAIRE

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies...

  15. Discovery of the neutron (to the fiftieth anniversary of neutron discovery)

    International Nuclear Information System (INIS)

    Pasechnik, M.V.

    1984-01-01

    Development of neutron physics in the USSR for the recent 50 years from the moment of neutron discovery is considered. History of neutron discovery is presented in brief. Neutron properties and fundamental problems of physics: electric dipole neutron moment, neutron β-decay, neutron interaction with nuclei and potential of nucleon interaction not conserving spatial parity are discussed. Main aspects of neutron physics application in power engineering, nuclear technology and other branches of science and technique are set forth

  16. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field.

    Science.gov (United States)

    Wójcikowski, Maciej; Zielenkiewicz, Piotr; Siedlecki, Pawel

    2015-01-01

    There has been huge progress in the open cheminformatics field in both methods and software development. Unfortunately, there has been little effort to unite those methods and software into one package. We here describe the Open Drug Discovery Toolkit (ODDT), which aims to fulfill the need for comprehensive and open source drug discovery software. The Open Drug Discovery Toolkit was developed as a free and open source tool for both computer aided drug discovery (CADD) developers and researchers. ODDT reimplements many state-of-the-art methods, such as machine learning scoring functions (RF-Score and NNScore) and wraps other external software to ease the process of developing CADD pipelines. ODDT is an out-of-the-box solution designed to be easily customizable and extensible. Therefore, users are strongly encouraged to extend it and develop new methods. We here present three use cases for ODDT in common tasks in computer-aided drug discovery. Open Drug Discovery Toolkit is released on a permissive 3-clause BSD license for both academic and industrial use. ODDT's source code, additional examples and documentation are available on GitHub (https://github.com/oddt/oddt).

  17. Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.

    Science.gov (United States)

    Luo, Yao; Wang, Ling

    2017-11-16

    The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. This protein is an attractive target for new anticancer drug development. Significant progress has been made in hit discovery, lead optimization, drug candidate development and determination of the three-dimensional (3D) structure of mTOR. Computational methods have been applied to accelerate the discovery and development of mTOR inhibitors helping to model the structure of mTOR, screen compound databases, uncover structure-activity relationship (SAR) and optimize the hits, mine the privileged fragments and design focused libraries. Besides, computational approaches were also applied to study protein-ligand interactions mechanisms and in natural product-driven drug discovery. Herein, we survey the most recent progress on the application of computational approaches to advance the discovery and development of compounds targeting mTOR. Future directions in the discovery of new mTOR inhibitors using computational methods are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Novel ageing-biomarker discovery using data-intensive technologies.

    Science.gov (United States)

    Griffiths, H R; Augustyniak, E M; Bennett, S J; Debacq-Chainiaux, F; Dunston, C R; Kristensen, P; Melchjorsen, C J; Navarrete, Santos A; Simm, A; Toussaint, O

    2015-11-01

    Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing. This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  19. The Discovery of a Class of High-Temperature Superconductors.

    Science.gov (United States)

    Muller, K. Alex; Bednorz, J. Georg

    1987-01-01

    Describes the new class of oxide superconductors, the importance of these materials, and the concepts that led to its discovery. Summarizes the discovery itself and its early confirmation. Discusses the observation of a superconductive glass state in percolative samples. (TW)

  20. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    Directory of Open Access Journals (Sweden)

    Albert H Gough

    Full Text Available One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.

  1. History of the discovery of uranium fission by neutrons

    International Nuclear Information System (INIS)

    Simane, C.

    1989-01-01

    The history is briefly described of the discovery of uranium fission by neutrons, based on the texts of original scientific studies, memories or biographies of those who participated in the discovery and of their contemporaries. Obstacles that stood in the way of the discovery are discussed. It is stated that only a few scientists contributed to the discovery of uranium fission. The fission process itself still remains subject of physical research which studies its detailed laws. (Z.M.). 2 tabs., 16 refs

  2. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels....... A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  3. STS-51 preparation: ACTS, ORFEUS, Discovery in VAB

    Science.gov (United States)

    1993-01-01

    In NASA's building AM on Cape Canaveral Air Force Station, STS-51 mission specialist Carl Walz (right) and Deutsche Aerospace technician Gregor Dawidowitsch check over the scientific instruments mounted on the Shuttle Pallet Satellite (SPAS) carrier (38573); The Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) and SPAS is readied for hoisting into a test cell at the Vertical Processing Facility (VPF) (38574); Mating of the Advanced Communications Technology Satellite (ACTS) with the Transfer Orbit Stage (TOS) booster is under way in the Payload Hazardous Servicing Facility (PHSF) (38575); The mated ACTS and TOS are ready to be moved from the PHSF to the Vertical Processsing Facility (VPF) (38576); The orbiter Discovery is rolled into the Vehicle Assembly Building (VAB) for mating with the external tank and twin solid rocket boosters (38577-8).

  4. Discovery of DNA repair inhibitors by combinatorial library profiling

    Science.gov (United States)

    Moeller, Benjamin J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2011-01-01

    Small molecule inhibitors of DNA repair are emerging as potent and selective anti-cancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and non-competitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy. PMID:21343400

  5. Lambda-Display: A Powerful Tool for Antigen Discovery

    Directory of Open Access Journals (Sweden)

    Nicola Gargano

    2011-04-01

    Full Text Available Since its introduction in 1985, phage display technology has been successfully used in projects aimed at deciphering biological processes and isolating molecules of practical value in several applications. Bacteriophage lambda, representing a classical molecular cloning and expression system has also been exploited for generating large combinatorial libraries of small peptides and protein domains exposed on its capsid. More recently, lambda display has been consistently and successfully employed for domain mapping, antigen discovery and protein interaction studies or, more generally, in functional genomics. We show here the results obtained by the use of large libraries of cDNA and genomic DNA for the molecular dissection of the human B-cell response against complex pathogens, including protozoan parasites, bacteria and viruses. Moreover, by reviewing the experimental work performed in recent investigations we illustrate the potential of lambda display in the diagnostics field and for identifying antigens useful as targets for vaccine development.

  6. RNA Editing and Drug Discovery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Huang

    2013-01-01

    Full Text Available RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  7. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  8. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  9. A Taxonomy of Self-configuring Service Discovery Systems

    NARCIS (Netherlands)

    Sundramoorthy, V.; Hartel, Pieter H.; Scholten, Johan

    2007-01-01

    We analyze the fundamental concepts and issues in service discovery. This analysis places service discovery in the context of distributed systems by describing service discovery as a third generation naming system. We also describe the essential architectures and the functionalities in service

  10. Mass Spectrometry-Based Biomarker Discovery.

    Science.gov (United States)

    Zhou, Weidong; Petricoin, Emanuel F; Longo, Caterina

    2017-01-01

    The discovery of candidate biomarkers within the entire proteome is one of the most important and challenging goals in proteomic research. Mass spectrometry-based proteomics is a modern and promising technology for semiquantitative and qualitative assessment of proteins, enabling protein sequencing and identification with exquisite accuracy and sensitivity. For mass spectrometry analysis, protein extractions from tissues or body fluids and subsequent protein fractionation represent an important and unavoidable step in the workflow for biomarker discovery. Following extraction of proteins, the protein mixture must be digested, reduced, alkylated, and cleaned up prior to mass spectrometry. The aim of our chapter is to provide comprehensible and practical lab procedures for sample digestion, protein fractionation, and subsequent mass spectrometry analysis.

  11. Historical aspects of the discovery of plutonium

    International Nuclear Information System (INIS)

    Clark, David L.

    2016-01-01

    The historical events that led up to the discovery of plutonium and subsequently, how that discovery helped shape the modern period table of the elements, and ushered in a new era of nuclear science and technology are discussed. When the first of the transuranium elements, neptunium was discovered, it was realized that the radioactive βdecay of "2"3"9Np should lead to the formation of element 94. The scale of the experiments at that time, however, precluded its identification. Plutonium was first produced late in 1940 by Seaborg, McMillan, Kennedy, and Wahl1,2 by bombarding uranium with deuterons to produce the isotope "2"3"8Pu

  12. Panorama 2014 - New oil and gas discoveries

    International Nuclear Information System (INIS)

    Vially, Roland; Hureau, Geoffroy

    2013-12-01

    Spending on exploration increased significantly in 2012, and this growth should continue into 2013. Over a period of ten years, exploration budgets have increased five-fold, leading to major discoveries in regions as yet unexplored. In 2012, 25 billion barrels of oil equivalent (Gboe) were revealed. This is more than the average for the whole decade, but less than the amount for the previous year. Although knowledge of the volumes that have been discovered is still very fragmented, they should continue to fall into 2013. The main reason lies in the fact that spending on exploration is being shifted towards assessing discoveries made in previous years in the particularly prolific basins of Brazil and East Africa, while the exploration of border regions - such as the West African pre-salt formation - is still only in its early stages. (authors)

  13. Polonium: 110th anniversary of its discovery

    International Nuclear Information System (INIS)

    Mould, R. F.

    2008-01-01

    It is appropriate that the 110 Th anniversary of the discovery of polonium by Marie and Pierre Curie is commemorated in a Polish journal since this element was named for Poland and was also the element discovered by the Curies before they discovered radium. Polonium's discovery and characteristics are described. Polonium has never been used in medicine, and was largely forgotten apart from a few minor industrial uses, and as a trigger for a nuclear weapon, until the murder in November 2006 in London using 210 Polonium, of the ex-KGB officer Alexander Litvinenko. Polonium had previously been linked, without any definite proof, with the deaths of a few scientists who had worked with the element, including Irene and Frederick Joliet-Curie. This review ends with possible evidence for such links. (authors)

  14. Discovery and Selection of Semantic Web Services

    CERN Document Server

    Wang, Xia

    2013-01-01

    For advanced web search engines to be able not only to search for semantically related information dispersed over different web pages, but also for semantic services providing certain functionalities, discovering semantic services is the key issue. Addressing four problems of current solution, this book presents the following contributions. A novel service model independent of semantic service description models is proposed, which clearly defines all elements necessary for service discovery and selection. It takes service selection as its gist and improves efficiency. Corresponding selection algorithms and their implementation as components of the extended Semantically Enabled Service-oriented Architecture in the Web Service Modeling Environment are detailed. Many applications of semantic web services, e.g. discovery, composition and mediation, can benefit from a general approach for building application ontologies. With application ontologies thus built, services are discovered in the same way as with single...

  15. Golden Jubilee photos: A gargantuan discovery

    CERN Multimedia

    2004-01-01

    In July 1973, a groundbreaking discovery was announced in CERN's Main Auditorium: the Gargamelle group had found proof of the weak neutral current. The discovery confirmed the electroweak theory, which had predicted that the weak force and the electromagnetic force were different facets of the same interaction. This paved the way for the Grand Unified Theory, which holds that just after the birth of the Universe all forces were actually the same... Gargamelle, whose "body" now reposes in the Microcosm garden, was a huge bubble chamber weighing around 1000 tonnes, filled with 18 tonnes of liquid freon. Its size, worthy of the giant Gargantua - the son of Gargamelle - was mighty enough to catch neutrinos, the elusive neutral particles which career through space without leaving any tracks. In the photograph, an unseen neutrino interacts with an electron and emerges as a neutrino instead of changing into a muon - what is seen (vertically) is the track of the electron. This lepton event offers p...

  16. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  17. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  18. Bioenergy Knowledge Discovery Framework Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-07-01

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  19. The discovery of the electric current

    Science.gov (United States)

    Cotti, Piero

    1995-02-01

    The first battery, the so called voltaic pile, turns out to be the only and hidden entrance to the world of electrodynamics. It was not until 20 years after Alessandro Volta's discovery that the realisation came that the sensational novelty of the voltaic pile was not the permanent voltage source but the current source. This was not to be expected, and had, therefore, not been searched for specifically, but, rather had been found through a great deal of luck and coincidence in experimentation.

  20. Using Discovery Learning to Encourage Creative Thinking

    OpenAIRE

    Mardia Hi. Rahman

    2017-01-01

    Creative thinking ability development is needed to be implemented by every educator including lecturers to their students. Therefore, they need to seriously act and design their learning process. One of the ways to develop student’s creative thinking is using discovery learning model. This research is conducted in physics education study program in 2016 with students who took learning and teaching class as research subject. From the research analysis result and discussion, it can be concluded...

  1. Financing drug discovery for orphan diseases

    OpenAIRE

    Fagnan, David Erik; Gromatzky, Austin A.; Stein, Roger Mark; Fernandez, Jose-Maria; Lo, Andrew W.

    2014-01-01

    Recently proposed ‘megafund’ financing methods for funding translational medicine and drug development require billions of dollars in capital per megafund to de-risk the drug discovery process enough to issue long-term bonds. Here, we demonstrate that the same financing methods can be applied to orphan drug development but, because of the unique nature of orphan diseases and therapeutics (lower development costs, faster FDA approval times, lower failure rates and lower correlation of failures...

  2. The discovery of the top quark

    International Nuclear Information System (INIS)

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the Τ resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark

  3. The Discovery of the Top Quark

    Science.gov (United States)

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  4. Discovery of peptidic anti-­myotoxins

    DEFF Research Database (Denmark)

    Bjärtun, Johanna; Laustsen, Andreas Hougaard; Munk, Andreas

    More than 2.5 millions envenomations and 125.000 death occur each year due to snakebite. Current antivenoms consist of immunoglobulinesderived from animals, and they are therefore associated with a high risk of adverse reactions in humans. The use of synthetic peptidic antitoxinsmay lead to safer...... and more effective antivenoms. This research reports the discovery of peptidic antitoxins against myotoxin II from B. asper....

  5. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery....

  6. New discoveries in Upper and Middle Magdalena

    International Nuclear Information System (INIS)

    Carta Petrolera

    1998-01-01

    In six association contracts and one risk participation contract may give Colombia the possibility of finding new oil reserves. These prospects, located in the Upper and Middle Magdalena Valleys and the Eastern Plains. the completion process, evaluation, confirmation and commercialization should be in the next two years, these new discoveries also reveal interesting geological aspects; some in fractured limestone, similar to the found at Maracaibo lake in Venezuela, where vast oil fields were discovered

  7. Directional genomic hybridization for chromosomal inversion discovery and detection.

    Science.gov (United States)

    Ray, F Andrew; Zimmerman, Erin; Robinson, Bruce; Cornforth, Michael N; Bedford, Joel S; Goodwin, Edwin H; Bailey, Susan M

    2013-04-01

    Chromosomal rearrangements are a source of structural variation within the genome that figure prominently in human disease, where the importance of translocations and deletions is well recognized. In principle, inversions-reversals in the orientation of DNA sequences within a chromosome-should have similar detrimental potential. However, the study of inversions has been hampered by traditional approaches used for their detection, which are not particularly robust. Even with significant advances in whole genome approaches, changes in the absolute orientation of DNA remain difficult to detect routinely. Consequently, our understanding of inversions is still surprisingly limited, as is our appreciation for their frequency and involvement in human disease. Here, we introduce the directional genomic hybridization methodology of chromatid painting-a whole new way of looking at structural features of the genome-that can be employed with high resolution on a cell-by-cell basis, and demonstrate its basic capabilities for genome-wide discovery and targeted detection of inversions. Bioinformatics enabled development of sequence- and strand-specific directional probe sets, which when coupled with single-stranded hybridization, greatly improved the resolution and ease of inversion detection. We highlight examples of the far-ranging applicability of this cytogenomics-based approach, which include confirmation of the alignment of the human genome database and evidence that individuals themselves share similar sequence directionality, as well as use in comparative and evolutionary studies for any species whose genome has been sequenced. In addition to applications related to basic mechanistic studies, the information obtainable with strand-specific hybridization strategies may ultimately enable novel gene discovery, thereby benefitting the diagnosis and treatment of a variety of human disease states and disorders including cancer, autism, and idiopathic infertility.

  8. Discovery and Development of Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Théophile Godfraind

    2017-05-01

    Full Text Available In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan and Heibrunn (USA experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are

  9. Biomimicry as a basis for drug discovery.

    Science.gov (United States)

    Kolb, V M

    1998-01-01

    Selected works are discussed which clearly demonstrate that mimicking various aspects of the process by which natural products evolved is becoming a powerful tool in contemporary drug discovery. Natural products are an established and rich source of drugs. The term "natural product" is often used synonymously with "secondary metabolite." Knowledge of genetics and molecular evolution helps us understand how biosynthesis of many classes of secondary metabolites evolved. One proposed hypothesis is termed "inventive evolution." It invokes duplication of genes, and mutation of the gene copies, among other genetic events. The modified duplicate genes, per se or in conjunction with other genetic events, may give rise to new enzymes, which, in turn, may generate new products, some of which may be selected for. Steps of the inventive evolution can be mimicked in several ways for purpose of drug discovery. For example, libraries of chemical compounds of any imaginable structure may be produced by combinatorial synthesis. Out of these libraries new active compounds can be selected. In another example, genetic system can be manipulated to produce modified natural products ("unnatural natural products"), from which new drugs can be selected. In some instances, similar natural products turn up in species that are not direct descendants of each other. This is presumably due to a horizontal gene transfer. The mechanism of this inter-species gene transfer can be mimicked in therapeutic gene delivery. Mimicking specifics or principles of chemical evolution including experimental and test-tube evolution also provides leads for new drug discovery.

  10. Discovery and History of Amino Acid Fermentation.

    Science.gov (United States)

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  11. Performance Evaluation of Frequent Subgraph Discovery Techniques

    Directory of Open Access Journals (Sweden)

    Saif Ur Rehman

    2014-01-01

    Full Text Available Due to rapid development of the Internet technology and new scientific advances, the number of applications that model the data as graphs increases, because graphs have highly expressive power to model a complicated structure. Graph mining is a well-explored area of research which is gaining popularity in the data mining community. A graph is a general model to represent data and has been used in many domains such as cheminformatics, web information management system, computer network, and bioinformatics, to name a few. In graph mining the frequent subgraph discovery is a challenging task. Frequent subgraph mining is concerned with discovery of those subgraphs from graph dataset which have frequent or multiple instances within the given graph dataset. In the literature a large number of frequent subgraph mining algorithms have been proposed; these included FSG, AGM, gSpan, CloseGraph, SPIN, Gaston, and Mofa. The objective of this research work is to perform quantitative comparison of the above listed techniques. The performances of these techniques have been evaluated through a number of experiments based on three different state-of-the-art graph datasets. This novel work will provide base for anyone who is working to design a new frequent subgraph discovery technique.

  12. Pathways to new drug discovery in neuropsychiatry

    Directory of Open Access Journals (Sweden)

    Berk Michael

    2012-11-01

    Full Text Available Abstract There is currently a crisis in drug discovery for neuropsychiatric disorders, with a profound, yet unexpected drought in new drug development across the spectrum. In this commentary, the sources of this dilemma and potential avenues to redress the issue are explored. These include a critical review of diagnostic issues and of selection of participants for clinical trials, and the mechanisms for identifying new drugs and new drug targets. Historically, the vast majority of agents have been discovered serendipitously or have been modifications of existing agents. Serendipitous discoveries, based on astute clinical observation or data mining, remain a valid option, as is illustrated by the suggestion in the paper by Wahlqvist and colleagues that treatment with sulfonylurea and metformin reduces the risk of affective disorder. However, the identification of agents targeting disorder-related biomarkers is currently proving particularly fruitful. There is considerable hope for genetics as a purist, pathophysiologically valid pathway to drug discovery; however, it is unclear whether the science is ready to meet this promise. Fruitful paradigms will require a break from the orthodoxy, and creativity and risk may well be the fingerprints of success. See related article http://www.biomedcentral.com/1741-7015/10/150

  13. Systems Pharmacology in Small Molecular Drug Discovery

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-02-01

    Full Text Available Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity, target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.

  14. A Technique Socratic Questioning-Guided Discovery

    Directory of Open Access Journals (Sweden)

    M. Hakan Türkçapar

    2012-03-01

    Full Text Available “Socratic Method” is a way of teaching philosophical thinking and knowledge by asking questions which was used by antique period greek philosopher Socrates. Socrates was teaching knowledge to his followers by asking questions and the conversation between them was named “Socratic Dialogues”. In this meaning, no novel knowledge is taught to the individual but only what is formerly known is reminded and rediscovered. The form of socratic questioning which is used during the process of cognitive behavioral therapy is known as Guided Discovery. In this method it is aimed to make the client notice the piece of knowledge which he could notice but is not aware with a series of questions. Socratic method or guided discovery consists of several steps which are: Identifying the problem by listening to the client and making reflections, finding alternatives by examining and evaluating, reidentification by using the newly found information and questioning the old distorted belief and reaching to a conclusion and applying it. Question types used during these procedures are, questions for gaining information, questions revealing the meanings, questions revealing the beliefs, questions about behaviours during the similar past experiences, analyse questions and analytic synthesis questions. In order to make the patient feel understood it is important to be empathetic and summarising the problem during the interview. In this text, steps of Socratic Questioning-Guided Discovery will be reviewed with sample dialogues after each step

  15. Engineering stem cell niches in bioreactors

    OpenAIRE

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  16. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    Science.gov (United States)

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  17. Mining manufacturing data for discovery of high productivity process characteristics.

    Science.gov (United States)

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  18. Scientific Discoveries: What Is Required for Lasting Impact.

    Science.gov (United States)

    Lømo, Terje

    2016-01-01

    I have been involved in two scientific discoveries of some impact. One is the discovery of long-term potentiation (LTP), the phenomenon that brief, high-frequency impulse activity at synapses in the brain can lead to long-lasting increases in their efficiency of transmission. This finding demonstrated that synapses are plastic, a property thought to be necessary for learning and memory. The other discovery is that nerve-evoked muscle impulse activity, rather than putative trophic factors, controls the properties of muscle fibers. Here I describe how these two discoveries were made, the unexpected difficulties of reproducing the first discovery, and the controversies that followed the second discovery. I discuss why the first discovery took many years to become generally recognized, whereas the second caused an immediate sensation and entered textbooks and major reviews but is now largely forgotten. In the long run, discovering a new phenomenon has greater impact than falsifying a popular hypothesis.

  19. In vitro differentiation of mouse embryonic stem cells into functional ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... hepatocyte transplantation therapy and toxicity screening in drug discovery. Key words: Embryonic stem cells, hepatic-like cells, in vitro differentiation, sodium butyrate, ... from embryonic stem (ES) cell or induced pluripotent.

  20. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  1. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  2. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery

    Directory of Open Access Journals (Sweden)

    Nicholas Ekow Thomford

    2018-05-01

    Full Text Available The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of “active compound” has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of ‘organ-on chip’ and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug

  3. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery.

    Science.gov (United States)

    Thomford, Nicholas Ekow; Senthebane, Dimakatso Alice; Rowe, Arielle; Munro, Daniella; Seele, Palesa; Maroyi, Alfred; Dzobo, Kevin

    2018-05-25

    The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review

  4. Utility of Glioblastoma Patient-Derived Orthotopic Xenografts in Drug Discovery and Personalized Therapy

    Directory of Open Access Journals (Sweden)

    Michele Patrizii

    2018-02-01

    Full Text Available Despite substantial effort and resources dedicated to drug discovery and development, new anticancer agents often fail in clinical trials. Among many reasons, the lack of reliable predictive preclinical cancer models is a fundamental one. For decades, immortalized cancer cell cultures have been used to lay the groundwork for cancer biology and the quest for therapeutic responses. However, cell lines do not usually recapitulate cancer heterogeneity or reveal therapeutic resistance cues. With the rapidly evolving exploration of cancer “omics,” the scientific community is increasingly investigating whether the employment of short-term patient-derived tumor cell cultures (two- and three-dimensional and/or patient-derived xenograft models might provide a more representative delineation of the cancer core and its therapeutic response. Patient-derived cancer models allow the integration of genomic with drug sensitivity data on a personalized basis and currently represent the ultimate approach for preclinical drug development and biomarker discovery. The proper use of these patient-derived cancer models might soon influence clinical outcomes and allow the implementation of tailored personalized therapy. When assessing drug efficacy for the treatment of glioblastoma multiforme (GBM, currently, the most reliable models are generated through direct injection of patient-derived cells or more frequently the isolation of glioblastoma cells endowed with stem-like features and orthotopically injecting these cells into the cerebrum of immunodeficient mice. Herein, we present the key strengths, weaknesses, and potential applications of cell- and animal-based models of GBM, highlighting our experience with the glioblastoma stem-like patient cell-derived xenograft model and its utility in drug discovery.

  5. BCL-2: Long and winding path from discovery to therapeutic target

    International Nuclear Information System (INIS)

    Schenk, Robyn L.; Strasser, Andreas; Dewson, Grant

    2017-01-01

    In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients. - Highlights: • BCL-2 proteins control the intrinsic or mitochondrial pathway of apoptosis. • Defective apoptosis is a hallmark of cancer. • BH3-mimetics inhibit pro-survival BCL-2 proteins to induce cancer cell death. • ABT-199/venetoclax is approved for treatment of chronic lymphocytic leukaemia.

  6. Controlling the Rate of GWAS False Discoveries.

    Science.gov (United States)

    Brzyski, Damian; Peterson, Christine B; Sobczyk, Piotr; Candès, Emmanuel J; Bogdan, Malgorzata; Sabatti, Chiara

    2017-01-01

    With the rise of both the number and the complexity of traits of interest, control of the false discovery rate (FDR) in genetic association studies has become an increasingly appealing and accepted target for multiple comparison adjustment. While a number of robust FDR-controlling strategies exist, the nature of this error rate is intimately tied to the precise way in which discoveries are counted, and the performance of FDR-controlling procedures is satisfactory only if there is a one-to-one correspondence between what scientists describe as unique discoveries and the number of rejected hypotheses. The presence of linkage disequilibrium between markers in genome-wide association studies (GWAS) often leads researchers to consider the signal associated to multiple neighboring SNPs as indicating the existence of a single genomic locus with possible influence on the phenotype. This a posteriori aggregation of rejected hypotheses results in inflation of the relevant FDR. We propose a novel approach to FDR control that is based on prescreening to identify the level of resolution of distinct hypotheses. We show how FDR-controlling strategies can be adapted to account for this initial selection both with theoretical results and simulations that mimic the dependence structure to be expected in GWAS. We demonstrate that our approach is versatile and useful when the data are analyzed using both tests based on single markers and multiple regression. We provide an R package that allows practitioners to apply our procedure on standard GWAS format data, and illustrate its performance on lipid traits in the North Finland Birth Cohort 66 cohort study. Copyright © 2017 by the Genetics Society of America.

  7. The discovery of X-rays

    International Nuclear Information System (INIS)

    Farmelo, G.

    1995-01-01

    This paper relates the discovery of X-rays by Wilhelm Roentgen in november 1895 and the successive experiments carried out by the German searcher to try to identify the origin of the X radiations. Part of his biography is described, his curriculum at the university, his first experiments with cathodic rays, the first human body radiography and the radiography of various materials. In 1901, Roentgen received the first Nobel price just after being promoted to the rank of professor at the University of Munchen. (J.S.). 2 photos

  8. Advances in knowledge discovery in databases

    CERN Document Server

    Adhikari, Animesh

    2015-01-01

    This book presents recent advances in Knowledge discovery in databases (KDD) with a focus on the areas of market basket database, time-stamped databases and multiple related databases. Various interesting and intelligent algorithms are reported on data mining tasks. A large number of association measures are presented, which play significant roles in decision support applications. This book presents, discusses and contrasts new developments in mining time-stamped data, time-based data analyses, the identification of temporal patterns, the mining of multiple related databases, as well as local patterns analysis.  

  9. Big Data for cardiology: novel discovery?

    Science.gov (United States)

    Mayer-Schönberger, Viktor

    2016-03-21

    Big Data promises to change cardiology through a massive increase in the data gathered and analysed; but its impact goes beyond improving incrementally existing methods. The potential of comprehensive data sets for scientific discovery is examined, and its impact on the scientific method generally and cardiology in particular is posited, together with likely consequences for research and practice. Big Data in cardiology changes how new insights are being discovered. For it to flourish, significant modifications in the methods, structures, and institutions of the profession are necessary. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. Solar System Moons Discovery and Mythology

    CERN Document Server

    Blunck, Jürgen

    2010-01-01

    Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet's satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume.

  11. Pulsed laser deposition—invention or discovery?

    International Nuclear Information System (INIS)

    Venkatesan, T

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high T c superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology. (paper)

  12. Oncology drug discovery: planning a turnaround.

    Science.gov (United States)

    Toniatti, Carlo; Jones, Philip; Graham, Hilary; Pagliara, Bruno; Draetta, Giulio

    2014-04-01

    We have made remarkable progress in our understanding of the pathophysiology of cancer. This improved understanding has resulted in increasingly effective targeted therapies that are better tolerated than conventional cytotoxic agents and even curative in some patients. Unfortunately, the success rate of drug approval has been limited, and therapeutic improvements have been marginal, with too few exceptions. In this article, we review the current approach to oncology drug discovery and development, identify areas in need of improvement, and propose strategies to improve patient outcomes. We also suggest future directions that may improve the quality of preclinical and early clinical drug evaluation, which could lead to higher approval rates of anticancer drugs.

  13. 60 years of CERN experiments and discoveries

    CERN Document Server

    Di Lella, Luigi

    2015-01-01

    The book contains a description of the most important experimental results achieved at CERN during the past 60 years, from the mid-1950s to the latest discovery of the Higgs particle. It covers the results from early accelerators at CERN to the most recent results at the LHC and thus provides an excellent review of the achievements of this outstanding laboratory. It reflects not only the impressive scientific progress achieved during the past six decades but demonstrates also the special way of successful international collaboration developed at CERN.

  14. Pulsar discovery by global volunteer computing.

    Science.gov (United States)

    Knispel, B; Allen, B; Cordes, J M; Deneva, J S; Anderson, D; Aulbert, C; Bhat, N D R; Bock, O; Bogdanov, S; Brazier, A; Camilo, F; Champion, D J; Chatterjee, S; Crawford, F; Demorest, P B; Fehrmann, H; Freire, P C C; Gonzalez, M E; Hammer, D; Hessels, J W T; Jenet, F A; Kasian, L; Kaspi, V M; Kramer, M; Lazarus, P; van Leeuwen, J; Lorimer, D R; Lyne, A G; Machenschalk, B; McLaughlin, M A; Messenger, C; Nice, D J; Papa, M A; Pletsch, H J; Prix, R; Ransom, S M; Siemens, X; Stairs, I H; Stappers, B W; Stovall, K; Venkataraman, A

    2010-09-10

    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.

  15. Discovery of convoys in trajectory databases

    DEFF Research Database (Denmark)

    Jeung, Hoyoung; Yiu, Man Lung; Zhou, Xiaofang

    2008-01-01

    a group of objects that have traveled together for some time. More specifically, this paper formalizes the concept of a convoy query using density-based notions, in order to capture groups of arbitrary extents and shapes. Convoy discovery is relevant for real-life applications in throughput planning...... convoys are further processed to obtain the actual convoys. Our comprehensive empirical study offers insight into the properties of the paper's proposals and demonstrates that the proposals are effective and efficient on real-world trajectory data....

  16. 3D in vitro technology for drug discovery.

    Science.gov (United States)

    Hosseinkhani, Hossein

    2012-02-01

    Three-dimensional (3D) in vitro systems that can mimic organ and tissue structure and function in vivo, will be of great benefit for a variety of biological applications from basic biology to toxicity testing and drug discovery. There have been several attempts to generate 3D tissue models but most of these models require costly equipment, and the most serious disadvantage in them is that they are too far from the mature human organs in vivo. Because of these problems, research and development in drug discovery, toxicity testing and biotech industries are highly expensive, and involve sacrifice of countless animals and it takes several years to bring a single drug/product to the market or to find the toxicity or otherwise of chemical entities. Our group has been actively working on several alternative models by merging biomaterials science, nanotechnology and biological principles to generate 3D in vitro living organs, to be called "Human Organs-on-Chip", to mimic natural organ/tissues, in order to reduce animal testing and clinical trials. We have fabricated a novel type of mechanically and biologically bio-mimicking collagen-based hydrogel that would provide for interconnected mini-wells in which 3D cell/organ culture of human samples in a manner similar to human organs with extracellular matrix (ECM) molecules would be possible. These products mimic the physical, chemical, and biological properties of natural organs and tissues at different scales. This paper will review the outcome of our several experiments so far in this direction and the future perspectives.

  17. The in silico drug discovery toolbox: applications in lead discovery and optimization.

    Science.gov (United States)

    Bruno, Agostino; Costantino, Gabriele; Sartori, Luca; Radi, Marco

    2017-11-06

    Discovery and development of a new drug is a long lasting and expensive journey that takes around 15 years from starting idea to approval and marketing of new medication. Despite the R&D expenditures have been constantly increasing in the last few years, number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. From this point of view, it is clear that if we want to increase drug-discovery success rate and reduce costs associated with development of a new drug, a comprehensive evaluation/prediction of potential safety issues should be conducted as soon as possible during early drug discovery phase. In the present review, we will analyse the early steps of drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Discovery of a New Nearby Star

    Science.gov (United States)

    Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.

    2003-01-01

    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.

  19. Discovery Mondays: crystals and particles for medicine

    CERN Multimedia

    2003-01-01

    Question: what are as heavy as lead, as clear as glass, and appear as tiny specks in a doctor's scanner but large as life in a physicist's detector? Answer: the crystals you will be able to observe in all their facets on 1 September at the start of a new season of Discovery Mondays at Microcosm. Come along and meet the CERN physicists who use crystals not only in their detectors but also in the latest generation of scanners. Four workshops will be organised, each devoted to a different medical imaging technique. The first workshop will be run by a physicist from the Crystal Clear collaboration, who will present her collaboration's special breed of crystals, which emit light when they are traversed by high-energy particles, and explain to you these crystals' role in Positron Emission Tomographs. The second workshop will focus on an imaging technique known as the Compton Camera, also based on scintillating crystals. Crystals worth looking at and admiring. Come to the next Discovery Monday to find out how they ...

  20. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.