WorldWideScience

Sample records for cell carbide precipitates

  1. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  2. Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel

    International Nuclear Information System (INIS)

    Jung, Jae-Gil; Park, June-Soo; Kim, Jiyoung; Lee, Young-Kook

    2011-01-01

    Highlights: → Carbide precipitation kinetic was fastest at 950 deg. C and accelerated by strain. → Nucleation sites for (Nb,Ti)C above 950 deg. C were mainly undissolved (Ti,Nb)(C,N). → Strain enabled (Nb,Ti)C to nucleate on all sides of (Ti,Nb)(C,N) above 950 deg. C. → Strain changed nucleation sites from (Ti,Nb)(C,N) to dislocations below 900 deg. C. → Strain also accelerated the change in particle composition to equilibrium one. - Abstract: The isothermal precipitation kinetics of carbides in both strain-free and strained austenite (γ) of a microalloyed steel were quantitatively investigated through the electrical resistivity and transmission electron microscopy. The (Nb,Ti)C carbides at the interfaces of the undissolved (Ti,Nb)(C,N) carbonitrides were observed at all temperatures in strain-free γ. However, for strain-induced precipitation, above 950 deg. C, the precipitation of (Nb,Ti)C carbides near the undissolved (Ti,Nb)(C,N) carbonitrides was predominant due to the recrystallization of strained γ. Meanwhile, the fine (Nb,Ti,V)C carbides were homogeneously precipitated in non-recrystallized γ at 850 deg. C and 900 deg. C, as well as near the undissolved (Ti,Nb)(C,N) particles. The electrical resistivity method was successfully used to quantitatively measure the isothermal precipitation kinetics of carbides in both strain-free and strained γ. The precipitation-time-temperature diagrams of the carbide in strain-free and strained γ, with nose temperatures of 950 deg. C, were generated and the precipitation kinetics were greatly accelerated by the applied strain.

  3. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  4. The effect of precipitated carbides on the pitting corrosion of 304 stainless steel

    International Nuclear Information System (INIS)

    Kwak, Jai-Hyun; Kim, Kwan-Hun

    1985-01-01

    In order to investigate the relation between the pitting corrosion and precipitated carbides, the heat treatment of specimens was carried out in two ways: Solution treatment and carbides precipitation treatment. The experiment was focused on the polarization curves of specimens immersed in HCL solution and on the microscopic analysis of the corroded specimens through a potentiodynamic method. It was found out that the intergranular and pitting corrosion occurred remarkably in 0.1N and 1N KCL solution when carbides were precipitated around the grain boundary of the 304 stain steel. The intergranular corrosion was noticed in the region of passivation and the pitting was prominent in the region of passivation break-down. The distribution of pits on the solution treated 304 stainless steel was random, while that of pits on carbides precipitated specimen was concentrated around the grain boundary in 0.1N and 1N HCL solution. It was ascertained that the pitting resistance of the solution treated 304 stainless steel was better than that of carbides precipitated specimen. (Author)

  5. Precipitation hardening of a FeMnC TWIP steel by vanadium carbides

    International Nuclear Information System (INIS)

    Chateau, J P; Dumay, A; Jacques, A; Allain, S

    2010-01-01

    A fine precipitation of spherical vanadium carbides is obtained in a Fe22Mn0.6C base steel during the final recrystallisation heat treatment. Precipitates formed in recrystallised grains have a cube-cube orientation relation with the matrix, confirmed by Moire patterns observed in TEM. The theoretical size for loss of coherency is below the nm, much lower than the precipitates' size. Deformation contrasts were observed around the precipitates and their residual coherency was measured. It was shown to decrease when the carbides' size increases, to vanish above 30 nm. The net increase of the yield stress was estimated to be 140 MPa. Precipitation hardening by vanadium carbides do not alter the strain hardening rate by TWIP effect, as they do not seem to act as obstacles for the propagation of microtwins.

  6. The precipitation behavior of titanium carbide on the surface of SUS 321 stainless steel

    International Nuclear Information System (INIS)

    Yoshihara, Kazuhiro; Nii, Kazuyoshi

    1982-01-01

    The surface composition of SUS 321 stainless steel at high temperatures was observed in vacuum with Auger electron spectroscopy. The precipitation of titanium carbide was found on the surface of SUS 321. The thickness of precipitated titanium carbide layer increased in proportion to the square root of annealing time and became about 0.05 μm after heated at 1100 K for 432 ks. The precipitated titanium carbide was not replaced by the most surface active element sulfur, and remained stable on the surface. The precipitated layer, however, was not even and had many holes about 1 μm in diameter. The bottom of a hole was SUS 321, on which phosphorus, oxygen and sulfur segregated. As the annealing time was prolonged, these segregants were replaced one by one in the order of the surface activity, and finally the most surface active element, sulfur, remained on the bottom of the hole. Moreover, sulfur diffused over the outside of the hole. The precipitation of titanium carbide on the surface occurred according to the following processes: (1) The titanium and carbon which had been dissolved in the bulk diffused onto the surface of the stainless steel. (2) The titanium carbide which had been precipitated in the bulk dissolved because the concentration of titanum and carbon fell under their solubility limits in the bulk. (3) The titanium and carbon diffused onto the surface which was exposed to vacuum. (4) The titanium and carbon recombined into titanium carbide and precipitated on the surface. The growth rate of the thickness of the precipitated layer was controlled by the diffusion of titanium and carbon in the precipitated titanium carbide. (J.P.N.)

  7. Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690

    International Nuclear Information System (INIS)

    Sarver, J.M.; Crum, J.R.; Mankins, W.L.

    1987-01-01

    Intergranular carbide precipitation reactions have been shown to affect the stress corrosion cracking (SCC) resistance of nickel-chromium-iron alloys in environments relative to nuclear steam generators. Carbon solubility curves, time-temperature-sensitization plots and other carbide precipitation data are presented for alloy 690 as an aid in developing heat treatments for improved SCC resistance

  8. Effect of magnetic field on the carbide precipitation during tempering of a molybdenum-containing steel

    International Nuclear Information System (INIS)

    Hou, T.P.; Li, Y.; Zhang, J.J.; Wu, K.M.

    2012-01-01

    The influence of a high magnetic field on the carbide precipitation during the tempering of an Fe–2.8C–3.0Mo(wt%) steel was investigated. As-quenched steels were tempered at 200 °C for various times with and without the presence of 12-T magnetic field. The applied field effectively promoted the precipitation of the relatively high-temperature monoclinic χ-Fe 5 C 2 carbide, compared to the usual ε-Fe 2 C and η-Fe 2 C carbides precipitated without magnetic field. It is believed that the effect of applying a magnetic field is due to the reduction in the Gibbs free energy of the relatively higher magnetization phase. The denser distributions of the metastable carbides are attributed to the increased nucleation rate due to additional transformation force. The dispersed precipitation strengthening compensated for the decrease of hardness due to the loss of supersaturation of carbon atoms in the matrix. - Highlights: ► Applied field promoted the precipitation of χ-Fe 5 C 2 carbide. ► Promotion of the transition carbide was attributed to its higher magnetization. ► Increase in hardness was counterbalanced by the reduction in carbon content.

  9. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  10. Thermal evolution behavior of carbides and γ′ precipitates in FGH96 superalloy powder

    International Nuclear Information System (INIS)

    Zhang Lin; Liu Hengsan; He Xinbo; Rafi-ud-din; Qu Xuanhui; Qin Mingli; Li Zhou; Zhang Guoqing

    2012-01-01

    The characteristics of rapidly solidified FGH96 superalloy powder and the thermal evolution behavior of carbides and γ′ precipitates within powder particles were investigated. It was observed that the reduction of powder size and the increase of cooling rate had transformed the solidification morphologies of atomized powder from dendrite in major to cellular structure. The secondary dendritic spacing was measured to be 1.02–2.55 μm and the corresponding cooling rates were estimated to be in the range of 1.4 × 10 4 –4.7 × 10 5 K·s −1 . An increase in the annealing temperature had rendered the phase transformation of carbides evolving from non-equilibrium MC′ carbides to intermediate transition stage of M 23 C 6 carbides, and finally to thermodynamically stable MC carbides. The superfine γ′ precipitates were formed at the dendritic boundaries of rapidly solidified superalloy powder. The coalescence, growth, and homogenization of γ' precipitates occurred with increasing annealing temperature. With decreasing cooling rate from 650 °C·K −1 to 5 °C·K −1 , the morphological development of γ′ precipitates had been shown to proceed from spheroidal to cuboidal and finally to solid state dendrites. Meanwhile, a shift had been observed from dendritic morphology to recrystallized structure between 900 °C and 1050 °C. Moreover, accelerated evolution of carbides and γ' precipitates had been facilitated by the formation of new grain boundaries which provide fast diffusion path for atomic elements. - Highlights: ► Microstructural characteristic of FGH96 superalloy powder was investigated. ► The relation between microstructure, particle size, and cooling rate was studied. ► Thermal evolution behavior of γ′ and carbides in loose FGH96 powder was studied.

  11. Quantitative Analysis on Carbide Precipitation in V-Ti Microalloyed TRIP Steel Containing Aluminum

    Directory of Open Access Journals (Sweden)

    Fu Shiyu

    2016-01-01

    Full Text Available Introducing fine precipitates is an important way to enhance the properties of transformation-induced plasticity (TRIP steels. In present work, two V-Ti microalloyed TRIP steels containing aluminum with different content were compared. The average size, size distribution and numbers of vanadium-titanium carbides in samples cold rolled, quenched after being held at 800°C and quenched after intercritical annealing at 800°C and being held at bainitic isothermal transformation temperature of 400°C were investigated by using the technique of carbon extraction replica, twin jet chemical polishing thinning and transmission electron microscopy. The carbides were identified to be (Ti,VC precipitates in steel A and VC in steel B respectively, precipitated mainly from ferrites grains. The average equivalent radius was 3~6nm. Comparison of the experimental results in A and B steel revealed low carbon diffusion rate caused by aluminum inhibited the coarsening of vanadium-titanium carbides. The experimental results also showed that VC carbides dissolution occurred during the intercritical annealing at 800°C.

  12. Precipitation behavior of the lower bainitic carbide in a medium-carbon steel containing Si, Mn and Mo

    International Nuclear Information System (INIS)

    Liu, J.; Luo, C.P.

    2006-01-01

    The fine microstructure, crystallographic features and ε-carbides precipitation behavior of lower bainite produced by isothermal transformation in a medium-carbon steel containing Si, Mn and Mo were investigated using transmission electronic microscopy. It was found that the microstructure produced by isothermal reaction at 320 deg. C was composed of a large amount of plate-like lower bainite with retained austenite embedded between the plates, and ε-carbides precipitated within them. Midrib and subunits were readily visible in the lower bainite plate. The bainite plate kept a G-T orientation relationship (OR) with the austenite. Selected area electron diffraction patterns of 'three phases in four variants' and analysis indicated that two variants of ε-carbides precipitated in a single bainitic ferrite plate. The two (or three) variants of ε-carbides can simultaneously keep a Jack OR with its 'bainite matrix', while keeping no fixed OR with the austenite. The crystallographic features of ε-carbides precipitated within the bainite were the same as those observed in tempered martensite. The results indicated that the bainitic transformation bore an analogy to the martensitic one in carbide precipitation

  13. Carbide Precipitation in 2.25 Cr-1 Mo Bainitic Steel: Effect of Heating and Isothermal Tempering Conditions

    Science.gov (United States)

    Dépinoy, Sylvain; Toffolon-Masclet, Caroline; Urvoy, Stéphane; Roubaud, Justine; Marini, Bernard; Roch, François; Kozeschnik, Ernst; Gourgues-Lorenzon, Anne-Françoise

    2017-05-01

    The effect of the tempering heat treatment, including heating prior to the isothermal step, on carbide precipitation has been determined in a 2.25 Cr-1 Mo bainitic steel for thick-walled applications. The carbides were identified using their amount of metallic elements, morphology, nucleation sites, and diffraction patterns. The evolution of carbide phase fraction, morphology, and composition was investigated using transmission electron microscopy, X-ray diffraction, as well as thermodynamic calculations. Upon heating, retained austenite into the as-quenched material decomposes into ferrite and cementite. M7C3 carbides then nucleate at the interface between the cementite and the matrix, triggering the dissolution of cementite. M2C carbides precipitate separately within the bainitic laths during slow heating. M23C6 carbides precipitate at the interfaces (lath boundaries or prior austenite grain boundaries) and grow by attracting nearby chromium atoms, which results in the dissolution of M7C3 and, depending on the temperature, coarsening, or dissolution of M2C carbides, respectively.

  14. Influence of carbide precipitation upon hydrogen fragilization of an AISI 304 steel

    International Nuclear Information System (INIS)

    Hazarabedian, A.E.; Ovejero Garcia, J.

    1991-01-01

    The present work deals with austenitic stainless steels for a family of steels that is renowned for its high resistance to hydrogen fragilization. Nevertheless, these steels may suffer hydrogen fragilization under severe working conditions. This fact is strongly dependent on many factors -composition, grain size, other phases present, corrosion sensitivity, etc.-. While there are studies that show how intergranular corrosion is influenced by corrosion sensitivity -mainly due to carbide precipitation in grain boundaries-, there are no reports about the effect of the carbide precipitation itself on hydrogen fragilization for these steels. (Author) [es

  15. In Situ Investigation of the Iron Carbide Precipitation Process in a Fe-C-Mn-Si Q&P Steel

    Directory of Open Access Journals (Sweden)

    Sébastien Y. P. Allain

    2018-06-01

    Full Text Available Quenching and Partitioning (Q&P steels are promising candidates for automotive applications because of their lightweight potential. Their properties depend on carbon enrichment in austenite which, in turn, is strongly influenced by carbide precipitation in martensite during quenching and partitioning treatment. In this paper, by coupling in situ High Energy X-Ray Diffraction (HEXRD experiments and Transmission Electron Microscopy (TEM, we give some clarification regarding the precipitation process of iron carbides in martensite throughout the Q&P process. For the first time, precipitation kinetics was followed in real time. It was shown that precipitation starts during the reheating sequence for the steel studied. Surprisingly, the precipitated fraction remains stable all along the partitioning step at 400 °C. Furthermore, the analyses enable the conclusion that the iron carbides are most probably eta carbides. The presence of cementite was ruled out, while the presence of several epsilon carbides cannot be strictly excluded.

  16. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering

    Directory of Open Access Journals (Sweden)

    Angang Ning

    2017-02-01

    Full Text Available The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1 MC and M6C, generally smaller than 200 nm; and (2 M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases.

  17. Influence of rolling direction and carbide precipitation on IGSCC susceptibility in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Chiba, Goro

    2005-01-01

    IGSCC growth behaviors of austenitic stainless steels in hydrogenated high temperature water were studied using compact type specimens (0.5T for cold worked materials). The effect of cold rolling direction, alloy composition and carbide precipitation on crack growth behaviors was studied in hydrogenated high temperature water. Then, to examine the effect of cold work and carbide precipitation on IGSCC behaviors, the role of grain boundary sliding studied in high temperature air using CT specimens. The similar dependences of carbide precipitation and cold work on IGSCC and creep behaviors suggest that grain boundary sliding might play an important role by itself or in conjunction with other reactions such as crack tip dissolution etc. (author)

  18. Carbide precipitation in the heat affected zone of a GTA weld in 21-6-9 stainless steel

    International Nuclear Information System (INIS)

    Carr, M.J.; Thorvaldson, W.G.

    1979-01-01

    Grain boundary precipitation was observed in a multipass GTA weld in 21-6-9 stainless steel. The precipitate was identified by electron diffraction as M 23 C 6 -type carbide. The presence of these carbide particles did not cause intergranular attack in standard corrosion tests

  19. SANS and TEM studies of carbide precipitation and creep damage in type 304 stainless steel

    International Nuclear Information System (INIS)

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1984-01-01

    Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) studies were performed to characterize the carbide (M 23 C 6 ) precipitation and creep damage induced in type 304 stainless steel in the primary creep stage. The size distribution of matrix carbides evaluated from SANS analyses was consistent with TEM data, and the expected accelerated kinetics of precipitation under applied stress was confirmed. Additional SANS measurements after the postcreep solution annealing were made in order to differentiate cavities from the carbides. Potential advantages and difficulties associated with characterization of creep-induced cavitation by the SANS techniques are discussed

  20. Specific features of precipitation hardening of austenitic steels with various base. 2. Kinetics and mechanism of carbide precipitation

    International Nuclear Information System (INIS)

    Kositsyna, I.I.; Sagaradze, V.V.; Khakimova, O.N.

    1997-01-01

    Electron microscopic studies were carried out to determine the kinetics and mechanisms of precipitation hardening in Fe-Mn, Fe-Mn-Cr, Fe-Cr-Mn-N, Fe-Cr-Ni and Fe-Ni base stainless steels (45G20M2F2, 50Kh16G15N6M2F2, 45Kh18N10G10M2F2, 40Kh18Ni18M2F2, 45N26M2F2). The steels were heat treated under various conditions. It is revealed that in manganese steels the particles of vanadium carbide nucleate according to homogeneous mechanism at all aging temperatures (600-750 deg C). The presence of chromium in the matrix promotes the transition to heterogeneous mechanism of carbide nucleation and growth. With nickel content increasing the plasticity of precipitation hardened steels gets better due to more intense diffusion of atoms and vacancies to grain boundaries and, hence, the widening of near-boundary zones free of carbide particles

  1. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel

    International Nuclear Information System (INIS)

    Kang, Minwoo; Park, Gyujin; Jung, Jae-Gil; Kim, Byung-Hoon; Lee, Young-Kook

    2015-01-01

    Highlights: • Unexpected Mo carbides formed during slow cooling from low annealing temperatures. • Mo carbides formed during the migration of Mo for a transition of Cr-rich carbide. • Mo carbides were precipitated at the boundaries of M 7 C 3 carbides and ferrite grains. • Annealing conditions for the precipitation of Mo carbides were discussed. - Abstract: The precipitation behavior of H13 hot-work tool steel was investigated as a function of both annealing temperature and cooling rate through thermodynamic calculations and microstructural analyses using transmission and scanning electron microscope and a dilatometer. The V-rich MC carbide and Cr-rich M 7 C 3 and M 23 C 6 carbides were observed in all annealed specimens regardless of annealing and cooling conditions, as expected from an equilibrium phase diagram of the steel used. However, Mo-rich M 2 C and M 6 C carbides were unexpectedly precipitated at a temperature between 675 °C and 700 °C during slow cooling at a rate of below 0.01 °C/s from the annealing temperatures of 830 °C and below. The solubility of Mo in both M 7 C 3 and ferrite reduces with decreasing temperature during cooling. Mo atoms diffuse out of both M 7 C 3 and ferrite, and accumulate locally at the interface between M 7 C 3 and ferrite. Mo carbides were form at the interface of M 7 C 3 carbides during the transition of Cr-rich M 7 C 3 to stable M 23 C 6

  2. Effect of carbide precipitates on high temperature creep of a 20Cr-25Ni austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamane, T.; Takahashi, Y.; Nakagawa, K.

    1984-01-01

    The high temperature creep of an austenitic stainless steel having carbide precipitates, is different from that of the carbide precipitate-free one. Strain rates of the steady state creep d(epsilonsub(s))/dt, or minimum strain rates of the creep in precipitate hardened and dispersion strengthened alloys at the creep temperature T, can be expressed by Sherby-Dorn's equation d(epsilonsub(s))/dt = Aσsup(n) exp (-Qsub(c)/RT). The stress exponent n, and the activation energy for creep Qsub(c), in a power law creep region, are more than those of unstrengthened alloys, where σ is the creep stress, R the gas constant and A the constant. In this research, the influence of carbide precipitates on steady creep rates, is investigated. Experimental details are given. Results are given and discussed. (author)

  3. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  4. New type of M23C6 carbide precipitation in an austenitic stainless steel containing niobium

    International Nuclear Information System (INIS)

    Terao, Nobuzo; Sasmal, B.

    1981-01-01

    An electron microscopic study has been made of precipitation in an austenitic stainless steel, 16Cr-16Ni-0.8Nb-1.8Mo-0.06C. Attention has been focused on structural changes which take place during long ageing treatments, extended up to 14.4 Ms (4000 h). In addition to the wellknown chromium rich M 23 C 6 carbides, which appear, together with NbC, from the beginning of the precipitation treatment at 1073 K, a new plate-like morphology of M 23 C 6 carbide precipitation was observed after long ageing treatments. These M 23 C 6 carbide plates were formed on (110) planes in regions near pre-existing undissolved NbC particles and their edges were bounded by (111) planes of the fcc alloy matrix. It is suggested that this unexpected process might be favoured by the stresses produced around the undissolved NbC particles. (author)

  5. Preplastic strain effect on chromium carbides precipitation of type 316 stainless steel during high-temperature ageing

    International Nuclear Information System (INIS)

    Mao, X.; Zhao, W.

    1992-01-01

    Long exposure of Type 316 stainless steel to elevated temperature (400-900 o C) is known to cause high-temperature embrittlement due to chromium carbides and σ-phase precipitating in grain boundaries. Numerous investigations have been published on the mechanical properties and microstructure changes occurring during such exposure. However, no investigations exist on the preplastic deformation effect on chromium carbide precipitation in the grain matrix and grain boundary during high-temperature ageing of Type 316 stainless steel and then its effects on the room-temperature tensile properties. Since the stainless steel sometimes is deformed before use at high temperatures, it is necessary to study the preplastic strain effect of the stainless steel on the microstructure change and mechanical property change during high-temperature exposure. The purpose of the present investigation was to carry out such a study. The conclusions reached are as follows. First, chromium carbides are precipitated in deformation lines (slip lines) and then the amount of chromium carbides precipitation in the grain boundary is relatively reduced in predeformed stainless steel after ageing. Secondly, plastic strain pretreatments of and subsequent ageing treatments of Type 316 stainless steel can improve its tensile ductility. Finally, secondary cracking of aged stainless steel occurs in a normal tensile test. The secondary cracking can be reduced by adding preplastic strain into the material. (Author)

  6. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Hin, C.

    2005-12-01

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in □-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  7. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  8. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations; Cinetique de precipitation heterogene du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hin, C

    2005-12-15

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in {open_square}-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  9. Precipitation of carbides in Cr – Mo – V cast steel after service and regenerative heat treatment

    Directory of Open Access Journals (Sweden)

    G. Golański

    2009-01-01

    Full Text Available The paper presents results of research on precipitation processes in chromium – molybdenum – vanadium cast steel. Theexamined material was the following cast steel grade: L21HMF and G17CrMoV5 – 10 (L17HMF after long-term operation at elevatedtemperatures and after regenerative heat treatment. Identification of precipitates was performed by means of the transmission electronmicroscope using carbon extraction replicas and thin foils. On the basis of identifications it has been proved that in the structure ofinvestigated cast steel grades, degraded by long-term operation, there are a few sorts of carbides with diverse stability, such as: M3C; M2C, M23C6, MC, M7C3. Moreover, the occurrence of compound complexes of precipitates – the so called “H-carbides” – has been revealed. Heat treatment of the examined cast steels contributed to changes in morphology and precipitation type. Whilst in the bainitic structure, obtained through heat treatment, only the occurrence of carbide types, such as: M3C; M23C6 and MC has been noticed.

  10. Effects of the carbides precipitation on the hydrogen diffusion in a low carbon steel quenched and tempered

    International Nuclear Information System (INIS)

    Luppo, M.I.; Ovejero Garcia, J.

    1996-01-01

    Hydrogen diffusivity through steels at room temperature has been known to deviate considerably from the expected Arrhenius relation. This deviation is due to the attractive interactions between dissolved hydrogen and trapping sites (imperfections in the steel lattice). In a previous work it was shown that the apparent diffusion coefficients attain a minimum value in a fresh martensite and diffusivity increases in the same material tempered at 453 k during six hours. In order to explain this difference, the variation of hydrogen trapping sites with the tempering time, at the mentioned temperature, was studied by means of hydrogen permeation tests. Carbides precipitation was followed by means of the extraction replica technique using transmission electron microscopy. The hydrogen diffusivity obtained by the hydrogen permeation tests attained a minimum value in the quenched specimens and increased with increasing tempering time up to reach a constant value between three and six hours. This change in the hydrogen diffusivity was attributed to the trapping sites decrease promoted by carbides precipitation and their precipitation kinetics was described by an Avrami equation. (author). 4 refs., 4 figs

  11. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    Science.gov (United States)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  12. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  13. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, O.A., E-mail: oscar.zambrano@correounivalle.edu.co [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Valdés, J. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Aguilar, Y. [Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Coronado, J.J.; Rodríguez, S.A. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Logé, Roland E. [Thermomechanical Metallurgy Laboratory – PX Group Chair, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-2002 Neuchâtel (Switzerland)

    2017-03-24

    The mechanical properties of Fe-Mn-Al-C steel are significantly enhanced after κ-carbide precipitation via aging; however, most aging treatments are energy demanding because they require relatively high temperatures and extended holding times. This research determined that the precipitation of these carbides can also occur within a few seconds of thermomechanical treatments (TMTs). This behaviour has not been reported post-TMTs for this steel group. Hot compression tests were performed on Fe-21Mn-11Al-1.5C-2Si wt% specimens at test temperatures ranging from 900 °C to 1150 °C and strain rates varying from 0.01 s{sup −1} to 1 s{sup −1}. The effects of strain rate and test temperature on dynamic recrystallization behaviour were evaluated. The microstructures were characterized by scanning electron microscope and electron backscatter diffraction. Hardness tests were performed before and after applying processes studied i.e., TMT and aging treatment to determine the change in hardness induced. Particularly, nanoindentation tests were also used to collect indirect evidence about the deformation mechanisms. The load-displacement curves P-h and (P/h)-h showed the occurrence of several pop-ins and slope changes related to the nucleation of dislocations and strain-induced phase transformations. The occurrence of these phenomena is discussed.

  14. Kinetics of niobium carbide precipitation in ferrite; Cinetiques de precipitation du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Gendt, D

    2001-07-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  15. Microstructural evolution of a 2.25Cr - 1 Mo steel during austenitization and temper: austenite grain growth, carbide precipitation sequence and effects on mechanical properties

    International Nuclear Information System (INIS)

    Depinoy, Sylvain

    2015-01-01

    This work aims at optimizing tensile and toughness properties of a 2.25Cr - 1Mo steel by controlling its microstructure through heat treatments. To this aim, phase transformations during austenitization, quenching and tempering have to be understood. Quantitative microstructural analyses were performed by means of SEM, TEM and XRD to characterize and model metallurgical evolution of the steel at each step of the heat treatment. The evolution of austenite during the austenitization stage, and its influence on the resulting as-quenched microstructure were thoroughly investigated. Austenite grain growth was modelled in order to understand its mechanisms, including the limited growth phenomenon observed at lower temperatures. The effect of austenitization conditions on further decomposition of austenite and on mechanical properties after quenching + tempering was experimentally determined. An optimal austenitization condition was selected and applied to study the tempering stage. Carbide precipitation was studied for various tempering temperatures and amounts of time. M3C carbides precipitate first, followed by M2C and M7C3; M23C6 are the equilibrium carbides. The influence of carbide precipitation on mechanical properties was studied. Tensile properties are closely linked to the tempering conditions in the range investigated, while impact toughness remains stable. (author) [fr

  16. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  17. Effect of carbides on the creep properties of a Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    Effect of carbides on the creep properties of a cast Ni-base superalloy M963 tested at 800 and 900 deg. C over a broad stress range has been investigated. Correlation between the carbides and creep properties of the alloy is enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During high temperature creep tests, the primary MC carbide decomposes sluggishly and a large amount of secondary carbides precipitate. The cubic and acicular M 6 C carbide precipitates at the dendritic core region. Extremely fine chromium-rich M 23 C 6 carbide precipitates preferentially at grain boundaries. The M 6 C and M 23 C 6 carbides are found to be beneficial to the creep properties of the alloy. At lower temperature (800 deg. C), the interface of MC carbide with matrix is one of the principal sites for crack initiation. At higher temperature (900 deg. C), the oxidation and the precipitation of μ phase are the main factors for significant loss in creep strength of the alloy

  18. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of grain boundary carbide precipitation

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Arioka, Koji

    2006-01-01

    In order to evaluate the influence of grain boundary carbide on IGSCC susceptibility, crack growth rate tests were performed under deaerated and 0.3 ppm hydrogenated pure water environments at 320degC using half-inch compact tension specimens. To investigate various grain boundary carbide conditions, three kinds of SUS316 - non-sensitized, sensitized at 650degC for 1 hour or 48 hours - were prepared. To examine the influence of grain boundary carbide, the grain boundary conditions of those materials were investigated by transmission electron microscopy and energy dispersive x-ray spectroscopy. As a result, (1) IGSCC crack growth was observed on non sensitized and cold worked SUS316 under deaerated and 0.3 ppm hydrogenated water environments at 320degC; (2) Any trace of IGSCC crack growth was not observed on sensitized at 650degC for 48 hours and cold worked SUS316 under the same water environments; (3) The SUS316 sensitized at 650degC for 48 hours showed extensive M 23 C 6 precipitation as well as Cr depletion at grain boundaries. These differences in IGSCC crack growth rate indicate that grain boundary carbide has the beneficial effect of improving IGSCC susceptibility, at least under deaerated and 0.3 ppm hydrogenated water environments, despite chromium depletion at the grain boundary. (author)

  19. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    Johns, M.W.

    1984-01-01

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  20. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  1. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Liu, L.R.; Jin, T.; Zhao, N.R.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2003-01-01

    Creep tests of a nickel-base single crystal superalloy with minor C addition and non-carbon were carried out at different temperatures and stresses. Correlations between microstructural change and testing temperature and stress were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the rafting microstucture and carbides precipitation. The results showed that minor carbon addition prolonged the second stage of creep strain curves and improved creep properties. Some carbide was precipitated during creep tests in modified alloy. M 23 C 6 carbide precipitated at lower temperature (871-982 deg. C), while (M 6 C) 2 carbide precipitated at higher temperature (>1000 deg. C), all of which was considered to be beneficial to creep properties. A small amount of MC carbide formed during solidification and its decomposition product (M 6 C) 1 were detrimental to mechanical properties, which together with micropores provided the site of initiation of cracks and led to the final fracture

  2. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  3. Carbides precipitated from the melt in a Zr-2.5 Nb alloy

    International Nuclear Information System (INIS)

    Piotrkowski, R.; Garcia, E.A.; Vigna, G.L.; Bermudez, S.E.

    1993-01-01

    An experimental method is presented which leads to the formation of carbides similar in size (3 to 8 microns) and composition to those observed in some pressure tubes of CANDU type reactors. The method is based on melting the Zr-2.5 Nb alloy in a graphite crucible, where isothermal C diffusion in the Zr-Nb melt took place. It can be inferred that the carbides observed in pressure tubes could be originated in high temperature stages of the manufacture process. Otherwise, they could have been incorporated in the Zr sponge. As a result of the diffusion couple Liquid Zr-2.5 Nb/Solid Graphite, a carbide layer, up to 100μm thick, grew attached to the crucible wall, together with carbide particles whose size was in the some microns range. The smallest particles were arranged in rows determined by the prior β phase grains. The main carbide phase detected was the cubic MC 1-x ; the hexagonal M 2 C was also detected; M for metal. (Author)

  4. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  5. Effect of carbides on erosion resistance of 23-8-N steel

    Indian Academy of Sciences (India)

    8-N nitronic steel, carbides present in the form of bands are observed to accelerate the erosion rate. Coarse ... lar carbides, precipitating at random boundaries, were more likely to ... 23-8-N nitronic steel is basically austenitic stainless steel.

  6. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  7. On the carbide formation in high-carbon stainless steel

    International Nuclear Information System (INIS)

    Mujahid, M.; Qureshi, M.I.

    1996-01-01

    Stainless steels containing high Cr as well as carbon contents in excess of 1.5 weight percent have been developed for applications which require high resistance erosion and environmental corrosion. Formation of carbides is one of important parameters for controlling properties of these materials especially erosion characteristics. Percent work includes the study of different type of carbides which from during the heat treatment of these materials. It has been found that precipitation of secondary carbides and the nature of matrix transformation plays an important role in determining the hardness characteristics of these materials. (author)

  8. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  9. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Jia, Z.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Copper does not significantly influence toughness. → Copper precipitation during aging occurs at dislocations. → Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of ε-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of ε-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  10. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  11. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  12. Nanocharacterisation of precipitates in austenite high manganese steels with advanced techniques: HRSTEM and DualEELS mapping

    International Nuclear Information System (INIS)

    Bobynko, J; Craven, A J; McGrouther, D; MacLaren, I; Paul, G

    2014-01-01

    To achieve optimal mechanical properties in high manganese steels, the precipitation of nanoprecipitates of vanadium and niobium carbides is under investigation. It is shown that under controlled heat treatments between 850°C and 950°C following hot deformation, few-nanometre precipitates of either carbide can be produced in test steels with suitable contents of vanadium or niobium. The structure and chemistry of these precipitates are examined in detail with a spatial resolution down to better than 1 nm using a newly commissioned scanning transmission electron microscope. In particular, it is shown that the nucleation of vanadium carbide precipitates often occurs at pre-existing titanium carbide precipitates which formed from titanium impurities in the bulk steel. This work will also highlight the links between the nanocharacterisation and changes in the bulk properties on annealing

  13. Three-dimensional studies of intergranular carbides in austenitic stainless steel.

    Science.gov (United States)

    Ochi, Minoru; Kawano, Rika; Maeda, Takuya; Sato, Yukio; Teranishi, Ryo; Hara, Toru; Kikuchi, Masao; Kaneko, Kenji

    2017-04-01

    A large number of morphological studies of intergranular carbides in steels have always been carried out in two dimensions without considering their dispersion manners. In this article, focused ion beam serial-sectioning tomography was carried out to study the correlation among the grain boundary characteristics, the morphologies and the dispersions of intergranular carbides in 347 austenitic stainless steel. More than hundred intergranular carbides were characterized in three dimensions and finally classified into three different types, two types of carbides probably semi-coherent to one of the neighboring grains with plate-type morphology, and one type of carbides incoherent to both grains with rod-type morphology. In addition, the rod-type carbide was found as the largest number of carbides among three types. Since large numbers of defects, such as misfit dislocations, may be present at the grain boundaries, which can be ideal nucleation sites for intergranular rod-type carbide precipitation. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  14. Fracture of coherent interfaces between an fcc metal matrix and the Cr23C6 carbide precipitate from first principles

    Science.gov (United States)

    Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime

    2018-02-01

    It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.

  15. Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Miriam; Zhao, Feng; Quaas, Marion; Wulff, Harm; Schroeder, Uwe; Scholz, Fritz [Universitaet Greifswald, Institut fuer Biochemie, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)

    2007-07-31

    In this communication we discuss the properties of tungsten carbide, WC, as anodic electrocatalyst for microbial fuel cell application. The electrocatalytic activity of tungsten carbide is evaluated in the light of its preparation procedure, its structural properties as well as the pH and the composition of the anolyte solution and the catalyst load. The activity of the noble-metal-free electrocatalyst towards the oxidation of several common microbial fermentation products (hydrogen, formate, lactate, ethanol) is studied for microbial fuel cell conditions (e.g., pH 5, room temperature and ambient pressure). Current densities of up to 8.8 mA cm{sup -2} are achieved for hydrogen (hydrogen saturated electrolyte solution), and up to 2 mA cm{sup -2} for formate and lactate, respectively. No activity was observed for ethanol electrooxidation. The electrocatalytic activity and chemical stability of tungsten carbide is excellent in acidic to pH neutral potassium chloride electrolyte solutions, whereas higher phosphate concentrations at neutral pH support an oxidative degradation. (author)

  16. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  17. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    International Nuclear Information System (INIS)

    Diaz Barriga-Arceo, L; Orozco, E; Garibay-Febles, V; Bucio-Galindo, L; Mendoza Leon, H; Castillo-Ocampo, P; Montoya, A

    2004-01-01

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 μm in length and 20-200 nm in diameter and 0.6-1.2 μm in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process

  18. Process for the manufacture of a fuel catalyst made of tungsten carbide for electrochemical fuel cells. Verfahren zur Herstellung eines Brennstoffkatalysators aus Wolframcarbid fuer elektrochemische Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Baresel, D.; Gellert, W.; Scharner, P.

    1982-05-19

    The invention refers to a process for the manufacture of a fuel catalyst made of tungsten carbide for the direct generation of electrical energy by the oxidation of hydrogen, formaldehyde or formic acid in electrochemical fuel cells. Tungsten carbide is obtained by carburisation of tungsten or tungsten oxide by carbon monoxide. The steps of the process are as follows: dissolving the commercial-quality tungstic acid in ammonium hydroxide; precipitating the tungstic acid with concentrated hydrochloric acid; drying in a vacuum and then heating to 200/sup 0/C to remove the water of crystallisation forming tungsten trioxide; and mixing the tungsten trioxide with zinc powder and heating to 600/sup 0/C. The zinc oxide is dissolved with hydrochloric acid after cooling. The finely divided tungsten obtained in this way is converted with carbon monoxide in a quartz tube at 700/sup 0/C.

  19. Kinetics of M23C6 carbide growth in Type 316 stainless steel

    International Nuclear Information System (INIS)

    Skyrme, G.; Norbury, J.

    1980-11-01

    A mathematical model has been developed which describes the kinetics of the reduction in the dissolved carbon concentration in austenitic steels due to the precipitation of M 23 C 6 . It is assumed that carbon and chromium diffuse simultaneously and independently to carbide nucleation sites, and that at the carbide/matrix interface (a) the ratio of the fluxes of carbon and chromium is constant, and (b) the elements are in thermodynamic equilibrium. Two types of nucleation site have been considered, (a) at grain boundaries and (b) as isolated particles throughout the grains. Since the diffusion coefficient of carbon is several orders of magnitude greater than that of chromium, the carbon is shown to respond relatively rapidly to concentration changes and this fact has facilitated the formulation of approximate solutions to the equations. It is shown that the rate controlling process is the diffusion of chromium to the carbide site. The resultant equations are compared with available published data on carbide precipitation. Good agreement is found between the models and experimental observations. (U.K.)

  20. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  1. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  2. The carbide M7C3 in low-temperature-carburized austenitic stainless steel

    International Nuclear Information System (INIS)

    Ernst, Frank; Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H.

    2011-01-01

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M 7 C 3 (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M 5 C 2 under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  3. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  4. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC, 4301 Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-08-25

    Highlights: {yields} Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. {yields} Distribution of precipitates was analyzed with microscopy and diffraction pattern. {yields} During austenite-ferrite transformation, interface precipitation of NbC was observed. {yields} Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo{sub 2}C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1]{sub NbC}//[0 0 1]{sub {alpha}-Fe}, implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  5. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels

    International Nuclear Information System (INIS)

    Jia, Z.; Misra, R.D.K.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Precipitation and mechanical behavior of Ti-Nb and Ti-Nb-Mo-V steels were elucidated. → Distribution of precipitates was analyzed with microscopy and diffraction pattern. → During austenite-ferrite transformation, interface precipitation of NbC was observed. → Epitaxial precipitation of NbC on TiC surface results in mixed precipitates Ti(Nb)C. - Abstract: We describe here the precipitation behavior and mechanical properties of 560 MPa Ti-Nb and 770 MPa Ti-Nb-Mo-V steels. The precipitation characteristics were analyzed in terms of chemistry and size distribution of precipitates, with particular focus on the crystallography of precipitates through an analysis of electron diffraction patterns. In addition to pure carbides (NbC, TiC, Mo 2 C, and VC), Nb containing titanium-rich carbides were also observed. These precipitates were of a size range of 4-20 nm. The mechanism of formation of these Ti-rich niobium containing carbides is postulated to involve epitaxial nucleation of NbC on previously precipitated TiC. Interface precipitation of NbC was an interesting observation in compact strip processing which is characterized by an orientation relationship of [0 0 1] NbC //[0 0 1] α-Fe , implying that the precipitation of NbC occurred during austenite-ferrite transformation.

  6. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    International Nuclear Information System (INIS)

    Cabrol, E.; Bellot, C.; Lamesle, P.; Delagnes, D.; Povoden-Karadeniz, E.

    2013-01-01

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system

  7. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cabrol, E., E-mail: ecabrol@mines-albi.fr [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Aubert and Duval, BP1 F-63770 Les Ancizes (France); Bellot, C. [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Aubert and Duval, BP1 F-63770 Les Ancizes (France); Lamesle, P.; Delagnes, D. [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Povoden-Karadeniz, E. [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria)

    2013-04-15

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system.

  8. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    The correlation of defect energies with precipitation of the ferromagnetic phase near M{sub 23}C{sub 6} carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M{sub 23}C{sub 6} carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  9. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    International Nuclear Information System (INIS)

    Tsukada, Yuhki; Shiraki, Atsuhiro; Murata, Yoshinori; Takaya, Shigeru; Koyama, Toshiyuki; Morinaga, Masahiko

    2010-01-01

    The correlation of defect energies with precipitation of the ferromagnetic phase near M 23 C 6 carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M 23 C 6 carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  10. The carbide M{sub 7}C{sub 3} in low-temperature-carburized austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank, E-mail: frank.ernst@cwru.edu [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States); Li, Dingqiang; Kahn, Harold; Michal, Gary M.; Heuer, Arthur H. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204 (United States)

    2011-04-15

    Prolonged low-temperature gas-phase carburization of AISI 316L-type austenitic stainless steel can cause intragranular precipitation of the carbide M{sub 7}C{sub 3} (M: randomly dispersed Fe, Cr, Ni). Transmission electron microscopy revealed that the carbide particles have the shape of needles. They grow by a ledge-migration mechanism and in a crystallographic orientation relationship to the austenite matrix that enables highly coherent interphase interfaces. A small solubility limit of Ni in the carbide and restricted Ni diffusivity at the processing temperature leads to Ni pileup around the particles and may explain the extreme aspect ratio of the particle shape. These characteristics closely resemble what has been observed earlier for precipitates of M{sub 5}C{sub 2} under slightly different processing conditions and can be rationalized by considering the particular constraints imposed by carburization at low temperature.

  11. Moessbauer study of CO-precipitated Fischer-Tropsch iron catalysts

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Bukur, D.B.; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy studies of precipitated Fischer-Tropsch (FT) iron catalysts, viz. 100 Fe/5 Cu/4.2 K/x SiO 2 , where x = 0, 8, 16, 24, 25, 40, or 100, have shown that reduction of the oxide precursor in CO gives rise to χ-carbide Fe 5 C 2 whose amount decreases with an increase of SiO 2 content. The χ-carbide is converted into magnetite Fe 3 O 4 while catalyzing the FT synthesis reaction. A correlation between FT activity and the content of χ-carbide in the catalysts was found, which indicated that χ-carbide is active for FT synthesis reaction. (orig.)

  12. MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy

    2018-04-01

    Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.

  13. Effects of the carbides precipitation on the hydrogen diffusion in a low carbon steel quenched and tempered; Efectos de la precipitacion de carburos sobre la difusion del hidrogeno en un acero de bajo carbono templado y revenido

    Energy Technology Data Exchange (ETDEWEB)

    Luppo, M I; Ovejero Garcia, J [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Materiales

    1997-12-31

    Hydrogen diffusivity through steels at room temperature has been known to deviate considerably from the expected Arrhenius relation. This deviation is due to the attractive interactions between dissolved hydrogen and trapping sites (imperfections in the steel lattice). In a previous work it was shown that the apparent diffusion coefficients attain a minimum value in a fresh martensite and diffusivity increases in the same material tempered at 453 k during six hours. In order to explain this difference, the variation of hydrogen trapping sites with the tempering time, at the mentioned temperature, was studied by means of hydrogen permeation tests. Carbides precipitation was followed by means of the extraction replica technique using transmission electron microscopy. The hydrogen diffusivity obtained by the hydrogen permeation tests attained a minimum value in the quenched specimens and increased with increasing tempering time up to reach a constant value between three and six hours. This change in the hydrogen diffusivity was attributed to the trapping sites decrease promoted by carbides precipitation and their precipitation kinetics was described by an Avrami equation. (author). 4 refs., 4 figs.

  14. Formation of vanadium carbide precipitations at the surface of alloys: Thermodynamics and kinetics aspects; Bildung von Vanadiumcarbid-Ausscheidungen auf Legierungsoberflaechen: Thermodynamische und kinetische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.; Uebing, C. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    The paper describes the formation of vanadium carbides on the surface layers of Fe-3%V-C(100) alloys. The phase diagram calculated for this alloyed material using the ThermoCalc program package reveals a co-existence of ferritic matrix and V{sub 3}C{sub 2} at temperatures of T{<=}650 C. This carbide is instable at elevated temperatures, leading to co-existence of ferrite and the cubic VC{sub 1-x}. Experimental analyses revealed the formation of a 2D VC compound in the top layers of the surface of Fe-3%V-C(100) alloys, induced by equilibrium segregation. The paper explains the usefulness of thermodynamic and kinetic calculations for interpretation of precipitation phenomena in steels. Mathematically derived and experimental results of analyses for the case of non-equilibrium segregation showed excellent agreement in the determination of carbide thickness (nanometer scale) and time dependence of segregation under fast cooling conditions. (orig./CB) [Deutsch] In der vorliegenden Arbeit wurde die Bildung von Vanadiumcarbiden auf Fe-3%V-C(100)-Legierungsoberflaechen beschrieben. Das anhand des ThermoCalc-Programmpakets fuer diese Legierungszusammensetzung berechnete Phasendiagramm zeigt bei niedrigen Temperaturen T{<=}650 C die Koexistenz von ferritischer Matrix und V{sub 3}C{sub 2}. Bei hoeheren Temperaturen ist dieses Carbid instabil und es liegt Koexistenz von Ferrit und dem kubischen VC{sub 1-x} vor. Die experimentellen Untersuchungen zeigen die Ausbildung einer zweidimensionalen VC-Oberflaechenverbindung auf Fe-3%V-C(100)-Legierungsoberflaechen durch Gleichgewichtssegregation. Diese Arbeit zeigt, dass thermodynamische und kinetische Rechnungen bei der Deutung von Ausscheidungsphaenomenen in Staehlen sinnvoll eingesetzt werden koennen. Bei der Nichtgleichgewichtssegregation wurde bezueglich Carbiddicke (im Nanometerbereich) und Zeitabhaengigkeit der Ausscheidung bei schneller Abkuehlung eine hervorragende Uebereinstimmung zwischen Simulation und Experiment gefunden

  15. Coprecipitation of M23C6 and MC type carbide under the influence of irradiation

    International Nuclear Information System (INIS)

    Kesternich, W.; Nandedkar, R.V.

    1991-01-01

    After high-temperature neutron irradiation of 1.4970 type steel, M 23 C 6 precipitation was observed in the matrix. This precipitate phase was found only at grain boundaries after thermal treatments. A unique feature of this irradiation-modified phase formation was that the M 23 C 6 precipitates nucleated at the surfaces of pre-existing MC type carbides and grew in a very unusual way by forming facetted enclosures around the primary precipitates. (orig.)

  16. Microstructural evaluation of the NbC-20Ni cemented carbides during sintering

    International Nuclear Information System (INIS)

    Rodrigues, D.; Cannizza, E.

    2016-01-01

    Full text: Fine carbides in a metallic matrix (binder) form the microstructure of the cemented carbides. Grain size and binder content are the main variables to adjust hardness and toughness. These products are produced by Powder Metallurgy, and traditional route involves mixing carbides with binder by high energy milling, pressing and sintering. During sintering, a liquid phase promotes densification, and a final relative density higher than 99% is expected. Sintering is carried out at high temperatures, and dissolution of the carbides changes the chemical composition of the binder. To control grain growth of the main carbide, which reduces hardness, small quantities of secondary carbides are used. These additives limit dissolution and precipitation of the main carbides reducing the final grain size. This paper focused the structural and chemical evolution during sintering using NbC-20Ni cermets. Mixtures of very fine NbC carbides and carbonyl Ni powders were produce by intense milling. These mixtures were pressed using uniaxial pressures from 50 to 200MPa. Shrinkage was evaluated using dilatometric measurements under an atmosphere of dynamic argon. Samples were also sintered under vacuum in high temperature industrial furnace. The sintered samples were characterized in terms of density hardness, toughness and microstructure. DRX was the main tool used to evaluate the structural evolution of the binder. In situ chemical analysis helped to understand the dissolution mechanisms. (author)

  17. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization

    International Nuclear Information System (INIS)

    Yusoff, Mahani; Othman, Radzali; Hussain, Zuhailawati

    2011-01-01

    Research highlights: → W 2 C phase was formed at short milling time while WC only appears after longer milling time. → Cu crystallite size decreased but internal strain increased with increasing milling time. → Increasing milling time induced more WC formation, thus improving the hardness of the composite. → Electrical conductivity is reduced due to powder refinement and the presence of carbide phases. -- Abstract: Elemental powders of copper (Cu), tungsten (W) and graphite (C) were mechanically alloyed in a planetary ball mill with different milling durations (0-60 h), compacted and sintered in order to precipitate hard tungsten carbide particles into a copper matrix. Both powder and sintered composite were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and assessed for hardness and electrical conductivity to investigate the effects of milling time on formation of nanostructured Cu-WC composite and its properties. No carbide peak was detected in the powder mixtures after milling. Carbide WC and W 2 C phases were precipitated only in the sintered composite. The formation of WC began with longer milling times, after W 2 C formation. Prolonged milling time decreased the crystallite size as well as the internal strain of Cu. Hardness of the composite was enhanced but electrical conductivity reduced with increasing milling time.

  18. Improvements to the corrosion resistance of stainless steels for fuel cell applications : supplementary report for phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, S.; Li, J.; Liu, P.; Shehata, M.; Kruszewski, J.; Lo, J.; Guertsman, V.Y.; Gu, G.P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2007-07-15

    This paper reported on a newly developed method of making bipolar electrodes from type 304 stainless steel. Two stainless steels were cast, hot-rolled and heat treated. The microstructures were then examined to determine the chromium carbide formation. Plain and mechanically polished samples were sent to General Motors for conductivity measurements to investigate the thermo-mechanical treatment as a means of improving the contact resistance of stainless steel bipolar plates subject to the operating conditions in a proton-exchange membrane (PEM) fuel cell. The treatment induces precipitation of conducive particles. The surface of the stainless steel is etched so that particles protrude from the surface. When the bipolar plates are stacked with sufficient load, the protruding surface precipitates indent into adjacent graphite electrodes, making direct electrical contact. The most common precipitate is M{sub 23}C{sub 6} carbide. This paper described the carbide precipitation required for electrical conductivity and presented a model for electrical conductance across a bipolar plate. It included a description of inter-particle distance and carbide size; carbide formation in type 304 stainless steels; heat-treatment processing of 304 steel for electrical conductance and desensitization; and the effect of steel composition on carbide growth. The experimental work was outlined in terms of casting, hot rolling, cold rolling, heat treatment, aging treatment for carbide growth, and desensitization treatment. Both alloys that were subjected to the thermo-mechanical treatment in this study showed a uniform distribution of carbide precipitates. Their size varied from very small to about 0.8{mu}m. Scanning electron microscopy (SEM) analysis did not detect a change in particle size and population density of these particles with prolonged annealing at 800 degrees C. 4 refs., 6 tabs., 14 figs.

  19. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  20. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    Science.gov (United States)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  1. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwar, A., E-mail: akashiwar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur-440010, Maharashtra (India); Vennela, N. Phani, E-mail: phanivennela@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur-440010, Maharashtra (India); Kamath, S.L., E-mail: kamath@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai-400076, Maharashtra (India); Khatirkar, R.K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur-440010, Maharashtra (India)

    2012-12-15

    In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation of secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights

  2. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    Science.gov (United States)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  3. Methods and systems for utilizing carbide lime or slag

    Science.gov (United States)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin; Calas, Guillaume; Weiss, Michael Joseph; Tester, Chantel Cabrera

    2018-02-27

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammonia during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.

  4. Study of the M23C6 precipitation in AISI 304 stainless steel by small angle neutron scattering

    International Nuclear Information System (INIS)

    Boeuf, A.; Caciuffo, R.G.M.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Melone, S.; Puliti, P.; Rustichelli, F.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Coppola, R.

    1985-01-01

    The results of some small-angle neutron scattering (SANS) experiments on M 23 C 6 (M=Fe, Cr) carbide precipitation in AISI 304 stainless steel, aged at different temperatures during different times, are presented. The total volume fraction, the total surface of precipitates per unit sample volume and the size distribution functions of the M 23 C 6 carbides were determined. (orig.)

  5. Atom-Probe Tomographic Investigations of a Precipitation-Strengthened HSLA-115 Steel and a Ballistic-Resistant 10 wt. % Ni Steel for Naval Applications

    Science.gov (United States)

    Jain, Divya

    High performance structural materials are needed for Naval applications which require an excellent combination of yield strength, low-temperature impact toughness, ductility, ballistic-resistance, and weldability. This research investigates precipitation-strengthened HSLA-115 steels and ballistic-resistant 10 wt. % Ni steels, which have emerged as promising alternatives to the widely used HSLA-100 steels for Naval applications. HSLA-115 is a Cu-bearing high-strength low-carbon martensitic steel and has been used in the flight deck of the recently built U.S. Navy CVN-78 aircraft carrier. It is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility at 115 ksi (793 MPa) yield strength. However, overaging of Cu precipitates limits its strength and applications. This research demonstrates that aging at 550 °C facilitates the co-precipitation of sub-nanometer sized M2C carbides and Cu precipitates in high number density (˜1023 m-3) in HSLA-115. 3-D atom-probe tomography (APT) investigation reveals that Cu precipitates form first, followed by the nucleation of M2C carbides, which are co-located with Cu precipitates and are distributed heterogeneously at lath-boundaries and dislocations, indicating heterogeneous nucleation of M2C. Carbon redistribution during quenching (following the austenitization) and subsequent aging at 550 °C is followed using APT. Segregation of C (3-6 at. % C) is observed at martensitic lath-boundaries in the as-quenched and 0.12 h aged conditions. On further aging, C redistributes, forming cementite and M 2C carbides, whose composition and morphology evolves with aging time. Precipitation kinetics of M2C carbides is intertwined with Cu precipitates; temporal evolution of Cu precipitates and M2C carbides is characterized in terms of their mean radii, number densities, and volume fractions and correlated with the bulk mechanical properties. Precipitation of M2C carbides offsets the softening

  6. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging

    International Nuclear Information System (INIS)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-01-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1x10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6 C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6 C in JPCA-2. (orig.)

  7. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Fukunaga, Tatsuya; Yamada, Kazuhiro; Nakada, Nobuo; Kikuchi, Masao; Saghi, Zineb; Barnard, Jon S.; Midgley, Paul A.

    2011-01-01

    Graphical abstract: Precipitate formation during the in situ annealing experiment at 650 o C. -- Formation of M 23 C 6 carbides and chromium-depleted zones in commercially available type 304L stainless steel were investigated by in situ transmission electron microscopy and analytical transmission electron microscopy. It was found that each individual small M 23 C 6 carbide starts to grow with a clear orientation relationship with the matrix, and film-like carbide was subsequently observed at the interfaces with asymmetric Cr-depleted zones. From these experimental results, a model describing the precipitation of M 23 C 6 and the formation of the Cr-depleted zone was proposed.

  8. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  9. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  10. Structural changes of carbides in a high-speed steel - M2 - after hardness and drawing back

    International Nuclear Information System (INIS)

    Santos, D.B.; Luz Ferreira, O. da; Ribeiro, O.L.R.

    1984-01-01

    The microstructure of a high-speed steel was studied through the scanning electron microscope. The carbide chemical composition was determined by the X-ray energy spectroscopy. The analyses were done in situ and in precipitate extracted from carbon replica. The phases were shown through the X-ray diffraction in the wastes from electrolytic use. In the annealed structure, some carbides as M 6 C, MC and M 23 C 6 and in the annealed and drawing back structure, carbide as M 6 C and MC were seen. The volumetric fraction of each type was calculated by quantitative metalography. The utilization of the replica technique allows the analysis of carbides smaller than 1 μm without the matrix interference. (E.G.) [pt

  11. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging*1

    Science.gov (United States)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-07-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1 × 10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6C in JPCA-2.

  12. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Science.gov (United States)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.

  13. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  14. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    Science.gov (United States)

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  15. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    Science.gov (United States)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  16. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ying [Argonne National Laboratory, Argonne, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Lian, Tiangan [Electric Power Research Institute, Palo Alto, CA 94304 (United States)

    2015-09-15

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 10{sup 19} ions/m{sup 2} (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite–austenite phase boundary and presence of M{sub 23}C{sub 6} carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M{sub 23}C{sub 6} carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M{sub 23}C{sub 6} carbides at 350 °C and 400 °C.

  17. Stress corrosion cracking of stainless steels under deaerated high-temperature water. Influence of grain boundary carbide precipitation, and effect of Mo and Cr in alloys

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2007-01-01

    In order to evaluate the influence of grain boundary carbide on IGSCC susceptibility of stainless steel, crack growth rate tests were performed under deaerated or 0.3 ppm hydrogenated pure water environments at 320degC using half-inch compact tension (CT) specimens. In our previous report, CT testing showed that the susceptibility of CW316 to IGSCC was inhibited by the precipitation of grain boundary carbide under these environments. The result suggested quite different behavior from that in an oxygenated high-temperature water environment. In this study, the influence of (1) Mo and (2) Cr content in alloys, and (3) Cr depletion at the grain boundary on the IGSCC growth behavior in stainless steel was studied at 320degC under a 0.3-ppm hydrogenated pure-water environment. As a result, (1) IGSCC growth was observed on non-sensitized CW20%316, CW20%304, CW20%20Cr316, and CW20%20Cr304 under a 0.3-ppm hydrogenated pure-water environment at 320degC. (2) IGSCC growth was not observed for sensitized CW20%316 and CW20%304 (at 650degC x 48 or 24 h) and healing heat-treated CW20%316 (at 650degC x 48 h + 900degC x 0.5 h) under the same water environment. (3) The susceptibility of high Cr content materials (CW20%20Cr316 and CW20% 20Cr304) to IGSCC resistance was improved that of conventional CW316 and CW304 under the same water environment. The higher Cr content is effective in inhibiting susceptibility to IGSCC, but the inhibiting effect of Cr content is smaller than the effect of the grain boundary carbide. (4) These differences in IGSCC suggest that grain boundary carbide has a beneficial effect in improving IGSCC resistance, at least in a 0.3-ppm hydrogenated pure-water environment, despite the Mo content and Cr depletion at grain boundary. (author)

  18. Grain boundary precipitation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, A.R.; Howell, P.R.; Ralph, B.

    The precipitation of second phase particles of niobium carbide in an austenitic stainless steel is shown to be considerably influenced by the degree of deformation introduced prior to the ageing treatment. Sites for the nucleation of second phase particles are identified and the importance of one type of nucleation site, extrinsic dislocations, to the evolution of the final boundary precipitate distributions is emphasized. Further, it is shown that the presence of a grain boundary can effect precipitation processes for some considerable distance into the matrix on either side of the boundary. (author)

  19. Silicon nanocrystals embedded in silicon carbide for tandem solar cell applications

    International Nuclear Information System (INIS)

    Schnabel, Manuel

    2015-01-01

    Tandem solar cells consist of multiple individual solar cells stacked in order of increasing bandgap, with the cell with highest bandgap towards the incident light. This allows photons to be absorbed in the cell that will convert them to electricity with the greatest efficiency, and is the only solar cell concept to surpass the theoretical efficiency limit of a conventional solar cell so far. This work is concerned with the development of silicon nanocrystals (Si NCs) embedded in silicon carbide, which are expected to have a higher bandgap than bulk Si due to quantum confinement, for use in the top cell of a two-junction tandem cell. Charge carrier transport and recombination were investigated as a function of various parameters. Distortion of luminescence spectra by optical interference was highlighted and a robust model to describe transport of majority carriers was developed. Furthermore, a range of processing steps required to produce a Si NC-based tandem cell were studied, culminating in the preparation of the first Si NC-based tandem cells. The resulting cells exhibited open-circuit voltages of 900 mV, demonstrating tandem cell functionality.

  20. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn [College of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun, 130012 (China); He, L.L., E-mail: llhe@imr.ac.cn [Shenyang National Lab of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Y.S. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, SK (Canada); Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, SK (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada)

    2017-01-15

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  1. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    International Nuclear Information System (INIS)

    Li, X.J.; He, L.L.; Li, Y.S.; Yang, Q.; Hirose, A.

    2017-01-01

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  2. Dualism of precipitation morphology in high strength low alloy steel

    International Nuclear Information System (INIS)

    Chih-Yuan, Chen; Chien-Chon, Chen; Jer-Ren, Yang

    2015-01-01

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  3. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  4. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  5. Precipitation kinetics in austenitic 18Cr-30Ni-Nb cast steel

    Directory of Open Access Journals (Sweden)

    M. Garbiak

    2008-08-01

    Full Text Available The study presents the results of investigations on the precipitation kinetics in austenitic 18%Cr-30%Ni cast steel stabilised with an addition of 1.84 wt% niobium. Phase analysis of isolates extracted from the alloy subjected to annealing within the temperature range of 600–1000oC during 10–1000 h was made. The phase constitution of the isolates mainly comprised niobium carbides of the NbC type and complex chromium carbides of the Cr23C6 type. In specimens annealed within the temperature range of 700–900oC, a high-silicon G phase was additionally identified. The highest kinetics of the precipitation process was recorded after annealing at the temperatures of 800 and 900oC.

  6. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  7. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    International Nuclear Information System (INIS)

    Hatakeyama, M.; Yamagata, I.

    2013-01-01

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe 3 Cr 2 Ni 2 Mo 2 Si 2 . In a Ti-rich carbide, nominaling Fe 5 Cr 8 Ni 10 Mo 2 Ti 11 Si 2 C 6 , enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed

  8. Precipitation behaviors of X70 acicular ferrite pipeline steel

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Yi Sun; Qixiang Chen; Haitao Jiang; Lihong Zhang

    2006-01-01

    The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical composition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research.

  9. Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations

    International Nuclear Information System (INIS)

    Song, W.; Appen, J. von; Choi, P.; Dronskowski, R.; Raabe, D.; Bleck, W.

    2013-01-01

    Carbide precipitation during upper and lower bainite formation in high-carbon bearing steel 100Cr6 is characterized using transmission electron microscopy and atom probe tomography. The results reveal that both ε and θ carbides precipitate in lower bainite isothermally held at 260 °C and only θ precipitates form in upper bainite isothermally held at 500 °C. ε and θ precipitate under paraequilibrium condition at 260 °C in lower bainite and θ precipitates under negligible partitioning local equilibrium condition in upper bainite at 500 °C. In order to theoretically study ε and θ precipitation and the ε → θ transition in bainite, thermodynamic calculations have been carried out using ab initio techniques. We find that ε and θ carbides in ferrite have almost identical thermodynamic stability, and hence have similar formation probability. In austenite, however, cementite formation is clearly preferred: it is favored by 5 kJ mol −1 at room temperature and still by 4 kJ mol −1 at 500 °C. Hence, the thermodynamic predictions agree well with the atom probe tomography results

  10. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Science.gov (United States)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  11. Structure and strength of carbide-steel cermet and their changes during heat treatment

    International Nuclear Information System (INIS)

    Dariel, M.P.; Frage, N.R.; Kaputkina, L.M.; Kaputkin, D.M.; Sverdlova, N.R.

    2004-01-01

    Both homogeneous and 'graded' materials were produced by pressing and sintering of titanium carbide TiC x (0.7 x takes place during the joining. If the titanium carbide is carbon deficient that the carbon goes from the steel binder to TiC x , and this redistribution intensity with the x decreases. So-named graded cermets were produced on controlled distribution of TiC x with different x. An additional flow of carbon from C-rich to C-poor TiC x layers was obtained in these cermets. These changes both in the steel and TiC x compositions result in changes in such processes as austenitization, carbide dissolution and precipitation, and martensitic transformation. Both general strength of the material and the gradient of properties in graded cermets can be increased using kinetic factors of element redistribution and structure changes resulted from the heat treatment. (author)

  12. Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment

    International Nuclear Information System (INIS)

    Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; Gao, Rui

    2017-01-01

    As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2 C and ε’-Fe 2.2 C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe x C, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectra for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2 C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2 C has six sets of chemically distinct Fe atoms.

  13. Ion irradiation-induced precipitation of Cr23C6 at dislocation loops in austenitic steel

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Guo, Liping; Luo, Fengfeng; Yao, Zhongwen; Ma, Shuli; Tang, Rui

    2013-01-01

    The irradiation-induced precipitates in argon ion-irradiated austenitic stainless steel at 550 °C were examined via transmission electron microscopy. The selected-area electron diffraction patterns of precipitates indicated unambiguously that the precipitates were Cr 23 C 6 carbides. It was observed directly for the first time that irradiation-induced Cr 23 C 6 precipitates formed at dislocation loops in austenitic stainless steel, and coarsened with increasing irradiation dose.

  14. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, M., E-mail: hatake@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, IMR/Tohoku University, Narita, Oarai, Ibaraki 311-1313 (Japan); Yamagata, I. [Japan Atom Energy Agency, Narita, Oarai, Ibaraki 311-1393 (Japan)

    2013-11-15

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe{sub 3}Cr{sub 2}Ni{sub 2}Mo{sub 2}Si{sub 2}. In a Ti-rich carbide, nominaling Fe{sub 5}Cr{sub 8}Ni{sub 10}Mo{sub 2}Ti{sub 11}Si{sub 2}C{sub 6}, enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed.

  15. Carbonate Precipitates During Heat Evolution in FP-Type Cells

    International Nuclear Information System (INIS)

    Bruce L. Cain

    2000-01-01

    In previous work, we reported measurement of large amounts of heat generated during experiments using an FP-type open cell with concentrated LiOH/D 2 O electrolytes and thin-film Pd cathodes. During the heat evolution in several runs, which produced >100 W for more than 20 h, we consistently observed the concomitant evolution of gases from the electrolyte and the precipitation of large amounts of lithium carbonate. The carbonate production was clearly visible during production of heat, creating an opaque electrolyte even during long periods with no electrolysis current. These results indicated an unusual chemical reaction, either catalyzed by the heating process or possibly creating the heat itself. The total energy released during the earlier experiments was ∼7 MJ, while the heat of formation for the lithium carbonate in the cell was only 0.8 MJ. Hence, only ∼10% of the heat signatures from these experiments can be attributed to the precipitate formation, the balance of the heat presumably arising from nonchemical sources in the cells. The earlier experiments that produced heat also suffered from problems of reproducibility, with only 5 of 38 runs producing any heat at all. The unsuccessful runs also did not produce precipitates, and the only gas produced in these cells was due to the normal electrolysis of D 2 O to produce oxygen and deuterium in the electrodes. Recent work has focused on recreating the chemical precipitation reaction, in efforts to understand and/or trigger the heat production process. With findings from these experiments, new experiments were conducted using larger (1 L LiOH/D 2 O) cells with Pt anodes and Pd film cathodes immersed but left open-circuited. After the addition of H 2 O 2 , and subsequent heating and cooling, these cells visually reproduced the precipitation and gas evolution of the earlier heat-producing runs. However, these new runs only produced a few watts of power for several minutes, consistent with the normal exothermal

  16. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Kashiwar, A.; Vennela, N. Phani; Kamath, S.L.; Khatirkar, R.K.

    2012-01-01

    In the present study, effect of solution annealing temperature (1050 °C and 1100 °C) and isothermal ageing (700 °C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel (∼ 45% ferrite and ∼ 55% austenite) undergoes a series of metallurgical transformations during ageing—formation of secondary austenite (γ 2 ) and precipitation of Cr and Mo rich intermetallic (chi-χ and sigma-σ) phases. For solution annealing at 1050 °C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 °C. χ Phase precipitated after the precipitation of carbides—preferentially at the ferrite–ferrite and also at the ferrite–austenite boundaries. σ Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 °C was found to be carbides → χ → σ. On the contrary, for samples solution annealed at 1100 °C, the precipitation of χ phase was negligible. χ Phase precipitated before σ phase, preferentially along the ferrite–ferrite grain boundaries and was later consumed in the σ phase precipitation. The σ phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite γ 2 and σ phase in the ferrite and along the ferrite–austenite grain boundaries. An increase in the volume fraction of γ 2 and σ phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights: ► Effect of solution annealing temperature on microstructural evolution is studied. ► χ Phase precipitated preferentially in the samples solution annealed at

  17. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  18. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  19. Precipitation in AISI 316L(N) during creep tests at 550 and 600 °C up to 10 years

    Science.gov (United States)

    Padilha, A. F.; Escriba, D. M.; Materna-Morris, E.; Rieth, M.; Klimenkov, M.

    2007-05-01

    The precipitation behaviour in the gauge lengths and in the heads of initially solution annealed type 316L(N) austenitic stainless steel specimens tested in creep at 550 and 600 °C for periods of up to 85 000 h has been studied using several metallographic techniques. Three phases were detected: M 23C 6, Laves, and sigma phase. The volume fraction of the precipitated sigma phase was significantly higher than that of carbides and the Laves phase. M 23C 6 carbide precipitation occurred very rapidly and was followed by the sigma and Laves phases formation in the delta ferrite islands. Sigma and Laves phases precipitated at grain boundaries after longer times. Two different mechanisms of sigma phase precipitation have been proposed, one for delta ferrite decomposition and another for grain boundary precipitation. Small quantities of the Laves phase were detected in delta ferrite, at grain boundaries and inside the grains.

  20. Effect of Ti additive on (Cr, Fe)7C3 carbide in arc surfacing layer and its refined mechanism

    International Nuclear Information System (INIS)

    Zhou Yefei; Yang Yulin; Yang Jian; Hao Feifei; Li Da; Ren Xuejun; Yang Qingxiang

    2012-01-01

    Arc surfacing layer of hypoeutectic high chromium cast iron (HCCI) expects refiner carbides in the microstructure to improve its mechanical properties. In this paper, Ti additive as a strong carbide forming element was added in the hypoeutectic HCCI arc surfacing layer. Microstructure of titaniferous hypoeutectic HCCI was studied by optical microscopy, X-ray diffraction and field emission scanning electronic microscopy with energy dispersive spectrometer. Furthermore, the M(M = Cr, Fe) 7 C 3 carbide refinement mechanism was explained by the phase diagram calculation and lattice misfit theory. The results show that, the M 7 C 3 carbide in arc surfacing microstructure of hypoeutectic HCCI has been refined with 2 wt.% Ti additive, and TiC carbide can be observed in/around the M 7 C 3 carbide. With Ti addictive increasing, the micro-hardness along the depth in profile section of layer becomes more uniform, and the wear resistance has been improved. According to the phase diagram calculation, MC carbide precipitates prior to M 7 C 3 carbide in Fe-Cr-C-Ti alloy. In addition, the lattice misfit between (1 1 0) TiC and (010) Cr 7 C 3 is 9.257%, which indicates that the TiC as heterogeneous nuclei of the M 7 C 3 is medium effective. Therefore, the M 7 C 3 carbide can be refined.

  1. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  2. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  3. Interfaces between Model Co-W-C Alloys with Various Carbon Contents and Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Igor Konyashin

    2018-03-01

    Full Text Available Interfaces between alloys simulating binders in WC-Co cemented carbides and tungsten carbide were examined on the micro-, nano-, and atomic-scale. The precipitation of fine WC grains and η-phase occurs at the interface of the alloy with the low carbon content. The precipitation of such grains almost does not occur in the alloy with the medium-low carbon content and does not take place in the alloy with the high carbon content. The formation of Co nanoparticles in the binder alloy with the medium-low carbon content was established. Interfaces in the alloy with the medium-low carbon content characterized by complete wetting with respect to WC and with the high carbon content characterized by incomplete wetting were examined at an atomic scale. The absence of any additional phases or carbon segregations at both of the interfaces was established. Thus, the phenomenon of incomplete wetting of WC by liquid binders with high carbon contents is presumably related to special features of the Co-based binder alloys oversaturated with carbon at sintering temperatures.

  4. Microstructure, crystallography of phase transformations and multiple precipitations in PH 15-7Mo stainless steel

    International Nuclear Information System (INIS)

    Liu, Hongwei; Liu, Jiangwen; Luo, Chengping; Liu, Zhijian

    2016-01-01

    The microstructure and crystallographic features of a semi-austenitic precipitation hardening steel PH 15-7Mo during solution treatment, roddrawing and aging were investigated by means of optical microscope, X-ray diffraction analyzer and transmission electron microscope. It was found that the microstructure of the steel was consist of dominant austenite, small amount of martensite and 10–15 vol.% δ-ferrite after solution treatment at 1050 °C followed by cooling in water at room temperature. The austenite transformed into lath martensite during tensile roddrawing about 60% deforming companied with some coherent fine β-NiAl particles precipitated within martensite. With higher aging temperature and longer holding time, tiny carbide M_2_3C_6 particles precipitated from martensite, which kept the cubic–cubic orientation relationship (OR) with austenite and G-T OR with martensite which is different with all the reported orientations. The OR between tiny carbide M_2_3C_6 particles G-T OR with martensite was discussed in terms of crystallography of phase transformations. - Highlights: • Microstructure changes of austenitic steel PH15-7Mo were due to alloying elements, service condition and carbide M_2_3C_6. • Lath-shape martensitic laths keep pseudo {112} twinning relationship. • β-NiAl particles hold a typical cubic-to-cubic orientation relationship with martensite. • M_2_3C_6 carbide kept a cubic–cubic orientation relationship (OR) with austenite and an unusual G-T OR with martensite. • Multiple orientation relationship between M_2_3C_6 and austenite is correlative with their structural similarity.

  5. Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.

    2014-07-01

    The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.

  6. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye Chang [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States); Suslov, Sergey; Kim, Bong Joong; Stach, Eric A. [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2011-02-15

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  7. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    International Nuclear Information System (INIS)

    Ye Chang; Suslov, Sergey; Kim, Bong Joong; Stach, Eric A.; Cheng, Gary J.

    2011-01-01

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  8. Investigations on diffusion-controlled transformations in creep resistant steels and graded cemented carbides

    International Nuclear Information System (INIS)

    Prat Borquez, Orlando

    2011-01-01

    The objective of this work was to simulate diffusion-controlled transformations on engineering alloys designed by the author and his colleagues. The main challenge of the work is to adapt the existing DICTRA models to the experimental processing and working conditions investigated, as well as to find the adequate boundary conditions for the description of the diffusion-controlled transformations governing the microstructure formation and evolution, in order to obtain reliable simulation results. The simulations were compared with experimental results of the microstructure evolution by scanning electron microscopy and scanning transmission electron microscopy (STEM). Two groups of materials were investigated. The first group was 9-12% Cr heat resistant alloys. These alloys are particularly interesting because the microstructure evolves during working conditions. Different compositions were designed in order to form different kinds and amounts of precipitates. For the designed 9-12% Cr creep steels the coarsening of MX and M 23 C 6 particles was modeled by applying the coarsening model implemented in DICTRA. The cell method of DICTRA was applied to investigate the kinetics of the Laves phase growth on 9-12% Cr alloys. The particular objectives of these investigations were: a) to determine the coarsening rate of precipitates, b) to investigate the influence of alloying element on the growth rate of the Laves phase, c) to determine the influence of the M 23 C 6 formation on the growth kinetics of the Laves phase, d) to determine the growth mechanism at the interface of the Laves phase (i.e. up-hill diffusion), e) to investigate the effect of the cell size on the simulation kinetics of Laves phase. The second group of materials was cemented carbides. They are used as cutting tools or wear parts in the automotive, aircraft and mining industry among others. The wear performance of cemented carbides (hardmetals and cermets) can be largely improved by applying wear

  9. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  10. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  11. Precipitation sequences in austenitic Fe-22Cr-21Ni-6Mo-(N) stainless steels

    International Nuclear Information System (INIS)

    Kim, S.-J.; Lee, T.-H.

    1999-01-01

    Precipitation sequence of nitrogen containing Fe-22Cr-21Ni-6Mo-N austenitic stainless steel has been investigated after aging at high temperatures, and compared with nitrogen free steel. The σ phases and M 23 C 6 carbides were observed along the grain boundaries as well as in the matrix in both of the solution treated specimens. The M 6 C carbides and chi phase appeared successively in between 3 hours and 24 hours depending on the nitrogen content. Main difference in aging behavior was the precipitation of fine nitrides. Aging for 24 hours and 168 hours of nitrogen containing steel resulted in the formation of fine Cr 2 N and faceted AlN nitrides. The crystallography, structure and morphology were analyzed with analytical electron microscopy. (orig.)

  12. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  13. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  14. Microstructure, crystallography of phase transformations and multiple precipitations in PH 15-7Mo stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongwei [The Australia Centre Microscopy and Microanalysis, The University of Sydney, NSW, 2006 (Australia); Liu, Jiangwen, E-mail: mejwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Luo, Chengping [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Liu, Zhijian [Guangdong Research Institute of Iron and Steel, Guangzhou, 510640 (China)

    2016-07-05

    The microstructure and crystallographic features of a semi-austenitic precipitation hardening steel PH 15-7Mo during solution treatment, roddrawing and aging were investigated by means of optical microscope, X-ray diffraction analyzer and transmission electron microscope. It was found that the microstructure of the steel was consist of dominant austenite, small amount of martensite and 10–15 vol.% δ-ferrite after solution treatment at 1050 °C followed by cooling in water at room temperature. The austenite transformed into lath martensite during tensile roddrawing about 60% deforming companied with some coherent fine β-NiAl particles precipitated within martensite. With higher aging temperature and longer holding time, tiny carbide M{sub 23}C{sub 6} particles precipitated from martensite, which kept the cubic–cubic orientation relationship (OR) with austenite and G-T OR with martensite which is different with all the reported orientations. The OR between tiny carbide M{sub 23}C{sub 6} particles G-T OR with martensite was discussed in terms of crystallography of phase transformations. - Highlights: • Microstructure changes of austenitic steel PH15-7Mo were due to alloying elements, service condition and carbide M{sub 23}C{sub 6}. • Lath-shape martensitic laths keep pseudo {112} twinning relationship. • β-NiAl particles hold a typical cubic-to-cubic orientation relationship with martensite. • M{sub 23}C{sub 6} carbide kept a cubic–cubic orientation relationship (OR) with austenite and an unusual G-T OR with martensite. • Multiple orientation relationship between M{sub 23}C{sub 6} and austenite is correlative with their structural similarity.

  15. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  16. Effect of Ti and Nb Addition on Precipitation and Sensitization Behavior in Ferritic Stainless Steel Welded Joint

    International Nuclear Information System (INIS)

    Kim, Jong Min; Lee, Hae Woo

    2013-01-01

    The precipitation and sensitization characteristics in AISI436 weld metal were investigated in different chemical composition ranges of Ti and Nb content. We manufactured four welding wires made of 0-0.2 wt% of Ti and 0-1.0 wt% of Nb and did flux cored arc welding. After heat treatment at 900 °C for 20 hours, we made a Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test, Electron Backscattering Diffraction and SEM. The DL-EPR test revealed that as the amount of addition of Ti and Nb rose, the degree of sensitization fell. The microstructure became more refined, and Cr carbide formed at the grain boundary that had no addition of Ti and Nb. Furthermore, in the specimen with the addition of Ti, Nb, the Ti, Nb carbide and nitride were precipitated in the intergranular boundary, and the laves phase was precipitated at the grain boundary.

  17. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  18. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  19. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-01-01

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni 2 (Mo,Cr) 4 (Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni 3 (Mo,Cr) 3 (Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal

  20. Application of Deep Cryogenic Treatment to Uncoated Tungsten Carbide Inserts in the Turning of AISI 304 Stainless Steel

    Science.gov (United States)

    Özbek, Nursel Altan; Çİçek, Adem; Gülesİn, Mahmut; Özbek, Onur

    2016-12-01

    This study investigated the effects of deep cryogenic treatment (DCT) on the wear performance of uncoated tungsten carbide inserts. AISI 304 austenitic stainless steel, widely used in industry, was selected as the workpiece material. Cutting experiments showed that the amount of wear significantly increased with increasing cutting speed. In addition, it was found that DCT contributed to the wear resistance of the turning inserts. The treated turning inserts were less worn by 48 and 38 pct in terms of crater wear and notch wear, respectively, whereas they exhibited up to 18 pct superior wear performance in terms of flank wear. This was attributed to the precipitation of new and finer η-carbides and their homogeneous distribution in the microstructure of the tungsten carbide material after deep cryogenic treatment. Analyses via image processing, hardness measurements, and SEM observations confirmed these findings.

  1. Evolution of secondary-phase precipitates during annealing of the 12Kh18N9T steel irradiated with neutrons to a dose of 5 DPA

    Science.gov (United States)

    Tsai, K. V.; Maksimkin, O. P.; Turubarova, L. G.

    2007-03-01

    The formation and evolution of thermally-induced secondary precipitates in an austenitic stainless steel 12Kh18N9T irradiated in the core of a laboratory reactor VVR-K to a dose of 5 dpa and subjected to post-radiation isochronous annealings for 1 h in a temperature range from 450 to 1050°C have been studied using transmission electron microscopy (TEM) and microhardness measurements. It has been shown that the formation of stitch (secondary) titanium carbides and M 23C6 carbides at grain and twin boundaries after annealing at 1050°C is preceded by a complex evolution of fineparticles of secondary phases (titanium carbides and nitrides) precipitated at dislocation loops and dislocations during annealing at temperatures above 750°C.

  2. Synthesis of TiC/W core–shell nanoparticles by precipitate-coating process

    International Nuclear Information System (INIS)

    Xia Min; Yan Qingzhi; Xu Lei; Zhu Lingxu; Guo Hongyan; Ge Changchun

    2012-01-01

    Graphical abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores. Abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core–shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), Filed-emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), energy dispersive spectrum (EDS). Results revealed that the as-synthesized nanoparticles possess uniform diameters about 100 nm, and high purity. TEM and the corresponding FFT images demonstrate that TiC nanoparticles were well-encapsulated by W shells. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core–shell nanoparticles with different cores.

  3. Silicon carbide hollow fiber membranes: obtainment and characterization; Membranas de fibra oca de carbeto de silicio: obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.S.L.; Ferreira, R.S.B.; Araujo, B.A.; Medeiros, K.M.; Lucena, H.L.; Araujo, E.M., E-mail: sandriely_sonaly@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    Silicon carbide is a promising material for the production of membranes due to its high melting temperature, thermal shock resistance, excellent mechanical and chemical stability. So, this study aims to characterize silicon carbide membranes in order to apply them in the separation of oil-water. A solution (SiC + PES + 1-Methyl- 2-Pyrrolidone) and through the extrusion technique by immersion precipitation membranes were obtained with hollow fiber geometry was prepared. And then sintered at 1500 ° C. For the characterization analyzes were made XRD, FTIR and SEM to evaluate the morphology and composition of the membranes obtained before and after sintering. (author)

  4. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  5. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    International Nuclear Information System (INIS)

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; Morgan, Dane

    2017-01-01

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10"–"7 dpa/s and 390 °C) and then use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10"–"8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni_3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.

  6. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  7. Nitrogen effect on precipitation and sensitization in cold-worked Type 316L(N) stainless steels

    International Nuclear Information System (INIS)

    Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    The precipitation behavior and sensitization resistance of Type 316L(N) stainless steels containing different concentrations of nitrogen have been investigated at the aging condition of 700 deg. C for cold work (CW) levels ranging from 0% (as solution annealed) to 40% reduction in thickness. The precipitation of M 23 C 6 carbide and intermetallic compounds (χ, Laves and σ phase) was accelerated by increasing the CW level. Nitrogen in the deformed alloys retarded the inter- and intra-granular precipitation of the carbides at low and high CW levels respectively, whereas it increased the relative amount of the χ phase. Quantitative assessment of the degree of sensitization (DOS) using the double loop-electrochemical potentiokinetic reactivation (DL-EPR) tests indicated that CW levels up to 20% enhanced sensitization while 40% CW suppressed sensitization for all aging times. The increase in nitrogen content accelerated the sensitization at CW levels below 20%. This might be associated with the homogeneous distribution of dislocations and the lower tendency toward recrystallization exhibited in the alloys having higher nitrogen content

  8. Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: huili@shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang [Institute of Materials, Shanghai University, Shanghai 200072 (China); Liu, Wenqing [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Tingguang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China)

    2013-08-15

    Highlights: • Impurities segregated at grain boundaries were observed by atom probe tomography. • The comparison of segregation features in two Ni–Cr–Fe alloys was studied by APT. • C and Cr atoms co-segregated at grain boundaries before carbide precipitation. -- Abstract: Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni–Cr–Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni–Cr–Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni–Cr–Fe alloys were carried out based on the experimental results.

  9. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amagasa, S., E-mail: B115608@ed.tus.ac.jp; Nishida, N. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  10. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    Science.gov (United States)

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous

  11. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  12. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Science.gov (United States)

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  13. Effects of the aging temperature and stress relaxation conditions on γ′ precipitation in Inconel X-750

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jeong Won [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Research and Development Center, KOS Limited, Yangsan 626-230 (Korea, Republic of); Seong, Baek Seok [Neutron Science Division, HANARO Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Jeong, Hi Won [Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Choi, Yoon Suk [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Kang, Namhyun, E-mail: nhkang@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-02-15

    Highlights: • Stress relaxation after aging 620 °C increased carbides and maintained γ′ fraction. • Aging temperature increase to 732 °C raised the γ′ increment after stress relaxation. • Small increase of carbides induced the large increase of γ′ after stress relaxation. • Loading for stress relaxation raised γ′ increment due to dislocation multiplication. - Abstract: Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ′ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ′ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ′ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ′ volume fraction and gained a smaller fraction of γ′ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ′ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M{sub 23}C{sub 6} secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ′ thereby decreasing the volume fraction of γ′ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ′ volume fraction was

  14. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Directory of Open Access Journals (Sweden)

    Tali Mass

    Full Text Available The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag~4, the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  15. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  16. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  17. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  18. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  19. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  20. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  1. Experimental Investigation and Analytical Prediction of σ-Phase Precipitation in AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Sahlaoui, Habib; Sidhom, Habib

    2013-07-01

    The phase precipitation in industrial AISI 316L stainless steel during aging for up to 80,000 hours between 823 K and 1073 K (550 °C and 800 °C) has been studied using transmission electron microscopy, scanning transmission electron microscopy, and carbon replica energy-dispersive X-ray microanalysis. Three phases were identified: Chromium carbides (M23C6), Laves phase ( η), and σ-phase (Fe-Cr). M23C6 carbide precipitation occurred firstly and was followed by the η and σ-phases at grain boundaries when the aging temperature is higher than 873 K (600 °C). Precipitation and growth of M23C6 create chromium depletion zones at the grain boundaries and also retard the σ-phase formation. Thus, the σ-phase is controlled by the kinetic of chromium bulk diffusion and can appear only when the chromium reaches, at grain boundaries and at the M23C6/ γ and M23C6/ η/ γ interfaces, content higher than a critical value obtained by self-healing. An analytical model, based on equivalent chromium content, has been established in this study and successfully validated to predict the time-temperature-precipitation diagram of the σ-phase. The obtained diagram is in good agreement with the experimental results.

  2. The Role of κ-Carbides as Hydrogen Traps in High-Mn Steels

    Directory of Open Access Journals (Sweden)

    Tobias A. Timmerscheidt

    2017-07-01

    Full Text Available Since the addition of Al to high-Mn steels is known to reduce their sensitivity to hydrogen-induced delayed fracture, we investigate possible trapping effects connected to the presence of Al in the grain interior employing density-functional theory (DFT. The role of Al-based precipitates is also investigated to understand the relevance of short-range ordering effects. So-called E21-Fe3AlC κ-carbides are frequently observed in Fe-Mn-Al-C alloys. Since H tends to occupy the same positions as C in these precipitates, the interaction and competition between both interstitials is also investigated via DFT-based simulations. While the individual H–H/C–H chemical interactions are generally repulsive, the tendency of interstitials to increase the lattice parameter can yield a net increase of the trapping capability. An increased Mn content is shown to enhance H trapping due to attractive short-range interactions. Favorable short-range ordering is expected to occur at the interface between an Fe matrix and the E21-Fe3AlC κ-carbides, which is identified as a particularly attractive trapping site for H. At the same time, accumulation of H at sites of this type is observed to yield decohesion of this interface, thereby promoting fracture formation. The interplay of these effects, evident in the trapping energies at various locations and dependent on the H concentration, can be expressed mathematically, resulting in a term that describes the hydrogen embrittlement.

  3. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  4. Study on niobium carbide dispersed superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Wada, H; Tachikawa, K [National Research Inst. for Metals, Tokyo (Japan); Oh' asa, M [Science Univ. of Tokyo (Japan)

    1977-11-01

    Niobium carbide (NbC) dispersed superconducting tapes have been fabricated by two metallurgical processes. In the first process, Ni-Nb-C alloys are directly arc melted and hot worked in air and the NbC phase is distributed in the form of fine discrete particles. In the second process, Ni-Nb and Ni-Nb-Cu alloys are arc melted, hot worked and subjected to solid-state carburization. NbC then precipitates along the grain boundaries, forming a network. The highest superconducting transition temperature attained is about 11 K. Taken together with the lattice parameter measurement, this indicates that NbC with a nearly perfect NaCl structure is formed in both processes. Measured values of the upper critical field, the critical current density and the volume fraction of the NbC phase are also discussed.

  5. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  6. Nuclear microprobe characterization of surface hardening by precipitation of chromium carbides after laser beam treatment of a Ni-Cr substrate

    International Nuclear Information System (INIS)

    Mosbah, M.; Gosset, J.; Trocellier, P.; Puig, T.; Cantarel, M.; Condat, M.

    1989-01-01

    Surface treatment by laser provides interesting solutions to the problem of accelerated wear of materials. The aim of the present study is the characterization of chromium carbides rich surface alloys after laser beam melting of a Ni 70 Cr 30 carbon precoated substrate. The carbon profiling of the lasered surface was performed by nuclear microprobe using the 12 C(d,p 0 ) 13 C reaction, Ni and Cr were evaluated by means of PIXE (Particle Induced X Ray Emission). The specificity of the method and the experimental conditions are explained. Wear results are very satisfactory and close to those obtained by injection of chromium carbide powders into the laser beam in the case of a Nimonic alloy: wear rates are divided by two orders of magnitude

  7. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  8. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    Science.gov (United States)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  9. HCP to FCT + precipitate transformations in lamellar gamma-titanium aluminide alloys

    Science.gov (United States)

    Karadge, Mallikarjun Baburao

    Fully lamellar gamma-TiAl [alpha2(HCP) + gamma(FCT)] based alloys are potential structural materials for aerospace engine applications. Lamellar structure stabilization and additional strengthening mechanisms are major issues in the ongoing development of titanium aluminides due to the microstructural instability resulting from decomposition of the strengthening alpha 2 phase. This work addresses characterization of multi-component TiAl systems to identify the mechanism of lamellar structure refinement and assess the effects of light element additions (C and Si) on creep deformation behavior. Transmission electron microscopy studies directly confirmed for the first time that, fine lamellar structure is formed by the nucleation and growth of a large number of basal stacking faults on the 1/6 dislocations cross slipping repeatedly into and out of basal planes. This lamellar structure can be tailored by modifying jog heights through chemistry and thermal processing. alpha 2 → gamma transformation during heating (investigated by differential scanning calorimetry and X-ray diffraction) is a two step process involving the formation of a novel disordered FCC gamma' TiAl [with a(gamma') = c(gamma)] as an intermediate phase followed by ordering. Addition of carbon and silicon induced Ti2AlC H-type carbide precipitation inside the alpha2 lath and Ti 5(Al,Si)3 zeta-type silicide precipitation at the alpha 2/gamma interface. The H-carbides preserve alpha2/gamma type interfaces, while zeta-silicide precipitates restrict ledge growth and interfacial sliding enabling strong resistance to creep deformation.

  10. The role of niobium carbide in radiation induced segregation behaviour of type 347 austenitic stainless steel

    Science.gov (United States)

    Ahmedabadi, Parag; Kain, Vivekanand; Gupta, Manu; Samajdar, I.; Sharma, S. C.; Bhagwat, P.; Chowdhury, R.

    2011-08-01

    The effect of niobium carbide precipitates on radiation induced segregation (RIS) behaviour in type 347 stainless steel was investigated. The material in the as-received condition was irradiated using double-loop 4.8 MeV protons at 300 °C for 0.43 dpa (displacement per atom). The RIS in the proton irradiated specimen was characterized using double-loop electrochemical potentiokinetic reactivation (DL-EPR) test followed by atomic force microscopic examination. The nature of variation of DL-EPR values with the depth matched with the variation of the calculated irradiation damage (dpa) with the depth. The attack on grain boundaries during EPR tests was negligible indicating absence of chromium depletion zones. The interface between niobium carbide and the matrix acts as a sink for point defects generated during irradiation and this had reduced point defect flux toward grain boundaries. The attack was noticed at a few large cluster of niobium carbide after the DL-EPR test at the depth of maximum attack for the irradiated specimen. Pit-like features were not observed within the matrix indicating the absence of chromium depletion regions within the matrix.

  11. Characterization and performances of cobalt-tungsten and molybdenum-tungsten carbides as anode catalyst for PEFC

    International Nuclear Information System (INIS)

    Izhar, Shamsul; Yoshida, Michiko; Nagai, Masatoshi

    2009-01-01

    The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm -2 , respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction

  12. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  13. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  14. Phase-field simulation of nucleation and growth of M{sub 23}C{sub 6} carbide and ferromagnetic phases during creep deformation in Type 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    A phase-field method was applied to the simulation of simultaneous nucleation and growth of both M{sub 23}C{sub 6} carbide and ferromagnetic {alpha} phases during the creep process in Type 304 steel. Nucleation events of these product phases were explicitly introduced through a probabilistic Poisson seeding process based on local nucleation rates that were calculated as a function of local concentration. The defect energy of the creep dislocations near the carbides, which increases during creep, was integrated into the nucleation driving force for the {alpha} phase. The simulation used in this study accurately reproduced changes in the amounts of the precipitated phases as a function of creep time. Furthermore, we examine the effect of the dislocation density on precipitation of the {alpha} phase, and show that the phase-field method is useful for examining the stochastic and kinetic phenomenon of phase transformation.

  15. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  16. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  17. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  18. Precipitation model in microalloyed steels both isothermal and continuous cooling conditions

    International Nuclear Information System (INIS)

    Medina, S. F.; Quispe, A.; Gomez, M.

    2015-01-01

    Niobium and vanadium precipitates (nitrides and carbides) can inhibit the static recrystallization of austenite but this does not happen for Ti, which form nitrides at high temperatures. RPTT diagrams show the interaction between recrystallization and precipitation allowing study the strain induced precipitation kinetics and precipitate coarsening. Based on Dutta and Sellars expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate and grain size. Recrystallization- Precipitation-Time-Temperature (RPTT) diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (ks) and constant B, which is no longer a constant but a function of ks. The expressions are now more consistent and predict the Precipitation-Time-Temperature (PTT) curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avramis equation. Finally, the model constructed in isothermal testing conditions, it has been converted to continuous cooling conditions in order to apply it in hot rolling. (Author)

  19. Point defects and transport properties in carbides

    International Nuclear Information System (INIS)

    Matzke, Hj.

    1984-01-01

    Carbides of transition metals and of actinides are interesting and technologically important. The transition-metal carbides (or carbonitrides) are extensively being used as hard materials and some of them are of great interest because of the high transition temperature for superconductivity, e.g. 17 K for Nb(C,N). Actinide carbides and carbonitrides, (U,Pu)C and (U,Pu)(C,N) are being considered as promising advanced fuels for liquid metal cooled fast breeder nuclear reactors. Basic interest exists in all these materials because of their high melting points (e.g. 4250 K for TaC) and the unusually broad range of homogeneity of nonstoichiometric compositions (e.g. from UCsub(0.9) to UCsub(1.9) at 2500 K). Interaction of point defects to clusters and short-range ordering have recently been studied with elastic neutron diffraction and diffuse scattering techniques, and calculations of energies of formation and interaction of point defects became available for selected carbides. Diffusion measurements also exist for a number of carbides, in particular for the actinide carbides. The existing knowledge is discussed and summarized with emphasis on informative examples of particular technological relevance. (Auth.)

  20. Liquid phase sintering of carbides using a nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Barranco, J.M.; Warenchak, R.A.

    1987-01-01

    Liquid phase vacuum sintering was used to densify four carbide groups. These were titanium carbide, tungsten carbide, vanadium carbide, and zirconium carbide. The liquid phase consisted of nickel with additions of molybdenum of from 6.25 to 50.0 weight percent at doubling increments. The liquid phase or binder comprised 10, 20, and 40 percent by weight of the pressed powders. The specimens were tested using 3 point bending. Tungsten carbide showed the greatest improvement in bend rupture strength, flexural modulus, fracture energy and hardness using 20 percent binder with lesser amounts of molybdenum (6.25 or 12.5 wt %) added to nickel compared to pure nickel. A refinement in the carbide microstructure and/or a reduction in porosity was seen for both the titanium and tungsten carbides when the alloy binder was used compared to using the nickel alone. Curves depicting the above properties are shown for increasing amounts of molybdenum in nickel for each carbide examined. Loss of binder phase due to evaporation was experienced during heating in vacuum at sintering temperatures. In an effort to reduce porosity, identical specimens were HIP processed at 15 ksi and temperatures averaging 110 C below the sintering g temperature. The tungsten carbide and titanium carbide series containing 80 and 90 weight percent carbide phase respectively showed improvement properties after HIP while properties decreased for most other compositions

  1. Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings

    Science.gov (United States)

    Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.

    2018-01-01

    Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.

  2. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  3. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  4. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  5. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  6. Irradiation of a 19 pin subassembly with mixed carbide fuel in KNK II

    Science.gov (United States)

    Geithoff, D.; Mühling, G.; Richter, K.

    1992-06-01

    The presentation deals with the fabrication, irradiation and nondestructive postirradiation examinations of LMR fuel pins with mixed (U, Pu)-carbide fuels. The mixed carbide fuel was fabricated by the European Institute of Transuranium Elements using various fabrication procedures. Fuel composition varied therefore in a wide range of tolerances with respect to oxygen and phase content and microstructure. The 19 carbide pins were irradiated in the fast neutron flux of the KNK II reactor to a burn-up of about 7 at% without any failure in the centre of a KNK "carrier element" at a maximum linear rating of 800 W/cm. After dismantling in the Hot Cells of KfK nondestructive examinations were carried out comprising dimensional controls, radiography, γ-scanning and eddy-current testing. The results indicate differences in fuel behaviour with respect to composition of the fuel.

  7. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Liu Yong; Liu Fengxiao; Liaw, Peter K.; He Yuehui

    2008-01-01

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  8. Precipitation of Second Phases in High-Interstitial-Alloyed Austenitic Steel

    Science.gov (United States)

    Lee, Tae-Ho; Ha, Heon-Young; Kim, Sung-Joon

    2011-12-01

    The precipitation reaction of an austenitic stainless steel containing N + C was investigated using transmission electron microscopy. The main precipitate formed during isothermal aging at 1123 K (850 °C) was M23C6 carbide, and its morphology gradually changed in a sequence of intergranular (along grain boundary) → cellular (or discontinuous) → intragranular (within grain interior) form with aging time. Irrespective of different morphologies, the M23C6 was consistently related to austenite matrix in accordance with the cube-on-cube orientation relationship. Based on the analysis of electron diffraction, two variants of intragranular M23C6 were identified, and they were related to each other by twin relation. Prolonged aging produced other types of precipitates—the rod-shaped Cr2N and the coarse irregular intermetallic sigma phase. The similarities and differences in precipitation behavior between N only and N + C alloyed austenitic stainless steels are briefly discussed.

  9. Distribution and characterization of iron in implanted silicon carbide

    International Nuclear Information System (INIS)

    Bentley, J.; Romana, L.J.; Horton, L.L.; McHargue, C.J.

    1991-01-01

    Analytical electron microscopy (AEM) and Rutherford backscattering spectroscopy-ion channeling (RBS-C) have been used to characterize single crystal α-silicon carbide implanted at room temperature with 160 keV 57 Fe ions to fluences of 1, 3, and 6 x 10 16 ions/cm 2 . Best correlations among AEM, RBS, and TRIM calculations were obtained assuming a density of the amorphized implanted regions equal to that of crystalline SiC. No iron-rich precipitates or clusters were detected by AEM. Inspection of the electron energy loss fine structure for iron in the implanted specimens suggests that the iron is not metallically-bonded, supporting conclusions from earlier conversion electron Moessbauer spectroscopy (CEMS) studies. In-situ annealing surprisingly resulted in crystallization at 600 degrees C with some redistribution of the implanted iron

  10. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  11. Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results

    Energy Technology Data Exchange (ETDEWEB)

    Sahlaoui, H.; Makhlouf, K.; Sidhom, H.; Philibert, J

    2004-05-15

    Chromium carbides and intermetallic phases which form in industrial AISI 316L stainless steel during ageing for up to 80 000 h between 550 and 650 deg. C were identified by combining transmission electron microscopy (TEM) thin foil imaging and electron diffraction and used to establish the time-temperature-precipitation (TTP) diagram. Following the precipitation phenomena, the chemical changes in the grain boundary region were determined by energy-dispersive X-ray microprobe analysis using a scanning transmission electron microscope (STEM). From the experimentally determined chromium profiles the chromium depleted zones were quantified. The interactions between carbide precipitation involving chromium depletion and intergranular corrosion (IGC) were clearly visible from superposition of TTP diagrams and time-temperature-sensitization (TTS) diagrams obtained from ASTM standardized tests. In addition, an experimental criterion to sensitization-desensitization phenomenon was established. Moreover, an analytical model has been developed in this study and successfully validated to predict the profiles of chromium depleted zones. This model coupled with the previously described criterion provides TTS diagrams in good agreement with experimental results.

  12. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  13. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Denis [Johns Hopkins Univ., Baltimore, MD (United States); Zhang, Dajie [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  14. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  15. Microstructural Evolution and the Precipitation Behavior in X90 Linepipe Steel During Isothermal Processing

    Science.gov (United States)

    Tian, Y.; Wang, H. T.; Wang, Z. D.; Misra, R. D. K.; Wang, G. D.

    2018-03-01

    Thermomechanical controlled processing of 560-MPa (X90) linepipe steel was simulated in the laboratory using a thermomechanical simulator to study the microstructural evolution and precipitation behavior during isothermal holding. The results indicated that martensite was obtained when the steels were isothermally held for 5 s at 700 °C. Subsequently, granular bainite and acicular ferrite transformation occurred with increased holding time. Different amount of polygonal ferrite formed after isothermally holding for 600-3600 s. Pearlite nucleated after isothermally holding for 3600 s. Precipitation occurred after isothermal holding for 5 s and continuous precipitation occurred at grain boundaries after isothermally holding for 600 s. After isothermally holding for 3600 s, large Nb/Ti carbide precipitated. The presence of MX-type precipitates was confirmed by diffraction pattern. The interphase precipitation (IP) occurred between 5 and 30 s. Maximum hardness was obtained after isothermally holding for 600 s when IP occurred and rapidly decreased to a low value, mainly because polygonal ferrite dominated the microstructure after isothermally holding for 3600 s.

  16. Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.

    1996-01-01

    Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content

  17. M23C6 carbides and Cr2N nitrides in aged duplex stainless steel: A SEM, TEM and FIB tomography investigation.

    Science.gov (United States)

    Maetz, J-Y; Douillard, T; Cazottes, S; Verdu, C; Kléber, X

    2016-05-01

    The precipitation evolution during ageing of a 2101 lean duplex stainless steel was investigated, revealing that the precipitate type and morphology depends on the nature of the grain boundary. Triangular M23C6 carbides precipitate only at γ/δ interfaces and rod-like Cr2N nitrides precipitate at both γ/δ and δ/δ interfaces. After 15min of ageing, the M23C6 size no longer evolves, whereas that of the Cr2N continues to evolve. For Cr2N, the morphology is maintained at γ/δ interfaces, whereas percolation occurs to form a continuous layer at δ/δ interfaces. By combining 2D and 3D characterisation at the nanoscale using transmission electron microscopy (TEM) and focused ion beam (FIB) tomography, a complete description of the precipitation evolution was obtained, including the composition, crystallographic structure, orientation relationship with the matrix phases, location, morphology, size and volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available Tantalum (Ta is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC and TaC/amorphous carbon (a-C coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C, was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics.

  19. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  20. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  1. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  2. Surface metallurgy of cemented carbide tools

    International Nuclear Information System (INIS)

    Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.

    1983-01-01

    Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)

  3. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  4. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  5. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  6. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  7. Reactor irradiation effect on the physical-mechanical properties of zirconium carbides and niobium carbides

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Vlasov, K.P.; Shevchenko, A.S.; Lanin, A.G.; Pritchin, S.A.; Klyushin, V.V.; Kurushin, S.P.; Maskaev, A.S.

    1978-01-01

    A study has been made of the effect of the reactor radiation by a flux of neutrons 1.5x10 20 n/cm 2 (E>=1 meV) at radiation temperatures of 150 and 1100 deg C on the physico-mechanical properties of carbides of zirconium and niobium and their equimolar hard solution. A difference has been discovered in the behaviour of the indicated carbides under the effect of radiation. Under the investigated conditions of radiation the density of zirconium carbide is being decreased, while in the niobium carbide no actual volumetric changes occur. The increase of the lattice period in ZrC is more significant than in NbC. The electric resistance of ZrC is also changed more significantly than in the case of NbC, while for the microhardness a reverse relationship is observed. Strength and elasticity modulus change insignificantly in both cases. Resistance to crack formation shows a higher reduction for ZrC than for NbC, while the thermal strength shows an approximately similar increase. The equimolar hard solution of ZrC and NbC behaves to great extent similar to ZrC, although the change in electric resistance reminds of NbC while thermal strength changes differently. The study of the microstructure of the specimens has shown that radiation causes a large number of etching patterns-dislocations in NbC which are almost absent in ZrC

  8. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  9. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  10. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  11. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  12. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  13. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  14. The identification of carbide phases by XRD analysis as the method of assess the extent of the steel damage after long time in service

    Directory of Open Access Journals (Sweden)

    I. Pietryka

    2010-07-01

    Full Text Available After long time in service in contact in a superheated steam mechanical properties of materials decrease. Experiments revealed that the XRD analysis of electrocemically separated carbide phase is a rapid and informative method of evaluation the service condition of steel. Mechanical properties of ferritic and bainitic low-alloy steels are caused by many factors like: chemical composition, quantity and the kind of microstructural constituent, the precipitation hardening, substructure of matrix and index of matrix lattice defects. In this paper the results of investigations 13CrMo4-5 steel was shown. The material for research was taken from thermal power plant elements. Material A was after 150.000 hours of work as the pressure chamber in which was the temperature 530-580oC and the pressure was 12 MPa. Material B was after 250000 hours of work as the pipeline of superheated steam. The temperature in this case was 530oC but the pressure was 12 MPa as well. The mechanical properties after long time service and changes in fine structure were tested. Parameters of carbide phase electrochemical separation in electrolytes solutions are presented in this work.The most relevant electrolyte and the far better conditions of extraction process were chosen taking into consideration the time needed to get considerable amount of carbide phase constituents. The identification of carbide phases was the special goal of this work. Identification of electrochemically separated carbide phases by means of the XRD analysis was used.

  15. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Hosoi, Y.; Wade, N.; Kunimitsu, S.; Urita, T.

    1986-01-01

    This study clarified the relationship between the toughness of a 9Cr-2Mo dual phase steel and precipitates formed during aging, with special attention to the Laves phase (Fe 2 Mo). The ductile-brittle transition temperature (DBTT) is increased and the upper shelf energy decreased when the Laves phase begins to precipitate during aging. Electron microscopy and X-ray diffraction indicate that elimination of Si in the steel reduces the precipitation of the Laves phase and results in maintaining good toughness. It is also noted that the toughness of the steel is controlled by the total amount of precipitates (Laves + carbides) in the aging at 873 K for more than 3.6x10 3 ks. A time-temperature-precipitation diagram for the Laves phase is established and it clearly shows that the precipitation of the Laves phase is markedly retarded by the decrease of Si content. In Si-free steel, no Laves phase is observed in the temperature and time range investigated. (orig.)

  16. Origin of the Henze solution/precipitate from morula cells of the blood of the ascidian Phallusia mammillata

    Science.gov (United States)

    Nette, Geoffrey; Scippa, S.; de Vincentiis, Mario

    The "Henze solution", derived originally from the aqueous extraction of pelleted whole blood from the ascidian Phallusia mammillata, was examined using spectral studies. The aqueous extraction of fractionated blood cells including compartment cells, signet ring cells, and morula cells obtained using cell separation techniques were also examined. It was found that this Henze solution, and the Henze precipitate itself derived from this solution, emanated solely from the morula cells. Furthermore, it was found that this solution is formed independently of the vanadium metal ions otherwise associated with the vanadocytes. Observation of the Henze precipitate by light microscopy shows that this material partially forms crystallites or microglasses.

  17. Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene.

    Science.gov (United States)

    Zou, Zhiyu; Fu, Lei; Song, Xiuju; Zhang, Yanfeng; Liu, Zhongfan

    2014-07-09

    Early transition metals, especially groups IVB-VIB metals, can form stable carbides, which are known to exhibit excellent "noble-metal-like" catalytic activities. We demonstrate herein the applications of groups IVB-VIB metals in graphene growth using atmospheric pressure chemical vapor deposition technique. Similar to the extensively studied Cu, Ni, and noble metals, these transition-metal foils facilitate the catalytic growth of single- to few-layer graphene. The most attractive advantage over the existing catalysts is their perfect control of layer thickness and uniformity with highly flexible experimental conditions by in situ converting the dissolved carbons into stable carbides to fully suppress the upward segregation/precipitation effect. The growth performance of graphene on these transition metals can be well explained by the periodic physicochemical properties of elements. Our work has disclosed a new territory of catalysts in the periodic table for graphene growth and is expected to trigger more interest in graphene research.

  18. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  19. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  20. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  1. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel

    International Nuclear Information System (INIS)

    Ping, D.H.; Ohnuma, M.; Hirakawa, Y.; Kadoya, Y.; Hono, K.

    2005-01-01

    The microstructure of 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened (PH) stainless steel has been investigated using transmission electron microscopy, three-dimensional atom probe and small-angle X-ray scattering. A high number density (∼10 23-25 m -3 ) of ultra-fine (1-6 nm) β-NiAl precipitates are formed during aging at 450-620 deg. C, which are spherical in shape and dispersed uniformly with perfect coherency with the matrix. As the annealing temperature increases, the size and concentration of the precipitates increase concurrently while the number density decreases. The Mo and Cr segregation to the precipitate-matrix interface has been detected and is suggested to suppress precipitate coarsening. In the sample aged for 500 h at 450 deg. C, the matrix decomposes into Cr-rich (α') and Cr-poor (α) regions. The decrease in the strength at higher temperature (above 550 deg. C) is attributed to the formation of larger carbides and reverted austenite

  2. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  3. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    Science.gov (United States)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  4. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation

    International Nuclear Information System (INIS)

    Dai Hong; Chen Yanling; Lin Yanyu; Xu Guifang; Yang Caiping; Tong Yuejin; Guo Longhua; Chen Guonan

    2012-01-01

    In this paper, we propose a facile approach for palladium nanoparticles load using silicon carbide nanoparticles as the new supported matrix and a familiar NaBH 4 as reducer. Detailed X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) analysis of the resultant products indicated that palladium nanoparticles are successfully immobilized onto the surface of the silicon carbide nanoparticles with uniform size distribution between 5 and 7 nm. The relative electrochemical characterization clearly demonstrated excellent electrocatalytic activity of this material toward alcohol in alkaline electrolytes. Investigation on the characteristics of the electrocatalytic activity of this material further indicated that the palladium nanoparticles supporting on SiC are very promising for direct alcohol fuel cells (DMFCs), biosensor and electronic devices. Moreover, it was proved that silicon carbide nanoparticles with outstanding properties as support for catalysis are of strong practical interest. And the silicon carbide could perform attractive role in adsorbents, electrodes, biomedical applications, etc.

  5. Tantalum and niobium carbides obtention by carbothermic reduction of columbotantalite ores

    International Nuclear Information System (INIS)

    Gordo, E.; Garcia-Carcedo, F.; Torralba, J.M.

    1998-01-01

    Tantalum and niobium carbides are characterized by its high hardness and chemical corrosion resistance. Both carbides, but mainly TaC, are used in hard metals (sintered carbides), together with their carbides, to manufacture cutting tools and dies in special machining applications involving mechanical shock at high temperature. Its use as reinforcement of wear resistant materials through powder metallurgy techniques are being investigated. However, the use of TaC is usually limited because of its high cost. Therefore tantalum carbide with niobium content, which is cheaper, is used. In this work the obtention of complex tantalum and niobium carbides from a Spanish columbotantalite ore is studied through relatively cheap and simple process as it is carbothermic reduction. Concentration of the ore, its reduction and the characterization of products are described. (Author) 11 refs

  6. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  7. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  8. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  9. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  10. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  11. Rain cell-based identification of the vertical profile of reflectivity as observed by weather radar and its use for precipitation uncertainty estimation

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    The wide scale implementation of weather radar systems over the last couple of decades has increased our understanding concerning spatio-temporal precipitation dynamics. However, the quantitative estimation of precipitation by these devices is affected by many sources of error. A very dominant source of error results from vertical variations in the hydrometeor size distribution known as the vertical profile of reflectivity (VPR). Since the height of the measurement as well as the beam volume increases with distance from the radar, for stratiform precipitation this results in a serious underestimation (overestimation) of the surface reflectivity while sampling within the snow (bright band) region. This research presents a precipitation cell-based implementation to correct volumetric weather radar measurements for VPR effects. Using the properties of a flipping carpenter square, a contour-based identification technique was developed, which is able to identify and track precipitation cells in real time, distinguishing between convective, stratiform and undefined precipitation. For the latter two types of systems, for each individual cell, a physically plausible vertical profile of reflectivity is estimated using a Monte Carlo optimization method. Since it can be expected that the VPR will vary within a given precipitation cell, a method was developed to take the uncertainty of the VPR estimate into account. As a result, we are able to estimate the amount of precipitation uncertainty as observed by weather radar due to VPR for a given precipitation type and storm cell. We demonstrate the possibilities of this technique for a number of winter precipitation systems observed within the Belgian Ardennes. For these systems, in general, the precipitation uncertainty estimate due to vertical reflectivity profile variations varies between 10-40%.

  12. Microstructural effects on the yield strength and its temperature dependence in a bainitic precipitation hardened Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kotilainen, H.; Nenonen, P.

    1980-03-01

    The plastic deformation behaviour of a precipitation hardened bainitic Cr-Mo-V steel is analyzed at ambient and low temperatures. The temperature dependent component of the yield strength is composed of the Peierls-Nabarro force and also partly of the strengthening contribution of the lath- and cell boundaries or the solid solution hardening. The temperature dependence below 230 K is in accordance with the models presented by Yanoshevich and Ryvkina as well as Dorn and Rajnak. The temperature independent component can be calculated merely from the dislocation density, which is stabilized by the vanadium-rich carbides. The linear additivity cannot be used for the superposition of the strengthening effects of various strengthening parameters, By using the phenomenological approach starting from the dislocation movement mechanisms upon yielding the laws for the superposition are discussed. (author)

  13. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    tendency and Gibbs free energy of C in Alloy 690 is higher than in 304 SS, due to the higher bulk C concentration and the site competition of P atoms which segregate at grain boundary [29,30]. It is imply that the segregation tendency is influenced by the bulk concentration of the segregates. Si atoms slightly segregate at grain boundaries in Alloy 690, but do not segregate at grain boundaries in 304 SS. N and P atoms segregate at grain boundary in 304 SS, and their segregation Gibbs free energy are similar. N atoms may be exhausted by the TiN precipitated in the matrix and can not be observed in the grain boundary of Alloy 690 [19]. Mn atoms deplete at grain boundary in 304 SS. This phenomenon is similar to that of proton irradiation induced segregation in 304 SS [32]. B, C, N, P segregation Gibbs energies are similar both in 304 SS and Alloy 690. B and C atoms segregate at grain boundary both in Alloy 690 and 304 SS, P and N segregate at grain boundary in 304 SS. Si atoms segregate at grain boundary in Alloy 690, but do not segregate at grain boundary in 304 SS. Cr enriches at grain boundary both in Alloy 690 and 304 SS, although carbide does not nucleate. Ni and Fe may segregate, deplete or homogeneously distribute at grain boundary in Alloy 690, but they deplete at grain boundary in 304 SS. C and Cr atoms co-segregate at grain boundaries before carbide nucleation in Alloy 690 and 304 SS. Combination with other results in literatures, the evolution of Cr concentration at grain boundary should be enrichment at grain boundary before carbide nucleation, depletion at grain boundary after carbide precipitation, and healing after obvious growth of carbide. After aging treatment at 500 °C for 0.5 h, the total reduction of grain boundary free energy due to segregation is 27.489 kJ/mol for Alloy 690 and 45.207 kJ/mol for 304.

  14. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  15. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  16. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  17. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  18. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  19. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    Lakomskii, V.

    1998-01-01

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  20. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  1. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  2. Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation

    Science.gov (United States)

    Zyman, Z.; Rokhmistrov, D.; Glushko, V.

    2012-08-01

    A new insight on the conversion of an amorphous calcium phosphate, ACP, to hydroxyapatite, HA, has been proposed. The ACP has been precipitated under appropriate conditions of the nitrous method (low concentrations of reactants, pH>10, 25 °С, fast mixing). The ACP to HA conversion has been found to commence immediately after the ACP precipitation. The conversion reveals itself in the first detected shift of the diffuse maximum from 29.5° 2θ (ACP) to about 32° 2θ (the position of principal peaks of HA) in the XRD patterns for the precipitates of 2 min-6 h lifetimes. The precipitates are biphasic mixtures of ACP and nanocrystalline HA, nHA, with increasing nHA/ACP ratio for longer lifetimes. Characteristics of the simulated XRD profiles calculated proceeding on such a picture are excellently confirmed by experimental results. At the end of the conversion, HA nanocrystals start growing. This follows from the appearance of broadened diffraction maxima, which gradually sharpen, along with the appearance and gradual increase of splitting of the initially featureless υ3 and υ4PO43- bands in the IR spectra of precipitates with their aging (after 6 h of the precipitation). Based on the detected structural and compositional peculiarities of ACP in the early stage of precipitation, a cell model for the HA crystallization has been proposed. Proceeding on the model, the principal data in this and earlier studies, considering the ACP to HA conversion as an internal rearrangement process in the ACP particles, has been reasonably explained.

  3. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  4. Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Heo, Yoon-Uk [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of); Han, Young-Soo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kang, Jun-Yun; Ha, Heon-Young [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Suh, Dong-Woo [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of)

    2015-10-01

    The precipitation sequence during ageing of Fe–14Cr–20Ni–0.9Nb–2.5Al based alumina-forming austenitic (AFA) steel was explored through a transmission electron microscopy analysis and a small angle neutron scattering experiment. The samples were aged at 700 °C for up to 504 h. Particles of NbC, M{sub 23}C{sub 6} and Ni{sub 3}Al-type L1{sub 2} were observed in the early stage of ageing. Metastable L1{sub 2} particles were formed both in grain interior and along grain boundary. M{sub 23}C{sub 6} carbides precipitated along grain boundary accompanied with precipitation of L1{sub 2} particles. After ageing for longer than 48 h, particles of B2-NiAl and Laves-Fe{sub 2}Nb were newly formed. We suggest the possibility of phase transition from L1{sub 2} to B2 with increase in ageing time. Finally, this study examined the change of mechanical properties during ageing through a Gleeble hot tension test and a Vickers hardness test, and then the relationship between precipitation behavior and mechanical properties was carefully investigated and discussed in terms of precipitation behavior.

  5. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  7. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  8. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  9. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  10. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  11. Thermionic emission of cermets made of refractory carbides

    International Nuclear Information System (INIS)

    Samsonow, G.W.; Bogomol, I.W.; Ochremtschuk, L.N.; Podtschernjajewa, I.A.; Fomenko, W.S.

    1975-01-01

    In order to improve the resistance to thermal variations of refractory carbides having good behavior for thermionic emission, they have been combined with transition metals d. Thermionic emission was studied with cermets in compact samples. Following systems were examined: TiC-Nb, TiC-Mo, TiC-W, ZrC-Nb, ZrC-Mo, ZrC-W, WC-Mo with compositions of: 75% M 1 C-25% M 2 , 50%M 1 C-50%M 2 , 25%M 1 C-75%M 2 . When following the variation of electron emission energy phi versus the composition, it appears that in the range of mixed crystals (M 1 M 2 )C, phi decreases and the resistance to thermal variations of these phases is higher than that of individual carbides. The study of obtained cermets shows that their resistance to thermal variations is largely superior to the one of starting carbides; TiC and ZrC carbides, combined with molybdenum and tungsten support the highest number of thermic cycles

  12. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  13. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    Science.gov (United States)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  14. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  15. Atom-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Zyryanova, A.N.

    1999-01-01

    Experimental results on magnetic susceptibility of nonstoichiometric hafnium carbide HfC y (0.6 0.71 , HfC 0.78 and HfC 0.83 in the range of 870-930 K the anomalies are revealed which are associated with superstructure short-range ordering in a non-metallics sublattice. It is shown that a short-range order in HfC 0.71 and HfC 0.78 carbides corresponds to Hf 3 C 2 ordered phase, and in HfC 0.83 carbide - to Hf 6 C 5 ordered phase. HfC 0.78 carbide is found to possesses zero magnetic susceptibility in temperature range 910-980 K [ru

  16. Advanced technologies of production of cemented carbides and composite materials based on them

    International Nuclear Information System (INIS)

    Bondarenko, V.; Pavlotskaya, E.; Martynova, L.; Epik, I.

    2001-01-01

    The paper presents new technological processes of production of W, WC and (Ti, W)C powders, cemented carbides having a controlled carbon content, high-strength nonmagnetic nickel-bonded cemented carbides, cemented carbide-based composites having a wear-resistant antifriction working layer as well as processes of regeneration of cemented carbide waste. It is shown that these technological processes permit radical changes in the production of carbide powders and products of VK, TK, VN and KKhN cemented carbides. The processes of cemented carbide production become ecologically acceptable and free of carbon black, the use of cumbersome mixers is excluded, the power expenditure is reduced and the efficiency of labor increases. It becomes possible to control precisely the carbon content within a two-phase region -carbide-metal. A high wear resistance of parts of friction couples which are lubricated with water, benzine, kerosene, diesel fuel and other low-viscosity liquids, is ensured with increased strength and shock resistance. (author)

  17. Diamond dispersed cemented carbide produced without using ultra high pressure equipment

    International Nuclear Information System (INIS)

    Moriguchi, H.; Tsuzuki, K.; Ikegaya, A.

    2001-01-01

    We have developed a composite material of dispersed diamond particles in cemented carbide without using ultra high pressure equipment. The developed diamond dispersed cemented carbide combines the excellent properties of cemented carbide with diamond and also provides 1.5 times improved fracture toughness over that of cemented carbide. They also show 10 times higher wear resistance over that of cemented carbide in a wear resistance test against bearing steel, and 5 times greater grindability than diamond compacts. Because ultra high pressure equipment is not used to produce the developed material, large compacts over 100 mm in diameter can be manufactured. The developed material showed 10-25 times higher wear resistance in real use as wear-resistant tools such as centerless blades and work-rests. (author)

  18. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  19. The determining impact of coiling temperature on the microstructure and mechanical properties of a titanium-niobium ultrahigh strength microalloyed steel: Competing effects of precipitation and bainite

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V.V.; Challa, V.S.A. [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, 500 W. University Avenue, University of Texas at El Paso, El Paso, TX 79968 (United States); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical Engineering, 500 W. University Avenue, University of Texas at El Paso, El Paso, TX 79968 (United States); Sidorenko, D.M.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E. [ArcelorMittal Global R& D Center, 3001 East Columbus Drive, East Chicago, IN 46312 (United States)

    2016-05-17

    We elucidate here the influence of coiling temperature on the microstructure and mechanical properties, in an ultrahigh strength titanium-niobium microalloyed steel. The objective was to underscore the impact of coiling temperature on the nature and distribution of microstructural constituents (including different phases, precipitates, and dislocation structure) that significantly contributed to differences in the yield and tensile strength of these steels. Depending on the coiling temperature, the microstructure consisted of either a combination of fine lath-type bainite and polygonal ferrite or polygonal ferrite together with the precipitation of microalloyed carbides of size ~2–10 nm in the matrix and at dislocations. The microstructure of steel coiled at lower temperature predominantly consisted of bainitic ferrite with lower yield strength compared to the steel coiled at higher temperature, and the yield to tensile strength ratio was 0.76. The steel coiled at higher temperature consisted of polygonal ferrite and extensive precipitation of carbides and was characterized by higher yield strength and with yield strength/tensile strength ratio of 0.936. The difference in the tensile strength was insignificant for the two coiling temperatures. The observed microstructure was consistent with the continuous cooling transformation diagram.

  20. Present status of uranium-plutonium mixed carbide fuel development for LMFBRs

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi

    1984-01-01

    The feature of carbide fuel is that it has the doubling time as short as about 13 years, that is, close to one half as compared with oxide fuel. The development of the carbide fuel in the past 10 years has been started in amazement. Especially in the program of new fuel development in USA started in 1974, He and Na bond fuel attained the burnup of 16 a/o without causing the breaking of cladding tubes. In 1984, the irradiation of the assembly composed of 91 fuel pins in the FFTF is expected. On the other hand in Japan, the fuel research laboratory was constructed in 1974 in the Oarai Laboratory, Japan Atomic Energy Research Institute, to carry out the studies on carbide fuel. In the autumn of 1982, two carbide fuel pins with different chemical composition have been successfully made. Accordingly, the recent status of the development is explained. The uranium-plutonium mixed carbide fuel is suitable to liquid metal-cooled fast breeder reactors because of large heat conductivity and the high density of nuclear fission substances. The thermal and nuclear characteristics of carbide fuel, the features of the reactor core using carbide fuel, the chemical and mechanical interaction of fuel and cladding tubes, the selection of bond materials, the manufacturing techniques for the fuel, the development of the analysis code for fuel behavior, and the research and development of carbide fuel in Japan are described. (Kako, I.)

  1. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  2. Method for increasing the activity of fuel cell electrodes containing tungsten carbide. Verfahren zur Steigerung der Aktivitaet von Brennstoffelektroden, die Wolframcarbid enthalten

    Energy Technology Data Exchange (ETDEWEB)

    Binder, H.; Koehling, A.; Kuhn, W.; Lindner, W.; Sandstede, G.

    1977-10-13

    An increase in the activity of electrodes containing tungsten carbide for a low-temperature fuel cell with sulfuric acid as electrolyte can be achieved, if one operates the electrodes for a few hours (5-20 h) in the presence of hydrogen and a means of reduction (formaldehyde, hydrazene) in a voltage range of between +500 and +800 mV (relative to the H/sub 2/ electrode). A corrosion resistant layer is formed, which is assumed to have the composition WC/sub X/O/sub y/H/sub z/.

  3. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Science.gov (United States)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  4. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meng, L.J. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Sun, J., E-mail: jsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China); Xing, H. [School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, Shanghai 200240 (China)

    2012-08-15

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M{sub 23}C{sub 6}, M{sub 6}C, {sigma} phase and Laves phase. The M{sub 23}C{sub 6} carbides were observed at grain boundaries in the steel after creep at 873 K. The M{sub 6}C, {sigma} phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of {sigma} and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  5. Corrosion behavior of porous chromium carbide in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2012-01-01

    Highlights: ► Corrosion behavior of porous Cr 3 C 2 in various SCW conditions was investigated. ► Cr 3 C 2 is stable in SCW at temperature below 420–430 °C. ► Cracks and disintegration were observed at elevated testing temperatures. ► Degradation of Cr 3 C 2 is related to the intermediate product CrOOH. - Abstract: The corrosion behavior of highly porous chromium carbide (Cr 3 C 2 ) prepared by a reactive sintering process was characterized at temperatures ranging from 375 °C to 625 °C in a supercritical water environment with a pressure of 25–30 MPa. The test results show that porous chromium carbide is stable in SCW environments at temperatures under 425 °C, above which disintegration occurred. The porous carbide was also tested under hydrothermal conditions of pressures between 12 MPa and 50 MPa at constant temperatures of 400 °C and 415 °C, respectively. The pressure showed little effect on the stability of chromium carbide in the tests at those temperatures. The mechanism of disintegration of chromium carbide in SCW environments is discussed.

  6. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  7. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  8. Medium temperature reaction between lanthanide and actinide carbides and hydrogen

    International Nuclear Information System (INIS)

    Dean, G.; Lorenzelli, R.; Pascard, R.

    1964-01-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C 1-x , H 2x ). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [fr

  9. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  10. Recovery of pure slaked lime from carbide sludge: Case study of ...

    African Journals Online (AJOL)

    Adaobi

    Carbide sludge is the by-product of reaction between calcium carbide and water in the production of ... soluble in water. The optimum percentage yield was 78.2% at a ratio of 1:1000(w/v) of sludge to water held for 24 h at room temperature. Key words: Carbide, recovery, ..... calcium carbonate and other calcium products.

  11. Evaluation of titanium carbide metal matrix composites deposited via laser cladding

    Science.gov (United States)

    Cavanaugh, Daniel Thomas

    Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.

  12. Thermodynamic analysis of thermal plasma process of composite zirconium carbide and silicon carbide production from zircon concentrates

    International Nuclear Information System (INIS)

    Kostic, Z.G.; Stefanovic, P.Lj.; Pavlovic; Pavlovic, Z.N.; Zivkovic, N.V.

    2000-01-01

    Improved zirconium ceramics and composites have been invented in an effort to obtain better resistance to ablation at high temperature. These ceramics are suitable for use as thermal protection materials on the exterior surfaces of spacecraft, and in laboratory and industrial environments that include flows of hot oxidizing gases. Results of thermodynamic consideration of the process for composite zirconium carbide and silicon carbide ultrafine powder production from ZrSiO 4 in argon thermal plasma and propane-butane gas as reactive quenching reagents are presented in the paper. (author)

  13. Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad

    2017-12-01

    The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.

  14. The preparation of titanium-vanadium carbide/nickel cermets. Technical report

    International Nuclear Information System (INIS)

    Precht, W.; Sprissler, B.

    1976-01-01

    Titanium/vanadium alloy carbide rods were prepared by a zone melting procedure. Wetting studies were carried out using sections of the fused rods and candidate matrix material. It was established that nickel exhibits excellent wetting of (Ti, V) C, and accordingly cermet blends were prepared and liquid phase sintered. Processing parameters are discussed as well as their effect on the final microstructure. Alternate methods for cermet preparation are offered which use as received titanium carbide and vanadium carbide powders

  15. Carbide Transformation in Haynes 230 during Long-term Exposure at High Temperature

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Kim, Hyunmyung; Hong, Sunghoon; Jang, Changheui

    2014-01-01

    Long-term aging behaviors of a solid solution hardened Ni-base superalloy, Haynes 230 at high temperature have not been fully investigated yet. In this study, long-term aging tests of Haynes 230 was carried out to evaluate microstructure changes especially in carbide evolution. In addition, its consequential effects on tensile property such as tensile strength and elongation were discussed. In Haynes 230, a nucleation of the secondary carbides was dominant at 800 .deg. C ageing while growth at 900 .deg. C ageing. In addition, after aging at 800 .deg. C, transition of primary W-rich M 6 C carbides (break down) were observed and it showed high W content (up to 70 at.% W) compared to un-aged W-rich M 6 C carbides (around 30 at.% W). Coarsened Cr- and Ni-rich phase surrounded by carbide depleted region and high W-rich M 6 C carbide along the grain boundary were formed only at 900 .deg. C after long-term exposure above 10000 h. Tensile strength of aged Haynes 230 increased at 800 .deg. C while decreased at 900 .deg. C due to the formation of secondary carbide within the grains at 800 .deg. C. Decrease in elongation would be resulted from the coarsened and continuous carbides at the grain boundary as well as Cr- and Ni-rich phase along the grain boundary

  16. Towards the interaction between calcium carbide and water during gas-chromatographic determination of trace moisture in ultra-high purity ammonia.

    Science.gov (United States)

    Trubyanov, Maxim M; Mochalov, Georgy M; Suvorov, Sergey S; Puzanov, Egor S; Petukhov, Anton N; Vorotyntsev, Ilya V; Vorotyntsev, Vladimir M

    2018-05-16

    The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  18. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  19. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging

    Science.gov (United States)

    Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier

    2016-01-01

    The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.

  20. Calculation of vapour pressures over mixed carbide fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Mathews, C.K.

    1988-01-01

    Vapour pressure over the uranium-plutonium mixed carbide (Usub(l-p) Pusub(p C) was calculated in the temperature range of 1300-9000 for various compositions (p=0.1 to 0.7). Effects of variation of the sesquicarbide content were also studied. The principle of corresponding states was applied to UC and mixed carbides to obtain the equation of state. (author)

  1. Development of Gradient Cemented Carbides Through ICME Strategy

    Science.gov (United States)

    Du, Yong; Peng, Yingbiao; Zhang, Weibin; Chen, Weimin; Zhou, Peng; Xie, Wen; Cheng, Kaiming; Zhang, Lijun; Wen, Guanghua; Wang, Shequan

    An integrated computational materials engineering (ICME) including CALPHAD method is a powerful tool for materials process optimization and alloy design. The quality of CALPHAD-type calculations is strongly dependent on the quality of the thermodynamic and diffusivity databases. The development of a thermodynamic database, CSUTDCC1, and a diffusivity database, CSUDDCC1, for cemented carbides is described. Several gradient cemented carbides sintered under vacuum and various partial pressures of N2 have been studied via experiment and simulation. The microstructure and concentration profile of the gradient zones have been investigated via SEM and EPMA. Examples of ICME applications in design and manufacture for different kinds of cemented carbides are shown using the databases and comparing where possible against experimental data, thereby validating its accuracy.

  2. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  3. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  4. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  5. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  6. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  7. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  8. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  9. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  10. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  11. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  12. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  13. Estimation of sesqui-carbide fraction for MARK-I fuel

    International Nuclear Information System (INIS)

    Vana Varamban, S.; Ananthasivan, K.

    2016-01-01

    Sesqui-carbide content of FBTR bi-phasic mixed carbide is specified as 5-20 wt.%. For each batch of fuel production, the sesqui-carbide (M2C3) content is being determined by a K-ratio method using XRD information. There is a need to evolve an alternate method for qualitative determination of M2C3 content for a fabricated FBTR fuel pellet. Two independent approaches resulted in a correlation between overall carbon content and the M2C3 phase fraction. The thermodynamic calculations agree well with the stoichiometric correlation between the overall carbon content and the M2C3 phase fraction in FBTR MARK I fuel

  14. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  15. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  16. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    Science.gov (United States)

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This

  17. Corrosion behaviour of porous chromium carbide/oxide based ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong, Z.; Xin, T.; Chen, W.; Zheng, W.; Guzonas, D.

    2011-01-01

    Porous chromium carbide with a high density of open pores was fabricated by a reactive sintering method. Chromium oxide ceramics were obtained by re-oxidizing the porous chromium carbides formed. Some samples were added with yttria at 5 wt. %, prior to reactive sintering to form porous structures. Corrosion tests in SCW were performed at temperatures ranging from 375 o C to 625 o C with a fixed pressure at around 25∼30 MPa. The results show that chromium carbide is stable in SCW environments at temperatures up to 425 o C, above which disintegration of carbides through oxidation occurs. Porous chromium oxide samples show better corrosion resistance than porous chromium carbide, but disintegrate in SCW at around 625 o C. Among all the samples tested, chromium oxide ceramics with added yttria exhibited much better corrosion resistance compared with the pure chromium carbide/oxides. No evidence of weight change or disintegration of porous chromium oxides with 5 wt % added yttria was observed after exposure at 625 o C in SCW for 600 hours. (author)

  18. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  19. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  20. Transformation and Precipitation Kinetics in 30Cr10Ni Duplex Stainless Steel

    Science.gov (United States)

    Fazarinc, Matevz; Terčelj, Milan; Bombač, David; Kugler, Goran

    2010-09-01

    To improve the microstructure during casting, hot forming, and heat treatment of 30Cr10Ni duplex stainless steel, accurate data on the precipitation and transformation processes at high temperatures are needed. In this article, the precipitation and transformation processes at various aging times in the temperature range 873 K to 1573 K (600 °C to 1300 °C) were studied. The 30Cr10Ni ferrous alloy contains a relatively large amount of Cr, Ni, and C, which results in a complex microstructure. In addition to the ferrite, austenite, and sigma phase, the M23C6 and MC carbides were also observed in the microstructure. The precipitation of the sigma phase was observed after just 3 minutes of aging, and after 30 minutes of aging at approximately 1053 K (780 °C), its fraction exceeded 40 pct. An intensive austenite-to-ferrite transformation was observed above 1423 K (1150 °C). Optical microscopy, energy-dispersive X-ray spectroscopy (EDS), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD), as well as micro-indentation hardness, hardness, impact toughness, and tensile tests, were carried out to evaluate the obtained microstructures of aged samples.

  1. The precipitation response of 20%-cold-worked type 316 stainless steel to simulated fusion irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1979-01-01

    The precipitation response of 20%-cold-worked type 316 stainless steel has been examined after irradiation in HFIR at 380-600 0 C, after irradiation in EBR-II at 500 0 C, and after thermal aging at 600 to 750 0 C. Eta phase forms during exposure to all environments. It constitutes a major portion of the precipitation response, and is rich in Ni, Si and Mo relative to M 23 C 6 after thermal aging. It is not normally reported in 20%-cold-worked type 316 stainless steel. The eta, M 23 C 6 , Laves, sigma, and chi precipitate phases appear at similar temperatures after HFIR, EBR-II, or thermal exposure. There are, however, some differences in relative amounts, size, and distribution of phases among the various environments. Eta phase is the only carbide-type phase observed after irradiation in HFIR from 380-550 0 C. The large cavities associated with it at 380 0 C contribute significantly to swelling. Re-solution of fine M 23 C 6 , eta, and Laves particles and re-precipitation of massive particles of sigma, M 23 C 6 and chi are observed after recrystallization in HFIR. (orig.)

  2. The impact of the presence on global markets of calcium carbide originating from China on other industry role players: the case of sa calcium carbide (PTY LTD

    Directory of Open Access Journals (Sweden)

    Royce Sitshonile Mazo

    2017-12-01

    Full Text Available This research assesses how the presence of calcium carbide originating from China has impacted on the operations of other role players in the industry. SA Calcium Carbide (Pty Ltd. located in Newcastle, South Africa, was used as a case study. The study spanned all markets where the company has a footprint meaning domestically, regionally and internationally. The aim of the study was to discern the extent to which companies like SA Calcium Carbide have been affected by the presence of products from China on the global market with special focus being put on the competitiveness in terms of pricing of products. The study used a survey strategy, and was exploratory in nature. The choice of the survey strategy was motivated by the need to collect both quantitative and qualitative data in order to meet the research objectives. The data was gathered, with an 80 percent response rate, using a questionnaire method from more than 70 current SA Calcium Carbide customers both from the domestic and the export side of the business. In order to consider the different perspectives of the whole scenario, 10 companies involved in either manufacturing or trading of Chinese manufactured calcium carbide were interviewed, some face to face and some telephonically. The study revealed that current customers, who are predominantly from the African continent, buy product from SA Calcium Carbide primarily because of its high quality. It also evident from the results that the export volumes of SA Calcium Carbide were on a gradual downward trend due to loss of market share to Chinese companies

  3. Plastic deformation of particles of zirconium and titanium carbide subjected to vibration grinding

    Energy Technology Data Exchange (ETDEWEB)

    Kravchik, A.E.; Neshpor, V.S.; Savel' ev, G.A.; Ordan' yan, S.S.

    1976-12-01

    A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and titanium carbide subjected to vibration grinding. The carbide powders were produced by direct synthesis from the pure materials: metallic titanium and zirconium and acetylene black. As to the nature of their elastic deformation, zirconium and titanium carbides can be considered elastic-isotropic materials. During vibration grinding, the primary fracture planes are the (110) planes. Carbides of nonstoichiometric composition are more brittle.

  4. Inducing mineral precipitation in groundwater by addition of phosphate

    Directory of Open Access Journals (Sweden)

    Hartmann Thomas

    2011-10-01

    Full Text Available Abstract Background Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1 added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM. Results The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. Conclusions Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In

  5. Preparation of hafnium carbide by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hertz, Dominique.

    1974-01-01

    Hard, adhesive coatings of single-phase hafnium carbide were obtained by chemical vapor reaction in an atmosphere containing hafnium tetrachloride, methane and a large excess of hydrogen. By varying the gas phase composition and temperature the zones of formation of the different solid phases were studied and the growth of elementary hafnium and carbon deposits evaluated separately. The results show that the mechanism of hafnium carbide deposition does not hardly involve phenomene of homogeneous-phase methane decomposition or tetrachloride reduction by hydrogen unless the atmosphere is very rich or very poor in methane with respect to tetrachloride. However, hydrogen acting inversely on these two reactions, affects the stoichiometry of the substance deposited. The methane decomposition reaction is fairly slow, the reaction leading to hafnium carbide deposition is faster and that of tetrachloride reduction by hydrogen is quite fast [fr

  6. The growth mechanism of grain boundary carbide in Alloy 690

    International Nuclear Information System (INIS)

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-01-01

    The growth mechanism of grain boundary M 23 C 6 carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M 23 C 6 and matrix was curved, and did not lie on any specific crystal plane. The M 23 C 6 carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M 23 C 6 carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M 23 C 6 : (111) matrix //(0001) transition //(111) carbide , ¯ > matrix // ¯ 10> transition // ¯ > carbide . The crystal lattice constants of transition phase are c transition =√(3)×a matrix and a transition =√(6)/2×a matrix . Based on the experimental results, the growth mechanism of M 23 C 6 and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M 23 C 6 and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M 23 C 6 . • The M 23 C 6 transforms from the matrix directly at the incoherent phase interface

  7. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Gurpreet; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com [Advanced Functional Material Laboratory, Department of Nanotechnology,, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140 406 Punjab (India); Kumar, Manjeet [Department of Materials Engineering, Defense Institute of Advanced Technology (DU), Pune-411 025 (India); Bala, Rajni [Department of Mathematics Punjabi University Patiala-147 002 Punjab (India)

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used for high temperature applications.

  8. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  9. The structure and function of supported molybdenum nitride and molybdenum carbide hydrotreating catalysts

    Science.gov (United States)

    Dolce, Gregory Martin

    1997-11-01

    A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two

  10. Characterization of Transition Metal Carbide Layers Synthesized by Thermo-reactive Diffusion Processes

    DEFF Research Database (Denmark)

    Laursen, Mads Brink; Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin

    2015-01-01

    . In this study halide-activated pack cementation techniques were used on tool steel Vanadis 6 and martensitic stainless steel AISI 420 in order to produce hard layers of titanium carbide (TiC), vanadium carbide (V8C7) and chromium carbides (Cr23C6 and Cr7C3). Surface layers were characterized by scanning......Hard wear resistant surface layers of transition metal carbides can be produced by thermo-reactive diffusion processes where interstitial elements from a steel substrate together with external sources of transition metals (Ti, V, Cr etc.) form hard carbide and/or nitride layers at the steel surface...... electron microscopy, X-ray diffraction and Vickers hardness testing. The study shows that porosityfree, homogenous and very hard surface layers can be produced by thermo-reactive diffusion processes. The carbon availability of the substrate influences thickness of obtained layers, as Vanadis 6 tool steel...

  11. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  12. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  13. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  14. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  15. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... alcohols is obtained at a K/Mo molar ratio of 0.21 over the active carbon supported Mo2C (20wt%)....

  16. Effect of Cement Replacement with Carbide Waste on the Strength of Stabilized Clay Subgrade

    Directory of Open Access Journals (Sweden)

    Muntohar A.S.

    2016-03-01

    Full Text Available Cement is commonly used for soil stabilization and many other ground improvement techniques. Cement is believed to be very good to improve the compressive and split-tensile strength of clay subgrades. In some application cement could be partly or fully replaced with carbide waste. This research is to study the effectiveness of the cement replacement and to find the maximum carbide waste content to be allowed for a clay subgrade. The quantities of cement replaced with the carbide waste were 30, 50, 70, 90, and 100% by its mass. The results show that replacing the cement with carbide waste decreased both the compressive and split tensile strength. Replacing cement content with carbide waste reduced its ability for stabilization. The carbide waste content should be less than 70% of the cement to provide a sufficient stabilizing effect on a clay subgrade.

  17. Reactivation properties of carbide slag as a CO{sub 2} sorbent during calcination/carbonation cycles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingjie; Sun, Rongyue; Liu, Hongling; Lu, Chunmei [Shandong Univ., Jinan (China). School of Energy and Power Engineering

    2013-07-01

    The carbide slag from polyvinyl chloride production as industry hazardous wastes was proposed as CO{sub 2} sorbent at high temperature in calcium looping cycle. The cyclic CO{sub 2} capture behavior and the microstructure characteristics of the carbide slag as one of the typical calcium-based industrial wastes during the multiple calcination/carbonation cycles. Also, the comparisons between the carbide slag and the natural limestone in cyclic CO{sub 2} capture behavior were made. XRD analysis demonstrates that the predominating constituent of the carbide slag is Ca(OH){sub 2}. The carbonation temperature ranging from 650 to 700 C is favourable to cyclic carbonation of the carbide slag. The cyclic carbonation conversions of the carbide slag is lower than that of the limestone before a certain time, but the situation is converse after that time in a thermogravimetric analyzer. The carbide slag has better cyclic CO{sub 2} capture capacity. The carbonation conversion of the carbide slag retains 0.28 after 100 calcination/carbonation cycles, while the two limestones achieve 0.08 and 0.14 respectively at the same reaction conditions in a dual fixed-bed reactor. The microstructure of the carbide slag by SEM reveals the reason why it possesses better CO{sub 2} capture capacity.

  18. The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys

    International Nuclear Information System (INIS)

    Okita, T.; Sekimura, N.; Garner, F.

    2007-01-01

    Full text of publication follows: Boron is often a deliberately added solute to improve the radiation resistance of austenitic structural alloys, with boron exerting its greatest influence on carbide precipitation. However, boron also a source of helium via transmutation and therefore tends to accelerate the onset of void nucleation. These conflicting contributions of boron with respect to radiation resistance are not easily separated, but are sometimes utilized to mimic fusion-relevant gas generation rates when testing in surrogate fission spectra. In an earlier study the authors demonstrated that in simple model ternary alloys that boron additions tended to homogenize swelling somewhat via increased helium generation but not to exert any significant influence on the total swelling. In these easily swelling alloys void nucleation was not significantly influenced by additional helium or by boron's chemical effect, with boron remaining primarily in solution. In the current study, Fe-15Cr-16Ni-0.25 Ti-0.05C alloys with four levels of natural boron addition (0, 100, 500, 2500 appm) were irradiated side-by-side at ∼400 deg. C in the Fast Flux Test Facility under active temperature control in the Materials Open Test Assembly. Although three sets of irradiation conditions were explored, the boron variation was the only variable operating in each data set. The bulk swelling was measured using an immersion density technique and electron microscopy was employed to determine the details of void, dislocation and precipitate microstructure. It was found that by 100 appm B the strongest and most immediate effect of boron was to reduce swelling at all irradiation conditions explored, but the boron-induced increases in overall helium content were rather small over the 0-100 appm B range. This indicates that boron's primary effect was chemical in nature, expressed via its effect on precipitation. As the boron level was progressively increased, however, there was a reversal in

  19. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  20. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  1. Atomistic modeling of zirconium hydride precipitation: methodology for deriving a tight-binding potential

    International Nuclear Information System (INIS)

    Dufresne, Alice

    2014-01-01

    The zirconium-hydrogen system is of nuclear safety interest, as the hydride precipitation leads to the cladding embrittlement, which is made of zirconium-based alloys. The cladding is the first safety barrier confining the radioactive products: its integrity shall be kept during the entire fuel-assemblies life, in reactor, including accidental situation, and post-operation (transport and storage). Many uncertainties remain regarding the hydrides precipitation kinetics and the local stress impact on their precipitation. The atomic scale modeling of this system would bring clarifications on the relevant mechanisms. The usual atomistic modeling methods are based on thermo-statistic approaches, whose precision and reliability depend on the interatomic potential used. However, there was no potential allowing a rigorous study of the Zr-H system. The present work has indeed addressed this issue: a new tight-binding potential for zirconium hydrides modeling is now available. Moreover, this thesis provides a detailed manual for deriving such potentials accounting for spd hybridization, and fitted here on DFT results. This guidebook has be written in light of modeling a pure transition metal followed by a metal-covalent coupling (metallic carbides, nitrides and silicides). (author)

  2. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    Goldenstein, H.

    1984-01-01

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 950 0 C, and 1200 0 , showing a very small sensitivy to the quenching temperature. (Author) [pt

  3. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    phosphoric acid were investigated in a temperature range from 80 to 170°C. A significant dependence of the activities on temperature was observed for all five carbide samples. Through the entire temperature range Group 6 metal carbides showed higher activity than that of the Group 5 metal carbides......Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated...

  4. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  5. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  6. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  7. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  8. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor

    International Nuclear Information System (INIS)

    Morishita, Takahiro; Soneda, Yasushi; Hatori, Hiroaki; Inagaki, Michio

    2007-01-01

    New electrode materials for electrochemical capacitor, tungsten carbide WC and molybdenum carbide Mo 2 C coated by porous carbon, were prepared through a simple heat treatment of the mixture of K 2 WO 4 and K 2 MoO 4 , respectively, with hydroxy propyl cellulose. Carbide changed to hydroxide during the 1st charge-discharge cycle in H 2 SO 4 aqueous electrolyte, which showed redox reaction in further charge-discharge cycles, in addition to electric double layers of the carbon formed on its surface. The carbon-coated carbide gave a high capacitance in 1 mol L -1 H 2 SO 4 electrolyte, as about 350 F cm -3 for carbon-coated WC and 550-750 F cm -3 for carbon-coated Mo 2 C. Coating of carbon inhibits the growth of carbide particles during their formation, of which the small particle size make possible to complete transformation to hydroxides during the 1st charge-discharge cycle, and also disturbs the agglomeration of tungsten and molybdenum hydroxides during charge-discharge cycles, as well as porous carbon coated act as electrode material for electric double layers of electrolyte ions

  9. Influence of Heat Treatment on Content of the Carbide Phases in the Microstructure of High-Speed Steel

    Directory of Open Access Journals (Sweden)

    Jaworski J.

    2017-09-01

    Full Text Available This article presents the results of investigations of the effect of heat treatment temperature on the content of the carbide phase of HS3-1-2 and HS6-5-2 low-alloy high-speed steel. Analysis of the phase composition of carbides is carried out using the diffraction method. It is determined that with increasing austenitising temperature, the intensification of dissolution of M6C carbide increases. As a result, an increase in the grain size of the austenite and the amount of retained austenite causes a significant reduction in the hardness of hardened steel HS3-1-2 to be observed. The results of diffraction investigations showed that M7C3 carbides containing mainly Cr and Fe carbides and M6C carbides containing mainly Mo and W carbides are dissolved during austenitisation. During austenitisation of HS3-1-2 steel, the silicon is transferred from the matrix to carbides, thus replacing carbide-forming elements. An increase in a degree of tempering leads to intensification of carbide separation and this process reduce the grindability of tested steels.

  10. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  11. Loss-of-flow transient characterization in carbide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Morgan, M.M.; Baars, R.E.; Elson, J.S.; Wray, M.L.

    1985-01-01

    One of the benefits derived from the use of carbide fuel in advanced Liquid Metal Fast Breeder Reactors (LMFBRs) is a decreased vulnerability to certain accidents. This can be achieved through the combination of advanced fuel performance with the enhanced reactivity feedback effects and passive shutdown cooling systems characteristic of the current 'inherently safe' plant concepts. The calculated core response to an unprotected loss of flow (ULOF) accident has frequently been used as a benchmark test of these designs, and the advantages of a high-conductivity fuel in relation to this type of transient have been noted in previous analyses. To evaluate this benefit in carbide-fueled LMFBRs incorporating representative current plant design features, limited calculations have been made of a ULOF transient in a small ('modular') carbide-fueled LMFBR

  12. Al and Si Influences on Hydrogen Embrittlement of Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Yanguo Li

    2013-01-01

    Full Text Available A first-principle method based on the density functional theory was applied to investigate the Al and Si influences on the hydrogen embrittlement of carbide-free bainitic steel. The hydrogen preference site, binding energy, diffusion behaviour, and electronic structure were calculated. The results showed that hydrogen preferred to be at the tetrahedral site. The binding energy of the cell with Si was the highest and it was decreased to be the worst by adding hydrogen. The diffusion barrier of hydrogen in the cell containing Al was the highest, so it was difficult for hydrogen to diffuse. Thus, hydrogen embrittlement can be reduced by Al rather than Si.

  13. Differential Precipitation and Solubilization of Proteins.

    Science.gov (United States)

    Ryan, Barry J; Kinsella, Gemma K

    2017-01-01

    Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein's propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.

  14. Investigations on the conditions for obtaining high density boron carbide by sintering

    International Nuclear Information System (INIS)

    Kislyj, P.S.; Grabtschuk, B.L.

    1975-01-01

    The results of investigations on kinetics of condensation and mechanisms of mass transfer in the process of sintering of technical, chemically pure and synthesized boron carbide are generalized. Laws on boron carbide densification depending upon temperature, time of isothermic endurance, thermal speed, size of powder particles and variable composition in homogeneity are determined. From the results obtained on condensation kinetics and special experiments on studying the changes in properties after heating under different conditions, the role of dislocation and diffusion processes in mass transfer during boron carbide sintering is exposed. The properties of sintered boron carbide are 15-20% lower than the properties of high-pressed one, that is conditioned by intercrystallite distortion of the first one and transcrystallite of the second one

  15. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  16. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbücher, C. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); Hildebrandt, E.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Alff, L. [Technische Universität Darmstadt, Institute of Materials Science, 64287 Darmstadt (Germany); Szot, K. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); University of Silesia, A. Chełkowski Institute of Physics, 40-007 Katowice (Poland); Breuer, U. [Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA-3), 52425 Jülich (Germany); Waser, R. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); RWTH Aachen, Institute of Electronic Materials (IWE 2), 52056 Aachen (Germany)

    2016-06-20

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  17. Present status of uranium-plutonium mixed carbide fuel development for LMFBR

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi.

    One Oarai characteristic of a carbide fuel is that its doubling time is about 13 years which is only about half as long as that of an oxide fuel. The development of carbide fuels in the past ten years has been truly remarkable. Especially, through the new fuel development program initiated in 1974 in the United States, success has been achieved with respect to He- and Na-bond fuels in obtaining a 16 a/o burning rate without damage to cladding tubes. In 1984 at FFTF, a radiation of a fuel assembly consisting 91 fuel pins is contemplated. On the other hand, in Japan, in 1974, a Fuel Research Wing specializing in the study of carbide fuels was constructed in the Oarai Laboratory of the Atomic Energy Research Institute and in the fall of 1982, was successful in fabricating two carbide fuel pins having different chemical compositions

  18. APS- and XPS-investigations of vanadium, vanadium carbide and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, A M; Krause, U [Technische Univ. Muenchen (F.R. Germany). Inst. fuer Physikalische Chemie und Theoretische Chemie

    1975-11-01

    Soft X-ray appearance potential spectroscopy (APS) and X-ray photoelectron spectroscopy (XPS) have been used to study vanadium, vanadium carbide, and graphite. The chemical shifts for vanadium carbide with respect to metallic vanadium and graphite are compared for the two methods. The Csub(K) structure in APS and the valence band in XPS for vanadium carbide show good agreement with the band structure calculations of Neckel and co-workers. Using the band structure calculations of Painter et al. it is also shown how the multi-peak structure in the APS spectrum of graphite is possibly due to density of states effects. It would therefore appear that plasmon coupling plays only a minor role.

  19. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  20. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  1. Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory

    Science.gov (United States)

    Liebscher, Christian H.; Yao, Mengji; Dey, Poulumi; Lipińska-Chwalek, Marta; Berkels, Benjamin; Gault, Baptiste; Hickel, Tilmann; Herbig, Michael; Mayer, Joachim; Neugebauer, Jörg; Raabe, Dierk; Dehm, Gerhard; Scheu, Christina

    2018-02-01

    Correlative scanning transmission electron microscopy, atom probe tomography, and density functional theory calculations resolve the correlation between elastic strain fields and local impurity concentrations on the atomic scale. The correlative approach is applied to coherent interfaces in a κ -carbide strengthened low-density steel and establishes a tetragonal distortion of fcc-Fe. An interfacial roughness of ˜1 nm and a localized carbon concentration gradient extending over ˜2 -3 nm is revealed, which originates from the mechano-chemical coupling between local strain and composition.

  2. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  3. Nonmetal effect on ordering structures in titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Ehm, V.T.; Savenko, B.M.

    1997-01-01

    The effect of oxygen and nitrogen atoms on formation of intermediate, cubic and trigonal ordering structures in the titanium carbide is studied through the roentgenography and neutron radiography methods. Metal atoms in the TiC 0.545 O 0.08 , TiC 0.545 N 0.09 samples under study are shifted from ideal positions in the direction from vacancies to metalloid atoms. In the intermediate cubic phase the values of the titanium atoms free parameter in both samples are identical, but they differ from analogous values in the titanium carbide

  4. Pilot production of 325 kg of uranium carbide

    International Nuclear Information System (INIS)

    Clozet, C.; Dessus, J.; Devillard, J.; Guibert, M.; Morlot, G.

    1969-01-01

    This report describes the pilot fabrication of uranium carbide rods to be mounted in bundles and assayed in two channels of the EL 4 reactor. The fabrication process includes: - elaboration of uranium carbide granules by carbothermic reduction of uranium dioxide; - electron bombardment melting and continuous casting of the granules; - machining of the raw ingots into rods of the required dimensions; finally, the rods will be piled-up to make the fuel elements. Both qualitative and quantitative results of this pilot production chain are presented and discussed. (authors) [fr

  5. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  6. Preparation of tantalum carbide layers on carbon using the metalliding process

    Energy Technology Data Exchange (ETDEWEB)

    Massot, L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France)], E-mail: massot@chimie.ups-tlse.fr; Chamelot, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Winterton, P. [UFR Langues vivantes, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France)

    2009-03-05

    This work concerns the preparation of tantalum carbide films on carbon-based substrates using the metalliding process in LiF/NaF molten medium (60-40 mol%), containing tantalum heptafluorotantalate ions TaF{sub 7}{sup 2-}, in the 800-900 deg. C temperature range. The process uses a metalliding cell symbolised as: (+) C, TaC{sub x}/LiF-NaF-K{sub 2}TaF{sub 7}/Ta (-) involving the dissolution of Ta at the anode and the reduction of Ta ions in TaC{sub x} at the cathode. The experiments of this process were performed with different carbon substrates as cathodic material: graphite, glassy carbon and carbon braid. Samples analysis (SEM-EDS and XRD) after metalliding showed the formation of tantalum carbides (TaC and Ta{sub 2}C) at the surface of the substrate at a relatively low temperature. A kinetic study, based on the control of the cathodic reaction by the intermetallic diffusion, allowed the diffusion parameters, such as Ta/C diffusion coefficient, to be determined at several temperatures. Furthermore, the results are shown to be independent of the type of carbon substrate.

  7. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation

    NARCIS (Netherlands)

    Stellwagen, D.R.; Bitter, J.H.

    2015-01-01

    This work demonstrates for the first time that carbide particle size is a critical factor for the activity and stability of carbon supported tungsten- and molybdenum carbide catalysts in (hydro-)deoxygenation reactions. The stability of the catalyst was shown to increase for larger particles due to

  8. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  9. Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations

    Energy Technology Data Exchange (ETDEWEB)

    Prat, O. [Max Planck Institute fuer Eisenforschung GmbH, Max Planck Strasse 1, 40237 Duesseldorf (Germany)] [Universidad de Concepcion, Departamento de Ingenieria de Materiales, Edmundo Larenas 270, Concepcion (Chile); Garcia, J., E-mail: jose.garcia@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rojas, D. [Max Planck Institute fuer Eisenforschung GmbH, Max Planck Strasse 1, 40237 Duesseldorf (Germany); Carrasco, C. [Universidad de Concepcion, Departamento de Ingenieria de Materiales, Edmundo Larenas 270, Concepcion (Chile); Inden, G. [Max Planck Institute fuer Eisenforschung GmbH, Max Planck Strasse 1, 40237 Duesseldorf (Germany)

    2010-10-15

    The growth kinetics of Laves phase precipitates (type Fe{sub 2}W) in the early stage of creep (650 deg. C for 10,000 h) in two 12% Cr ferrite-martensitic steels has been investigated. In one alloy the Laves phase formed on tempering, while in the second alloy the Laves phase precipitated during creep. Kinetic simulations were performed using the software DICTRA. The particle size of the Laves phase was measured on transmission electron microscopy samples. The equilibrium phase fraction of the Laves phase was reached in the first thousand hours. Simulations of particle growth showed good agreement with the experimental results. Competitive growth between M{sub 23}C{sub 6} and the Laves phase showed that M{sub 23}C{sub 6} carbides reached their equilibrium after 12 days, whereas the Laves phase reached equilibrium after 3 months. Simulations of the influence of the interfacial energy and addition of Co, Cu and Si on Laves phase precipitation are presented.

  10. Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations

    International Nuclear Information System (INIS)

    Prat, O.; Garcia, J.; Rojas, D.; Carrasco, C.; Inden, G.

    2010-01-01

    The growth kinetics of Laves phase precipitates (type Fe 2 W) in the early stage of creep (650 deg. C for 10,000 h) in two 12% Cr ferrite-martensitic steels has been investigated. In one alloy the Laves phase formed on tempering, while in the second alloy the Laves phase precipitated during creep. Kinetic simulations were performed using the software DICTRA. The particle size of the Laves phase was measured on transmission electron microscopy samples. The equilibrium phase fraction of the Laves phase was reached in the first thousand hours. Simulations of particle growth showed good agreement with the experimental results. Competitive growth between M 23 C 6 and the Laves phase showed that M 23 C 6 carbides reached their equilibrium after 12 days, whereas the Laves phase reached equilibrium after 3 months. Simulations of the influence of the interfacial energy and addition of Co, Cu and Si on Laves phase precipitation are presented.

  11. Effect of composition and heat treatment on carbide phases in Ni-Mo alloys

    International Nuclear Information System (INIS)

    Svistunova, T.V.; Tsvigunov, A.N.; Stegnukhina, L.V.; Sakuta, N.D.

    1984-01-01

    The investigation results of vanadium, iron, carbon and silicon effect and heat treatment regime on the type and composition of carbides in Ni-(26...31)%Mo alloys are presented. It is shown that type, composition and quantity of carbide phases forming in alloys are determined not only by molybdenum and carbon content, but presence of other elements (V, Fe), admixtures (C, Si) and reducers as well as by regime of thermal treatment. In the alloy, containing 26...31% Mo, 0.01...0.03% C ( 12 C type with a=1.083...1.089 nm lattice parameter, in which V and Ti, Fe and Si are presented besides Mo and Ni. In the temperature range of 600-800 deg C high dispersed carbides segregate on grain boundaries. Silicon initiates segregation of the carbide phases among them by grain boundaries at the temperatures of 800 deg C as well as regulates carbide of M 12 C type with a=1.094...1.098 nm lattice parameter

  12. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia); Wood, Kathleen [Australian Nuclear Science and Technology Organisation, Bragg Institute, New South Wales, 2234, Menai (Australia); Taylor, Adam; Hodgson, Peter; Stanford, Nicole [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia)

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.

  13. Precipitation-generated oscillations in open cellular cloud fields.

    Science.gov (United States)

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  14. Survey of post-irradiation examinations made of mixed carbide fuels

    International Nuclear Information System (INIS)

    Coquerelle, M.

    1997-01-01

    Post-irradiation examinations on mixed carbide, nitride and carbonitride fuels irradiated in fast flux reactors Rapsodie and DFR were carried out during the seventies and early eighties. In this report, emphasis was put on the fission gas release, cladding carburization and head-end gaseous oxidation process of these fuels, in particular, of mixed carbides. (author). 8 refs, 16 figs, 3 tabs

  15. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography

    International Nuclear Information System (INIS)

    Takahashi, Jun; Kawakami, Kazuto; Kobayashi, Yukiko; Tarui, Toshimi

    2010-01-01

    For the first time ever, atomic-scale direct observation of deuterium atoms trapping at nano-sized titanium carbide (TiC) precipitates in steel was successfully achieved using atom probe tomography (APT). Deuterium gas charging into the needle specimen and subsequently quenching were conducted in our designed chamber attached to three-dimensional atom probe (3DAP). The deuterium atoms were definitely observed on the broad surface of TiC platelets, which indicated that the broad interface between the matrix and TiC was the main trapping site.

  16. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  17. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Study of aging and ordering processes in titanium carbide

    International Nuclear Information System (INIS)

    Arbuzov, M.P.; Khaenko, B.V.; Kachkovskaya, Eh.T.

    1977-01-01

    Aging and ordering processes in titanium carbide were investigated on monocrystals (fragments of alloys) with the aid of roentgenographic method. The sequence of phase transformations during aging was ascertained,and a monoclinic structure of the carbon atoms ordering is suggested. The microhardness of titanium carbide was studied as a function of the heat treatment of alloys and the main factors (ordering and dislocation structure) which govern the difference in the microhardness of hardened and aged (annealed) specimens were determined

  20. Synthesis and phase transformation mechanism of Nb{sub 2}C carbide phases

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanadh, B., E-mail: visubathula@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Murthy, T.S.R.Ch. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Arya, A.; Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India)

    2016-06-25

    In the present work, Niobium carbide samples were prepared through powder metallurgy route using spark plasma sintering technique. Some of these samples were heat treated at 900 °C up to 7 days. In order to investigate the phase transformation in Nb{sub 2}C carbide, the as-prepared and heat treated samples were characterized by X-ray diffraction, scanning electron microscopy and electron back scattered diffraction (EBSD) and transmission electron microscopy techniques. EBSD could index the same area of the sample in terms of any of the three allotropes of Nb{sub 2}C carbide phases (γ-Nb{sub 2}C, β-Nb{sub 2}C and α-Nb{sub 2}C) with good confidence index. From the EBSD patterns orientation relationships (OR) among γ, β and α-Nb{sub 2}C have been determined. Based on this OR when crystals of the three allotropes were superimposed, it has revealed that the basic Nb metal atom lattice (hcp lattice) in all the Nb{sub 2}C phases is same. The only difference exists in the carbides is the ordering of carbon atoms and vacancies in the octahedral positions of the hcp Nb metal atom lattice. Crystallographic analysis showed that for the transformation of γ-Nb{sub 2}C → β-Nb{sub 2}C → α-Nb{sub 2}C, large movement of Nb atoms is not required; but only by ordering of carbon atoms ensues the phase transformation. Literature shows that in the Nb–C system formation of the α-Nb{sub 2}C is not well established. Therefore, first principle calculations were carried out on these carbides. It revealed that the formation energy for α-Nb{sub 2}C is lower than the β and γ-Nb{sub 2}C carbides which indicate that the formation of α-Nb{sub 2}C is thermodynamically feasible. - Highlights: • Nb{sub 2}C carbide was produced by Spark Plasma Sintering in a single process. • Phase transformation mechanism of different Nb{sub 2}C carbide phases is studied. • In all the three Nb{sub 2}C carbides (γ, β, α), the base Nb lattice remains same. • Among γ, β and α-Nb{sub 2}C

  1. On change of vanadium carbide state during 20Kh3MVF steel heat treatment

    International Nuclear Information System (INIS)

    Gitgarts, M.I.; Maksimenko, V.N.

    1975-01-01

    The Xray diffraction study of vanadium carbide MC has been made in the steel-20KH3MVF quenched from 970 and 1040 deg and tempered at 660 deg for 210 hrs. It has been found that the constant of the MC crystal lattice regularly varies with the temperature of isothermal hold-up. In the steel tempered after quenching two vanadium carbides of different content could co-exist simultaneously: carbide formed in the quenching process and carbide formed during tempering. The discovered effect of the temperature dependence of the MC content is, evidently, inherent also to other steels containing vanadium

  2. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  3. On possibility of fabrication of monolith composite materials on niobium carbide base

    International Nuclear Information System (INIS)

    Ploshkin, V.V.; Ul'yanina, I.Yu.; Filonenko, V.P.

    1984-01-01

    An attempt was made to fabricate the composite material on niobium carbide base possessing the elevated heat resistance, erosion and chemical resistance in special media, as well as capable of withstanding sufficient thermal shocks. Powder of niobium carbide of 10 μm fraction was used as base material, the powder of pure copper of 10...12 μm fraction - as binder. It was shown that samples of composite mateiral on niobium carbide base fabricated by the method of hydrostatic pressing possessed the minimal porosity as compared to samples fabricated by usual methods of powder metallurgy. The basic phases of composite material-copper and niobium carbide - distribute uniformly over sample cross-section and don't interact with each other under any conditions. The fabricated composite material possesses sufficient thermal shock resistance and isn't subjected to brittle fracture

  4. A study on the formation of uranium carbide in an induction furnace

    International Nuclear Information System (INIS)

    Song, In Young; Lee, Yoon Sang; Kim, Eung Soo; Lee, Don Bae; Kim, Chang Kyu

    2005-01-01

    Uranium is a typical carbide-forming element. Three carbides, UC, U 2 C 3 and UC 2 , are formed in the uranium-carbon system. The most important of these as fuel is uranium monocarbide UC. It is well known that Uranium carbides can be obtained by three basic methods: 1) by reaction of uranium metal with carbon; 2) by reaction of uranium metal powder with gaseous hydrocarbons; 3) by reaction of uranium oxides with carbon. The use of uranium monocarbide, or materials based on it, has great prospects as fuel for nuclear reactors. It is quite possible that uranium dicarbide UC 2 may also acquire great importance as a fuel, particularly in dispersion fuel elements with graphite matrix. In the present study, uranium carbides are obtained by direct reaction of uranium metal with graphite in a high frequency induction furnace

  5. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  6. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    International Nuclear Information System (INIS)

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-01-01

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB 2 , ZrB 2 , NbB 2 , CeB 6 , PrB 6 , SmB 6 , EuB 6 , LaB 6 ), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN 2 , VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN 3 with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to ∼850 °C, once the autoclave was heated to 100 °C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: ► An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. ► The reaction mechanism is demonstrated by the case of SiC nanowires. ► The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  7. Toughness behaviour of tungsten-carbide-cobalt alloys

    International Nuclear Information System (INIS)

    Sigl, L.S.

    1985-05-01

    In the present work the mechanisms of crack propagation in technically important WC-Co alloys are investigated and a model describing the influence of microstructural parameters and of the mechanical properties of the constituents is developed. An energy concept is used for modelling fracture toughness. The energies dissipated in the four crack-paths (trans- and intergranular carbide fracture, fracture across the binder-ligaments, fracture in the binder close to the carbide/binder interface) are summed up using the experimentally determined area-fractions of the crack-paths, the specific energy of brittle fracture in the carbide and of ductile fracture is calculated by integrating the energy to deform a volume element over the plastically deformed region. In contrast to all earlier models, this concept describes fracture toughness of WC-Co alloys only with physically meaningful parameters. The excellent agreement with experimental toughness values and with qualitative observations of crack propagation show that the new model includes all effects which influence toughness. As demonstrated with WC-based hardmetals with a cobalt-nickel binder, the results open new possibilities for optimizing the toughness of composites in which a small amount of a tough phase is embedded in a brittle matrix. (Author, shortened by G.Q.)

  8. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  9. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    Science.gov (United States)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  10. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    Science.gov (United States)

    Xu, Lin-qing; Zhang, Dan-tian; Liu, Yong-chang; Ning, Bao-qun; Qiao, Zhi-xia; Yan, Ze-sheng; Li, Hui-jun

    2014-05-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  11. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    Science.gov (United States)

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  12. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  13. Influence of oxygen on the ion-beam synthesis of silicon carbide buried layers in silicon

    International Nuclear Information System (INIS)

    Artamanov, V.V.; Valakh, M.Ya.; Klyui, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of silicon structures with silicon carbide (SiC) buried layers produced by high-dose carbon implantation followed by a high-temperature anneal are investigated by Raman and infrared spectroscopy. The influence of the coimplantation of oxygen on the features of SiC buried layer formation is also studied. It is shown that in identical implantation and post-implantation annealing regimes a SiC buried layer forms more efficiently in CZ Si wafers or in Si (CZ or FZ) subjected to the coimplantation of oxygen. Thus, oxygen promotes SiC layer formation as a result of the formation of SiO x precipitates and accommodation of the volume change in the region where the SiC phase forms. Carbon segregation and the formation of an amorphous carbon film on the SiC grain boundaries are also discovered

  14. Vaporization thermodynamics and enthalpy of formation of aluminum silicon carbide

    International Nuclear Information System (INIS)

    Behrens, R.G.; Rinehart, G.H.

    1984-01-01

    The vaporization thermodynamics of aluminum silicon carbide was investigated using Knudsen effusion mass spectrometry. Vaporization occurred incongruently to give Al(g), SiC(s), and graphite as reaction products. The vapor pressure of aluminum above (Al 4 SiC 4 + SiC + C) was measured using graphite effusion cells with orifice areas between 1.1 X 10 -2 and 3.9 X 10 -4 cm 2 . The vapor pressure of aluminum obtained between 1427 and 1784 K using an effusion cell with the smallest orifice area, 3.9 X 10 -4 cm 2 , is expressed as log p (Pa) = - (18567 + or - 86) (K/T) + (12.143 + or - 0.054) The third-law calculation of the enthalpy change for the reaction Al 4 SiC 4 (s) = 4Al(g) + SiC(hex) + 3C(s) using the present aluminum pressures gives ΔH 0 (298.15 K) = (1455 + or - 79) kJ /SUP ./ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (1456 + or - 47) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from the elements calculated from the present vaporization enthalpy (third-law calculation) and the enthalpies of formation of Al(g) and hexagonal SiC is ΔH 0 /SUB f/ (298.15 K) = -(221 + or - 85) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from its constituent carbides Al 4 C 3 (s) and SiC(c, hex) is calculated to be ΔH 0 (298.15 K) = (38 + or - 92) KJ /SUP ./ mol -1

  15. Microstructural evolution in austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during long-term service

    International Nuclear Information System (INIS)

    Liu Jiangwen; Jiao Dongling; Luo Chengping

    2010-01-01

    The microstructural evolution of austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during aging and long-term service was investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of the as cast steel consists of the dendritic austenite, the block-like eutectic carbide M 7 C 3 spreaded among austenitic dendrite, and a small quantity of M 23 C 6 carbide. The microstructure of the steel aged at 600 deg. C consists of eutectic carbide M 23 C 6 transformed from eutectic carbide M 7 C 3 and dendritic austenite in which fine secondary carbide particles M 23 C 6 precipitated. The precipitated carbide M 23 C 6 kept a cubic-cubic orientation relationship (OR) with austenite matrix. There existed a carbide precipitation free zone (PFZ) around the eutectic carbide. For the long-term serviced samples, the secondary carbide precipitated in the austenite strikingly increased and the PFZ disappeared. Part of the M 23 C 6 transformed into M 6 C, which always kept a twin OR, [114] M 6 C //[110] A //[110] M 23 C 6 , with the austenite and the M 23 C 6 secondary carbide. In addition, a small quantity of σ phase FeCr and ε-Cr 2 N were also identified. The effects of alloy composition and service condition on the microstructural evolution of the steel were discussed.

  16. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    International Nuclear Information System (INIS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-01-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented

  17. Gravimetric determination of carbon in uranium-plutonium carbide materials

    International Nuclear Information System (INIS)

    Kavanaugh, H.J.; Dahlby, J.W.; Lovell, A.P.

    1979-12-01

    A gravimetric method for determining carbon in uranium-plutonium carbide materials was developed to analyze six samples simultaneously. The samples are burned slowly in an oxygen atmosphere at approximately 900 0 C, and the gases generated are passed through Schuetze's oxidizing reagent (iodine pentoxide on silica gel) to assure quantitative oxidation of the CO to CO 2 . The CO 2 is collected on Ascarite and weighed. This method was tested using a tungsten carbide reference material (NBS-SRM-276) and a (U,Pu)C sample. For 42 analyses of the tungsten carbide, which has a certified carbon content of 6.09%, an average value of 6.09% was obtained with a standard deviation of 0.01 7 % or a relative standard deviation of 0.28%. For 17 analyses of the (U,Pu)C sample, an average carbon content of 4.97% was found with a standard deviation of 0.01 2 % or a relative standard deviation of 0.24%

  18. Reaction of uranium and plutonium carbides with austenitic steels

    International Nuclear Information System (INIS)

    Mouchnino, M.

    1967-01-01

    The reaction of uranium and plutonium carbides with austenitic steels has been studied between 650 and 1050 deg. C using UC, steel and (UPu)C, steel diffusion couples. The steels are of the type CN 18.10 with or without addition of molybdenum. The carbides used are hyper-stoichiometric. Tests were also carried out with UCTi, UCMo, UPuCTi and UPuCMo. Up to 800 deg. C no marked diffusion of carbon into stainless steel is observed. Between 800 and 900 deg. C the carbon produced by the decomposition of the higher carbides diffuses into the steel. Above 900 deg. C, decomposition of the monocarbide occurs according to a reaction which can be written schematically as: (U,PuC) + (Fe,Ni,Cr) → (U,Pu) Fe 2 + Cr 23 C 6 . Above 950 deg. C the behaviour of UPuCMo and that of the titanium (CN 18.12) and nickel (NC 38. 18) steels is observed to be very satisfactory. (author) [fr

  19. Metallographic detection of carbides in the steel X 41 CrMoV 51 after different austenizing processes

    International Nuclear Information System (INIS)

    Fleer, R.; Rickel, J.; Draugelates, U.

    1979-01-01

    The etchant most suitable for clearly revealing the carbide particles in the developed hardened structure was determined by comparative structural investigations with several etchants in order to be able to undertake the metallographic detection of finely distributed carbides in the structure of the high alloy ultra-high strength steel X 41 CrMoV 51. The characteristic distribution and number of carbides could be revealed as well as the ferrite pearlite matrix. The picric-hydrochloric acid solution which, on a comparative basis, was the most effective, revealed the dependence of the carbide dissolution and structural formation on the temperature. The carbide components of the structure dissolved to an increasing extent at temperatures above 1100 0 C. All carbides up to the large volume mixed carbides appeared to dissolve in the segregation zone after annealing for one hour at 1200 0 C. Considerable grain growth also occurred. (orig./RW) [de

  20. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  1. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  2. Tribological behaviors of graphite sliding against cemented carbide in CaCl2 solution

    International Nuclear Information System (INIS)

    Guo, Fei; Tian, Yu; Liu, Ying; Wang, Yuming

    2015-01-01

    The tribological behaviors of graphite sliding against cemented carbide were investigated using a standard tribological tester Plint TE92 in a ring-on-ring contact configuration in both CaCl 2 solution and deionized water. An interesting phenomenon occurred: as the CaCl 2 solution concentration increased, the friction coefficient firstly decreased and was lower than that in the deionized water, and then gradually increased, exceeding the friction coefficient in the deionized water. The wear rate of the ,graphite also presented the same variation trend. According to the polarization curves of cemented carbide, contact angle measurements, Raman spectrum analysis and scanning electron microscope (SEM) images analysis, the above friction and wear behaviors of graphite sliding against cemented carbide were attributed to the graphite surface wettability and the cemented carbide surface corrosion property. (paper)

  3. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.

    Science.gov (United States)

    Li, Hui; Song, Hui; Liu, Wenqing; Xia, Shuang; Zhou, Bangxin; Su, Cheng; Ding, Wenyan

    2015-12-01

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Discontinuous precipitation in cobalt-tungsten alloys

    International Nuclear Information System (INIS)

    Zieba, P.; Cliff, G.; Lorimer, G.W.

    1997-01-01

    Discontinuous precipitation in a Co32 wt% W alloy aged in the temperature range from 875 K to 1025 K has been investigated. Philips EM 430 STEM has been used to characterize the microstructure and to measure the composition profiles across individual lamellae of ε Co and Co 3 W phases in partially transformed specimens. Two kinds of cellular precipitates have been found in the alloy. The initial transformation product, identified as primary lamellae with spacing of a few nanometers is replaced during prolonged ageing by secondary lamellae with a much larger interlamellar spacing, typically a few tens of nm. Line scans across cell boundaries of the primary lamellae revealed that, just behind the advancing cell boundary, the solute content is far from the equilibrium state. This solute excess within the cells is quickly removed at the ageing temperature. Calculations show that the diffusion process was too rapid to be identified as ordinary volume diffusion. Investigation of the kinetics showed that discontinuous precipitation is controlled by diffusion processes at the advancing cell boundary. This proposal has been confirmed by STEM analysis of tungsten profiles in the depleted ε Co lamellae

  5. Precipitation in 20 Cr-25 Ni type stainless steel irradiated at low temperatures in a thermal reactor (AGR)

    International Nuclear Information System (INIS)

    Taylor, C.

    1983-01-01

    The effects of irradiation on the microstructure of AGR fuel rod cladding have been studied by analytical electron microscopy. Two alloys were investigated, the standard 20 Cr-25 Ni steel stabilised with Nb and a variant containing less Nb but strengthened with a dispersion of TiN precipitates. Irradiation at 360 deg C to 480 deg C produced (Ni, Si)-rich precipitates in both alloys; additionally the standard alloy contained (Ni, Nb, Si)-rich precipitates when irradiated at 440 deg C to 640 deg C. While similar features have been observed in other austenitic stainless steels irradiated in fast reactors, where the lattice-damage rate is greater than in a thermal reactor, their formation is not predicted by isothermal equilibrium diagrams. It is suggested here that the phases are irradiation-induced and that the total displacement damage is the controlling factor. Cladding solution-treated above 1050 deg C then irradiated at 2 -based reactor coolant occurred in cladding with low levels of cold-work at the outer surface, also resulting in Cr-rich carbide formation. (author)

  6. Multi-criteria methodology to design a sodium-cooled carbide-fueled Gen-IV reactor

    International Nuclear Information System (INIS)

    Stauff, N.

    2011-01-01

    Compared with earlier plant designs (Phenix, Super-Phenix, EFR), Gen IV Sodium-cooled Fast Reactor requires improved economics while meeting safety and non-proliferation criteria. Mixed Oxide (U-Pu)O 2 fuels are considered as the reference fuels due to their important and satisfactory feedback experience. However, innovative carbide (U-Pu)C fuels can be considered as serious competitors for a prospective SFR fleet since carbide-fueled SFRs can offer another type of optimization which might overtake on some aspects the oxide fuel technology. The goal of this thesis is to reveal the potentials of carbide by designing an optimum carbide-fueled SFR with competitive features and a naturally safe behavior during transients. For a French nuclear fleet, a 1500 MW(e) break-even core is considered. To do so, a multi-physic approach was developed taking into account neutronics, fuel thermo-mechanics and thermal-hydraulic at a pre-design stage. Simplified modeling with the calculation of global neutronic feedback coefficients and a quasi-static evaluation was developed to estimate the behavior of a core during overpower transients, loss of flow and/or loss of heat removal transients. The breakthrough of this approach is to provide the designer with an overall view of the iterative process, emphasizing the well-suited innovations and the most efficient directions that can improve the SFR design project.This methodology was used to design a core that benefits from the favorable features of carbide fuels. The core developed is a large carbide-fueled SFR with high power density, low fissile inventory, break-even capability and forgiving behaviors during the un-scrammed transients studied that should prevent using expensive mitigate systems. However, the core-peak burnup is unlikely to significantly exceed 100 MWd/kg because of the large swelling of the carbide fuel leading to quick pellet-clad mechanical interaction and the low creep capacity of carbide. Moderate linear power fuel

  7. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  8. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    International Nuclear Information System (INIS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V.

    2015-01-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr 7 C 3 is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr x C y )-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr 3 C 2 and Cr 7 C 3 , the clad layers showed only the presence of Cr 7 C 3 . Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr 7 C 3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr 7 C 3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ 2 ) of the Cr 7 C 3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  9. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  10. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  11. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  12. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  13. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  14. Advances in carbide fuel element development for fast reactor application

    International Nuclear Information System (INIS)

    Dienst, W.; Kleykamp, H.; Muehling, G.; Reiser, H.; Steiner, H.; Thuemmler, F.; Wedermeyer, H.; Weimar, P.

    1977-01-01

    The features of the carbide fuel development programme are reviewed and evaluated. Single pin and bundle irradiations are carried out under thermal, epithermal and fast flux conditions, the latter in the DFR and KNK-II reactors. Several fuel concepts in the region of representative SNR clad temperatures are compared by parameter and performance tests. A conservative concept is based on He-bonded 8 mm pins with (U,Pu)C pellets and a smear density of 75% TD, operating at 800 W/cm rod power and burnup to 70 MWd/kg. The preparation of mixed carbide fuels is carried out by carbothermic reduction of the oxides in different methods supported by equivalent carbon content, grain size and phase distribution analysis. The fuel for subassembly performance tests is produced in a pilot plant of 0,5 t/year capacity. Compatibility studies reveal that cladding carburization is the only chemical interaction with carbide fuels. This effect leads to a reduction in ductility of the stainless steel. Fission products apparently play no role in the compatibility behaviour. Comprehensive studies lead to reliable information on the chemical and thermodynamic state of the fuel under irradiation. The swelling of carbide fuels and the fission gas release are examined and analysed. Cladding plastic strain by fuel swelling occurs during steady-state operation because the irradiation creep is rather slow compared to oxide fuels. The cladding strain observed depends on the fuel porosity and the cladding strength. The development of carbide fuel pins is complemented by the application of comprehensive computer models. In addition to the steady-state tests power cycling and safety tests are under performance. Up to 1980 the results are summarized for the final design and specification. The development target of the present program is to fabricate several subassemblies for test operation in the SNR 300 by 1981

  15. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A

    2017-07-07

    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  16. Effect of Ion Beam Irradiation on Silicon Carbide with Different Microstructures

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2006-01-01

    SiC and SiC/SiC composites are one of promising candidates for structural materials of the next generation energy systems such as the gas-cooled reactors and fusion reactors. This anticipation yields many material issues, and radiation effects of silicon carbide are recognized as an important research subject. Silicon carbide has diverse crystal structures (called polytypes), such as α-SiC (hexagonal structure), β-SiC (cubic structure) and amorphous SiC. Among these polytypes, β-SiC has been studied as matrix material in SiC/SiC composites. Near-stoichiometric β-SiC with high crystallinity and purity is considered as suitable material in the next generation energy system and matrix material in SiC/SiC composites because of its excellent radiation resistance. Highly pure and crystalline β-SiC and SiC/SiC composites could be obtained by the chemical vapor deposition (CVD) and Infiltration (CVI) process using a gas mixture of methyltrichlorosilane (CH 3 SiCl 3 , MTS) and purified H 2 . SiC produced by the CVD method has different grain size and microstructural morphology depended on the process conditions such as temperature, pressure and the input gas ratio. In this work, irradiation effects of silicon carbide were investigated using ion beam irradiation with emphasis on the influence of grain size and grain boundary. MeV ion irradiation at low temperature makes amorphous phase in silicon carbide. The microstructures and mechanical property changes of silicon carbide with different structures were analyzed after ion beam irradiation

  17. Pipe bend wear - is tungsten carbide the answer?

    International Nuclear Information System (INIS)

    Freinkel, D.

    1988-01-01

    The purpose of the investigation was to compare the relative wear resistance of various grades of sintered tungsten carbide liners against a mild steel standard in a full-scale pneumatic conveying testing rig. Speciments ranging in cobalt content from 6 to 30 per cent and in grain size from 0,56 to 2,98 microns, including a mild steel standard, were placed on a specially designed holder which fitted into a tee type 100 mm diameter bend. The specimens were tested under various operating conditions, ie air velocity ranging from 28m/s to 52m/s, impact angles of 30 0 to 70 0 mass flow rates of 35kg/min to 83kg/min and phase densities of 1,2 to 2,9, using a 4 mm nominal size crushed granite rock. The experimental results show that the ultrafine-grained, low cobalt (6 per cent) tungsten carbide displays little sensitivity to varying velocities, impact angles, mass flow rates or phase densities, and consistently gave the best wear resistance under all testing conditions. It consistently showed the least wear resistance under all testing conditions and performed only slightly better than mild steel. The effect of the carbide grain size was found to be small, although the finer grain sizes displayed greater wear resistance than the coarse grains. The effect of cobalt content was such that the lower cobalt specimens (6 per cent range) consistently performed better than the higher cobalt contents (10 per cent, 15 per cent, 30 per cent) under all testing conditions; the wear resistance decreasing with increasing cobalt content. An empirical model for the prediction of wear for each type of material tested has been proposed, given the particular operating conditions. Microstructurally it has been shown that there is a definite relationship between erosion resistance and the inverse of the magnetic coercivity of the tungsten carbide alloys

  18. Microstructure of reactive synthesis TiC/Cr18Ni8 stainless steel bonded carbides

    Institute of Scientific and Technical Information of China (English)

    Jiang Junsheng; Liu Junbo; Wang Limei

    2008-01-01

    TiC/Cr18Ni8 steel bonded carbides were synthesized by vacuum sintering with mixed powders of iron, ferrotitanium, ferrochromium, colloidal graphite and nickel as raw materials. The microstructure and microhardness of the steel bonded carbides were analyzed by scanning electron microscope (SEM),X-ray diffraction (XRD) and Rockwell hardometer. Results show that the phases of steel bonded carbides mainly consist of TiC and Fe-Cr-Ni solid solution. The synthesized TiC particles are fine. Most of them are not more than 1 μm With the increase of sintering temperature, the porosity of TiC/Cr18Ni8 steel bonded carbides decreases and the density and hardness increase, but the size of TiC panicles slightly increases. Under the same sintering conditions, the density and hardness of steel bonded carbides with C/Ti atomic ratio 0.9 are higher than those with C/Ti atomic ratio 1.0.The TiC particles with C/Ti atomic ratio 0.9 are much finer and more homogeneous.

  19. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  20. Electronic and vibrational hopping transport in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1991-01-01

    General concepts of hopping-type transport and localization are reviewed. Disorder, electronic correlations and atomic displacements, effects ignored in electronic band structure calculations, foster localization of electronic charge carriers. Examples are given that illustrate the efficacy of these effects in producing localization. This introduction is followed by a brief discussion of the relation between hopping-type transport and localization. The fundamentals of the formation, localization, and hopping transport of small polarons and/or bipolarons is then described. Electronic transport in boron carbides is presented as an example of the adiabatic hopping of small bipolarons. Finally, the notion of vibrational hopping is introduced. The high-temperature thermal diffusion in boron carbides is presented as a potential application of this idea

  1. Test setup for long term reliability investigation of Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Beczkowski, Szymon

    2013-01-01

    Silicon Carbide MOSFETs are now widely available and have frequently been demonstrated to offer numerous advantages over Silicon based devices. However, reliability issues remain a significant concern in their realisation in commercial power electronic systems. In this paper, a test bench...... is designed that enables an accelerated power cycling test to be performed on packaged Silicon Carbide MOSFETs (TO-247) under realistic operating conditions. An accelerated power cycling test is then performed, with on-state resistance selected as the observed parameter to detect degradation. On......-state resistance is routinely monitored online through the use of an innovative voltage measurement system. The packaged Silicon Carbide MOSFET is shown to exhibit a 25% increase in on-state resistance as the device ages throughout its lifetime, with the test still on-going....

  2. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    Science.gov (United States)

    2013-08-23

    Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel , Acta...Alumina- Forming Austenitic Stainless Steels Strengthened by LAves Phase and MC Carbide Precipitates , Metallurgical and Materials Transactions A...nano- precipitate engineering---of nanotwinned stainless steels . This preliminary work has provided valuable insight into the mechanisms responsible

  3. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, L., E-mail: venkatesh@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Samajdar, I. [Department of Metallurgical Engineering & Materials Science, IIT Bombay, Powai, Mumbai 400076 (India); Tak, Manish [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India); Doherty, Roger D. [Department of Materials Engineering, Drexel University, Philadelphia, PA 19104 (United States); Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005 (India)

    2015-12-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr{sub 7}C{sub 3} is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr{sub x}C{sub y})-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr{sub 3}C{sub 2} and Cr{sub 7}C{sub 3}, the clad layers showed only the presence of Cr{sub 7}C{sub 3}. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr{sub 7}C{sub 3} with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr{sub 7}C{sub 3} is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ{sub 2}) of the Cr{sub 7}C{sub 3} dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  4. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    Science.gov (United States)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  5. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  6. Enhanced optical performance of electrochemically etched porous silicon carbide

    International Nuclear Information System (INIS)

    Naderi, N; Hashim, M R; Saron, K M A; Rouhi, J

    2013-01-01

    Porous silicon carbide (PSC) was successfully synthesized via electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using various current densities. The cyclic voltammograms of SiC dissolution show that illumination is required for the accumulation of carriers at the surface, followed by surface oxidation and dissolution of the solid. The morphological and optical characterizations of PSC were reported. Scanning electron microscopy results demonstrated that the current density can be considered an important etching parameter that controls the porosity and uniformity of PSC; hence, it can be used to optimize the optical properties of the porous samples. (paper)

  7. Thermal conductivity and emissivity measurements of uranium carbides

    International Nuclear Information System (INIS)

    Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.

    2015-01-01

    Highlights: • Thermal conductivity and emissivity measurements of uranium carbides were performed. • The tested materials are candidates as targets for radioactive ion beam production. • The results are correlated with the materials composition and microstructure. - Abstract: Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.

  8. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Han [Technology research institute, Ulsan (Korea, Republic of); Lee, Hae Woo [Dong-A University, Busan (Korea, Republic of)

    2014-01-15

    This study investigated the effect of the aging time of weldment of 24Cr-3.5Mo duplex stainless steel on the microstructure and corrosion behavior. After performing FCAW, we carried out heat treatments at varying times at 850 ℃ and performed observation of microstructure, potentio dynamic test, SEM-EDS analysis, and X-ray diffraction analysis. As the aging time increased, the fraction of δ-ferrite decreased sharply, but the fraction of γ slightly increased. The σ phase was generated at a non-metallic inclusion along the grain boundaries of δ-ferrite and γ, while the χ phase was generated in the structure of δ-ferrite. As the intermetallic compounds increased, the critical pitting potential fell sharply, and PREN of the surrounding structure decreased by 5 due to precipitation of the σ phase in 3.5% NaCl at 60 ℃. Pitting occurred intensively under a multi-pass line which relatively had more intermetallic compounds, and the precipitation of the σ phase caused the formation of Cr carbide.

  9. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment

    International Nuclear Information System (INIS)

    Bae, Seong Han; Lee, Hae Woo

    2014-01-01

    This study investigated the effect of the aging time of weldment of 24Cr-3.5Mo duplex stainless steel on the microstructure and corrosion behavior. After performing FCAW, we carried out heat treatments at varying times at 850 ℃ and performed observation of microstructure, potentio dynamic test, SEM-EDS analysis, and X-ray diffraction analysis. As the aging time increased, the fraction of δ-ferrite decreased sharply, but the fraction of γ slightly increased. The σ phase was generated at a non-metallic inclusion along the grain boundaries of δ-ferrite and γ, while the χ phase was generated in the structure of δ-ferrite. As the intermetallic compounds increased, the critical pitting potential fell sharply, and PREN of the surrounding structure decreased by 5 due to precipitation of the σ phase in 3.5% NaCl at 60 ℃. Pitting occurred intensively under a multi-pass line which relatively had more intermetallic compounds, and the precipitation of the σ phase caused the formation of Cr carbide.

  10. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  11. Ordering effects on structure and specific heat of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    The experimental results on the change in the crystal structure and specific heat of the nonstoichiometric titanium carbide TiC y (0.5 2 C phases with cubic and trigonal symmetry and the rhombic ordered Ti 3 C 2 phase are formed in the titanium carbide at the temperature below 1000 K by the phase transitions mechanism. The temperatures and heats of the order-disorder phase transitions are determined [ru

  12. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  13. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    Vatavuk, J.; Goldenstein, H.

    1987-01-01

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author) [pt

  14. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  15. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  16. Influence of the microstructure of WC-Co cemented carbides on the fracture toughness and abrasive wear

    International Nuclear Information System (INIS)

    Zum Gahr, K.H.; Fischer, A.

    1981-01-01

    Fracture toughness and abrasive wear resistance of WC-Co cemented carbides were investigated by using the indentation cracking test (Palmqvist test) and the pin-on-disk method respectively. Size distribution of tungsten carbides and means free path between them were found to be important microstructural parameters related to the mechanical behavior. Results showed that selection of cemented carbides for heavy wear loading is complicated by contradictory influence of microstructural parameters on fracture toughness and abrasion resistance. Knowledge of the relation between microstructure and resistance to fracture or wear is necessary for optimum use of cemented carbides. (orig.) [de

  17. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  18. Reaction of Oxygen with Chromium and Chromium Carbide at Low O2 Pressures and High Temperatures

    International Nuclear Information System (INIS)

    Hur, Dong O.; Kang, Sung G.; Paik, Young N.

    1984-01-01

    The oxidation rate of chromium carbide has been measured continuously using thermogravimetric analysis at different oxygen pressures ranging from 1.33x10 -2 to 2.67x10 -1 Pa O 2 at 1000-1300 .deg. C. The oxidation of pure chromium has also been studied between 1000-1300 .deg. C under 6.67x10 -2 Pa O 2 and compared with that of chromium carbide. The oxidation of chromium carbide showed a linear behavior which was different from that of chromium. The oxidation rate of chromium carbide increased with increasing temperature and oxygen pressure was lower than of pure chromium. Above 1200 .deg. C, the volatile oxide was formed and evaporated causing a weight loss. The compositions and morphology of the oxide were studied with X-ray diffractometer and scanning electron microscope, respectively. The morphology of oxide changed with varying temperature and pressure. The oxide scale was consisted of mainly two different layers of Cr 2 O 3 and CrO, and the properties of oxide scale were correlated with oxidation behavior. The oxide film formed in the above test condition has been detached from the carbide surface. The crack and pore were thought to be from CO gas evolving at the interface of chromium carbide and its oxide and the major factor of the linear behavior of chromium carbide

  19. Evaluation of Codisposal Viability for TH/U Carbide (Fort Saint Vrain HTGR) DOE-Owned Fuel

    International Nuclear Information System (INIS)

    Radulescu, H.

    2001-01-01

    There are more than 250 forms of US Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The Fort Saint Vrain reactor (FSVR) SNF has been designated as the representative fuel for the Th/U carbide fuel group. The FSVR SNF consists of small particles (spheres of the order of 0.5-mm diameter) of thorium carbide or thorium and high-enriched uranium carbide mixture, coated with multiple, thin layers of pyrolytic carbon and silicon carbide, which serve as miniature pressure vessels to contain fission products and the U/Th carbide matrix. The coated particles are bound in a carbonized matrix, which forms fuel rods or ''compacts'' that are loaded into large hexagonal graphite prisms. The graphite prisms (or blocks) are the physical forms that are handled in reactor loading and unloading operations, and which will be loaded into the DOE standardized SNF canisters. The results of the analyses performed will be used to develop waste acceptance criteria. The items that are important to criticality control are identified based on the analysis needs and result sensitivities. Prior to acceptance to fuel from the Th/U carbide fuel group for disposal, the important items for the fuel types that are being considered for disposal under the Th/U carbide fuel group must be demonstrated to satisfy the conditions determined in this report

  20. Evaluation of Codisposal Viability for TH/U Carbide (Fort Saint Vrain HTGR) DOE-Owned Fuel

    Energy Technology Data Exchange (ETDEWEB)

    H. radulescu

    2001-09-28

    There are more than 250 forms of US Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The Fort Saint Vrain reactor (FSVR) SNF has been designated as the representative fuel for the Th/U carbide fuel group. The FSVR SNF consists of small particles (spheres of the order of 0.5-mm diameter) of thorium carbide or thorium and high-enriched uranium carbide mixture, coated with multiple, thin layers of pyrolytic carbon and silicon carbide, which serve as miniature pressure vessels to contain fission products and the U/Th carbide matrix. The coated particles are bound in a carbonized matrix, which forms fuel rods or ''compacts'' that are loaded into large hexagonal graphite prisms. The graphite prisms (or blocks) are the physical forms that are handled in reactor loading and unloading operations, and which will be loaded into the DOE standardized SNF canisters. The results of the analyses performed will be used to develop waste acceptance criteria. The items that are important to criticality control are identified based on the analysis needs and result sensitivities. Prior to acceptance to fuel from the Th/U carbide fuel group for disposal, the important items for the fuel types that are being considered for disposal under the Th/U carbide fuel group must be demonstrated to satisfy the conditions determined in this report.

  1. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    Science.gov (United States)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  2. DC characteristics and parameters of silicon carbide high-voltage power BJTs

    International Nuclear Information System (INIS)

    Patrzyk, Joanna; Zarębski, Janusz; Bisewski, Damian

    2016-01-01

    The paper shows the static characteristics and operating parameters of the bipolar power transistors made of silicon carbide and for comparison their equivalents made of classical silicon technology. The characteristics and values of selected operating parameters with special emphasis on the effect of temperature and operating point of considered devices are discussed. Quantitative as well as qualitative differences between the characteristics of the transistor made of silicon and silicon carbide are indicated as well

  3. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  4. Phase transformation order-disorder in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Vlasov, V.A.; Karmo, Yu.S.; Kustova, L.V.

    1986-01-01

    Titanium carbide delta-phase is studied using the methods of electric conductivity and differential thermal analysis (DTA). It is shown on the Ti-C system phase diagram that two regions of TiCsub(0.46-0.60) and TiCsub(0.65-1.00) compositions, different in their properties, correspond to delta-phase. Both ordered and disordered phases exist within the TiCsub(0.046-0.60) concentration range, and in equilibrium heating or cooling one phase converts to another at 590 deg C (the first order phase transformation). Samples of the TiCsub(0.65-1.00) composition are characterized by low electric conductivity stability, that is explained by strong titanium carbide electric conductivity sensitivity to defects and impurities

  5. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  6. Synthesis of transfer-free graphene on cemented carbide surface.

    Science.gov (United States)

    Yu, Xiang; Zhang, Zhen; Liu, Fei; Ren, Yi

    2018-03-19

    Direct growth of spherical graphene with large surface area is important for various applications in sensor technology. However, the preparation of transfer-free graphene on different substrates is still a challenge. This study presents a novel approach for the transfer-free graphene growth directly on cemented carbide. The used simple thermal annealing induces an in-situ transformation of magnetron-sputtered amorphous silicon carbide films into the graphene matrix. The study reveals the role of Co, a binding phase in cemented carbides, in Si sublimation process, and its interplay with the annealing temperature in development of the graphene matrix. A detailed physico-chemical characterisation was performed by structural (XRD analysis and Raman spectroscopy with mapping studies), morphological (SEM) and chemical (EDS) analyses. The optimal bilayer graphene matrix with hollow graphene spheres on top readily grows at 1000 °C. Higher annealing temperature critically decreases the amount of Si, which yields an increased number of the graphene layers and formation of multi-layer graphene (MLG). The proposed action mechanism involves silicidation of Co during thermal treatment, which influences the existing chemical form of Co, and thus, the graphene formation and variations in a number of the formed graphene layers.

  7. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  8. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  9. Depletion of CD4+ T cells precipitates immunopathology in immunodeficient mice infected with a noncytocidal virus

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Bartholdy, C; Wodarz, D

    2001-01-01

    investigated whether CD4(+) Th cells are required to establish and maintain this new equilibrium. The absence of IFN-gamma does not impair the generation of IL-2-producing CD4(+) cells, and depletion of these cells precipitates severe CD8(+) T cell-mediated immunopathology in IFN-gamma(-/-) mice, indicating...... an important role of CD4(+) T cells in preventing this syndrome. Analysis of organ virus levels revealed a further impairment of virus control in IFN-gamma(-/-) mice following CD4(+) cell depletion. Initially the antiviral CTL response did not require CD4(+) cells, but with time an impaired reactivity toward...... especially the glycoprotein 33--41 epitope was noted. Enumeration of epitope-specific (glycoprotein 33--41 and nucleoprotein 396--404) CD8(+) T cells by use of tetramers gave similar results. Finally, limiting dilution analysis of CTL precursors reveal an impaired capacity to sustain this population in CD4...

  10. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  11. Multilayered and composite PVD-CVD coatings in cemented carbides manufacture

    International Nuclear Information System (INIS)

    Glushkov, V.N.; Anikeev, A.I.; Anikin, V.N.; Vereshchaka, A.S.

    2001-01-01

    Carbide cutting tools with wear-resistant coatings deposited by CVD process are widely employed in mechanical engineering to ensure a substantially longer service life of tool systems. However, the relatively high temperature and long time of the process make the substrate decarburise and, as a result, the bend strength and performance characteristics of a tool decrease. The present study suggests the problem of deteriorated strength of CVD-coated carbide tools be solved by the development of a technology that combines arc-PVD and CVD processes to deposit multilayered coatings of titanium and aluminium compounds. (author)

  12. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  13. From nitrides to carbides: topotactic synthesis of the eta-carbides Fe3Mo3C and Co3Mo3C.

    Science.gov (United States)

    Alconchel, Silvia; Sapiña, Fernando; Martínez, Eduardo

    2004-08-21

    The molybdenum bimetallic interstitial carbides Fe(3)Mo(3)C and Co(3)Mo(3)C have been synthesized by temperature-programmed reaction (TPR) between the molybdenum bimetallic interstitial nitrides Fe(3)Mo(3)N and Co(3)Mo(3)N and a flowing mixture of CH(4) and H(2) diluted in Ar. These compounds have been characterized by X-ray diffraction, laser Raman spectroscopy, elemental analysis, energy dispersive analysis of X rays, thermal analysis (in air) and scanning electron microscopy (field emission). Their structures have been refined from X-ray powder diffraction data. These carbides crystallize in the cubic system, space group Fd3m[a= 11.11376(6) and 11.0697(3)[Angstrom] for Fe and Co compounds, respectively].

  14. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  15. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  16. Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Zhanjie Li

    2018-02-01

    Full Text Available To realize high efficiency, low/no damage and high precision machining of tungsten carbide used for lens mold, a high frequency ultrasonic vibration cutting system was developed at first. Then, tungsten carbide was precisely machined with a polycrystalline diamond (PCD tool assisted by the self-developed high frequency ultrasonic vibration cutting system. Tool wear mechanism was investigated in ductile regime machining of tungsten carbide. The cutter back-off phenomenon in the process was analyzed. The subsequent experimental results of ultra-precision machining with a single crystal diamond tool showed that: under the condition of high frequency ultrasonic vibration cutting, nano-scale surface roughness can be obtained by the diamond tool with smaller tip radius and no defects like those of ground surface were found on the machined surface. Tool wear mechanisms of the single crystal diamond tool are mainly abrasive wear and micro-chipping. To solve the problem, a method of inclined ultrasonic vibration cutting with negative rake angle was put forward according to force analysis, which can further reduce tool wear and roughness of the machined surface. The investigation was important to high efficiency and quality ultra-precision machining of tungsten carbide.

  17. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  18. Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Iliescu, Ciprian; Chen Bangtao; Wei Jiashen; Pang, A.J.

    2008-01-01

    The paper presents a characterisation of amorphous silicon carbide films deposited in plasma-enhanced chemical vapour deposition (PECVD) reactors for MEMS applications. The main parameter was optimised in order to achieve a low stress and high deposition rate. We noticed that the high frequency mode (13.56 MHz) gives a low stress value which can be tuned from tensile to compressive by selecting the correct power. The low frequency mode (380 kHz) generates high compressive stress (around 500 MPa) due to ion bombardment and, as a result, densification of the layer achieved. Temperature can decrease the compressive value of the stress (due to annealing effect). A low etching rate of the amorphous silicon carbide layer was noticed for wet etching in KOH 30% at 80 o C (around 13 A/min) while in HF 49% the layer is practically inert. A very slow etching rate of amorphous silicon carbide layer in XeF 2 -7 A/min- was observed. The paper presents an example of this application: PECVD-amorphous silicon carbide cantilevers fabricated using surface micromachining by dry-released technique in XeF 2

  19. High temperature oxidation of carbide-carbon materials of NbC-C, NbC-TiC-C systems

    International Nuclear Information System (INIS)

    Afonin, Yu.D.; Shalaginov, V.N.; Beketov, A.R.

    1981-01-01

    The effect of titanium carbide additions on the oxidation of carbide - carbon composition NbC-TiC-C in oxygen under the pressure of 10 mm Hg and in the air at atmospheric pressure in the temperature range 800-1300 deg is studied. It is shown that the region of negative temperature coefficient during oxidation in the system NbC+C is determined by the processes of sintering and polymorphous transformation. The specific character of the oxide film, formed during oxidation of Nbsub(x)Tisub(y)C+C composites is connected with non-equilibrium nature of carbide grain in its composition. Carbon gasification takes place with the formation of carbon dioxide. Composite materials, containing titanium carbide in complex carbide up to 50-83 mol. %, are the most corrosion resisting ones [ru

  20. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  1. Dependence of silicon carbide coating properties on deposition parameters: preliminary report

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1980-05-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide, which acts as a pressure vessel and provides containment of metallic fission products. The silicon carbide (SiC) is deposited by the thermal decomposition of methyltrichlorosilane (CH 3 SiCl 3 or MTS) in an excess of hydrogen. The purpose of the current study is to determine how the deposition variables affect the structure and properties of the SiC layer

  2. Solidification Based Grain Refinement in Steels

    Science.gov (United States)

    2011-09-27

    34Thermal Analysis Study of Heterogeneous Nuclei in Stainless Steels ," International Journal of Metalcasting Date: May, 2011 Status: Submitted...develop strength through the precipitation of carbide particles. The resulting mechanical properties can be strengths of 2,000 MPa, 80% elongation, and...by thermomechanical grain refinemeni and precipitation hardening. This is achieved by precipitating niobium carbides , which pin the austenite grains

  3. Synergistic methods for the production of high-strength and low-cost boron carbide

    Science.gov (United States)

    Wiley, Charles Schenck

    2011-12-01

    Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of

  4. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  5. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  6. Post irradiation examinations of uranium-plutonium mixed carbide fuels irradiated at low linear power rate

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Sasayama, Tatsuo; Iwai, Takashi; Aizawa, Sakuei; Ohwada, Isao; Aizawa, Masao; Ohmichi, Toshihiko; Handa, Muneo

    1988-11-01

    Two pins containing uranium-plutonium carbide fuels which are different in stoichiometry, i.e. (U,Pu)C 1.0 and (U,Pu)C 1.1 , were constructed into a capsule, ICF-37H, and were irradiated in JRR-2 up to 1.0 at % burnup at the linear heat rate of 420 W/cm. After being cooled for about one year, the irradiated capsule was transferred to the Reactor Fuel Examination Facility where the non-destructive examinations of the fuel pins in the β-γ cells and the destructive ones in two α-γ inert gas atmosphere cells were carried out. The release rates of fission gas were low enough, 0.44 % from (U,Pu)C 1.0 fuel pin and 0.09% from (U,Pu)C 1.1 fuel pin, which is reasonable because of the low central temperature of fuel pellets, about 1000 deg C and is estimated that the release is mainly governed by recoil and knock-out mechanisms. Volume swelling of the fuels was observed to be in the range of 1.3 ∼ 1.6 % for carbide fuels below 1000 deg C. Respective open porosities of (U,Pu)C 1.0 and (U,Pu)C 1.1 fuel were 1.3 % and 0.45 %, being in accordance with the release behavior of fission gas. Metallographic observation of the radial sections of pellets showed the increase of pore size and crystal grain size in the center and middle region of (U,Pu)C 1.0 pellets. The chemical interaction between fuel pellets and claddings in the carbide fuels is the penetration of carbon in the fuels to stainless steel tubes. The depth of corrosion layer in inner sides of cladding tubes ranged 10 ∼ 15 μm in the (U,Pu)C 1.0 fuel and 15 #approx #25 μm in the (U,Pu)C 1.1 fuel, which is correlative with the carbon potential of fuels posibly affecting the amount of carbon penetration. (author)

  7. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  8. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  9. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  10. Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser

    Science.gov (United States)

    Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.

    2017-10-01

    Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.

  11. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    International Nuclear Information System (INIS)

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  12. Substructures developed during creep and cyclic tests of type 304 stainless steel (heat 9T2796)

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Bhargava, R.K.; Sikka, V.K.; Moteff, J.

    1977-09-01

    Substructures developed in tested specimens of a reference heat of type 304 stainless steel (heat 9T2796) are examined. Data include dislocation densities, cell and subgrain sizes, and carbide precipitate sizes. Testing conditions range for temperatures from 482 to 649 0 C, for stresses from 28 to 241 MPa, and for times from 4 to 15,000 hr. As expected, it is observed that temperature, stress, and time have strong influences on substructure. The change in the dislocation density is too small to measure for conditions which produce less than 1 percent monotonic strain. No cells form, and the major alteration of substructure is the precipitation of M 23 C 6 carbides on grain boundaries, on twin boundaries, and on some dislocations. At stresses ranging from 69 to 172 MPa and at temperatures ranging from 482 to 593 0 C, the dislocation density increases with increasing stress and is generally higher than expected from studies made at higher temperatures. Dislocations are arranged in fine networks stabilized by carbides. At stresses above 172 MPa and temperatures to 649 0 C, the dislocation density is too great to measure. Cells develop which are finer in size than cells developed at similar stresses but at higher temperatures. Dislocation densities and cell sizes for cyclic specimens are comparable to data for creep-tested specimens. On the basis of the observed substructures, recommendations are made regarding further studies which would assist in the development of constitutive equations for high-temperature inelastic analysis of reactor components

  13. Corrosion-electrochemical characteristics of oxide-carbide and oxide-nitride coatings formed by electrolytic plasma

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chukalovskaya, T.V.; Medova, I.L.; Duradzhi, V.N.; Plavnik, G.M.

    1990-01-01

    The composition, structure, microhardness and corrosion-electrochemical properties of oxide-carbide and oxide-nitride coatings on titanium in 5n H 2 SO 4 , 50 deg, produced by the method of chemical-heat treatment in electrolytic plasma, containing saturation components of nitrogen and carbon, were investigated. It is shown that the coatings produced have increased hardness, possess high corrosion resistance in sulfuric acid solution at increased temperature, as to their electrochemcial behaviour they are similar to titanium carbide and nitride respectively. It is shown that high corrosion resistance is ensured by electrochemical mechanism of the oxide-carbide and oxide-nitride coating protection

  14. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  15. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  16. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  17. UK irradiation experience relevant to advanced carbide fuel concepts for LMFBR's

    International Nuclear Information System (INIS)

    Bagley, K.Q.; Batey, W.; Paris, R.; Sloss, W.M.; Snape, G.P.

    1977-01-01

    Despite discouraging prognoses of fabrication and reprocessing problems, it is recognized that the quest for a carbide fuel pin design which fully exploits the favourable density and thermal conductivity of (U,Pu) monocarbide must be maintained. Studies in aid of carbide fuel development have, therefore, continued in the UK in parallel with those on oxide, albeit at a substantially lower level of effort, and a sufficient body of irradiation experience has been accumulated to allow discrimination of realistic fuel pin designs

  18. Effects of nano TiN addition on the microstructure and mechanical properties of TiC based steel bonded carbides

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi'an; DAI Haiyang; ZOU Yu

    2008-01-01

    TiC based steel bonded carbides with the addition of nano TiN were prepared by vicuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM)and transmission electron microscopy (TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides.the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.

  19. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  20. Examination of the Combustion Morphology of Ziconium Carbide Using Scanning Electron Microscopy

    OpenAIRE

    Newbold, Brian R.

    1997-01-01

    Calculation of viscous particle damping of acoustic combustion instability in solid propellant motors requires an understanding of the combustion behavior of added particles and oxides. A simple hydrogen/oxygen flame was used to ignite carefully sieved zirconium carbide particles which were impacted on slides at different levels below the burner. Scanning electron microscopy revealed that zirconium carbide has a complex heterogeneous combustion morphology. Initially, particles are partly v...

  1. Study on tempering behaviour of AISI 410 stainless steel

    International Nuclear Information System (INIS)

    Chakraborty, Gopa; Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Thomas Paul, V.; Panneerselvam, G.; Dasgupta, Arup

    2015-01-01

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M 23 C 6 ) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe 2 C and M 23 C 6 types of carbides coexisting in the material. The nucleation of Fe 2 C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M 23 C 6 carbides, instead of Fe 2 C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with

  2. Gas cooled fast breeder reactors using mixed carbide fuel

    International Nuclear Information System (INIS)

    Kypreos, S.

    1976-09-01

    The fast reactors being developed at the present time use mixed oxide fuel, stainless-steel cladding and liquid sodium as coolant (LMFBR). Theoretical and experimental designing work has also been done in the field of gas-cooled fast breeder reactors. The more advanced carbide fuel offers greater potential for developing fuel systems with doubling times in the range of ten years. The thermohydraulic and physics performance of a GCFR utilising this fuel is assessed. One question to be answered is whether helium is an efficient coolant to be coupled with the carbide fuel while preserving its superior neutronic performance. Also, an assessment of the fuel cycle cost in comparison to oxide fuel is presented. (Auth.)

  3. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  4. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    Science.gov (United States)

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  6. CLIMATIC CHARACTERISTICS OF TYPHOON PRECIPITATION OVER CHINA

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-mei; REN Fu-min; LI Wei-jing; WANG Xiao-ling

    2008-01-01

    The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually decreases from the southeastern coastal regions to the northwestern mainland. The maximum annual typhoon precipitation exceeds 700 mm in central-eastern Taiwan and part of Hainan, while the minimum annual typhoon precipitation occurs in parts of Inner Mongolia, Shanxi, Shaanxi and Sichuan, with values less than 10 mm. Generally, typhoons produce precipitation over China during April - December with a peak in August. The annual typhoon precipitation time series for observation stations are examined for long-term trends. The results show that decreasing trends exist in most of the stations from 1957 to 2004 and are statistically significant in parts of Taiwan, Hainan, coastal Southeast China and southern Northeast China. The anomaly of typhoon precipitation mainly results from that of the general circulation over Asia and the Walker Cell circulation over the equatorial central and eastern Pacific. Typhoon torrential rain is one of the extreme rainfall events in the southeastern coastal regions and parts of central mainland. In these regions, torrential rains are mostly caused by typhoons.

  7. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2007-01-01

    Intergranular corrosion behaviour of 316Ti and 321 austenitic stainless steels has been evaluated in relation to the influence exerted by modification of Ti, C and N concentrations. For this evaluation, electrochemical measurements - double loop electrochemical potentiokinetic reactivation (DL-EPR) - were performed to produce time-temperature-sensitization (TTS) diagrams for tested materials. Transmission (TEM) and scanning electron microscopy (SEM) were used to determine the composition and nature of precipitates. The addition of Ti promotes better intergranular corrosion resistance in stainless steels. The precipitation of titanium carbides reduces the formation of chromium-rich carbides, which occurs at lower concentrations. Also, the reduction of carbon content to below 0.03 wt.% improves sensitization resistance more than does Ti content. The presence of Mo in AISI 316Ti stainless steel reduces chromium-rich carbide precipitation; the reason is that Mo increases the stability of titanium carbides and tends to replace chromium in the formation of carbides and intermetallic compounds, thus reducing the risks of chromium-depletion

  8. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    KAUST Repository

    Wezendonk, Tim A.

    2018-04-19

    Iron carbides are unmistakably associated with the active phase for Fischer-Tropsch synthesis (FTS). The formation of these carbides is highly dependent on the catalyst formulation, the activation method and the operational conditions. Because of this highly dynamic behavior, studies on active phase performance often lack the direct correlation between catalyst performance and iron carbide phase. For the above reasons, an extensive in situ Mössbauer spectroscopy study on highly dispersed Fe on carbon catalysts (Fe@C) produced through pyrolysis of a Metal Organic Framework was coupled to their FTS performance testing. The preparation of Fe@C catalysts via this MOF mediated synthesis allows control over the active phase formation and therefore provides an ideal model system to study the performance of different iron carbides. Reduction of fresh Fe@C followed by low-temperature Fischer-Tropsch (LTFT) conditions resulted in the formation of the ε′-Fe2.2C, whereas carburization of the fresh catalysts under high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM) characterization confirmed that the iron nanoparticle dispersion was preserved. The weight normalized activities (FTY) of χ-Fe5C2 and ε′-Fe2.2C are virtually identical, whilst it is found that ε′-Fe2.2C is a better hydrogenation catalyst than χ-Fe5C2. The absence of differences under subsequent HTFT experiments, where χ-Fe5C2 is the dominating phase, is a strong indication that the iron carbide phase is responsible for the differences in selectivity.

  9. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  10. Laser cladding of Ti-6Al-4V with various carbide powders

    International Nuclear Information System (INIS)

    Folkes, J.A.; Shibata, K.

    1994-01-01

    Laser cladding Ti-6Al-4V can be achieved with various weight percentages of different carbide powders. The microstructure and morphology of the clad layer is determined by the cladding powder composition, for a given set of laser parameters, such that 10 and 20 wt% Cr 3 C 2 results in a β + TiC clad microstructure; 10 and 20 wt% WC results in an α + TiC clad microstructure (plus some original WC); and Mo 2 C gives an α + β + TiC or β + TiC structure, depending on the weight percentage of Mo 2 C. The morphology of the TiC in all cases is dendritic or feathery, depending on the carbide content. The microstructure observed in all cases agreed well with that theoretically predicted from the energetics of carbide formation and β-stabilizing properties of each element

  11. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    International Nuclear Information System (INIS)

    Diaz Barriga Arceo, L.; Orozco, E.; Mendoza-Leon, H.; Palacios Gonzalez, E.; Leyte Guerrero, F.; Garibay Febles, V.

    2007-01-01

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 o C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 μm in length were obtained after heating at 800 o C, by means of this process

  12. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  13. Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts.

    Science.gov (United States)

    Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano

    2016-08-03

    Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen.

  14. The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency

    Science.gov (United States)

    Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.

    2017-10-01

    The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.

  15. Precipitated iron. A limit on gettering efficacy in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fenning, D.P.; Hofstetter, J.; Bertoni, M.I.; Buonassisi, T. [Massachusetts Institute of Technology MIT, Cambridge, Massachusetts 02139 (United States); Coletti, G. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Lai, B. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Del Canizo, C. [Instituto de Energia Solar, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2013-01-31

    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

  16. Composition and microstructure of beryllium carbide films prepared by thermal MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu-dan; Luo, Jiang-shan; Li, Jia; Meng, Ling-biao; Luo, Bing-chi; Zhang, Ji-qiang; Zeng, Yong; Wu, Wei-dong, E-mail: wuweidongding@163.com

    2016-02-15

    Highlights: • Non-columnar-crystal Be{sub 2}C films were firstly prepared by thermal MOCVD. • Beryllium carbide was always the dominant phase in the films. • α-Be and carbon existed in films deposited below and beyond 400 °C, respectively. • Morphology evolved with temperatures and no columnar grains were characterized. • The preferred substrate temperature for depositing high quality Be{sub 2}C films was 400 °C. - Abstract: Beryllium carbide films without columnar-crystal microstructures were prepared on the Si (1 0 0) substrate by thermal metal organic chemical vapor deposition using diethylberyllium as precursor. The influence of the substrate temperature on composition and microstructure of beryllium carbide films was systematically studied. Crystalline beryllium carbide is always the dominant phase according to XRD analysis. Meanwhile, a small amount of α-Be phase exists in films when the substrate temperature is below 400 °C, and hydrocarbon or amorphous carbon exists when the temperature is beyond 400 °C. Surfaces morphology shows transition from domes to cylinders, to humps, and to tetraquetrous crystalline needles with the increase of substrate temperature. No columnar grains are characterized throughout the thickness as revealed from the cross-section views. The average densities of these films are determined to be 2.04–2.17 g/cm{sup 3}. The findings indicate the substrate temperature has great influences on the composition and microstructure of the Be{sub 2}C films grown by thermal MOCVD.

  17. Safety research needs for carbide and nitride fueled LMFBR's. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1975-01-01

    The results of a study initiated at UCLA during the academic year 1974--1975 to evaluate and review the potential safety related research needs for carbide and nitride fueled LMFBR's are presented. The tasks included the following: (1) Review Core and primary system designs for any significant differences from oxide fueled reactors, (2) Review carbide (and nitride) fuel element irradiation behavior, (3) Review reactor behavior in postulated accidents, (4) Examine analytical methods of accident analysis to identify major gaps in models and data, and (5) Examine post accident heat removal. (TSS)

  18. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  19. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  20. A re-examination of two-step lateral stress history in silicon carbide

    International Nuclear Information System (INIS)

    Dandekar, Dattatraya P.

    2004-01-01

    The observed two-step lateral stress history in silicon carbide, SiC-B under plane shock wave propagation [N. K. Bourne, J. Millett, and I. Pickup, J. Appl. Phys. 81, 6019 (1997)] is attributed to a delayed failure in SiC-B due to propagation of a slow moving front traveling behind the main shock wave. According to this attribution, the first lower magnitude, step corresponds to the lateral stress in intact shock compressed silicon carbide as a result of the fast moving plane shock wave. The second step of higher magnitude, observed after a few hundred nanoseconds, corresponds to the lateral stress in failed silicon carbide due to propagation of the slower moving front. The current analysis, takes into account additional relevant existing results dealing with shock response of SiC-B, and shows that the suggested explanation for the observed phenomenon remains in doubt

  1. RICE-HUSK ASH-CARBIDE-WASTE STABILIZATION OF ...

    African Journals Online (AJOL)

    This paper present results of the laboratory evaluation of the characteristics of carbide waste and rice husk ash stabilized reclaimed asphalt pavement waste with a ... of 5.7 % and resistance to loss in strength of 84.1 %, hence the recommendation of the mixture for use as sub-base material in flexible pavement construction.

  2. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  3. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process

    International Nuclear Information System (INIS)

    Wang, X.D.; Xu, W.Z.; Guo, Z.H.; Wang, L.; Rong, Y.H.

    2010-01-01

    Based on the observations of scanning electron microscopy and transmission electron microscopy, four kinds of carbides were identified in a Nb-microalloyed steel after quenching-partitioning-tempering treatment. In addition to transitional epsilon carbide that usually forms in silicon-free carbon steel, other three types of niobium carbides (NbC) formed at various treatment stages respectively. They are incoherent NbC inclusion that nucleated at solidification mainly, fine NbC that nucleated in lath martensite at tempering stage and regular polygonal NbC that nucleated in austenite before quenching. Their formation mechanisms on steel were discussed briefly based on thermodynamics.

  4. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  5. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  6. Effect of surface texturing on friction properties of WC/Co cemented carbide

    International Nuclear Information System (INIS)

    Wu, Ze; Deng, Jianxin; Xing, Youqiang; Cheng, Hongwei; Zhao, Jun

    2012-01-01

    Highlights: ► Tribological properties of surface textured WC/Co cemented carbide were studied. ► Textured surfaces have better performance of antifriction and antiwear. ► Area density of textures has significant effect on tribological performance. -- Abstract: An experimental study was carried out to investigate the tribological properties of different surface textured WC/Co cemented carbide. The influence of applied load, sliding speed and area density of textures on frictional performance of surface textured patterns was investigated by Taguchi method. Results show that the textured surfaces filled with molybdenum disulfide solid lubricants can reduce the average friction coefficient, wear rates of Ti–6Al–4V alloy balls and adhesion of Ti–6Al–4V alloy materials on the worn track of cemented carbide compared with un-textured ones. Variance analysis of the experimental data indicates that the area density of textures plays major contribution of both average friction coefficient and wear rate of Ti–6Al–4V alloy balls. Higher area density of textures is beneficial to improve tribological performance of the cemented carbide samples. Sliding speed seems to have no effect on the tribological performance of textured surfaces within the reliability interval of 90%. Applied load has effect on both average friction coefficient and wear rate of Ti–6Al–4V alloy balls at the reliability interval of 95%.

  7. Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components

    Directory of Open Access Journals (Sweden)

    Krzysztof J. Kurzydlowski

    2013-11-01

    Full Text Available The aim of this work was to characterize the microstructure of the as-cast Haynes® 282® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD, light microscopy (LM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray spectroscopy (EDS, wave length dispersive X-ray spectroscopy (WDS, auger electron spectroscopy (AES and electron energy-loss spectrometry (EELS. The phases identified in the as-cast alloy include: γ (gamma matrix, γʹ (matrix strengthening phase, (TiMoCrC (primary carbide, TiN (primary nitride, σ (sigma-TCP phase, (TiMo2SC (carbosulphide and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γʹ appears mostly in the form of spherical, nanometric precipitates (74 nm, while coarser (113 nm cubic γʹ precipitates are present in the interdendritic areas. Volume fraction content of the γʹ precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN, are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC, preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo2SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γʹ matrix.

  8. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  9. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  10. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  11. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008 (China); Song, Hui [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Wenqing, E-mail: wqliu@staff.shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China); Su, Cheng; Ding, Wenyan [Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008 (China)

    2015-12-15

    The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ′/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed. - Highlights: • Solute atoms segregated at interfaces were analyzed in an austenitic stainless steel. • The comparison of segregation in different interfaces was studied by APT. • The evolution of interface segregation during aging treatment was discussed.

  12. Effect of ion beam bombardment on the carbide in M2 steel modified by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y.; Wang, F.J.; Wang, Y.K. (Dept. of Materials Engineering, Dalian Univ. of Technology (China)); Ma, T.C. (National Lab. of Materials Modification by Beam Three, Dalian (China))

    1991-10-30

    Transmission electron microscopy was used to study the effect of nitrogen ion bombardment with different doses on the carbides in M2 high speed steel as the nitrogen ions penetrated into the nitride films during ion-beam-assisted deposition. With different doses of nitrogen, alterations in the morphological characteristics of the carbide M6C at the interface were observed. With lower doses, knitting-like contrast within the carbide showed subboundary structure defects in M6C. With increasing dose, the substructure defects were broken up into small fragments owing to heavy bombardment. The microstructures of carbides at the interface damaged by nitrogen ions are discussed in detail. (orig.).

  13. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  14. Relative flotation response of zinc sulfide: Mineral and precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.R.; Finch, J.A. [McGill Univ., Montreal, Quebec (Canada). Dept. of Mining and Metallurgical Engineering; Zhou, Z.; Xu, Z. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering

    1998-04-01

    Flotation continues to extend to nonmineral applications, including recycling of materials, soil remediation, and effluent treatment. A study has been conducted to compare the floatability of fine zinc sulfide (ZnS) precipitates and sphalerite particles. The floatability of the precipitates was significantly poorer compared to sphalerite particles when xanthate was used as the collector. The floatability was improved by using dodecylamine as the collector, and the difference in floatability between the precipitates was further improved significantly by incorporating a hydrodynamic cavitation tube in a conventional (mechanical) flotation cell. The improved kinetics was attributed to in-situ gas nucleation on the precipitates.

  15. Improvements in or relating to refractory materials

    International Nuclear Information System (INIS)

    Peckett, J.W.A.

    1980-01-01

    A process is described for the production of a refractory material which includes heating an intermediate material containing carbon to cause a thermally induced reaction involving carbon in the intermediate material, wherein the intermediate material has been produced by heating a shaped gel precipitated gel, and the carbon in the intermediate material for participating in the thermally induced reaction has been produced from a gelling agent, or a derivative thereof, incorporated in the gel during gel precipitation. As examples, the refractory material may comprise uranium/plutonium oxide, or uranium/plutonium carbide, or thorium/uranium carbide, or tungsten carbide, or tungsten carbide/cobalt metal. (author)

  16. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  17. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  18. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  19. Spheroidization of transition metal carbides in low temperature plasma

    International Nuclear Information System (INIS)

    Klinskaya, N.A.; Koroleva, E.B.; Petrunichev, V.A.; Rybalko, O.F.; Solov'ev, P.V.; Ugol'nikova, T.A.

    1986-01-01

    Plasma process of preparation of titanium, tungsten and chromium carbide spherical powders with the main particle size 40-80 μm is considered. Spheroidization degree, granulometric and phase composition of the product are investigated

  20. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)